JP6805044B2 - Alloyed hot-dip galvanized steel sheet for hot stamping - Google Patents
Alloyed hot-dip galvanized steel sheet for hot stamping Download PDFInfo
- Publication number
- JP6805044B2 JP6805044B2 JP2017063372A JP2017063372A JP6805044B2 JP 6805044 B2 JP6805044 B2 JP 6805044B2 JP 2017063372 A JP2017063372 A JP 2017063372A JP 2017063372 A JP2017063372 A JP 2017063372A JP 6805044 B2 JP6805044 B2 JP 6805044B2
- Authority
- JP
- Japan
- Prior art keywords
- hot
- steel sheet
- less
- mass
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、ホットスタンプ用合金化溶融亜鉛めっき鋼板に関する。特には、ホットスタ
ンプ後に塗装を行ったときの塗膜密着性に優れるホットスタンプ用合金化溶融亜鉛めっき
鋼板に関する。
The present invention relates to an alloyed hot-dip galvanized steel sheet for hot stamping. In particular, the present invention relates to an alloyed hot-dip galvanized steel sheet for hot stamping, which has excellent coating film adhesion when coating is performed after hot stamping.
自動車用部品の製造において、近年では、高強度化と複雑な形状の両立が可能な技術として、鋼板を高温でプレスして製造するホットスタンプが提案されている。以下では、ホットプレスに供する鋼板を「ブランク」ということがある。ホットスタンプは、熱間成形、ホットプレスなどとも呼ばれており、上記ブランクを、オーステナイト+フェライトの温度域、即ちAc3変態点以上の高温にまで加熱し、プレス加工する方法である。該ブランクの加熱工程と、これに続く該ブランクをプレス成形する部品成形工程とを、以下「ホットスタンプ工程」と総称する場合がある。このホットスタンプによれば、高強度でありながら、複雑な形状の自動車用部品等の鋼部品を得ることができる。以下、ホットスタンプにより得られる鋼部品を「ホットスタンプ成形品」ということがある。 In recent years, in the manufacture of automobile parts, a hot stamp manufactured by pressing a steel plate at a high temperature has been proposed as a technology capable of achieving both high strength and a complicated shape. In the following, the steel sheet used for hot pressing may be referred to as "blank". Hot stamping is also called hot forming or hot pressing, and is a method of heating the blank to a temperature range of austenite + ferrite, that is, a high temperature equal to or higher than the Ac 3 transformation point, and pressing the blank. The heating step of the blank and the subsequent part molding step of press-molding the blank may be collectively referred to as a "hot stamping step" below. According to this hot stamp, it is possible to obtain steel parts such as automobile parts having a complicated shape while having high strength. Hereinafter, the steel parts obtained by hot stamping may be referred to as "hot stamp molded products".
前記ブランクとして、熱間圧延後に酸洗して得られる鋼板、即ち熱延酸洗鋼板、または更に冷間圧延して得られる冷延鋼板が用いられる他、耐食性向上の観点から、上記熱延酸洗鋼板または冷延鋼板の少なくとも片面にめっきを施しためっき鋼板も使用される。前記めっき鋼板は、主に、亜鉛系めっき鋼板とアルミニウム系めっき鋼板に大別されるが、耐食性などを考慮し、亜鉛系めっき鋼板が汎用されている。よって、ホットスタンプにも亜鉛系めっき鋼板がブランクとして用いられる。 As the blank, a steel sheet obtained by pickling after hot rolling, that is, a hot-rolled pickled steel sheet, or a cold-rolled steel sheet obtained by further cold rolling is used, and from the viewpoint of improving corrosion resistance, the hot-rolled acid. A plated steel sheet in which at least one side of a washed steel sheet or a cold-rolled steel sheet is plated is also used. The plated steel sheet is mainly classified into a zinc-based plated steel sheet and an aluminum-based plated steel sheet, and the zinc-based plated steel sheet is widely used in consideration of corrosion resistance and the like. Therefore, a galvanized steel sheet is also used as a blank for hot stamping.
上記亜鉛系めっき鋼板のめっき層を構成する亜鉛は、融点が419℃、沸点が907℃であり、ホットスタンプを行う温度域では液相または気相となる。ホットスタンプ工程では、大気中で加熱を行うことが一般的であるため、上記液相または気相の状態にある活性な亜鉛は酸化され易く、鋼板表面に酸化亜鉛膜が生じやすい。 Zinc constituting the plating layer of the galvanized steel sheet has a melting point of 419 ° C. and a boiling point of 907 ° C., and is in a liquid phase or a gas phase in a temperature range in which hot stamping is performed. In the hot stamping step, since heating is generally performed in the atmosphere, active zinc in the liquid phase or gas phase is easily oxidized, and a zinc oxide film is likely to be formed on the surface of the steel sheet.
鋼部品として例えば自動車用部品を製造する場合、ホットスタンプ後に、化成処理及び電着塗装が施される。しかしホットスタンプ工程で上記酸化亜鉛膜が厚く形成されると、上記塗装により形成された塗膜がはがれ易い、即ち、塗膜密着性が低下するといった問題が生じる。以下、ホットスタンプ後に塗装を行ったときの塗膜密着性を「ホットスタンプ・塗装後の塗膜密着性」または単に「塗膜密着性」ということがある。 When, for example, automobile parts are manufactured as steel parts, chemical conversion treatment and electrodeposition coating are performed after hot stamping. However, if the zinc oxide film is formed thick in the hot stamping step, there arises a problem that the coating film formed by the coating film is easily peeled off, that is, the adhesion of the coating film is lowered. Hereinafter, the coating film adhesion when coating is performed after hot stamping may be referred to as "coating film adhesion after hot stamping / painting" or simply "coating film adhesion".
塗膜密着性を向上させた技術として、特許文献1には、めっき層の表層に厚さが10〜100nmであって、かつFを含有するZr、Ti、Siの一種または二種以上の金属酸化物及び/または金属水酸化物の皮膜を形成することが示されている。しかしながら、該皮膜を形成するための塗装前処理は、一般的なリン酸塩処理でないため、処理液の変更を余儀なくされるなど製造工程の制約を受ける。その他の塗膜密着性を向上させる手法として、亜鉛酸化膜の成長を抑制すべく、加熱炉を二つ用いてホットスタンプ工程の加熱温度の制御・加熱時間を短縮する技術が挙げられる。しかしながら、通常1台の加熱炉を使用するホットスタンプ工程に2台の加熱炉が必要なため、ユーザーに装置導入・ホットスタンプ条件を強いる技術であり、好ましくない。 As a technique for improving coating film adhesion, Patent Document 1 states that one or more metals of Zr, Ti, and Si having a thickness of 10 to 100 nm on the surface layer of the plating layer and containing F. It has been shown to form a film of oxides and / or metal hydroxides. However, since the coating pretreatment for forming the film is not a general phosphate treatment, there are restrictions on the manufacturing process such as being forced to change the treatment liquid. As another method for improving the adhesion of the coating film, there is a technique of controlling the heating temperature and shortening the heating time in the hot stamping process by using two heating furnaces in order to suppress the growth of the zinc oxide film. However, since two heating furnaces are usually required for the hot stamping process using one heating furnace, this is a technique for forcing the user to introduce the equipment and hot stamping conditions, which is not preferable.
本発明は、上記の事情に鑑みてなされたものであって、その目的は、上記特許文献1等の様なホットスタンプ工程及びその後の化成処理工程の制約を極力抑えつつ、ホットスタンプ・塗装後の塗膜密着性に優れたホットスタンプ用合金化溶融亜鉛めっき鋼板を実現することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to suppress the restrictions of the hot stamping process and the subsequent chemical conversion treatment process as in Patent Document 1 and the like as much as possible, and after hot stamping and painting. The purpose is to realize an alloyed hot-dip galvanized steel sheet for hot stamping, which has excellent coating adhesion.
上記課題を解決できた本発明のホットスタンプ用合金化溶融亜鉛めっき鋼板は、
素地鋼板が、質量%で、
C:0.1〜0.5%、
Si:0.2〜2.5%、
Mn:0.5〜3%、および
Al:0.01〜0.5%を含有し、かつ
合金化溶融亜鉛めっき層を有する鋼板であって、
前記合金化溶融亜鉛めっき層は、
Al濃度:0.50質量%超1.50質量%以下、および
Fe濃度:6.0〜25.0質量%を満たし、かつ
めっき付着量が40〜120g/m2であるところに特徴を有する。
The alloyed hot-dip galvanized steel sheet of the present invention that has solved the above problems is
The base steel plate is by mass%,
C: 0.1 to 0.5%,
Si: 0.2-2.5%,
A steel sheet containing Mn: 0.5 to 3% and Al: 0.01 to 0.5% and having an alloyed hot-dip galvanized layer.
The alloyed hot-dip galvanized layer is
It is characterized in that the Al concentration is more than 0.50% by mass and 1.50% by mass or less, the Fe concentration is 6.0 to 25.0% by mass, and the plating adhesion amount is 40 to 120 g / m 2. ..
前記素地鋼板は、更に、質量%で、下記(a)〜(c)のうちの1以上を含んでいてもよい。
(a)Bを0%超0.005%以下
(b)Ti、Nb、ZrおよびVよりなる群から選択される少なくとも1種以上の元素を、合計で0%超0.1%以下
(c)Cr、Mo、CuおよびNiよりなる群から選択される少なくとも1種の元素を、合計で0%超1%以下
The base steel sheet may further contain one or more of the following (a) to (c) in mass%.
