JP7006257B2 - A method for manufacturing a hot stamped body and a hot stamped body - Google Patents

A method for manufacturing a hot stamped body and a hot stamped body Download PDF

Info

Publication number
JP7006257B2
JP7006257B2 JP2017250353A JP2017250353A JP7006257B2 JP 7006257 B2 JP7006257 B2 JP 7006257B2 JP 2017250353 A JP2017250353 A JP 2017250353A JP 2017250353 A JP2017250353 A JP 2017250353A JP 7006257 B2 JP7006257 B2 JP 7006257B2
Authority
JP
Japan
Prior art keywords
hot
steel sheet
oxide film
plating
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017250353A
Other languages
Japanese (ja)
Other versions
JP2019116655A (en
Inventor
浩史 竹林
浩二郎 秋葉
克 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017250353A priority Critical patent/JP7006257B2/en
Publication of JP2019116655A publication Critical patent/JP2019116655A/en
Application granted granted Critical
Publication of JP7006257B2 publication Critical patent/JP7006257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、ホットスタンプ成形体及びホットスタンプ成形体の製造方法に関する。 The present invention relates to a hot stamped body and a method for manufacturing a hot stamped body.

自動車の車体を構成する各種の自動車部品は、静的強度や動的強度、衝突安全性さらには軽量化等の様々な観点から、多様な性能や特性の向上を要求されている。例えば、Aピラーレインフォース,Bピラーレインフォース,バンパーレインフォース,トンネルレインフォース,サイドシルレインフォース,ルーフレインフォース又はフロアークロスメンバー等の自動車部品には、それぞれの自動車部品における特定部位だけがこの特定部位を除く一般部位よりも高強度を有することが要求される。そこで、自動車部品における補強が必要な特定部位に相当する部分だけに焼入れ高強度鋼ホットスタンプ(文献によっては熱間プレスなどとも表現)成形してホットスタンプ部材を製造する工法が一部採用されている。 Various automobile parts constituting the vehicle body of an automobile are required to have various performances and characteristics improved from various viewpoints such as static strength, dynamic strength, collision safety, and weight reduction. For example, in automobile parts such as A-pillar reinforcement, B-pillar reinforcement, bumper reinforcement, tunnel reinforcement, side sill reinforcement, roof reinforcement or floor cross member, only a specific part in each automobile part is this specific part. It is required to have higher strength than general parts except for. Therefore, a method of manufacturing hot stamp members by quenching high-strength steel hot stamping (also referred to as hot stamping depending on the literature) is partially adopted only for the part corresponding to a specific part of an automobile part that needs reinforcement. There is.

この際、表面処理を施していない冷延鋼板を用いると、加熱中に鋼板表面に鉄の酸化スケールが発生する。この鉄酸化スケールは成形中に剥離して金型を損耗したり、鋼板自身の疵になるほか、成形後の鋼板表面に残れば、後の溶接工程で溶接不良の原因になったり、塗装工程で塗装の密着性不良の原因になることがある。そこで、この鉄酸化スケールを防止するために、特許文献1の様に亜鉛系などのめっき鋼板が用いられることがある。亜鉛系のめっき鋼板を用いることにより、鉄よりも先に亜鉛が少量酸化されることで、鉄の酸化を抑制し、溶接性や塗装性を大幅に改善することができる。 At this time, if a cold-rolled steel sheet that has not been surface-treated is used, iron oxide scale is generated on the surface of the steel sheet during heating. This iron oxide scale peels off during molding and wears the mold, causes defects in the steel sheet itself, and if it remains on the surface of the steel sheet after molding, it may cause welding defects in the subsequent welding process or the painting process. May cause poor adhesion of the paint. Therefore, in order to prevent this iron oxide scale, a zinc-based plated steel sheet may be used as in Patent Document 1. By using a zinc-based plated steel sheet, a small amount of zinc is oxidized before iron, so that the oxidation of iron can be suppressed and the weldability and coatability can be significantly improved.

しかし、鉄酸化スケールよりは溶接性は改善するものの、表面に酸化膜の無い非加熱の冷延鋼板やめっき鋼板に比べると、酸化亜鉛皮膜であっても電気伝導性は低いため、溶接性は低下する。よって、亜鉛系めっき鋼板を用いたホットスタンプ材でも、溶接性は十分ではなく、少しでも溶接性を改善することが求められている。 However, although the weldability is improved compared to the iron oxide scale, the weldability is lower than that of unheated cold-rolled steel sheet or plated steel sheet without an oxide film on the surface, even if it is a zinc oxide film. descend. Therefore, even a hot stamping material using a galvanized steel sheet does not have sufficient weldability, and it is required to improve the weldability as much as possible.

その改善策には幾つか提案されており、特許文献2では、溶接抵抗増加の原因となる酸化亜鉛皮膜を加熱後研掃により取り除く事で、溶接抵抗を下げ溶接性を改善することが提案されている。この方法で、溶接性は改善するが、加熱後に自動車メーカや部品メーカでの研掃工程が必要となり、コスト増となる。また、特許文献3では、鋼板成分や鋼板表面のMn濃度、めっき付着量、めっき皮膜中のAl量、めっき皮膜中のAl濃度、鋼板表面の金属組織などを規定することで、溶接性の改善を試みている。この方法でもある程度の改善は見込めるが、劇的な改善効果は難しい。 Several improvement measures have been proposed, and Patent Document 2 proposes to reduce the welding resistance and improve the weldability by removing the zinc oxide film that causes an increase in welding resistance by cleaning after heating. ing. Although this method improves weldability, it requires a cleaning process by an automobile manufacturer or a parts manufacturer after heating, which increases the cost. Further, Patent Document 3 improves weldability by defining the steel sheet component, the Mn concentration on the surface of the steel sheet, the amount of adhesion to the plating, the amount of Al in the plating film, the concentration of Al in the plating film, the metal structure on the surface of the steel sheet, and the like. I'm trying. Although some improvement can be expected with this method, dramatic improvement effect is difficult.

特許第4039548号公報Japanese Patent No. 4039548 特許第5880321号公報Japanese Patent No. 5880321 特許第5720856号公報Japanese Patent No. 5720856

このように、従来の技術においては、亜鉛系ホットスタンプ用鋼板の溶接性を劇的に改善する技術は存在しなかった。 As described above, in the conventional technique, there is no technique for dramatically improving the weldability of the zinc-based hot stamping steel sheet.

本発明は、このような背景でなされた発明であり、本発明の課題は、亜鉛系ホットスタンプ用鋼板において、ほとんどコスト増など無く、加熱後の溶接性を劇的に改善する技術を提供することである。 The present invention is an invention made in such a background, and an object of the present invention is to provide a technique for dramatically improving weldability after heating in a zinc-based hot stamping steel sheet with almost no cost increase. That is.

上記課題を解決するため、溶融亜鉛めっき鋼板が用いられたホットスタンプ成形体表面において、TEM(透過型電子顕微鏡)を用いて倍率40000倍で2.8μm角の視野でFe-Zn固溶相とZn酸化皮膜との界面に存在するAl系酸化物皮膜を観察し、1視野につき200nm間隔で5点以上の点でAl系酸化皮膜の結晶構造の同定を行ない、それを5視野以上測定した合計25点以上を測定し、結晶構造がγ-Alと一致し、酸素を除いた金属元素の原子分率でAlが80%以上となるγ-Alに同定された点数をG、総測定点数をPとした時、0.20≦G/P<1.00であり、Zn酸化皮膜の下に金属元素の原子分率でAl濃度が80%以上となる単独Al酸化物皮膜が存在することを特徴とする溶接性に優れたホットスタンプ成形体とする。 In order to solve the above problems, on the surface of a hot stamped molded body using a hot-dip zinc-plated steel plate, a Fe-Zn solid-soluble phase was formed in a 2.8 μm square field at a magnification of 40,000 times using a TEM (transmission electron microscope). The Al-based oxide film existing at the interface with the Zn oxide film was observed, the crystal structure of the Al-based oxide film was identified at 5 or more points at intervals of 200 nm per field, and the total was measured for 5 or more fields. A score of 25 or more was measured, and the score identified as γ-Al 2 O 3 whose crystal structure was consistent with γ-Al 2 O 3 and whose atomic fraction of the metal element excluding oxygen was 80% or more of Al was obtained. When G and the total number of measurement points are P, 0.20 ≦ G / P <1.00, and the Al concentration is 80% or more in terms of the atomic fraction of the metal element under the Zn oxide film. A hot stamped body having excellent weldability, which is characterized by the presence of a film.

また、前記溶融亜鉛めっき鋼板は、合金化処理が施されている構成とすることが好ましい。 Further, the hot-dip galvanized steel sheet is preferably configured to be alloyed.

また、焼鈍中に鋼板温度で200℃~600℃の範囲を露点を-30℃~20℃として焼鈍を行った後、目付け量が30g/m以上の溶融亜鉛めっきを施し、調質圧延を施して溶融亜鉛めっき鋼板とし、当該鋼板を必要なサイズにブランキングした後に700℃~1200℃の範囲まで加熱した後にプレス成形し、焼入れ冷却を行うことを特徴とする溶接性に優れたホットスタンプ成形体の製造方法とする。 Further, during annealing, the steel sheet is annealed at a steel sheet temperature in the range of 200 ° C. to 600 ° C. with a dew point of -30 ° C to 20 ° C. A hot-dip galvanized steel sheet is subjected to hot-dip galvanizing, and the steel sheet is blanked to the required size, heated to a range of 700 ° C to 1200 ° C, press-formed, and annealed and cooled. It is a method for manufacturing a molded body.

また、前記製造方法において前記溶融亜鉛めっきを施した後に合金化処理を施すことが好ましい。 Further, in the production method, it is preferable to perform the alloying treatment after performing the hot-dip galvanizing.

本発明を用いると、亜鉛系ホットスタンプ用鋼板において、ほとんどコスト増など無く、加熱後の溶接性を劇的に改善する技術を提供することができる。 According to the present invention, it is possible to provide a technique for dramatically improving weldability after heating in a zinc-based hot stamping steel sheet with almost no cost increase.

めっき前の鋼板の焼鈍工程前半における焼鈍露点とホットスタンプ後の溶接抵抗との関係を表した図である。It is a figure which showed the relationship between the annealing dew point in the first half of the annealing process of the steel sheet before plating, and the welding resistance after hot stamping. 本発明条件のホットスタンプ加熱前のめっき皮膜断面構造の模式図である。It is a schematic diagram of the cross-sectional structure of the plating film before hot stamp heating under the conditions of the present invention. 図2に示した本発明条件のめっきをホットスタンプ加熱した後の皮膜断面構造の模式図である。It is a schematic diagram of the cross-sectional structure of the film after hot stamping the plating under the conditions of the present invention shown in FIG. 2. 通常条件のホットスタンプ加熱前のめっき皮膜断面構造の模式図である。It is a schematic diagram of the cross-sectional structure of the plating film before hot stamp heating under normal conditions. 図4に示した通常条件のめっきをホットスタンプ加熱した後の皮膜断面構造の模式図である。It is a schematic diagram of the cross-sectional structure of the film after hot stamping the plating under the normal conditions shown in FIG. 4. ホットスタンプ後のγ-Al比とホットスタンプ後の溶接抵抗との関係を表す図である。It is a figure which shows the relationship between the γ-Al 2 O 3 ratio after hot stamping, and the welding resistance after hot stamping. ホットスタンプ後のγ-Al比と焼鈍露点との関係を表す図である。It is a figure which shows the relationship between the γ-Al 2 O 3 ratio after hot stamping, and the annealing dew point. 焼鈍露点とめっき目付との関係を表す図である。It is a figure which shows the relationship between the annealing dew point and the plating basis weight.

本発明者らは、焼鈍めっき前の鋼板の状態、めっき前の焼鈍条件、めっき条件などと、ホットスタンプ後の溶接性(溶接抵抗)との関係を、詳細に調査した結果、図1に示すように、めっき前の鋼板の焼鈍工程前半における焼鈍の雰囲気、特に露点を微酸化条件とすることでホットスタンプ後の溶接抵抗が著しく低減し、溶接性が大きく改善することを見出した。 The present inventors have investigated in detail the relationship between the state of the steel sheet before annealing, the annealing conditions before plating, the plating conditions, and the weldability (welding resistance) after hot stamping, and the results are shown in FIG. As described above, it was found that the annealing atmosphere in the first half of the annealing process of the steel sheet before plating, particularly the dew point is set as a slight oxidation condition, the welding resistance after hot stamping is remarkably reduced and the weldability is greatly improved.