(A) B is more than 0% and 0.005% or less (b) At least one element selected from the group consisting of Ti, Nb, Zr and V is contained in a total of more than 0% and 0.1% or less (c). ) At least one element selected from the group consisting of Cr, Mo, Cu and Ni, in total more than 0% and less than 1%
本発明によれば、ホットスタンプ工程及びその後の化成処理工程の制約を極力抑えつつ、ホットスタンプ・塗装後の塗膜密着性に優れたホットスタンプ用合金化溶融亜鉛めっき鋼板を得ることができる。 According to the present invention, it is possible to obtain an alloyed hot-dip galvanized steel sheet for hot stamping, which has excellent adhesion to the coating film after hot stamping and painting, while suppressing the restrictions of the hot stamping step and the subsequent chemical conversion treatment step as much as possible.
本発明者らは、合金化溶融亜鉛めっき鋼板に対して、ホットスタンプおよび塗装を行ったときの塗膜密着性を高めるべく検討を重ねた。まず、ホットスタンプ・塗装後の塗膜密着性が劣化する原因に着目したところ、めっき層の表面に形成された表層酸化物が、ホットスタンプ加熱時に過剰に成長し、酸化物層とめっき表面の間に空隙が生じるため、ホットスタンプ・塗装後の塗膜密着性が劣化するのではないかと考えた。 The present inventors have conducted repeated studies on alloyed hot-dip galvanized steel sheets in order to improve the adhesion of the coating film when hot stamping and coating are performed. First, focusing on the cause of deterioration of the adhesion of the coating film after hot stamping and painting, the surface oxide formed on the surface of the plating layer grows excessively during hot stamp heating, and the oxide layer and the plating surface It was thought that the adhesion of the coating film after hot stamping and painting might deteriorate due to the formation of voids between them.
そこで塗膜密着性を高めることを目的に、ホットスタンプ工程での上記表層酸化物の成長を抑制すべく検討を行った。なお、前記「表層酸化物」とは、めっき層の表面に形成されるSi,Mn,Fe,Zn,Alなどの鋼中またはめっき層中の成分からなる単一または複合の酸化物を指す。 Therefore, in order to improve the adhesion of the coating film, a study was conducted to suppress the growth of the surface oxide in the hot stamping process. The "surface oxide" refers to a single or composite oxide formed on the surface of the plating layer and composed of components in steel such as Si, Mn, Fe, Zn, and Al or in the plating layer.
その結果、めっき層中のAl濃度を一定以上に高めれば、優れた塗膜密着性を達成できることを見出した。その作用効果について次の通り考えられる。即ち、Alは易酸化性元素であり、めっき層中のAlがホットスタンプ工程の低温時に、まずめっき表層に濃化して安定なAl系酸化物を生成する。これにより、めっきの主成分であって上記Alよりも酸化されにくい元素であるZnの酸化物の成長が抑制され、その結果、上記Al、Znの酸化物を含めた表層酸化物全体の成長が抑制されて、塗膜密着性が高まると考えられる。本発明者らは、上記効果を十分に発現させることを最終目的に、めっき層表面に緻密かつ十分なAl系酸化物を生成すべく、めっき層中のAl濃度について検討を行った。その結果、合金化溶融亜鉛めっき層のAl濃度を0.50質量%超1.50質量%以下とすればよいことを見出した。 As a result, it was found that excellent coating film adhesion can be achieved by increasing the Al concentration in the plating layer to a certain level or higher. The effects can be considered as follows. That is, Al is an easily oxidizing element, and when Al in the plating layer is at a low temperature in the hot stamping process, it first concentrates on the plating surface layer to form a stable Al-based oxide. As a result, the growth of Zn oxide, which is the main component of plating and is an element that is less likely to be oxidized than Al, is suppressed, and as a result, the growth of the entire surface oxide including the Al and Zn oxides is suppressed. It is considered that this is suppressed and the adhesion to the coating film is enhanced. The present inventors have investigated the Al concentration in the plating layer in order to generate a dense and sufficient Al-based oxide on the surface of the plating layer for the ultimate purpose of sufficiently exhibiting the above effects. As a result, it was found that the Al concentration of the alloyed hot-dip galvanized layer should be more than 0.50% by mass and 1.50% by mass or less.
前記めっき層中のAl濃度を0.50質量%超とすることによって、上記表層酸化物の生成を十分に抑制でき、塗膜密着性を格段に高めることができる。前記めっき層中のAl濃度は、好ましくは0.60質量%超、より好ましくは0.70質量%以上、更に好ましくは0.80質量%以上、より更に好ましくは0.90質量%以上である。一方、鋼板に塗装を施す場合、鋼板と塗膜との密着性及び耐食性を高める目的でリン酸塩処理を行うが、鋼部品の表層、即ちめっき層のAl濃度が高すぎると、リン酸塩処理性、具体的にはリン酸塩の付着量及び均一性が低下する。よって、前記めっき層中のAl濃度を1.50質量%以下とする。前記めっき層中のAl濃度は、好ましくは1.40質量%以下、より好ましくは1.30質量%以下、更に好ましくは1.20質量%以下、より更に好ましくは1.10質量%以下、特に好ましくは1.00質量%以下である。 By setting the Al concentration in the plating layer to more than 0.50% by mass, the formation of the surface oxide can be sufficiently suppressed, and the adhesion to the coating film can be remarkably improved. The Al concentration in the plating layer is preferably more than 0.60% by mass, more preferably 0.70% by mass or more, still more preferably 0.80% by mass or more, still more preferably 0.90% by mass or more. .. On the other hand, when coating a steel sheet, phosphate treatment is performed for the purpose of improving the adhesion and corrosion resistance between the steel sheet and the coating film, but if the Al concentration of the surface layer of the steel part, that is, the plating layer is too high, the phosphate is applied. The processability, specifically, the amount of phosphate adhered and the uniformity are reduced. Therefore, the Al concentration in the plating layer is set to 1.50% by mass or less. The Al concentration in the plating layer is preferably 1.40% by mass or less, more preferably 1.30% by mass or less, still more preferably 1.20% by mass or less, still more preferably 1.10% by mass or less, particularly. It is preferably 1.00% by mass or less.
また本発明では、前記めっき層中のFe濃度を6.0〜25.0質量%の範囲に制御する。めっき層中のFe濃度が6.0質量%未満の場合、めっき表面の赤外線放射率が著しく低く、例えばホットプレス工程でAc3変態点以上の温度に加熱する場合、Ac3変態点に到達するまでの加熱時間が、めっき層中のFe濃度が6.0質量%以上のめっき鋼板に比べて著しく長くなる。上記加熱時間が長いと上記表層酸化物の生成・成長が促進され、所望の塗膜密着性が得られない。よって本発明では、優れた塗膜密着性を得るべく、めっき層中のFe濃度を6.0質量%以上とする。該めっき層中の好ましいFe濃度は6.5質量%以上、更には7.0質量%以上、更には7.5質量%以上、更には8.0質量%以上、更には9.0質量%以上、更には10.0質量%以上であり、特に好ましくは12.0質量%以上である。 Further, in the present invention, the Fe concentration in the plating layer is controlled in the range of 6.0 to 25.0% by mass. When the Fe concentration in the plating layer is less than 6.0% by mass, the infrared emissivity of the plating surface is remarkably low. For example, when heating to a temperature equal to or higher than the Ac 3 transformation point in a hot press process, the Ac 3 transformation point is reached. The heating time up to is significantly longer than that of a plated steel sheet having an Fe concentration of 6.0% by mass or more in the plating layer. If the heating time is long, the formation and growth of the surface oxide is promoted, and the desired coating film adhesion cannot be obtained. Therefore, in the present invention, the Fe concentration in the plating layer is set to 6.0% by mass or more in order to obtain excellent coating film adhesion. The preferable Fe concentration in the plating layer is 6.5% by mass or more, further 7.0% by mass or more, further 7.5% by mass or more, further 8.0% by mass or more, and further 9.0% by mass. As mentioned above, further, it is 10.0% by mass or more, and particularly preferably 12.0% by mass or more.
一方、めっき層中のFe濃度が高くなると相対的にめっき層中のZnの割合が減少し、その結果、めっき本来の性能である犠牲防食能が低下して、鋼部品の耐食性が劣化する。これらの観点から、合金化溶融亜鉛めっき鋼板におけるめっき層中のFe濃度を25.0質量%以下とする。該めっき層中の好ましいFe濃度は22.0質量%以下、更には20.0質量%以下、更には19.0質量%以下、更には18.0質量%以下、更には17.0質量%以下、更には16.0質量%以下、更には15.0質量%以下、特に好ましくは14.0質量%以下である。 On the other hand, as the Fe concentration in the plating layer increases, the proportion of Zn in the plating layer decreases relatively, and as a result, the sacrificial anticorrosion ability, which is the original performance of plating, decreases, and the corrosion resistance of steel parts deteriorates. From these viewpoints, the Fe concentration in the plated layer of the alloyed hot-dip galvanized steel sheet is set to 25.0% by mass or less. The preferable Fe concentration in the plating layer is 22.0% by mass or less, further 20.0% by mass or less, further 19.0% by mass or less, further 18.0% by mass or less, and further 17.0% by mass. Below, it is 16.0% by mass or less, further 15.0% by mass or less, and particularly preferably 14.0% by mass or less.