尚、このように露点を微酸化雰囲気とする焼鈍で、溶接性が改善する詳細なメカニズムは不明であるが、後述するように、めっき前の焼鈍雰囲気を制御すると、鋼板表面や内部のFeやSi、Mnなどの酸化物や金属元素の濃化状態が変化し、その影響でめっき初期に形成されるFe-Al濃化層の状態が変化すると考えられる。その影響を受けて、その後のホットスタンプ時に酸化されるAlが、通常条件では、SiやMnとの複合酸化物化するが、本発明の微酸化条件下では金属元素の原子分率でAl濃度が80%以上となるγ-Alと呼ばれる単独Al酸化物になり、溶接性改善に寄与するものと推定される。 Although the detailed mechanism for improving weldability by annealing with the dew point as a slightly oxidized atmosphere is unknown, as will be described later, if the annealing atmosphere before plating is controlled, Fe on the surface and inside of the steel sheet can be used. It is considered that the concentrated state of oxides and metal elements such as Si and Mn changes, and the state of the Fe—Al concentrated layer formed at the initial stage of plating changes due to the change. Under the influence of this, Al that is oxidized during subsequent hot stamping becomes a composite oxide with Si and Mn under normal conditions, but under the slight oxidation conditions of the present invention, the Al concentration is the atomic fraction of the metal element. It is presumed that it becomes a single Al oxide called γ-Al 2 O 3 which becomes 80% or more and contributes to the improvement of weldability.

その詳細は以下のようである。Alを含有する酸化物には、金属元素の原子分率でAl濃度が80以上となるγ-Alや、Alの他にZnやMn、Feなどを含有する複合酸化物などがある。本発明では、以降、金属元素の原子分率でAl濃度が80%以上となる酸化物を単独Al酸化物(γ-Al、γ-アルミナ:結晶構造はAlともいわれる)、AlだけでなくZnやMnなどを多く含み金属元素の原子分率でAl濃度が80%未満の酸化物を複合Al酸化物(結晶構造は例えばZnAlやMnAl、(Zn,Mn)Alなど)、単独Al酸化物と複合Al酸化物の総称をAl系酸化物と記載する。尚、分析精度として周囲の元素の影響もうけるため、酸素を除いた金属成分のうちAlが原子分率でAl濃度が80%以上であれば単独Al酸化物、80%未満であれば複合Al酸化物とみなすことができる。 The details are as follows. Oxides containing Al include γ-Al 2 O3 having an Al concentration of 80 or more in terms of the atomic fraction of the metal element , and composite oxides containing Zn, Mn, Fe, etc. in addition to Al. .. In the present invention, the oxide having an Al concentration of 80% or more in terms of the atomic fraction of the metal element is referred to as a single Al oxide (γ-Al 2 O 3 , γ-alumina: the crystal structure is also referred to as Al 2 O 3 ). , Not only Al, but also a composite Al oxide containing a large amount of Zn, Mn, etc. and an Al concentration of less than 80% in terms of the atomic fraction of the metal element (the crystal structure is, for example, ZnAl 2 O 4 or Mn Al 2 O 4 , (Zn). , Mn) Al 2 O 4 etc.), the generic term for single Al oxides and composite Al oxides is referred to as Al-based oxides. In addition, since the analysis accuracy is affected by the surrounding elements, if Al is an atomic fraction and the Al concentration is 80% or more among the metal components excluding oxygen, it is a single Al oxide, and if it is less than 80%, it is a composite Al oxidation. It can be regarded as a thing.

図2に本発明条件のホットスタンプ加熱前のめっき皮膜断面構造の模式図を、図3にその本発明条件のめっきをホットスタンプ加熱した後の皮膜断面構造の模式図を、図4に比較となる通常条件のホットスタンプ加熱前のめっき皮膜断面構造の模式図を、図5にその通常条件のめっきをホットスタンプ加熱した後の皮膜断面構造の模式図をそれぞれ示す。図中の数字はそれぞれ、1:母材鋼板、2:加熱前Zn系めっき皮膜、3:本発明によるめっき表面の厚く強固な単独Al酸化物皮膜、4:通常条件のめっき表面の薄く疎な複合Al酸化物皮膜、5:ホットスタンプ加熱後のFe-Zn固溶相、6:本発明条件のホットスタンプ加熱後の厚く強固な単独Al酸化物皮膜、7:本発明条件のホットスタンプ加熱後の薄いZn酸化皮膜、8:通常条件のホットスタンプ加熱後の薄くZn、Mnなどを含有した複合Al酸化物皮膜、9:通常条件のホットスタンプ加熱後の厚いZn酸化皮膜、である。 FIG. 2 is a schematic diagram of the cross-sectional structure of the plating film before hot stamping under the conditions of the present invention, and FIG. 3 is a schematic diagram of the cross-sectional structure of the plating film after hot stamping the plating under the conditions of the present invention. A schematic diagram of the cross-sectional structure of the plating film before hot stamping under normal conditions is shown, and FIG. 5 shows a schematic diagram of the cross-sectional structure of the plating film after hot stamping the plating under normal conditions. The numbers in the figure are 1: base steel sheet, 2: Zn-based plating film before heating, 3: thick and strong single Al oxide film on the plating surface according to the present invention, 4: thin and sparse plating surface under normal conditions. Composite Al oxide film, 5: Fe—Zn solid-soluble phase after hot stamp heating, 6: Thick and strong single Al oxide film after hot stamp heating under the conditions of the present invention, 7: After hot stamp heating under the present invention conditions 8: Thin Zn, composite Al oxide film containing Zn, Mn, etc. after hot stamp heating under normal conditions, 9: Thick Zn oxide film after hot stamp heating under normal conditions.