上記めっき層として、その成分組成が、上記濃度のAlおよびFeを含み、残部がZnおよび不可避不純物のものが挙げられる。該不可避不純物としてSi、Mn、Cr、Ni、Ti、Nb、Pb、P、Mg、Ca、S等が挙げられ、合計濃度で2質量%以下含みうる。尚、このうち、Mgは0.3質量%未満である。 Examples of the plating layer include those whose component composition contains the above concentrations of Al and Fe, and the balance is Zn and unavoidable impurities. Examples of the unavoidable impurities include Si, Mn, Cr, Ni, Ti, Nb, Pb, P, Mg, Ca, S and the like, which may contain 2% by mass or less in total concentration. Of these, Mg is less than 0.3% by mass.
また、合金化溶融亜鉛めっき層のめっき付着量は、ホットスタンプ工程で生じる溶融亜鉛量を減少させ、表層酸化物の生成・成長を抑制する観点から少ない方が好ましい。この観点から本発明では、上記めっき付着量を120g/m2以下とする。めっき付着量は、好ましくは110g/m2以下、より好ましくは100g/m2以下、更に好ましくは95g/m2以下、より更に好ましくは90g/m2以下、特に好ましくは85g/m2以下である。一方、めっき層本来の性能である耐食性を発揮させる観点から、上記めっき付着量は40g/m2以上、好ましくは50g/m2以上、より好ましくは60g/m2以上、更に好ましくは70g/m2以上とする。上記めっき付着量は、片面あたりのめっき付着量をいう。以下同じである。 Further, the plating adhesion amount of the alloyed hot-dip galvanized layer is preferably small from the viewpoint of reducing the amount of hot-dip zinc generated in the hot stamping step and suppressing the formation and growth of surface oxides. From this point of view, in the present invention, the amount of plating adhered is 120 g / m 2 or less. The amount of plating adhered is preferably 110 g / m 2 or less, more preferably 100 g / m 2 or less, further preferably 95 g / m 2 or less, still more preferably 90 g / m 2 or less, and particularly preferably 85 g / m 2 or less. is there. On the other hand, from the viewpoint of exhibiting the corrosion resistance which is the original performance of the plating layer, the plating adhesion amount is 40 g / m 2 or more, preferably 50 g / m 2 or more, more preferably 60 g / m 2 or more, still more preferably 70 g / m. 2 or more. The plating adhesion amount refers to the plating adhesion amount per one side. The same applies hereinafter.
上記のように本発明では、特に、めっき層中のAl濃度およびFe濃度、ならびにめっき付着量を適切に制御、中でもめっき層中のAl濃度を制御し、ホットスタンプ工程時に表層酸化物としてAl系酸化物を積極的に形成することによって、ホットスタンプ工程での表層酸化物の生成・成長を抑制し、塗装後の塗膜密着性を高めることができる。 As described above, in the present invention, in particular, the Al concentration and Fe concentration in the plating layer and the amount of plating adhesion are appropriately controlled, and in particular, the Al concentration in the plating layer is controlled, and Al-based as a surface oxide during the hot stamping process. By positively forming the oxide, it is possible to suppress the formation and growth of the surface oxide in the hot stamping process and improve the adhesion of the coating film after coating.
次に、本発明の合金化溶融亜鉛めっき鋼板を構成する素地鋼板の成分組成について説明する。以下、成分組成において、%は質量%を意味する。 Next, the composition of the base steel sheet constituting the alloyed hot-dip galvanized steel sheet of the present invention will be described. Hereinafter, in the component composition,% means mass%.
[C:0.1〜0.5%]
Cは、固溶強化元素であり、ホットスタンプ成形品の高強度化に寄与する。ホットスタンプにより、例えば980MPa以上の高強度を得るため、C量の下限を0.1%とする。C量は、好ましくは0.13%以上、より好ましくは0.15以上、更に好ましくは0.17%以上である。一方、C量が過剰になると、ホットスタンプ成形品の溶接性が低下するため、その上限を0.5%とする。C量は、好ましくは0.40%以下、より好ましくは0.35%以下、更に好ましくは0.30以下である。
[C: 0.1 to 0.5%]
C is a solid solution strengthening element and contributes to increasing the strength of the hot stamped molded product. In order to obtain high strength of, for example, 980 MPa or more by hot stamping, the lower limit of the amount of C is set to 0.1%. The amount of C is preferably 0.13% or more, more preferably 0.15 or more, still more preferably 0.17% or more. On the other hand, if the amount of C is excessive, the weldability of the hot stamped product is lowered, so the upper limit is set to 0.5%. The amount of C is preferably 0.40% or less, more preferably 0.35% or less, still more preferably 0.30 or less.
[Si:0.2〜2.5%]
Siは、ホットスタンプ成形品のスポット溶接部の接合強度、即ち溶接強度の向上に寄与する元素である。スポット溶接を行ったときに1.5kN以上の溶接強度を得るため、Si量の下限を0.2%とする。Si量の好ましい下限は0.3%、更には0.4%、更には0.5%、更には0.60%、更には0.70%、更には0.80%、更には0.90%であり、最も好ましくは1.0%である。一方、Si量が過剰になると、強度が高くなり過ぎて、熱延酸洗鋼板または冷延鋼板、即ち素地鋼板の製造時に圧延負荷が増大する他、熱間圧延の際に、素地鋼板表面にSiO2を含むスケールが多く発生し、めっき後の鋼板の表面性状が悪化する。よってSi量の上限を2.5%とする。Si量は、好ましくは2.3%以下であり、より好ましくは2.1%以下である。
[Si: 0.2 to 2.5%]
Si is an element that contributes to the improvement of the joint strength of the spot welded portion of the hot stamped product, that is, the welding strength. The lower limit of the amount of Si is set to 0.2% in order to obtain a welding strength of 1.5 kN or more when spot welding is performed. The preferable lower limit of the amount of Si is 0.3%, further 0.4%, further 0.5%, further 0.60%, further 0.70%, further 0.80%, and further 0. It is 90%, most preferably 1.0%. On the other hand, if the amount of Si becomes excessive, the strength becomes too high, and the rolling load increases during the production of hot-rolled pickled steel sheets or cold-rolled steel sheets, that is, base steel sheets, and on the surface of the base steel sheets during hot rolling. A large amount of scale containing SiO 2 is generated, and the surface texture of the steel sheet after plating deteriorates. Therefore, the upper limit of the amount of Si is set to 2.5%. The amount of Si is preferably 2.3% or less, more preferably 2.1% or less.
[Mn:0.5〜3%]
Mnは、焼入れ性を高め、ホットスタンプ成形品の高強度バラツキを抑えるために有用な元素である。この効果を発揮させるため、Mn量の下限を0.5%とする。Mn量は、好ましくは1.0%以上、より好ましくは1.2%以上、さらに好ましくは1.5%以上、よりさらに好ましくは1.7%以上、特に好ましくは2.0%以上である。一方、Mn量が過剰になると、強度が高くなり過ぎて素地鋼板製造時の圧延負荷が増大する。よってMn量の上限を3%とする。Mn量は、好ましくは2.8%以下、より好ましくは2.5%以下である。
[Mn: 0.5 to 3%]
Mn is an element useful for enhancing hardenability and suppressing high-strength variation in hot stamped products. In order to exert this effect, the lower limit of the amount of Mn is set to 0.5%. The amount of Mn is preferably 1.0% or more, more preferably 1.2% or more, still more preferably 1.5% or more, still more preferably 1.7% or more, and particularly preferably 2.0% or more. .. On the other hand, if the amount of Mn is excessive, the strength becomes too high and the rolling load at the time of manufacturing the base steel sheet increases. Therefore, the upper limit of the amount of Mn is set to 3%. The amount of Mn is preferably 2.8% or less, more preferably 2.5% or less.
[Al:0.01〜0.5%]
Alは脱酸のために必要な元素であり、そのため、Al量の下限を0.01%とする。Al量は好ましくは0.03%以上である。しかしながらAl量が過剰になると、上記効果が飽和するだけでなく、アルミナ等の介在物が増加して加工性が劣化するため、Al量の上限を0.5%とする。Al量は好ましくは0.3%以下である。
[Al: 0.01-0.5%]
Al is an element necessary for deoxidation, and therefore, the lower limit of the amount of Al is set to 0.01%. The amount of Al is preferably 0.03% or more. However, when the Al amount becomes excessive, not only the above effect is saturated, but also inclusions such as alumina increase and the workability deteriorates. Therefore, the upper limit of the Al amount is set to 0.5%. The amount of Al is preferably 0.3% or less.
本発明のホットスタンプ用合金化溶融亜鉛めっき鋼板として、素地鋼板が上記成分を含み、残部が鉄および不可避的不純物のものが挙げられる。該不可避的不純物としては、例えばP、S、Nなどが挙げられる。 Examples of the hot-dip galvanized steel sheet for hot stamping of the present invention include those in which the base steel sheet contains the above components and the balance is iron and unavoidable impurities. Examples of the unavoidable impurities include P, S, N and the like.
Pは、スポット溶接部の接合強度に悪影響を及ぼす元素である。P量が過剰であると、スポット溶接で形成されるナゲットの最終凝固面に偏析してナゲットが脆化し、接合強度が低下する。従ってP量は、0.02%以下であることが好ましく、より好ましくは0.015%以下である。 P is an element that adversely affects the joint strength of the spot welded portion. If the amount of P is excessive, the nugget is segregated on the final solidified surface of the nugget formed by spot welding, the nugget becomes brittle, and the bonding strength decreases. Therefore, the amount of P is preferably 0.02% or less, more preferably 0.015% or less.