図2乃至図5に模式図で示すようにホットスタンプ後に最表面に形成し溶接抵抗となるZn系の酸化物(図3の7、図5の9)は、Znめっき層内部より前述のホットスタンプ時に形成されるこれらの単独Al酸化物皮膜(図2の3)もしくはAlとZnやMnなどからなる複合Al酸化物皮膜(図4の4)など、いずれもAl系酸化物を通ってめっきZn(図中2)がめっき表面に向かって拡散することにより形成するため、このAl系酸化物皮膜の形成状態の違いによりZnの酸化物の形成量が異なり、このZn酸化物の量が少ない方が溶接性が改善すると考えられる。すなわち、単独Al酸化物皮膜は他の元素を含有しないため、非常に緻密で高温での酸化雰囲気においてZn等の他の金属元素がその単独Al酸化物皮膜を拡散透過してZnの酸化を抑制するバリア層として非常に効果が大きいのに対して、ZnやMnなどを含有する複合Al酸化物では、自身の中にZnなどを含有するため、Znなどが透過しやすくZnの酸化を抑制するバリア層として十分機能しないものと考えられる。 As shown in the schematic diagram in FIGS. 2 to 5, the Zn-based oxides (7 in FIG. 3 and 9 in FIG. 5) formed on the outermost surface after hot stamping and serving as welding resistance are hot from the inside of the Zn plating layer. Both of these single Al oxide films (Fig. 2-3) formed at the time of stamping or composite Al oxide films composed of Al, Zn, Mn, etc. (Fig. 4-4) are plated through Al-based oxides. Since Zn (2 in the figure) is formed by diffusing toward the plating surface, the amount of Zn oxide formed differs depending on the difference in the formation state of this Al-based oxide film, and the amount of this Zn oxide is small. It is considered that the weldability is improved. That is, since the single Al oxide film does not contain other elements, other metal elements such as Zn diffuse and permeate the single Al oxide film in a very dense and high temperature oxidizing atmosphere to suppress the oxidation of Zn. In contrast, the composite Al oxide containing Zn, Mn, etc. is very effective as a barrier layer, but since it contains Zn, etc., it is easy for Zn, etc. to permeate and suppress the oxidation of Zn. It is considered that it does not function sufficiently as a barrier layer.

ホットスタンプ後の酸化物の形成状態とホットスタンプ後の溶接抵抗の関係の調査結果を図6に示す。両者には強い相関がある。すなわち、Znなどを含有する複合Al酸化物とAlを単独で含有する単独Al酸化物で構成される、Al系酸化物のうち、Alを単独で含有する単独Al酸化物相が占める割合が多いほど、ホットスタンプ後の溶接抵抗が低減し、溶接性が改善できることが明らかとなった。 FIG. 6 shows the results of investigation of the relationship between the oxide formation state after hot stamping and the welding resistance after hot stamping. There is a strong correlation between the two. That is, among the Al-based oxides composed of the composite Al oxide containing Zn and the like and the single Al oxide containing Al alone, the single Al oxide phase containing Al alone occupies a large proportion. It was clarified that the welding resistance after hot stamping was reduced and the weldability could be improved.

ここで、単独Al酸化物相の比率を測定する方法は、以下の通りである。FIB(集束イオンビーム法)を用いてホットスタンプ材の最表面層の断面薄膜試料を作成し、上記のTEM(透過型電子顕微鏡)を用いて倍率40000倍で2.8μm角の視野でFe-Zn固溶相とZn酸化皮膜との界面に存在するAl系酸化物皮膜を観察し、EDX元素マッピングを行い、Al系酸化物皮膜の位置を特定する。測定面は、LD(圧延)方向、TD(圧延方向と板面内垂直)方向のどちらでもよい。この後、Al系酸化物皮膜に電子ビームを当て、ディフラクションをとり成分分析をすることによりAl系酸化物の結晶構造を同定する。本材料のAl系酸化物の結晶構造としては、単独Al酸化物であるγ-Alの他、ZnAlなどの複合Al酸化物が存在する可能性があるが、1視野につき200nm間隔で5点以上の点でAl系酸化物の結晶構造の同定を行ない、それを5視野以上測定した合計25点以上を測定し、結晶構造がγ-Alと一致し、酸素を除いた金属元素の原子分率でAlが80%以上となるγ-Al、即ち単独Al酸化物に同定された点数をG、総測定点数をPとした時、G/Pの比率で評価する。TEM観察方法は、特に規定しないが、実施形態においては、日本電子製 JEM-200CXやJEM-2100で、加速電圧200kVで観察し、組織観察、元素分析、電子線回折などで相や結晶構造を特定した。 Here, the method for measuring the ratio of the single Al oxide phase is as follows. Using FIB (focused ion beam method), a cross-sectional thin film sample of the outermost surface layer of the hot stamping material was prepared, and using the above TEM (transmission electron microscope), Fe- The Al-based oxide film existing at the interface between the Zn solid-soluble phase and the Zn oxide film is observed, and EDX element mapping is performed to identify the position of the Al-based oxide film. The measurement surface may be either the LD (rolling) direction or the TD (rolling direction and vertical in the plate surface) direction. After that, an electron beam is applied to the Al-based oxide film, a fraction is taken, and component analysis is performed to identify the crystal structure of the Al-based oxide. As the crystal structure of the Al-based oxide of this material, there is a possibility that a composite Al oxide such as ZnAl 2 O 4 may exist in addition to γ-Al 2 O 3 which is a single Al oxide, but per field of view. The crystal structure of the Al-based oxide was identified at 5 or more points at 200 nm intervals, and a total of 25 or more points were measured by measuring it in 5 or more fields. The crystal structure was consistent with γ-Al 2 O 3 and oxygen. When the score identified as γ-Al 2 O 3 , that is, the single Al oxide in which Al is 80% or more in the atomic fraction of the metal element excluding the above, is G, and the total measurement score is P, G / P Evaluate by ratio. The TEM observation method is not particularly specified, but in the embodiment, observation is performed with JEOL-200CX or JEM-2100 manufactured by JEOL at an acceleration voltage of 200 kV, and the phase and crystal structure are observed by structure observation, elemental analysis, electron diffraction, etc. Identified.

図6に示すように、G/Pが0.20以上あれば単独Al酸化物によるZn拡散の抑制効果が出現し、Zn酸化膜の形成量が抑制されることにより、溶接抵抗が減少し溶接性が改善する。望ましくは、G/Pは0.5以上であることが好ましい。但し、G/Pが1.00に非常に近くなると、単独Al酸化物が形成された材料表面では、Zn酸化膜の抑制効果は得られるが、鋼板表面にFeの酸化膜も発生するようになり、そこでの溶接抵抗が上昇してしまうため、G/Pは1.00未満であることが望ましい。よって、適正なG/Pの上限はG/P<1.00、更に望ましくはG/P≦0.99、更に望ましくはG/P≦0.95である。 As shown in FIG. 6, when G / P is 0.20 or more, the effect of suppressing Zn diffusion by the single Al oxide appears, and the amount of Zn oxide film formed is suppressed, so that the welding resistance is reduced and welding is performed. Sex improves. Desirably, G / P is preferably 0.5 or more. However, when G / P becomes very close to 1.00, the effect of suppressing the Zn oxide film can be obtained on the surface of the material on which the single Al oxide is formed, but the Fe oxide film is also generated on the surface of the steel sheet. Therefore, it is desirable that the G / P is less than 1.00 because the welding resistance there increases. Therefore, the upper limit of the appropriate G / P is G / P <1.00, more preferably G / P ≦ 0.99, and even more preferably G / P ≦ 0.95.