SもPと同様、スポット溶接部の接合強度に悪影響を及ぼす元素であり、その量が過剰であると、ナゲット内の粒界偏析による粒界破壊が助長され、接合強度が低下する。従ってS量は、0.01%以下とすることが好ましく、より好ましくは0.008%以下である。 Similar to P, S is an element that adversely affects the joint strength of the spot welded portion, and if the amount is excessive, grain boundary fracture due to grain boundary segregation in the nugget is promoted, and the joint strength is lowered. Therefore, the amount of S is preferably 0.01% or less, more preferably 0.008% or less.
Nは、Bと結合して固溶B量を減少させ、焼入れ性に悪影響を与える。またN量が過剰であると、窒化物の析出量が増大し、靱性に悪影響を与える。よって、N量は0.01%以下とすることが好ましく、より好ましくは0.008%以下である。なお、製鋼上のコスト等を考慮すると、N量は、通常0.001%以上である。 N binds to B to reduce the amount of solid solution B, which adversely affects hardenability. If the amount of N is excessive, the amount of nitride precipitated increases, which adversely affects the toughness. Therefore, the amount of N is preferably 0.01% or less, more preferably 0.008% or less. Considering the cost of steelmaking and the like, the amount of N is usually 0.001% or more.
本発明では、上記成分のほか、更に下記の選択元素を必要に応じて含有させることができる。 In the present invention, in addition to the above components, the following selective elements can be further contained as required.
[B:0%超0.005%以下]
Bは鋼材の焼入れ性を向上させる元素である。この効果を発揮させるには、Bを0.0003%以上含有させることが好ましい。B量は、より好ましくは0.0005%以上、更に好ましくは0.0010%以上である。一方、B量が0.005%を超えると、ホットスタンプ成形品中に粗大なホウ化物が析出して該成形品の靭性が劣化する。よってB量は、好ましくは0.005%以下、より好ましくは0.0040%以下とする。
[B: More than 0% and less than 0.005%]
B is an element that improves the hardenability of steel materials. In order to exert this effect, it is preferable to contain 0.0003% or more of B. The amount of B is more preferably 0.0005% or more, still more preferably 0.0010% or more. On the other hand, when the amount of B exceeds 0.005%, coarse boride is precipitated in the hot stamped product and the toughness of the molded product is deteriorated. Therefore, the amount of B is preferably 0.005% or less, more preferably 0.0040% or less.
[Ti、Nb、ZrおよびVよりなる群から選択される少なくとも1種以上の元素:合計で0%超0.1%以下]
Ti、Nb、Zr、Vは、組織を微細化する効果を有しており、組織が微細化することで部品の延性を向上させる効果を有する。これらの元素は、単独で用いてもよいし2種以上を併用してもよい。この効果を得るには、Ti、Nb、ZrおよびVよりなる群から選択される少なくとも1種以上の元素を、合計で0.01%以上含有させることが好ましく、より好ましくは合計で0.02%以上である。一方、これらの元素の合計量が過剰になると、鋼板の延性がかえって劣化するため、その上限を合計で0.1%とすることが好ましく、より好ましくは合計で0.08%、更に好ましくは合計で0.070%である。
[At least one element selected from the group consisting of Ti, Nb, Zr and V: more than 0% and less than 0.1% in total]
Ti, Nb, Zr, and V have the effect of miniaturizing the structure, and have the effect of improving the ductility of the component by miniaturizing the structure. These elements may be used alone or in combination of two or more. In order to obtain this effect, it is preferable to contain at least one element selected from the group consisting of Ti, Nb, Zr and V in a total of 0.01% or more, more preferably 0.02 in total. % Or more. On the other hand, if the total amount of these elements becomes excessive, the ductility of the steel sheet deteriorates, so the upper limit thereof is preferably 0.1% in total, more preferably 0.08% in total, and further preferably 0.08% in total. The total is 0.070%.
[Cr、Mo、CuおよびNiよりなる群から選択される少なくとも1種の元素:合計で0%超1%以下]
Cr、Mo、Cu、Niは、素地鋼板の焼入れ性を向上させるために有効な元素であり、これらの元素を含有させることによって、ホットスタンプ成形品における硬さばらつきの低減が期待できる。これらの元素は、単独で用いてもよいし2種以上を併用してもよい。この効果を得るには、Cr、Mo、CuおよびNiよりなる群から選択される少なくとも1種の元素を、合計で0.01%以上含有させることが好ましく、より好ましくは0.05%以上、更に好ましくは0.10%以上である。しかしながら、これらの元素が過剰に含まれると、上記効果が飽和すると共に、コストも上昇するため、合計で1%以下とすることが好ましい。上記元素は、合計で0.5%以下とすることがより好ましく、更に好ましくは合計で0.3%以下である。
[At least one element selected from the group consisting of Cr, Mo, Cu and Ni: more than 0% and less than 1% in total]
Cr, Mo, Cu, and Ni are elements that are effective for improving the hardenability of the base steel sheet, and by containing these elements, it is expected that the hardness variation in the hot stamped product can be reduced. These elements may be used alone or in combination of two or more. In order to obtain this effect, it is preferable to contain at least one element selected from the group consisting of Cr, Mo, Cu and Ni in a total of 0.01% or more, more preferably 0.05% or more. More preferably, it is 0.10% or more. However, if these elements are excessively contained, the above effects are saturated and the cost is increased. Therefore, the total amount is preferably 1% or less. The total amount of the above elements is more preferably 0.5% or less, and more preferably 0.3% or less in total.
上記合金化溶融亜鉛めっき鋼板は、例えば、所定成分の鋼を鋳造→加熱→熱間圧延→酸洗→必要に応じて冷間圧延→焼鈍工程→溶融亜鉛めっき工程→合金化工程を経て製造することができる。特に上述しためっき層中のAl濃度を規定の範囲内とするには、下記に詳述する通り、めっき浴中のAl濃度を制御する。また、特に上述しためっき層中のFe濃度を規定の範囲内とするには、下記に詳述する通り、上記焼鈍工程における焼鈍の条件およびめっき後の合金化工程の条件を適切に制御する。 The alloyed hot-dip zinc-plated steel sheet is manufactured, for example, by casting steel having a predetermined component, heating, hot rolling, pickling, cold rolling as necessary, annealing process, hot-dip zinc plating process, and alloying process. be able to. In particular, in order to keep the Al concentration in the above-mentioned plating layer within the specified range, the Al concentration in the plating bath is controlled as described in detail below. Further, in order to keep the Fe concentration in the above-mentioned plating layer within the specified range, the annealing conditions in the annealing step and the alloying step conditions after plating are appropriately controlled as described in detail below.
以下、合金化溶融亜鉛めっき鋼板の推奨される製造方法について下記に説明する。 Hereinafter, the recommended manufacturing method of the alloyed hot-dip galvanized steel sheet will be described below.
まず、上記成分を満足する鋼を鋳造し、加熱する。加熱条件は特に限定されず、通常用いられる条件を適宜採用することができるが、おおむね1100〜1300℃の温度で行うことが好ましい。 First, steel satisfying the above components is cast and heated. The heating conditions are not particularly limited, and normally used conditions can be appropriately adopted, but it is preferable to carry out the heating at a temperature of about 1100 to 1300 ° C.
次いで熱間圧延を行う。熱間圧延条件は特に限定されず、通常用いられる条件を適宜採用することができる。好ましい条件は、おおむね以下のとおりである。
仕上げ圧延温度(Finisher Delivery Temperature、FDT):800〜950℃
巻き取り温度(Coiling Temperature、CT):500〜700℃
Then hot rolling is performed. The hot rolling conditions are not particularly limited, and commonly used conditions can be appropriately adopted. The preferred conditions are as follows.
Finish rolling temperature (Finisher Deliverable Temperature, FDT): 800-950 ° C.
Winding Temperature (CT): 500-700 ° C
上記熱間圧延により得られる熱延鋼板の好ましい板厚の上限は3.5mm以下である。
該板厚は、好ましくは3.0mm以下、より好ましくは2.5mm以下であり、下限はおおよそ1.0mmである。
The upper limit of the preferable thickness of the hot-rolled steel sheet obtained by the hot rolling is 3.5 mm or less.
The plate thickness is preferably 3.0 mm or less, more preferably 2.5 mm or less, and the lower limit is about 1.0 mm.
熱間圧延した後、酸洗し、熱延酸洗鋼板を作製する。この酸洗工程では、酸洗により、少なくとも熱延スケールが除去できればよい。例えば熱延巻取り温度の高いコイルでは、熱延スケールと鋼板の界面近傍にSi、Mnの酸化物による粒界酸化層が形成していることがある。しかし、上記粒界酸化層が残存しても、不めっきなどのめっき処理性に悪影響を及ぼさないため、当該酸性工程において、必ずしも上記粒界酸化層まで除去する必要はない。但し、外観、粗さなどの表面性状安定化の観点からは、上記粒界酸化層を出来るだけ除去することが好ましく、粒界酸化層除去のために通常用いられる酸洗方法を適宜採用することができる。該酸洗方法として、例えば、80〜90℃に加熱した塩酸などを用い、20〜300秒酸洗することが挙げられる。このとき、塩酸中には適量の例えばメルカプト基を有する化合物等の酸洗促進剤及び/または例えばアミン系有機化合物等のインヒビターを加えることが好ましい。 After hot rolling, pickling is performed to prepare a hot-rolled pickled steel sheet. In this pickling step, it is sufficient that at least the hot-rolled scale can be removed by pickling. For example, in a coil having a high hot winding winding temperature, a grain boundary oxide layer made of oxides of Si and Mn may be formed near the interface between the hot rolling scale and the steel sheet. However, even if the intergranular oxide layer remains, it does not adversely affect the plating processability such as non-plating. Therefore, it is not always necessary to remove the intergranular oxide layer in the acidic step. However, from the viewpoint of stabilizing the surface texture such as appearance and roughness, it is preferable to remove the intergranular oxide layer as much as possible, and a pickling method usually used for removing the intergranular oxide layer should be appropriately adopted. Can be done. Examples of the pickling method include pickling for 20 to 300 seconds using hydrochloric acid or the like heated to 80 to 90 ° C. At this time, it is preferable to add an appropriate amount of a pickling accelerator such as a compound having a mercapto group and / or an inhibitor such as an amine-based organic compound to hydrochloric acid.