上記0.20≦G/P<1.00は、例えば、焼鈍における雰囲気条件の調整が有効である。図7に示すように、G/Pを0.20以上とするには焼鈍露点を-30℃以上とし、G/Pを1.00未満とするには焼鈍露点を20℃以下とすることで可能となる。焼鈍露点が20℃超では鋼板中のFeの酸化が顕著となりその後の還元で活性なFeが多く発生してしまいAlが過多に濃化してしまうため、G/Pは1となってしまう。G/Pを0.20以上とするには、焼鈍露点が-30℃以上とすれば可能となる。焼鈍露点が-30℃より低い場合には鋼板表面でのMnやSiの内部酸化が十分起こらないため、鋼板表面にMnやSiが金属として多く残留するために、Al酸化時にこれら元素が含有されやすくなり、単独Al酸化物が形成されにくくなってしまう。 When 0.20 ≦ G / P <1.00, for example, adjustment of atmospheric conditions in annealing is effective. As shown in FIG. 7, the annealing dew point is set to -30 ° C or higher to set the G / P to 0.20 or higher, and the annealing dew point is set to 20 ° C or lower to set the G / P to less than 1.00. It will be possible. When the annealing dew point exceeds 20 ° C., the oxidation of Fe in the steel sheet becomes remarkable, and a large amount of active Fe is generated by the subsequent reduction, and Al becomes excessively concentrated, so that the G / P becomes 1. To make the G / P 0.20 or more, it is possible if the annealing dew point is −30 ° C. or higher. When the quenching dew point is lower than -30 ° C, internal oxidation of Mn and Si on the surface of the steel plate does not occur sufficiently, and a large amount of Mn and Si remain as a metal on the surface of the steel plate. Therefore, these elements are contained during Al oxidation. It becomes easy, and it becomes difficult to form a single Al oxide.

本発明者らは、更にこのようなホットスタンプ後のAl系酸化物形態、ひいてはその元となるめっき前の鋼板表面でのSiやMnの欠乏層を形成するための手法として焼鈍中の雰囲気だけでなく、特に加熱中の温度や昇温速度が重要であり、溶融亜鉛めっきの目付け量を変更しても有効であることを解明した。 The present inventors have only an atmosphere during annealing as a method for forming an Al-based oxide morphology after such hot stamping, and by extension, a Si or Mn-deficient layer on the surface of the steel sheet before plating, which is the basis thereof. However, it was clarified that the temperature during heating and the rate of temperature rise are particularly important, and that it is effective even if the amount of hot-dip galvanizing is changed.

すなわち、焼鈍雰囲気中のH濃度が体積分率で1~15%焼鈍中の鋼板温度が200℃~600℃の範囲において、図8に示すように露点が-30℃~20℃の範囲ならば、めっき目付量が45g/m以上で溶接抵抗が軽減され、溶接性が良好である。尚、図8中のプロットで、溶接性が著しく劣化する溶接抵抗の高い領域として溶接抵抗が50mΩを超える領域を×、溶接性が合格する範囲のうち溶接抵抗が30~50mΩとなる領域を△、より溶接性が改善できる望ましい条件として溶接抵抗が10~30mΩとなる領域を○、更に溶接性が改善できる望ましい条件として溶接抵抗が10mΩ以下となる領域を●でプロットした。 That is, if the H 2 concentration in the annealed atmosphere is 1 to 15% in terms of volume fraction, the temperature of the steel sheet during annealing is in the range of 200 ° C to 600 ° C, and the dew point is in the range of -30 ° C to 20 ° C as shown in FIG. For example, when the amount of plating is 45 g / m 2 or more, the welding resistance is reduced and the weldability is good. In the plot in FIG. 8, the region where the weld resistance exceeds 50 mΩ is defined as the region where the weld resistance is significantly deteriorated, and the region where the weld resistance is 30 to 50 mΩ within the range where the weldability is acceptable is Δ. The region where the welding resistance is 10 to 30 mΩ is plotted as a desirable condition for further improving the weldability, and the region where the weld resistance is 10 mΩ or less is plotted as a desirable condition for further improving the weldability.

鋼板温度を上記のように設定した理由は、鋼板の温度が200℃より低い場合では、温度が低すぎて鋼中でのSiやMnがほとんど拡散しないため、鋼板表面にSiやMnの欠乏層を形成することができず、600℃超では拡散は十分に起こるが、その後の保持時間を含めた焼鈍時間が短くなってしまい、SiやMnの欠乏層が十分形成するだけの時間が得られないためである。このように鋼板温度は200℃~600℃の範囲がSiやMnの拡散速度や焼鈍時間の観点から最も望ましいが、更に望ましくは300℃~500℃の範囲である。 The reason why the steel sheet temperature is set as described above is that when the temperature of the steel sheet is lower than 200 ° C., the temperature is too low and Si and Mn hardly diffuse in the steel, so that the Si and Mn-deficient layer is formed on the surface of the steel sheet. However, diffusion occurs sufficiently above 600 ° C., but the annealing time including the subsequent holding time is shortened, and sufficient time is obtained to form a Si or Mn-deficient layer. Because there is no such thing. As described above, the steel sheet temperature in the range of 200 ° C. to 600 ° C. is most desirable from the viewpoint of the diffusion rate of Si and Mn and the annealing time, but more preferably in the range of 300 ° C. to 500 ° C.

また、雰囲気については、H以外は大半がNガスであり、それ以外は不可避的不純物である。H濃度は1%以下だと鋼板の還元が不十分となり、不めっきなどの原因となる。一方、15%以上では焼鈍中のHの消費が多くなりコスト的に問題がある。よって、H濃度は1~15%が好ましく、更に好ましくは2~12%である。焼鈍時の露点としては、-30℃未満では、鋼中のSi、Mnを十分酸化することができずSiやMnの欠乏層を形成することができない。また、+20℃超では、鋼板中のFeの酸化が発生し不めっきなどの原因となるため好ましくない。よって焼鈍露点は、-30℃~20℃が好ましく、更に好ましくは-20℃~10℃、更に好ましくは-15~0℃である。この露点の調整には、NもしくはNに1~15%のHを含んだガスを水蒸気によって加湿し、そのガスを焼鈍炉内に導入して制御する。 As for the atmosphere, most of them are N 2 gas except H 2 , and other than that, they are unavoidable impurities. If the H2 concentration is 1 % or less, the reduction of the steel sheet becomes insufficient, which causes non-plating and the like. On the other hand, if it is 15% or more , the consumption of H2 during annealing increases, which causes a problem in terms of cost. Therefore, the H 2 concentration is preferably 1 to 15%, more preferably 2 to 12%. As the dew point at the time of annealing, if it is less than −30 ° C., Si and Mn in the steel cannot be sufficiently oxidized and a depletion layer of Si and Mn cannot be formed. Further, if the temperature exceeds + 20 ° C., oxidation of Fe in the steel sheet occurs, which causes non-plating and the like, which is not preferable. Therefore, the annealing dew point is preferably −30 ° C. to 20 ° C., more preferably −20 ° C. to 10 ° C., and even more preferably −15 to 0 ° C. The dew point is adjusted by humidifying N 2 or a gas containing 1 to 15% H 2 in N 2 with steam, and introducing the gas into the annealing furnace to control the dew point.

ホットスタンプの条件は特に規定しないが、前記溶融亜鉛めっき鋼板もしくは前記合金化溶融亜鉛めっき鋼板を必要なサイズにブランキングした後、輻射加熱、誘導加熱、通電加熱などを用い、700℃~1200℃の範囲に加熱した後、プレス成形し、焼入れ冷却することが好ましい。 The conditions for hot stamping are not particularly specified, but after the hot-dip galvanized steel sheet or the alloyed hot-dip galvanized steel sheet is blanked to a required size, radiant heating, induction heating, energization heating, etc. are used at 700 ° C to 1200 ° C. After heating to the above range, it is preferable to press-mold and quench-cool.

本発明で使用可能な亜鉛系めっき鋼板の種類としては、亜鉛を主成分とするめっき鋼板であれば特に限定しないが、亜鉛めっき鋼板(略称GI)、合金化亜鉛めっき鋼板(略称GA)、溶融亜鉛-アルミニウム合金めっき、溶融亜鉛-アルミニウム-シリコン合金めっき、溶融亜鉛-アルミニウム-マグネシウム合金めっきなどを含み、またそれぞれの詳細な元素組成も特に限定はしない。めっきの目付量についても特に限定しないが、一般的なホットスタンプ用めっきの付着量である、30g/m2~120g/m2程度まで使用可能である。鋼板の材質は特に限定はしないが、ホットスタンプ用途として用いられる焼入れ高強度鋼が一般的である。 The type of zinc-based plated steel sheet that can be used in the present invention is not particularly limited as long as it is a plated steel sheet containing zinc as a main component, but is a zinc-plated steel sheet (abbreviated as GI), an alloyed zinc-plated steel sheet (abbreviated as GA), or molten. It includes zinc-aluminum alloy plating, hot-dip zinc-aluminum-silicon alloy plating, hot-dip zinc-aluminum-magnesium alloy plating, and the detailed element composition of each is not particularly limited. The basis weight of the plating is not particularly limited, but it can be used up to about 30 g / m 2 to 120 g / m 2 , which is the adhesion amount of general hot stamping plating. The material of the steel sheet is not particularly limited, but hardened high-strength steel used for hot stamping is generally used.

厚さ1.0mmで、鋼組成がC:0.211%(質量%、以下同じ)、Si:0.033%、Mn:1.2%、P:0.01%、S:0.007%、Cr:0.2%、Ti:0.02%、B:0.003%、残部Fe及び不純物からなるホットスタンプ用溶融亜鉛めっき鋼板と合金化溶融亜鉛めっき鋼板に、表1の条件にて焼鈍とめっきを施した。その際、焼鈍時の雰囲気を種々に変更した後、めっきを施した。尚、焼鈍露点の値は焼鈍中の鋼板温度が200℃~600℃の間のあたいである。めっきの目付量は表/裏で50/50g/mとした。めっき後の鋼板は焼鈍条件が例えば露点が+20℃以上の場合は、不めっきが観察されるものがあった。不めっきとは、めっき前の母材表面の酸化が進行しすぎた場合、めっきの濡れ性が悪くなり、めっきがはじいてめっきが付いていない場所であり、発生したものは不良とした。 The thickness is 1.0 mm, and the steel composition is C: 0.211% (mass%, the same applies hereinafter), Si: 0.033%, Mn: 1.2%, P: 0.01%, S: 0.007. %, Cr: 0.2%, Ti: 0.02%, B: 0.003%, hot-dip galvanized steel sheet for hot stamping and alloyed hot-dip galvanized steel sheet consisting of balance Fe and impurities, according to the conditions in Table 1. It was annealed and plated. At that time, after various changes in the atmosphere at the time of annealing, plating was performed. The value of the annealing dew point is such that the temperature of the steel sheet during annealing is between 200 ° C and 600 ° C. The basis weight of the plating was 50/50 g / m 2 on the front / back. In some steel sheets after plating, non-plating was observed when the annealing conditions were, for example, a dew point of + 20 ° C. or higher. Non-plating is a place where the wettability of the plating deteriorates when the surface of the base metal before plating progresses too much, and the plating is repelled and the plating is not attached.

Figure 0007006257000001
Figure 0007006257000001

めっき後の鋼板は、100mm角のサイズに切り出した後、大気雰囲気の電気炉を900℃に加熱しその中で4分間加熱後取り出し、速やかに水冷配管を内蔵した平板プレスに挟んで急冷してホットスタンプ高強度材を得た。溶接性の指標として溶接抵抗を測定した。溶接抵抗測定条件は、電極:CF型φ6R40、荷重:250kgf、電流値:2Aで通電し、その際の抵抗値を測定した。溶接抵抗は小さいほど良いが、50mΩ以下になれば、溶接時のちり発生がほとんど無くなり、溶接強度も安定するため、50mΩ以下で良好、更に好ましくは25mΩ以下とした。 The plated steel sheet is cut into a size of 100 mm square, then heated to 900 ° C in an electric furnace with an atmospheric atmosphere, heated in it for 4 minutes, then taken out, and immediately sandwiched between flat stamps with a built-in water-cooled pipe and rapidly cooled. A high-strength material for hot stamping was obtained. Welding resistance was measured as an index of weldability. The welding resistance measurement conditions were: electrode: CF type φ6R40, load: 250 kgf, current value: 2 A, and the resistance value at that time was measured. The smaller the welding resistance, the better, but if it is 50 mΩ or less, dust generation during welding is almost eliminated and the welding strength is stable. Therefore, 50 mΩ or less is good, and more preferably 25 mΩ or less.