このようにして得られた熱延酸洗鋼板の好ましい厚さも、上記熱延鋼板と、おおむね同じである。 The preferable thickness of the hot-rolled pickled steel sheet thus obtained is also substantially the same as that of the hot-rolled steel sheet.
上記酸洗の後、必要に応じて冷間圧延し、冷延鋼板を作製してもよい。本発明の合金化溶融亜鉛めっき鋼板は、特に、自動車の軽量化などを目的として自動車用部品に好適に用いられ、該自動車用部品に要求される寸法精度及び平坦度を高める観点から、素地鋼板は、冷延鋼板であることが好ましい。 After the pickling, if necessary, it may be cold-rolled to produce a cold-rolled steel sheet. The alloyed hot-dip galvanized steel sheet of the present invention is particularly preferably used for automobile parts for the purpose of reducing the weight of automobiles, and is a base steel sheet from the viewpoint of improving the dimensional accuracy and flatness required for the automobile parts. Is preferably a cold-rolled steel sheet.
前記冷間圧延における冷延率は、工場での生産性などを考慮すると、おおむね40〜95%の範囲内に制御することが好ましい。このようして得られる冷延鋼板の好ましい板厚の上限は2.5mm以下である。より好ましくは2.0mm以下、更に好ましくは1.8mm以下であり、下限はおおよそ0.3mmである。 The cold rolling ratio in the cold rolling is preferably controlled in the range of about 40 to 95% in consideration of the productivity in the factory. The upper limit of the preferable thickness of the cold-rolled steel sheet thus obtained is 2.5 mm or less. It is more preferably 2.0 mm or less, further preferably 1.8 mm or less, and the lower limit is about 0.3 mm.
次いで、上記のようにして得られた熱延酸洗鋼板または冷延鋼板、即ち原板を還元炉方式の連続めっき工程に付す。一般に、還元炉方式の溶融亜鉛めっきラインで行われる工程は、前処理工程、焼鈍工程、亜鉛めっき及び合金化処理を行うめっき処理工程に分かれている。溶融亜鉛めっきラインの焼鈍工程は、通常、還元炉と、冷却帯とから構成されており、本発明では、還元炉における焼鈍条件、具体的には還元雰囲気下での熱処理温度と時間を適切に制御することが好ましい。勿論、本発明の方法は、上記態様に限定する趣旨ではなく、例えば、上記溶融亜鉛めっきラインを、無酸化炉方式の連続焼鈍ラインにて行うこともできる。以下では、上記還元雰囲気下で熱処理を行う態様について説明する。 Next, the hot-rolled pickled steel sheet or cold-rolled steel sheet obtained as described above, that is, the original plate is subjected to a continuous plating step of a reduction furnace method. Generally, the steps performed in the hot-dip galvanizing line of the reduction furnace type are divided into a pretreatment step, an annealing step, and a plating treatment step of performing galvanizing and alloying treatment. The annealing process of a hot-dip galvanizing line usually consists of a reduction furnace and a cooling zone.In the present invention, the annealing conditions in the reduction furnace, specifically, the heat treatment temperature and time in a reduction atmosphere are appropriately set. It is preferable to control. Of course, the method of the present invention is not limited to the above-mentioned embodiment, and for example, the hot-dip galvanizing line can be carried out in a continuous annealing line of a non-oxidizing furnace method. Hereinafter, a mode in which the heat treatment is performed in the reducing atmosphere will be described.
まず、上記原板に前処理を行う。前処理は、原板表面のオイル(油脂)及び汚れを除去するために通常行われるものであり、代表的には、アルカリ脱脂によって行われる。アルカリ脱脂に用いられるアルカリは、油脂などを水溶性石鹸として除去できるものであれば特に限定されないが、例えば、苛性ソーダ及び/またはケイ酸塩が好ましく用いられる。また、脱脂性を向上させるために、電解洗浄、スクラバー処理、脱脂液中への界面活性剤・キレート剤の添加処理を行うこともできる。本発明では、原板表面が適切に脱脂されれば前処理の方法は限定されず、上述した処理をどのように組み合わせてもよい。前処理としてアルカリ脱脂を行ったときは、原板に付着した脱脂液を落とすため、ホットリンス(湯洗)され、ドライヤーなどで乾燥する。 First, the original plate is pretreated. The pretreatment is usually performed to remove oil (oil and fat) and dirt on the surface of the original plate, and is typically performed by alkaline degreasing. The alkali used for alkaline degreasing is not particularly limited as long as it can remove fats and oils as a water-soluble soap, but for example, caustic soda and / or silicate is preferably used. Further, in order to improve the degreasing property, electrolytic cleaning, scrubber treatment, and addition treatment of a surfactant / chelating agent to the degreasing liquid can be performed. In the present invention, the method of pretreatment is not limited as long as the surface of the original plate is appropriately degreased, and the above-mentioned treatments may be combined in any way. When alkaline degreasing is performed as a pretreatment, in order to remove the degreasing liquid adhering to the original plate, it is hot rinsed (washed with hot water) and dried with a dryer or the like.
次に、前処理された上記原板を還元炉に投入し、還元炉で焼鈍、具体的には還元雰囲気下での熱処理を行う。このときの焼鈍条件は、焼鈍温度を500〜900℃、かつ該焼鈍温度での滞在時間、即ち焼鈍時間を30〜270秒間とすることが好ましい。上記温度域での焼鈍処理を均熱処理とも呼ぶ。焼鈍温度の下限は、より好ましくは530℃、更に好ましくは560℃、より更に好ましくは600℃である。焼鈍温度の上限は、鋼中Si濃度によって制御する範囲が異なる。一般に鋼中Siは、焼鈍過程で鋼板表面に濃化して酸化物となり、合金化処理性の低下、不めっきを発生させる。しかし鋼中のSi濃度と焼鈍温度によって表面の濃化程度が異なるため、これらを適正に制御することで上記問題を回避できる。鋼中Si量が0.7%以上のとき、前記焼鈍温度は、より好ましくは680℃以下、更に好ましくは660℃以下である。一方、鋼中Si量が0.7%未満のとき、前記焼鈍温度は、より好ましくは880℃以下、更に好ましくは860℃以下である。焼鈍時間はSi量に関係なく、60秒以上であることがより好ましく、更に好ましくは90秒以上であり、より好ましくは240秒以下、更に好ましくは210秒以下である。なお、省エネルギーの観点から、還元炉に入る前に、排ガスを用いた還元性雰囲気の予熱炉にて、前処理後の鋼板を予熱してもよい。このときの予熱条件は、還元性雰囲気であれば特に限定されない。 Next, the pretreated original plate is put into a reduction furnace and annealed in the reduction furnace, specifically, heat treatment is performed in a reduction atmosphere. The annealing conditions at this time are preferably such that the annealing temperature is 500 to 900 ° C. and the residence time at the annealing temperature, that is, the annealing time is 30 to 270 seconds. The annealing treatment in the above temperature range is also called soaking heat treatment. The lower limit of the annealing temperature is more preferably 530 ° C, still more preferably 560 ° C, and even more preferably 600 ° C. The upper limit of the annealing temperature varies depending on the Si concentration in the steel. In general, Si in steel is concentrated on the surface of a steel sheet during the annealing process to form an oxide, which reduces the alloying processability and causes non-plating. However, since the degree of surface thickening differs depending on the Si concentration in the steel and the annealing temperature, the above problem can be avoided by appropriately controlling these. When the amount of Si in the steel is 0.7% or more, the annealing temperature is more preferably 680 ° C. or lower, still more preferably 660 ° C. or lower. On the other hand, when the amount of Si in the steel is less than 0.7%, the annealing temperature is more preferably 880 ° C. or lower, still more preferably 860 ° C. or lower. The annealing time is more preferably 60 seconds or more, further preferably 90 seconds or more, more preferably 240 seconds or less, still more preferably 210 seconds or less, regardless of the amount of Si. From the viewpoint of energy saving, the steel sheet after the pretreatment may be preheated in a preheating furnace having a reducing atmosphere using exhaust gas before entering the reduction furnace. The preheating conditions at this time are not particularly limited as long as they have a reducing atmosphere.
上記の焼鈍条件は、(1)素地鋼板表面へのSiの濃化、即ちSi系酸化物の生成を抑
制し、合金化処理性を確保すること;及び(2)素地鋼板表面へのSiの濃化、即ちSi系酸化物の生成を抑制し、素地鋼板表面に形成される極薄いFe系酸化物を還元して不めっきをなくす;との観点から、多くの基礎実験によって決定されたものである。
The above annealing conditions are as follows: (1) Concentration of Si on the surface of the base steel sheet, that is, suppression of the formation of Si-based oxides to ensure alloying processability; and (2) Si on the surface of the base steel sheet. It was determined by many basic experiments from the viewpoint of thickening, that is, suppressing the formation of Si-based oxides and reducing the ultra-thin Fe-based oxides formed on the surface of the base steel sheet to eliminate non-plating. Is.