表1に示されるように、焼鈍雰囲気の範囲は、焼鈍露点が-30℃よりも低くなると、溶接性改善効果が得られない。一方、焼鈍露点を20℃を超えると、めっき前母材が酸化され過ぎて不めっきが発生するため、外観不良などが発生し好ましくない。 As shown in Table 1, in the range of the annealing atmosphere, when the annealing dew point is lower than −30 ° C., the effect of improving weldability cannot be obtained. On the other hand, if the annealing dew point exceeds 20 ° C., the pre-plating base material is overoxidized and non-plating occurs, which is not preferable because poor appearance or the like occurs.

以上、実施形態を例に本発明を説明してきたが、本発明は上記実施形態に限定されることはなく、各種の態様とすることが可能である。 Although the present invention has been described above by taking an embodiment as an example, the present invention is not limited to the above embodiment and can be various modes.

1 母材鋼板
2 加熱前Zn系めっき皮膜
3 本発明によるめっき表面の厚く強固な単独Al酸化物皮膜
4 通常条件のめっき表面の薄く疎な複合Al酸化物皮膜
5 ホットスタンプ加熱後のFe-Zn固溶相
6 本発明条件のホットスタンプ加熱後の厚く強固な単独Al酸化物皮膜
7 本発明条件のホットスタンプ加熱後の薄いZn酸化皮膜
8 通常条件のホットスタンプ加熱後の薄くZn、Mnなどを含有した複合Al酸化物皮膜
9 通常条件のホットスタンプ加熱後の厚いZn酸化皮膜
1 Base steel sheet 2 Zn-based plating film before heating 3 Thick and strong single Al oxide film on the plating surface according to the present invention 4 Thin and sparse composite Al oxide film on the plating surface under normal conditions 5 Fe-Zn after hot stamp heating Solid-dissolved phase 6 Thick and strong single Al oxide film after hot stamping under the conditions of the present invention 7 Thin Zn oxide film after hot stamping under the conditions of the present invention 8 Thin Zn, Mn, etc. after hot stamping under normal conditions Containing composite Al oxide film 9 Thick Zn oxide film after hot stamp heating under normal conditions

Claims (4)

溶融亜鉛めっき鋼板が用いられたホットスタンプ成形体表面において、TEM(透過型電子顕微鏡)を用いて倍率40000倍で2.8μm角の視野でFe-Zn固溶相とZn酸化皮膜との界面に存在するAl系酸化物皮膜を観察し、1視野につき200nm間隔で5点以上の点でAl系酸化皮膜の結晶構造の同定を行ない、それを5視野以上測定した合計25点以上を測定し、結晶構造がγ-Alと一致し、酸素を除いた金属元素の原子分率でAlが80%以上となるγ-Alに同定された点数をG、総測定点数をPとした時、0.20≦G/P<1.00であり、Zn酸化皮膜の下に金属元素の原子分率でAl濃度が80%以上となる単独Al酸化物皮膜が存在することを特徴とする溶接性に優れたホットスタンプ成形体。 On the surface of a hot stamped molded body using a hot-dip zinc-plated steel plate, a TEM (transmissive electron microscope) was used at a magnification of 40,000 times and a 2.8 μm square field of view at the interface between the Fe-Zn solid-soluble phase and the Zn oxide film. The existing Al-based oxide film was observed, the crystal structure of the Al-based oxide film was identified at 5 points or more at intervals of 200 nm per field, and the crystal structure of the Al-based oxide film was measured at 5 points or more, and a total of 25 points or more were measured. The score identified for γ-Al 2 O 3 whose crystal structure matches γ-Al 2 O 3 and whose atomic fraction of the metal element excluding oxygen is 80% or more of Al is G, and the total number of measured points is P. When A hot stamped body with excellent weldability. 前記溶融亜鉛めっき鋼板は、合金化処理が施されていることを特徴とする請求項1に記載の溶接性に優れたホットスタンプ成形体。 The hot stamp molded body having excellent weldability according to claim 1, wherein the hot-dip galvanized steel sheet is alloyed. 焼鈍中に鋼板温度で200℃~600℃の範囲を露点を-℃~20℃として焼鈍を行った後、目付け量が30g/m以上の溶融亜鉛めっきを施し、調質圧延を施して溶融亜鉛めっき鋼板とし、当該鋼板を必要なサイズにブランキングした後に700℃~1200℃の範囲まで加熱した後にプレス成形し、焼入れ冷却を行うことを特徴とする溶接性に優れたホットスタンプ成形体の製造方法。 During annealing, the steel sheet is annealed at a steel sheet temperature in the range of 200 ° C to 600 ° C with a dew point of -2 ° C to 20 ° C, then hot-dip galvanized with a grain size of 30 g / m 2 or more, and tempered and rolled. A hot-dip galvanized steel sheet with excellent weldability, which is characterized by blanking the steel sheet to a required size, heating it to a range of 700 ° C to 1200 ° C, press-molding it, and annealing and cooling it. Manufacturing method. 前記溶融亜鉛めっきを施した後に合金化処理を施すことを特徴とする請求項3に記載の溶接性に優れたホットスタンプ成形体の製造方法。
The method for producing a hot stamped molded product having excellent weldability according to claim 3, wherein the alloying treatment is performed after the hot-dip galvanizing.
JP2017250353A 2017-12-27 2017-12-27 A method for manufacturing a hot stamped body and a hot stamped body Active JP7006257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017250353A JP7006257B2 (en) 2017-12-27 2017-12-27 A method for manufacturing a hot stamped body and a hot stamped body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017250353A JP7006257B2 (en) 2017-12-27 2017-12-27 A method for manufacturing a hot stamped body and a hot stamped body

Publications (2)

Publication Number Publication Date
JP2019116655A JP2019116655A (en) 2019-07-18
JP7006257B2 true JP7006257B2 (en) 2022-01-24

Family

ID=67305201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017250353A Active JP7006257B2 (en) 2017-12-27 2017-12-27 A method for manufacturing a hot stamped body and a hot stamped body

Country Status (1)

Country Link
JP (1) JP7006257B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005074464A (en) 2003-08-29 2005-03-24 Sumitomo Metal Ind Ltd Hot-pressing formed product and its producing method
JP2005120447A (en) 2003-10-17 2005-05-12 Jfe Steel Kk Galvanized steel sheet having excellent press formability, and its production method
JP2009256781A (en) 2008-03-27 2009-11-05 Kobe Steel Ltd Hot-dip galvanized steel sheet having chromate-free coating excellent in corrosion resistance
JP2011117041A (en) 2009-12-03 2011-06-16 Sumitomo Metal Ind Ltd HIGH-Si-CONTAINING HOT-DIP GALVANNEALED STEEL SHEET SUPERIOR IN WELDABILITY AND MANUFACTURING METHOD THEREFOR
JP2013087314A (en) 2011-10-14 2013-05-13 Nippon Steel & Sumitomo Metal Corp High-strength galvannealed steel sheet excellent in plating adhesion and method for manufacturing the same
WO2014024825A1 (en) 2012-08-07 2014-02-13 新日鐵住金株式会社 Zinc-plated steel sheet for hot press molding
JP2014159624A (en) 2012-04-23 2014-09-04 Kobe Steel Ltd Alloyed hot-dipped galvanized steel sheet for hot stamping and method of manufacturing the same, and hot stamped component
JP2014221943A (en) 2009-12-29 2014-11-27 ポスコ Galvanized steel sheet for hot pressing which is excellent in surface characteristic, hot press forming part using galvanized steel sheet and production method of hot press forming part
JP2014224311A (en) 2013-04-26 2014-12-04 株式会社神戸製鋼所 Hot-dip galvannealed steel sheet for hot stamp
JP2016125101A (en) 2015-01-06 2016-07-11 新日鐵住金株式会社 Hot stamp molded body and manufacturing method of hot stamp molded body
JP2017186663A (en) 2016-03-30 2017-10-12 株式会社神戸製鋼所 Alloyed hot-dip galvanized steel sheet for hot stamp
WO2017195269A1 (en) 2016-05-10 2017-11-16 新日鐵住金株式会社 Hot stamp molded body

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005074464A (en) 2003-08-29 2005-03-24 Sumitomo Metal Ind Ltd Hot-pressing formed product and its producing method
JP2005120447A (en) 2003-10-17 2005-05-12 Jfe Steel Kk Galvanized steel sheet having excellent press formability, and its production method
JP2009256781A (en) 2008-03-27 2009-11-05 Kobe Steel Ltd Hot-dip galvanized steel sheet having chromate-free coating excellent in corrosion resistance
JP2011117041A (en) 2009-12-03 2011-06-16 Sumitomo Metal Ind Ltd HIGH-Si-CONTAINING HOT-DIP GALVANNEALED STEEL SHEET SUPERIOR IN WELDABILITY AND MANUFACTURING METHOD THEREFOR
JP2014221943A (en) 2009-12-29 2014-11-27 ポスコ Galvanized steel sheet for hot pressing which is excellent in surface characteristic, hot press forming part using galvanized steel sheet and production method of hot press forming part
JP2013087314A (en) 2011-10-14 2013-05-13 Nippon Steel & Sumitomo Metal Corp High-strength galvannealed steel sheet excellent in plating adhesion and method for manufacturing the same
JP2014159624A (en) 2012-04-23 2014-09-04 Kobe Steel Ltd Alloyed hot-dipped galvanized steel sheet for hot stamping and method of manufacturing the same, and hot stamped component
WO2014024825A1 (en) 2012-08-07 2014-02-13 新日鐵住金株式会社 Zinc-plated steel sheet for hot press molding
JP2014224311A (en) 2013-04-26 2014-12-04 株式会社神戸製鋼所 Hot-dip galvannealed steel sheet for hot stamp
JP2016125101A (en) 2015-01-06 2016-07-11 新日鐵住金株式会社 Hot stamp molded body and manufacturing method of hot stamp molded body
JP2017186663A (en) 2016-03-30 2017-10-12 株式会社神戸製鋼所 Alloyed hot-dip galvanized steel sheet for hot stamp
WO2017195269A1 (en) 2016-05-10 2017-11-16 新日鐵住金株式会社 Hot stamp molded body

Also Published As

Publication number Publication date
JP2019116655A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
US9644252B2 (en) Hot stamped high strength part excellent in post painting anticorrosion property and method of production of same
US10287647B2 (en) Method for producing a steel component having a metal coating protecting it against corrosion, and steel component
EP2798094B1 (en) High-strength hot-dip galvanized steel sheet having excellent plating surface quality and adhesion, and method of manufacturing the same
US9932659B2 (en) Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same (as amended)
US9873934B2 (en) Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same
EP3712286B1 (en) Hot-pressed steel sheet member and method for producing same
EP3680359B1 (en) Hot-pressed steel sheet member and method for producing same
TW201319271A (en) Steel sheet having hot-dip galvanized layer and exhibiting superior plating wettability and plating adhesion, and production method therefor
US10023933B2 (en) Galvannealed steel sheet and method for producing the same
CN108430662B (en) Hot press molded article having excellent corrosion resistance and method for producing same
US20190047255A1 (en) High strength hot dip galvannealed steel sheet of excellent phosphatability and ductility, and a production process therefor
US20230086620A1 (en) Steel sheet plated with al-fe for hot press forming having excellent corrosion resistance and spot weldability, and manufacturing method thereof
KR20150124456A (en) High strength steel sheet and method for manufacturing the same
JP7006256B2 (en) Manufacturing method of hot-stamped hot-dip galvanized steel sheet and hot-stamped hot-dip galvanized steel sheet
KR102280093B1 (en) STEEL SHEET PLATED WITH Al-Fe FOR HOT PRESS FORMING HAVING EXCELLENT CORROSION RESISTANCE AND SPOT WELDABILITY, AND MANUFACTURING METHOD THEREOF
JP7006257B2 (en) A method for manufacturing a hot stamped body and a hot stamped body
WO2022097737A1 (en) Galvannealed steel sheet, electrodeposition-coated steel sheet, automotive vehicle component, manufacturing method for electrodeposition-coated steel sheet, and manufacturing method for galvannealed steel sheet
US20230095166A1 (en) Hot pressed member and method of producing same, and coated steel sheet for hot press forming
US20230407449A1 (en) Hot-pressed member, steel sheet for hot pressing, and method for manufacturing hot-pressed member
JP2010189725A (en) Hot dip galvanized steel sheet for adhesion-bonding which is excellent in impact-resistant adhesion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220