上記(1)の観点から、上限を超えて焼鈍温度が高過ぎたり、焼鈍時間が長過ぎると、素地鋼板表面にSi系酸化物が表面に形成され易い。このSi系酸化物が、還元されずに素地鋼板表面に存在すると、めっき処理中の合金化過程を阻害するため、所望のめっき層中Fe濃度が得られない。 From the viewpoint of (1) above, if the annealing temperature is too high or the annealing time is too long beyond the upper limit, Si-based oxides are likely to be formed on the surface of the base steel sheet. If this Si-based oxide is present on the surface of the base steel sheet without being reduced, it hinders the alloying process during the plating process, so that the desired Fe concentration in the plating layer cannot be obtained.
上記(2)の観点からは、焼鈍温度の上限・下限、焼鈍時間の上限・下限のそれぞれが、上記範囲を外れる場合は、不めっきが発生しやすくなる。特に、焼鈍温度が高過ぎたり、焼鈍時間が長過ぎると、Si系酸化物が表面に形成され易くなり、不めっきが発生し易くなる。一方、焼鈍温度が低過ぎたり、焼鈍時間が短過ぎると、Fe系酸化物が残存し易くなり、この場合も不めっきが発生し易くなる。具体的には、上記焼鈍条件は、不めっきが発生しないように、焼鈍時の温度と時間とのバランスによって適切に制御することが好ましい。例えば、焼鈍温度が高い場合は焼鈍時間を短くすることができ、一方、焼鈍温度が低い場合は、焼鈍時間を長くすることができる。 From the viewpoint of (2) above, if the upper and lower limits of the annealing temperature and the upper and lower limits of the annealing time are out of the above ranges, non-plating is likely to occur. In particular, if the annealing temperature is too high or the annealing time is too long, Si-based oxides are likely to be formed on the surface, and non-plating is likely to occur. On the other hand, if the annealing temperature is too low or the annealing time is too short, Fe-based oxides are likely to remain, and in this case as well, non-plating is likely to occur. Specifically, it is preferable that the annealing conditions are appropriately controlled by the balance between the temperature and time at the time of annealing so that non-plating does not occur. For example, when the annealing temperature is high, the annealing time can be shortened, while when the annealing temperature is low, the annealing time can be lengthened.
なお、ホットスタンプ用途とは離れて、一般に、本発明のように多量のSiを含む鋼を亜鉛めっきする場合、不めっきの発生を防止するため、例えば、焼鈍工程の前にプレめっきを行う方法、還元炉での還元焼鈍の前に酸化を行う酸化還元法を行う方法などが採用されている。これらの方法は、コストアップにつながるが本発明でも適用可能である。 Apart from hot stamping applications, in general, when galvanizing steel containing a large amount of Si as in the present invention, in order to prevent non-plating, for example, a method of pre-plating before the annealing step. , A method of performing an oxidation-reduction method in which oxidation is performed before reduction annealing in a reduction furnace is adopted. Although these methods lead to cost increase, they can also be applied in the present invention.
還元時の雰囲気及び露点は、不めっきが発生されない範囲であれば特に限定されない。例えば、H2−N2混合ガスでH2濃度が1〜30%、−10〜−60℃の露点範囲とすることが好ましい。具体的には、前述した焼鈍時の温度及び時間との関係で、焼鈍時間を適切に制御することが推奨される。 The atmosphere and dew point at the time of reduction are not particularly limited as long as non-plating does not occur. For example, it is preferable that the H 2 concentration is 1 to 30% and the dew point range is -10 to -60 ° C. in the H 2 − N 2 mixed gas. Specifically, it is recommended to appropriately control the annealing time in relation to the temperature and time during annealing described above.
次に、還元炉を出た素地鋼板は、冷却帯で冷却される。通常、冷却帯は徐冷帯、急冷帯、保持帯とも呼ばれる調整帯で構成されるが、冷却方法は、不めっきが発生しないよう、通常用いられる条件で行えばよく、例えば、還元性雰囲気の気体を鋼板に吹き付けて冷却するなどの方法が挙げられる。 Next, the base steel plate that has left the reduction furnace is cooled in the cooling zone. Normally, the cooling zone is composed of an adjustment zone, which is also called a slow cooling zone, a quenching zone, and a holding zone, but the cooling method may be performed under normally used conditions so as not to cause non-plating. For example, in a reducing atmosphere. Examples include a method of blowing gas onto the steel sheet to cool it.
このようにして連続焼鈍工程を行った後、亜鉛めっきを行う。詳細には、溶融亜鉛めっき処理工程および合金化処理工程により合金化溶融亜鉛めっき鋼板を作製する。 After performing the continuous annealing step in this way, zinc plating is performed. Specifically, an alloyed hot-dip galvanized steel sheet is produced by a hot-dip galvanizing process and an alloying process.
上記溶融亜鉛めっき処理工程において、めっき層中のAl濃度を規定の範囲内に制御するには、めっき浴中のAl濃度を制御する。具体的には、めっき浴中のAl濃度を0.2質量%以上、1.4質量%以下とする。めっき浴中のAl濃度の下限は、好ましくは0.3質量%、より好ましくは0.4質量%である。また、めっき浴中のAl濃度の上限は、好ましくは1.2質量%、より好ましくは1.0質量%である。また、上記めっき層中のAl濃度を規定の範囲内に容易に制御するには、上記めっき浴中のAl濃度の均一化等が挙げられる。また溶融亜鉛めっき浴の温度は、例えば430〜500℃程度に制御すればよい。合金化溶融亜鉛めっき層のめっき付着量は、前述の通りであり、このめっき付着量の調整は、例えばガスワイピングにおいて、ガス流量調整等により行うことができる。 In the hot-dip galvanizing treatment step, in order to control the Al concentration in the plating layer within a specified range, the Al concentration in the plating bath is controlled. Specifically, the Al concentration in the plating bath is 0.2% by mass or more and 1.4% by mass or less. The lower limit of the Al concentration in the plating bath is preferably 0.3% by mass, more preferably 0.4% by mass. The upper limit of the Al concentration in the plating bath is preferably 1.2% by mass, more preferably 1.0% by mass. Further, in order to easily control the Al concentration in the plating layer within a specified range, homogenization of the Al concentration in the plating bath and the like can be mentioned. The temperature of the hot-dip galvanizing bath may be controlled to, for example, about 430 to 500 ° C. The plating adhesion amount of the alloyed hot-dip galvanized layer is as described above, and the plating adhesion amount can be adjusted, for example, by adjusting the gas flow rate in gas wiping.
上記合金化処理工程では、合金化を促進することにより前記めっき層中のFe濃度を高める。この観点から、合金化温度を500〜700℃の範囲とする。前記合金化温度は、より好ましくは560℃以上、更に好ましくは600℃以上、より更に好ましくは650℃以上である。一方、合金化温度が高すぎると、めっきが蒸発したり、表面が酸化しすぎるといった不具合が生じるため、合金化温度は700℃以下とする。合金化温度は、好ましくは680℃以下である。 In the alloying treatment step, the Fe concentration in the plating layer is increased by promoting alloying. From this point of view, the alloying temperature is set in the range of 500 to 700 ° C. The alloying temperature is more preferably 560 ° C. or higher, further preferably 600 ° C. or higher, and even more preferably 650 ° C. or higher. On the other hand, if the alloying temperature is too high, problems such as evaporation of plating and excessive oxidation of the surface occur, so the alloying temperature is set to 700 ° C. or lower. The alloying temperature is preferably 680 ° C. or lower.
このようにして得られた合金化亜鉛めっき鋼板は、ホットスタンプ用鋼板として好適に用いられる。 The alloyed galvanized steel sheet thus obtained is suitably used as a hot stamping steel sheet.
本発明では、ホットスタンプ工程を特に限定するものではなく、通常、用いられる方法を採用することができる。例えば、通常の方法に従って、上記鋼板をAc3変態点以上の温度に加熱してオーステナイト化した後、例えば、成形完了、即ち、金型が下死点位置に到達した時点を、約450℃以上とする方法が挙げられる。前記加熱の方法として、炉加熱、通電加熱、誘導加熱等を採用することができる。 In the present invention, the hot stamping process is not particularly limited, and a method usually used can be adopted. For example, after heating the steel sheet to a temperature equal to or higher than the Ac 3 transformation point to austenite according to a usual method, for example, when the molding is completed, that is, when the mold reaches the bottom dead center position, the temperature is about 450 ° C. or higher. The method of As the heating method, furnace heating, energization heating, induction heating and the like can be adopted.
上記加熱の条件は、Ac3変態点以上の温度での保持時間を、好ましくは30分以下、より好ましくは15分以下、更に好ましくは7分以下に制御することにより、オーステナイトの粒成長が抑制され、熱間の絞り性、ホットスタンプ成形品の靭性などの特性が向上する。上記保持時間の下限は特に限定されず、Ac3変態点以上に到達すればよい。現実的には、上記保持時間の厳密な制御は難しいが、例えば、炉加熱の場合1分以上、通電加熱、誘導加熱の場合数秒以上であればよい。 Under the above heating conditions, the retention time at a temperature equal to or higher than the Ac 3 transformation point is controlled to preferably 30 minutes or less, more preferably 15 minutes or less, still more preferably 7 minutes or less, thereby suppressing the grain growth of austenite. Therefore, properties such as hot drawing property and toughness of hot stamped products are improved. The lower limit of the holding time is not particularly limited as long as it reaches the Ac 3 transformation point or higher. In reality, it is difficult to strictly control the holding time, but for example, it may be 1 minute or more in the case of furnace heating and several seconds or more in the case of energization heating and induction heating.
前記Ac3変態点は、「レスリー鉄鋼材料学」(丸善株式会社、1985年5月31日発行、273頁)に記載されている下記式(3)を用いて求めることができる。下記式(3)において、含まれない元素はゼロとして計算すればよい。
Ac3変態点(℃)=910−203×[C]0.5−15.2×[Ni]+44.7×[Si]+104×[V]+31.5×[Mo]+13.1×[W]−30×[Mn]−11×[Cr]−20×[Cu]+700×[P]+400×[Al]+400[Ti]
・・・(3)
上記式(3)において、[元素]は、各元素の質量%での鋼中含有量を示す。
The Ac 3 transformation point can be obtained by using the following formula (3) described in "Leslie Steel Materials Science" (Maruzen Co., Ltd., published on May 31, 1985, p. 273). In the following formula (3), the elements not included may be calculated as zero.
Ac 3 transformation point (℃) = 910-203 × [C ] 0.5 -15.2 × [Ni] + 44.7 × [Si] + 104 × [V] + 31.5 × [Mo] + 13.1 × [W] -30 x [Mn] -11 x [Cr] -20 x [Cu] +700 x [P] +400 x [Al] +400 [Ti]
... (3)
In the above formula (3), [element] indicates the content in steel in mass% of each element.
また前記ホットスタンプ成形品を例えば自動車用部品に用いる場合、ホットスタンプ成形品に対し、リン酸塩処理、電着塗装を施すが、これらの処理の条件は特に限定されず、通常行われている条件を採用すればよい。本発明の合金化溶融亜鉛めっき鋼板を用いれば、上記電着塗装後の塗膜密着性に優れた自動車用部品が得られる。 Further, when the hot stamped molded product is used for, for example, an automobile part, the hot stamped molded product is subjected to phosphate treatment and electrodeposition coating, but the conditions for these treatments are not particularly limited and are usually performed. The conditions may be adopted. By using the alloyed hot-dip galvanized steel sheet of the present invention, it is possible to obtain automobile parts having excellent coating film adhesion after the electrodeposition coating.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明は下記実施例によって制限されず、前・後記の趣旨に適合し得る範囲で変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples, and it is possible to carry out the present invention with modifications to the extent that it can meet the purpose of the preceding and the following. Yes, they are all within the technical scope of the invention.
[合金化溶融亜鉛めっき鋼板の作製]
表1に記載の成分組成を有する鋼からなるスラブを、1200℃に加熱した後、表1に記載の仕上げ圧延温度(FDT)および巻取温度(CT)の条件で熱間圧延→酸洗工程によるデスケーリング処理→冷延率40%の冷間圧延を行い、めっき処理に供する原板として冷延鋼板を得た。この冷延鋼板を100mm×150mmに切断し、60℃の3%オルト珪酸ナトリウム水溶液中で20A、20秒間電解脱脂した後、水道水中で5秒間流水にて水洗した。このようにしてアルカリ脱脂した後、めっきシミュレータにて、5%H2−N2、露点−45℃の還元雰囲気下、鋼中Si量が0.7%以上の場合は650℃で60秒間、鋼中Si量が0.7%未満の場合は800℃で60秒間の焼鈍を行い、その後、当該均熱温度から460℃まで冷却した。次いで、表2に記載の濃度のAlを含み、残部がZnからなり、浴温が460℃の亜鉛めっき浴に浸漬させて溶融亜鉛めっきを施し、ワイピングを行った後、550〜650℃で合金化処理を行って合金化溶融亜鉛めっき鋼板を得た。ただし、実験No.9については合金化処理を行わなかった。
[Making alloyed hot-dip galvanized steel sheets]
After heating a slab made of steel having the component composition shown in Table 1 to 1200 ° C., hot rolling → pickling step under the conditions of finish rolling temperature (FDT) and winding temperature (CT) shown in Table 1. Descaling treatment by the above → Cold rolling with a cold rolling ratio of 40% was performed to obtain a cold rolled steel sheet as a raw plate to be subjected to a plating treatment. This cold-rolled steel sheet was cut into 100 mm × 150 mm, electrolytically degreased at 20 A for 20 seconds in a 3% sodium orthosilicate aqueous solution at 60 ° C., and then washed with running water for 5 seconds in tap water. After alkaline degreasing this manner, by plating simulator, 5% H 2 -N 2, under a reducing atmosphere of a dew point of -45 ° C., the amount in the steel Si is 60 seconds 650 ° C. In the case of more than 0.7%, When the amount of Si in the steel was less than 0.7%, it was annealed at 800 ° C. for 60 seconds, and then cooled from the soaking temperature to 460 ° C. Next, it contains Al having the concentration shown in Table 2, the balance is Zn, and it is immersed in a zinc plating bath having a bath temperature of 460 ° C. for hot-dip galvanizing, wiping, and then alloyed at 550 to 650 ° C. An alloyed hot-dip galvanized steel sheet was obtained by chemical treatment. However, Experiment No. No alloying treatment was performed for No. 9.
得られた合金化溶融亜鉛めっき鋼板のめっき層中のAl濃度およびFe濃度を、下記の通り測定すると共に、めっき付着量を求めた。更に、得られた合金化溶融亜鉛めっき鋼板を用い、下記の通り、プレス成形して鋼部品を得た後、リン酸塩処理と電着塗装を施して塗膜密着性の評価を行った。これらの結果を表2に示す。 The Al concentration and Fe concentration in the plating layer of the obtained alloyed hot-dip galvanized steel sheet were measured as follows, and the amount of plating adhesion was determined. Further, using the obtained alloyed hot-dip galvanized steel sheet, a steel part was obtained by press molding as described below, and then phosphate treatment and electrodeposition coating were performed to evaluate the coating film adhesion. These results are shown in Table 2.
[めっき層中のAl濃度およびFe濃度の測定]
得られた合金化溶融亜鉛めっき鋼板のめっき層の成分組成、特にめっき層中のAl濃度とFe濃度は、次の様にして分析した。即ち、18%塩酸にヘキサメチレンテトラミンを加えた溶液中に、前記合金化溶融亜鉛めっき鋼板を浸漬してめっき層のみを溶解し、その溶解液を、島津製作所製のICP発光分光分析装置ICPS−7510を用いて、ICP発光分光分析法で分析した。
[Measurement of Al concentration and Fe concentration in the plating layer]
The component composition of the plating layer of the obtained alloyed hot-dip galvanized steel sheet, particularly the Al concentration and the Fe concentration in the plating layer were analyzed as follows. That is, the alloyed hot-dip zinc-plated steel plate was immersed in a solution of 18% hydrochloric acid and hexamethylenetetramine to dissolve only the plating layer, and the solution was used as an ICP emission spectroscopic analyzer ICPS-manufactured by Shimadzu Corporation. The 7510 was used for analysis by ICP emission spectroscopy.
[めっき付着量の測定]
18%塩酸にヘキサメチレンテトラミンを加えた溶液中に、前記めっき鋼板を浸漬してめっき層のみを溶解し、溶解前後の質量変化から、めっき付着量を求めた。
[Measurement of plating adhesion]
The plated steel sheet was immersed in a solution of 18% hydrochloric acid and hexamethylenetetramine to dissolve only the plating layer, and the amount of plating adhered was determined from the mass change before and after dissolution.
[塗膜密着性の評価]
(供試材の作製)
サイズ100mm×150mm×厚さ1.4mmに切断した合金化溶融亜鉛めっき鋼板を、表2の各例につき3枚ずつ用意し、これらに対し、大気中で900℃に保持した加熱炉内に3〜6分保持した後に加熱炉より取り出し、750〜800℃のプレス開始温度となるまで空冷し、平板金型でプレスして室温付近まで冷却した。得られた鋼部品に対し、日本ペイント製SD6350を用い、付着量が3g/m2となるようにリン酸塩処理を行った。このリン酸塩処理をした鋼板に対して更に、関西ペイント製カチオンED GT10HTグレーを用い、200Vの通電下で電着させ、150℃で20分焼き付けることにより、厚さ15μmの塗膜を形成し、供試材を得た。
[Evaluation of coating film adhesion]
(Preparation of test material)
Three alloyed hot-dip galvanized steel sheets cut into a size of 100 mm × 150 mm × thickness of 1.4 mm were prepared for each example in Table 2, and 3 sheets were prepared in a heating furnace kept at 900 ° C. in the air. After holding for ~ 6 minutes, it was taken out from the heating furnace, air-cooled until it reached the press start temperature of 750 to 800 ° C., pressed with a flat plate mold, and cooled to near room temperature. The obtained steel parts were subjected to phosphate treatment using SD6350 manufactured by Nippon Paint so that the adhesion amount was 3 g / m 2 . The phosphate-treated steel sheet was further electrodeposited with Kansai Paint's cation ED GT10HT Gray under energization of 200 V and baked at 150 ° C. for 20 minutes to form a coating film with a thickness of 15 μm. , Obtained test material.
(塗膜密着性の評価)
上記供試材を、水温が50℃の5質量%の塩水に500時間浸漬させた後、サイズが100mm×150mmの評価面全面に、ニチバン社製「セロテープ(登録商標)CT405AP−24」を貼り付け、すぐに手で剥がし、塗膜が剥離した部分の面積率を測定した。そして、表2の各例につき、測定された3枚の供試材の面積率の平均値を求め、当該平均値を塗膜剥離面積率として求めた。そして下記の基準で塗膜密着性を評価し、本実施例ではA、BおよびCを合格とした。より好ましいのはAおよびB、特に好ましいのはAである。
A:塗膜剥離面積率が5%以下
B:塗膜剥離面積率が5%超10%以下
C:塗膜剥離面積率が10%超15%以下
D:塗膜剥離面積率が15%超
(Evaluation of coating film adhesion)
After immersing the test material in 5% by mass salt water at a water temperature of 50 ° C. for 500 hours, Nichiban's "Cellotape (registered trademark) CT405AP-24" is attached to the entire surface of the evaluation surface having a size of 100 mm x 150 mm. It was attached and immediately peeled off by hand, and the area ratio of the part where the coating film was peeled off was measured. Then, for each example in Table 2, the average value of the area ratios of the three measured materials was obtained, and the average value was obtained as the coating film peeling area ratio. Then, the coating film adhesion was evaluated according to the following criteria, and in this example, A, B, and C were accepted. More preferred are A and B, and particularly preferred are A.
A: Coating film peeling area ratio is 5% or less B: Coating film peeling area ratio is more than 5% and 10% or less C: Coating film peeling area ratio is more than 10% and 15% or less D: Coating film peeling area ratio is more than 15%
表1および表2から次のことがわかる。実験No.1〜6は、本発明で規定する成分組成およびめっき層の要件を満たしているため、優れた塗膜密着性を示す合金化溶融亜鉛めっき鋼板が得られた。 The following can be seen from Tables 1 and 2. Experiment No. Since Nos. 1 to 6 satisfy the requirements of the component composition and the plating layer specified in the present invention, alloyed hot-dip galvanized steel sheets showing excellent coating film adhesion were obtained.
これに対してNo.7〜9は、本発明で規定する成分組成とめっき層の要件の少なくとも1つを満たしていないため、塗膜密着性に劣った。詳細にはNo.7および8は、めっき層中のAl濃度が不足したため、塗膜密着性に劣る結果となった。No.9は、めっき層中のFe濃度が下限値をかなり下回ったため、塗膜密着性が著しく劣った。No.10は、めっき層中のAl濃度が過剰であったため、塗膜密着性に劣る結果となった。 On the other hand, No. 7 to 9 were inferior in coating film adhesion because they did not satisfy at least one of the requirements of the component composition and the plating layer specified in the present invention. For details, see No. In Nos. 7 and 8, the Al concentration in the plating layer was insufficient, resulting in inferior coating film adhesion. No. In No. 9, since the Fe concentration in the plating layer was considerably lower than the lower limit value, the coating film adhesion was remarkably inferior. No. In No. 10, the Al concentration in the plating layer was excessive, resulting in poor coating film adhesion.
Claims (4)
C:0.1〜0.5%、
Si:0.2〜2.5%、
Mn:0.5〜3%、および
Al:0.01〜0.5%を含有し、残部が鉄および不可避的不純物であり、かつ
合金化溶融亜鉛めっき層を有する鋼板であって、
前記合金化溶融亜鉛めっき層は、
Al濃度:0.50質量%超1.50質量%以下、および
Fe濃度:6.0〜25.0質量%を満たし、かつ
めっき付着量が40〜120g/m2であることを特徴とするホットスタンプ用合金化溶融亜鉛めっき鋼板。 The base steel plate is by mass%,
C: 0.1 to 0.5%,
Si: 0.2-2.5%,
A steel sheet containing Mn: 0.5 to 3% and Al: 0.01 to 0.5%, the balance being iron and unavoidable impurities, and having an alloyed hot-dip galvanized layer.
The alloyed hot-dip galvanized layer is
It is characterized in that the Al concentration is more than 0.50% by mass and 1.50% by mass or less, the Fe concentration is 6.0 to 25.0% by mass, and the plating adhesion amount is 40 to 120 g / m 2. Alloyed hot-dip galvanized steel sheet for hot stamping.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016067083 | 2016-03-30 | ||
JP2016067083 | 2016-03-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017186663A JP2017186663A (en) | 2017-10-12 |
JP6805044B2 true JP6805044B2 (en) | 2020-12-23 |
Family
ID=60046184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017063372A Active JP6805044B2 (en) | 2016-03-30 | 2017-03-28 | Alloyed hot-dip galvanized steel sheet for hot stamping |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6805044B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7006256B2 (en) * | 2017-12-27 | 2022-02-10 | 日本製鉄株式会社 | Manufacturing method of hot-stamped hot-dip galvanized steel sheet and hot-stamped hot-dip galvanized steel sheet |
JP7006257B2 (en) * | 2017-12-27 | 2022-01-24 | 日本製鉄株式会社 | A method for manufacturing a hot stamped body and a hot stamped body |
JP6916129B2 (en) * | 2018-03-02 | 2021-08-11 | 株式会社神戸製鋼所 | Galvanized steel sheet for hot stamping and its manufacturing method |
JP7160203B2 (en) * | 2019-07-02 | 2022-10-25 | 日本製鉄株式会社 | Galvanized steel sheet for hot stamping, method for producing galvanized steel sheet for hot stamping, and hot stamped compact |
JP7160204B2 (en) * | 2019-07-02 | 2022-10-25 | 日本製鉄株式会社 | hot stamped body |
JP7443635B2 (en) * | 2020-01-31 | 2024-03-06 | 株式会社神戸製鋼所 | Galvanized steel sheet for hot stamping, hot stamping parts, and method for manufacturing hot stamping parts |
KR102697682B1 (en) * | 2020-03-12 | 2024-08-23 | 닛폰세이테츠 가부시키가이샤 | Galvanized steel sheet for hot stamping |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4630099B2 (en) * | 2005-03-25 | 2011-02-09 | 株式会社神戸製鋼所 | Hot-dip hot-dip galvanized steel sheet with excellent phosphatability and post-coating corrosion resistance and method for producing the same |
JP5488410B2 (en) * | 2010-11-09 | 2014-05-14 | 新日鐵住金株式会社 | Hot-dip galvanized steel sheet for heat treatment and method for producing the same |
MX2014012798A (en) * | 2012-04-23 | 2015-04-14 | Kobe Steel Ltd | Method for producing galvanized steel sheet for hot stamping, alloyed hot-dipped galvanized steel sheet for hot stamping and method for producing same, and hot stamped component. |
JP5852690B2 (en) * | 2013-04-26 | 2016-02-03 | 株式会社神戸製鋼所 | Alloyed hot-dip galvanized steel sheet for hot stamping |
JP6171872B2 (en) * | 2013-11-12 | 2017-08-02 | 新日鐵住金株式会社 | Hot stamping steel manufacturing method, hot stamping steel plate manufacturing method and hot stamping steel plate |
-
2017
- 2017-03-28 JP JP2017063372A patent/JP6805044B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017186663A (en) | 2017-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6805044B2 (en) | Alloyed hot-dip galvanized steel sheet for hot stamping | |
JP5852690B2 (en) | Alloyed hot-dip galvanized steel sheet for hot stamping | |
JP5876895B2 (en) | Manufacturing method of hot-stamped galvanized steel sheet | |
WO2017057570A1 (en) | Galvanized steel sheet for hot pressing and method for producing hot pressed molded article | |
JP2016089274A (en) | Plating steel sheet for hot stamp | |
JP4023710B2 (en) | Aluminum-plated steel sheet for hot press with excellent corrosion resistance and heat resistance, and automotive parts using the same | |
JP4889212B2 (en) | High-strength galvannealed steel sheet and method for producing the same | |
US11634807B2 (en) | Zinc-plated steel sheet for hot stamping and production method therefor | |
JP7063430B1 (en) | A method for manufacturing a hot pressed member, a coated member, a steel plate for hot pressing, and a method for manufacturing a hot pressed member and a method for manufacturing a painted member. | |
JP6409878B2 (en) | Manufacturing method of hot press member | |
JP4331915B2 (en) | High strength and high ductility hot dip galvanized steel sheet excellent in fatigue durability and corrosion resistance and method for producing the same | |
JP2004124208A (en) | Surface-treated steel sheet with high strength superior in corrosion resistance after being painted, and car components with high strength | |
JP6011629B2 (en) | Hot pressed member and method for manufacturing the same | |
JP6981385B2 (en) | Steel plate for hot pressing | |
WO2020049833A1 (en) | Steel sheet for hot pressing | |
JP2020041174A (en) | Steel plate for hot pressing | |
JP7126093B2 (en) | HOT PRESS MEMBER AND MANUFACTURING METHOD THEREOF | |
JP2016176101A (en) | Surface treated steel sheet for press molding, and press molded article | |
JP2021066919A (en) | Plated steel sheet for hot press forming | |
JP2021066920A (en) | Plated steel sheet for hot press forming | |
JP2020041176A (en) | Steel plate for hot pressing | |
JP2018090878A (en) | Steel plate for hot press molding, hot press molding, and method for producing hot press molding | |
JPH04263055A (en) | Thermosetting type high tensile strength zn-al alloy plated steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200818 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201201 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201203 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6805044 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |