JP2005120447A - Galvanized steel sheet having excellent press formability, and its production method - Google Patents

Galvanized steel sheet having excellent press formability, and its production method Download PDF

Info

Publication number
JP2005120447A
JP2005120447A JP2003358062A JP2003358062A JP2005120447A JP 2005120447 A JP2005120447 A JP 2005120447A JP 2003358062 A JP2003358062 A JP 2003358062A JP 2003358062 A JP2003358062 A JP 2003358062A JP 2005120447 A JP2005120447 A JP 2005120447A
Authority
JP
Japan
Prior art keywords
steel sheet
galvanized steel
oxide
dip galvanized
based oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003358062A
Other languages
Japanese (ja)
Other versions
JP4849501B2 (en
Inventor
Satoshi Ando
聡 安藤
Shinji Otsuka
真司 大塚
Shoichiro Taira
章一郎 平
Yoshiharu Sugimoto
芳春 杉本
Takashi Kono
崇史 河野
Masayasu Nagoshi
正泰 名越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003358062A priority Critical patent/JP4849501B2/en
Publication of JP2005120447A publication Critical patent/JP2005120447A/en
Application granted granted Critical
Publication of JP4849501B2 publication Critical patent/JP4849501B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a galvanized steel sheet having reduced sliding resistance at the time of press forming, and having excellent press formability. <P>SOLUTION: In the galvanized steel sheet where the plating layer is composed mainly of a η phase, an oxide layer including Zn based oxide and Al based oxide with an average thickness of ≥10 nm is present on the surface of the plating, and also, the percentage of the oxide consisting essentially of Zn in which the Zn/Al ratio included in the oxide layer (the ratio at an atomic concentration in the oxide layer) is ≥4 occupied in the surface of the plating is ≥70% by area. Further, the oxide essentially consisting of Zn in which the Zn/Al ratio is ≥4 is preferably present at the projecting parts in the surface of the plating having ruggedness. Further, the oxide consisting essentially of Zn in which the Zn/Al ratio is ≥4 preferably comprises Fe by 1 to 50at% as the Fe atomic concentration defined by Fe/(Zn+Fe). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プレス成形時における摺動性、接着接合性及び化成処理性に優れた溶融亜鉛めっき鋼板とその製造方法に関するものである。   The present invention relates to a hot-dip galvanized steel sheet excellent in slidability, adhesive bondability and chemical conversion treatment during press molding, and a method for producing the same.

近年、防錆性向上の観点から、自動車用パネル部品には亜鉛系めっき鋼板、特に溶融亜鉛系めっき鋼板の使用比率が増加している。溶融亜鉛系めっき鋼板には亜鉛めっき後に合金化処理を施したものと施さないものとがあり、一般に前者は合金化溶融亜鉛めっき鋼板、後者は溶融亜鉛めっき鋼板と称される。通常、自動車用パネルに使用される溶融亜鉛系めっき鋼板は、溶接性および塗装性に優れている特性を生かして、溶融亜鉛めっき後に500℃程度に加熱して合金化処理を施した合金化溶融亜鉛めっき鋼板が使用されている。
また、さらなる防錆性の向上を目指し、自動車メーカーでは厚目付けの亜鉛系めっき鋼板に対する要望が強くなりつつあるが、前述した合金化溶融亜鉛めっき鋼板で厚目付け化を実施すると、合金化に長時間を要し、合金化不良いわゆる焼けムラが発生しやすく、逆にめっき層全体で合金化を完了させようとすると、過合金化となり、めっき−鋼板界面で脆いΓ相が生成し、加工時にめっき剥離が発生しやすくなるため、厚目付けの合金化溶融亜鉛めっき鋼板を製造することは非常に困難である。
In recent years, from the viewpoint of improving rust prevention, the ratio of use of galvanized steel sheets, particularly hot dip galvanized steel sheets, is increasing in automotive panel parts. Hot-dip galvanized steel sheets include those that have been subjected to alloying treatment after galvanizing and those that have not been subjected to alloying. Generally, the former is called an alloyed hot-dip galvanized steel sheet, and the latter is called a hot-dip galvanized steel sheet. Usually, hot dip galvanized steel sheets used for automotive panels are alloyed and melted by applying the alloying treatment by heating to about 500 ° C after hot dip galvanizing, taking advantage of the characteristics of excellent weldability and paintability. Galvanized steel sheet is used.
In addition, with the aim of further improving rust prevention, automobile manufacturers are increasingly demanding thick-coated galvanized steel sheets. However, when the above-mentioned alloyed hot-dip galvanized steel sheets are thickened, it is effective for alloying. Time-consuming, poor alloying, so-called burn unevenness is likely to occur, and conversely, when trying to complete alloying with the entire plating layer, it becomes overalloyed and a brittle Γ phase is generated at the plating-steel interface, and during processing Since plating peeling easily occurs, it is very difficult to produce a thick alloyed hot-dip galvanized steel sheet.

このため、厚目付け化には溶融亜鉛めっき鋼板が有効である。しかしながら、溶融亜鉛めっき鋼板を自動車用パネルにプレス成形する際には、前記合金化溶融亜鉛めっき鋼板と比較すると、金型との摺動抵抗が大きく、また表面の融点が低いことにより凝着を生じやすく、プレス割れが起こりやすいという問題がある。   For this reason, hot dip galvanized steel sheets are effective for thickening. However, when press-molding hot-dip galvanized steel sheets to automotive panels, adhesion is caused by a higher sliding resistance with the mold and a lower melting point of the surface compared to the alloyed hot-dip galvanized steel sheets. There is a problem that it is easy to occur and press cracks are likely to occur.

このような問題を解決する手法として、特許文献1および特許文献2には、溶融亜鉛めっき鋼板の表面粗度を制御して、プレス成形時の型かじりを抑制する手法や、深絞り性を改善する手法が提案されている。しかしながら、このような溶融亜鉛めっき鋼板について詳細な検討を行ったところ、金型との摺動距離が短い場合には、金型との凝着を抑制する効果があるものの、摺動距離が長くなるほどこの効果は小さくなり、摺動条件によっては改善効果が得られない。また、上記提案では、このような粗さを付与する手法として、スキンパス圧延のロール条件・圧延条件を制御する方法があげられているが、実際には、ロールに亜鉛が目詰まりを起こすため、溶融亜鉛めっき鋼板表面に所定の粗さを安定的に付与することは困難である。   As a technique to solve such problems, Patent Document 1 and Patent Document 2 describe a technique for controlling the surface roughness of a hot-dip galvanized steel sheet to suppress die squeezing during press forming and deep drawability. A technique has been proposed. However, a detailed examination of such a hot dip galvanized steel sheet revealed that when the sliding distance from the mold is short, there is an effect of suppressing adhesion with the mold, but the sliding distance is long. Indeed, this effect becomes smaller, and an improvement effect cannot be obtained depending on the sliding conditions. In addition, in the above proposal, as a method of imparting such roughness, a method of controlling the roll conditions and rolling conditions of skin pass rolling is mentioned, but actually, because zinc causes clogging in the roll, It is difficult to stably give a predetermined roughness to the surface of a hot dip galvanized steel sheet.

また、特許文献3には、めっき表面にZnOを主体とする酸化膜を形成した亜鉛めっき鋼板が提案されている。しかしながら、この技術を溶融亜鉛めっき鋼板に適用することは困難である。通常、溶融亜鉛めっき鋼板の製造の際には、亜鉛浴に浸漬した際に、過剰なFe-Zn合金化反応を抑制し、めっき密着性を確保するために、亜鉛浴中には微量なAlが添加されている。この微量に含まれるAlのために、溶融亜鉛めっき鋼板表面にはAl系酸化物が緻密に生成しているため、表面が不活性でありZnOを主体とする酸化膜を形成することができない。仮に、このような酸化膜を緻密に生成したAl系酸化物層の上層に付与したとしても、付与した酸化膜と下地との密着性が悪く十分な効果が得られないだけでなく、加工時にプレス金型に付着し、押しキズを作るなどプレス品への悪影響をもたらす問題がある。   Patent Document 3 proposes a galvanized steel sheet in which an oxide film mainly composed of ZnO is formed on the plating surface. However, it is difficult to apply this technique to hot-dip galvanized steel sheets. Normally, when manufacturing hot dip galvanized steel sheets, a small amount of Al is contained in the zinc bath to suppress excessive Fe-Zn alloying reaction and ensure plating adhesion when immersed in a zinc bath. Is added. Due to the Al contained in a small amount, an Al-based oxide is densely formed on the surface of the hot-dip galvanized steel sheet, and therefore the surface is inactive and an oxide film mainly composed of ZnO cannot be formed. Even if such an oxide film is applied to the upper layer of the densely generated Al-based oxide layer, not only does the adhesion between the applied oxide film and the base be poor, but a sufficient effect cannot be obtained, and at the time of processing There is a problem that adversely affects the press product, such as sticking to the press mold and making a scratch on the press.

この他にも、特許文献4にはMo酸化物皮膜を、特許文献5にはCo系酸化物皮膜を、特許文献6にはNi酸化物皮膜を、特許文献7にはCa系酸化物皮膜を、表面に形成した亜鉛めっき鋼板が提案されているが、前述したZnO主体の酸化膜と同じ理由で、十分な効果を得ることができない。   In addition, Patent Document 4 includes Mo oxide film, Patent Document 5 includes Co-based oxide film, Patent Document 6 includes Ni oxide film, and Patent Document 7 includes Ca-based oxide film. Although a galvanized steel sheet formed on the surface has been proposed, a sufficient effect cannot be obtained for the same reason as the above-described ZnO-based oxide film.

特許文献8にFe系酸化物とZn系酸化物、Al系酸化物からなる酸化皮膜を備えた亜鉛系めっき鋼板に関する技術が記載されている。前記と同様、溶融亜鉛めっき鋼板の場合、表面が不活性なため、初期に形成されるFe酸化物が不均一となり、効果を得るための酸化物量が多く、酸化物の剥離などの課題が生じる。   Patent Document 8 describes a technique relating to a zinc-based plated steel sheet provided with an oxide film composed of an Fe-based oxide, a Zn-based oxide, and an Al-based oxide. Similar to the above, in the case of hot-dip galvanized steel sheet, the surface is inactive, so the Fe oxide formed initially becomes non-uniform, the amount of oxide to obtain the effect is large, and problems such as oxide peeling occur. .

以下に先行技術文献情報について記載する。なお、非特許文献1については、説明の都合上、[発明を実施するための最良の形態]の項で説明する。
特開2002-4019号公報 特開2002-4020号公報 特開平2-190483号公報 特開平3-191091号公報 特開平3-191092号公報 特開平3-191093号公報 特開平3-191094号公報 特開2000-160358号公報 名越正泰、他2名、「極低加速走査電子顕微鏡でみた実材料表面」、表面技術、2003年、54巻、第1号、p.31-34
The prior art document information is described below. Non-patent document 1 will be described in the section of [Best Mode for Carrying Out the Invention] for convenience of explanation.
Japanese Patent Laid-Open No. 2002-4019 Japanese Patent Laid-Open No. 2002-4020 Japanese Patent Laid-Open No. 2-190483 Japanese Patent Laid-Open No. 3-191091 Japanese Patent Laid-Open No. 3-191092 Japanese Patent Laid-Open No. 3-191093 Japanese Patent Laid-Open No. 3-191094 JP 2000-160358 A Masayasu Nagoshi and two others, "Surface of real material as seen by ultra-low acceleration scanning electron microscope", Surface Technology, 2003, 54, No. 1, p.31-34

本発明は、上記問題点を解決するためになされたもので、プレス成形時の摺動抵抗が小さく、プレス成形性、接着接合性及び化成処理性に優れた溶融亜鉛めっき鋼板とその製造方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems. A hot-dip galvanized steel sheet having a small sliding resistance during press molding and excellent in press formability, adhesive bondability, and chemical conversion treatment, and a method for producing the same are provided. The purpose is to provide.

本発明者らは、上記の課題を解決すべく、種々の検討を加えた結果、溶融亜鉛めっき鋼板表面に特定のAl系酸化物とZn系酸化物を含む酸化物層を形成することにより、広範な摺動条件で良好なプレス性が得られることを知見した。これは次のような理由による。   As a result of adding various studies to solve the above-mentioned problems, the inventors have formed an oxide layer containing a specific Al-based oxide and a Zn-based oxide on the hot-dip galvanized steel sheet surface. It was found that good pressability was obtained over a wide range of sliding conditions. This is due to the following reason.

前述したように、溶融亜鉛めっき鋼板表面にはAl系酸化物層が形成されていることから、プレス成形時の金型との凝着をある程度抑制することができる。このため、さらにプレス時の摺動特性を改善するためには、より厚いAl系酸化物層を形成することは有効であると考えられるが、Al系酸化物層を厚く成長させるためには、高温で長時間酸化させる必要があり、実用上困難であることに加え、この際に、徐々にFe-Zn合金化反応が進行し、めっき密着性を劣化させるという欠点がある。逆に、Zn系酸化物層を形成させるためには、表面のAl系酸化物層を完全に除去する必要があるため、この処理に長時間を要するという欠点がある。   As described above, since the Al-based oxide layer is formed on the surface of the hot dip galvanized steel sheet, adhesion to the mold during press molding can be suppressed to some extent. Therefore, in order to further improve the sliding characteristics during pressing, it is considered effective to form a thicker Al-based oxide layer, but in order to grow the Al-based oxide layer thicker, In addition to the fact that it is necessary to oxidize at a high temperature for a long time, which is difficult in practice, there is a disadvantage that the Fe-Zn alloying reaction gradually proceeds and the plating adhesion is deteriorated. On the contrary, in order to form the Zn-based oxide layer, it is necessary to completely remove the Al-based oxide layer on the surface.

一方、Al系酸化物層を一部破壊し、新生面を露出させた後に、表面を酸化させる処理を行うと、この新生面上ではZn系酸化物が形成され、またこの新生面上へのZn系酸化物層は容易に付与できる。このようにして形成されためっき表面の酸化物層はZn系酸化物とAl系酸化物とが共存し、これによりプレス金型との凝着抑制が強化されるため、広範な摺動条件で良好なプレス成形性を得ることができる。   On the other hand, if the surface is oxidized after partially destroying the Al-based oxide layer and exposing the new surface, Zn-based oxide is formed on the new surface, and Zn-based oxidation on the new surface is also performed. A physical layer can be easily provided. The oxide layer on the plating surface formed in this way coexists with Zn-based oxide and Al-based oxide, which enhances the suppression of adhesion with the press die, and therefore, under a wide range of sliding conditions. Good press formability can be obtained.

そして、前記酸化物層に対して、平均厚さ及び酸化物層中に含まれるZn主体の酸化物の面積率を規定することが摺動特性向上の点で重要であることを見出した。   The inventors have found that it is important in terms of improving the sliding characteristics that the average thickness and the area ratio of the Zn-based oxide contained in the oxide layer are defined with respect to the oxide layer.

また、溶融亜鉛めっき鋼板の摺動性は、合金化溶融亜鉛めっき鋼板と異なり、めっきが軟質であるため摺動時の面圧依存性が大きい。面圧が高い場合、摺動性は良好であるが、面圧を低くすると、摺動性が劣る傾向が認められ、面圧が低い条件では、めっき表面の変形が少ない為、めっき表面の凸部を主体に金型と接触する。そこで、溶融亜鉛めっき鋼板の低面圧条件での摺動特性をさらに向上させるためには、凸部にも上述した酸化物を形成させる必要があることを見出した。   Also, the slidability of the hot dip galvanized steel sheet is different from the alloyed hot dip galvanized steel sheet, and since the plating is soft, the surface pressure dependency during sliding is large. When the surface pressure is high, the slidability is good.However, when the surface pressure is low, the tendency of the slidability to be inferior is recognized. The main part is in contact with the mold. Therefore, it has been found that in order to further improve the sliding characteristics of the hot-dip galvanized steel sheet under low surface pressure conditions, it is necessary to form the above-described oxide also on the convex portion.

さらに、前記Zn主体の酸化物に、Feを含有させることで、より大きな摺動抵抗低減効果が得られる。その理由は明らかではないが、Feを含む酸化物とすることで、Zn主体の酸化物の密着性が向上し、摺動時でも摺動抵抗低減効果が持続し易いと考えられる。さらに、Zn系酸化物にFeを含有させることは、酸化物の形成量やZn系酸化物の形状(大きさ)の制御に対しても有効であることが明らかとなった。   Furthermore, a larger sliding resistance reduction effect can be obtained by adding Fe to the Zn-based oxide. Although the reason for this is not clear, it is considered that by using an oxide containing Fe, the adhesion of the oxide mainly composed of Zn is improved, and the sliding resistance reduction effect is easily maintained even during sliding. Furthermore, it has been clarified that inclusion of Fe in a Zn-based oxide is also effective for controlling the amount of oxide formed and the shape (size) of the Zn-based oxide.

さらに発明者らは、めっき表面に形成させるZn系酸化物に微細な凹凸を付与することにより、摺動性をさらに向上することを見出した。なお、本発明において、微細凹凸とは、凸部と凸部より囲まれる不連続な凹部で形成され網目状構造からなるものであり、好ましくは、粗さ曲線の平均粗さRa(以下、Raと称す)で100 nm以下、局部凹凸の平均間隔S(以下、Sと称す)で1000 nm以下の表面粗さとなっているものである。ここで、本発明の微細凹凸は、前記特許文献1および前記特許文献2に記載されている表面粗度(Ra: 1 μm前後)とは一桁以上小さいサイズである。従って、本発明におけるRaなどの粗さパラメータは、長さがミリメートルオーダー以上の粗さ曲線について測定されるミクロン(μm)オーダーかそれ以上の凹凸を定義する一般的な粗さパラメータと異なり、数ミクロン長さの粗さ曲線から算出されるものである。また、前記先行文献は、溶融亜鉛めっき鋼板表面の粗さを規定したものであるのに対し、本発明は、溶融亜鉛めっき鋼板表面に付与した酸化物層の粗さを規定するものである。   Furthermore, the inventors have found that the slidability is further improved by imparting fine irregularities to the Zn-based oxide formed on the plating surface. In the present invention, the fine unevenness is formed by a convex structure and a discontinuous recess surrounded by the protrusion and has a network structure. Preferably, the average roughness Ra of the roughness curve (hereinafter referred to as Ra The surface roughness is 100 nm or less, and the average spacing S of local irregularities (hereinafter referred to as S) is 1000 nm or less. Here, the fine unevenness of the present invention is a size smaller by one digit or more than the surface roughness (Ra: around 1 μm) described in Patent Document 1 and Patent Document 2. Therefore, the roughness parameters such as Ra in the present invention are different from the general roughness parameters that define irregularities of the order of microns (μm) or higher, which are measured for a roughness curve having a length of the millimeter order or more. It is calculated from the roughness curve of micron length. The prior art document defines the roughness of the hot dip galvanized steel sheet surface, whereas the present invention defines the roughness of the oxide layer applied to the hot dip galvanized steel sheet surface.

本発明は、以上の知見に基づき、低面圧での摺動性を向上させ、良好なプレス成形性を実現しつつ、さらには化成処理性、接着接合性をも向上させこれらを両立させる最適表面状態を実現するものであり、その要旨は以下のとおりである。   Based on the above knowledge, the present invention improves the slidability at a low surface pressure, realizes good press formability, and further improves the chemical conversion property and the adhesive bondability, and achieves both of them optimally. The surface state is realized, and the gist thereof is as follows.

[1]めっき層が主としてη相からなる溶融亜鉛めっき鋼板において、めっき表面に、平均厚さが10nm以上の、Zn系酸化物及びAl系酸化物を含む酸化物層が存在し、かつ、前記酸化物層に含まれるZn/Al比(酸化物層中の原子濃度での比率)が4以上のZn主体の酸化物(以下、上記Zn/Al比が4以上のZn主体の酸化物を単にZn主体の酸化物と記載する)は、めっき表面に占める割合が面積率で70%以上であることを特徴とする溶融亜鉛めっき鋼板。   [1] In a hot-dip galvanized steel sheet in which the plating layer mainly consists of η phase, an oxide layer containing a Zn-based oxide and an Al-based oxide having an average thickness of 10 nm or more exists on the plating surface, and A Zn-based oxide with a Zn / Al ratio (atomic concentration in the oxide layer) contained in the oxide layer of 4 or more (hereinafter simply referred to as a Zn-based oxide with a Zn / Al ratio of 4 or more). A hot-dip galvanized steel sheet characterized by a ratio of 70% or more in terms of area ratio to the plating surface.

[2]上記[1]において、前記Zn主体の酸化物は、凹凸を有しためっき表面の凸部に存在することを特徴とする溶融亜鉛めっき鋼板。   [2] The hot-dip galvanized steel sheet according to [1], wherein the Zn-based oxide is present on a convex portion of a plated surface having irregularities.

[3]上記[1]または[2]において、前記Zn主体の酸化物は、Feを、Fe/(Zn+Fe)で定義されるFe原子濃度として、1〜50at%を含むことを特徴とする溶融亜鉛めっき鋼板。   [3] In the above [1] or [2], the Zn-based oxide contains 1 to 50 at% of Fe as a Fe atom concentration defined by Fe / (Zn + Fe). Galvanized steel sheet.

[4]上記[1]ないし[3]において、前記Zn主体の酸化物は、前記めっき表面の凹凸の凸部よりも小さな凸部と、該凸部より囲まれる不連続な前記めっき表面の凹凸の凹部よりも小さな凹部で形成され網目状構造からなる微細凹凸を有することを特徴とする溶融亜鉛めっき鋼板。   [4] In the above [1] to [3], the Zn-based oxide includes a convex part smaller than the convex part of the unevenness of the plating surface, and the unevenness of the discontinuous plating surface surrounded by the convex part A hot-dip galvanized steel sheet having fine irregularities formed of a mesh structure and having smaller recesses than the recesses.

[5]上記[1]ないし[4]に記載の溶融亜鉛めっき鋼板を製造するに際し、鋼板に溶融亜鉛めっきを施し、さらに調質圧延の前もしくは調質圧延を施した後に活性化処理を行い、次いで、pH緩衝剤を有する酸性溶液に接触させ、1〜30秒保持した後に水洗する酸化処理を行うことを特徴とする溶融亜鉛めっき鋼板の製造方法。   [5] In producing the hot dip galvanized steel sheet according to the above [1] to [4], the steel sheet is hot dip galvanized and further subjected to an activation treatment before or after temper rolling. Then, a method for producing a hot-dip galvanized steel sheet, which is brought into contact with an acidic solution having a pH buffering agent and is subjected to an oxidation treatment in which it is kept for 1 to 30 seconds and then washed with water.

[6]上記[5]において、前記活性化処理により、活性化処理後の酸化物層に含まれるAl濃度が20at%未満であることを特徴とする溶融亜鉛めっき鋼板の製造方法。   [6] The method for producing a hot-dip galvanized steel sheet according to [5] above, wherein the Al concentration contained in the oxide layer after the activation treatment is less than 20 at% by the activation treatment.

[7]上記[5]または[6]において、活性化処理は、pH11以上、50℃以上のアルカリ性溶液に1秒以上接触させて行うことを特徴とする溶融亜鉛めっき鋼板の製造方法。   [7] The method for producing a hot dip galvanized steel sheet according to [5] or [6] above, wherein the activation treatment is performed by contact with an alkaline solution having a pH of 11 or more and 50 ° C. or more for 1 second or more.

[8]上記[5]ないし[7]において、前記酸性水溶液にさらにFeイオンを1〜200g/l添加することを特徴とする溶融亜鉛めっき鋼板の製造方法。   [8] A method for producing a hot-dip galvanized steel sheet according to the above [5] to [7], further comprising adding 1 to 200 g / l of Fe ions to the acidic aqueous solution.

なお、本発明において、Zn系酸化物とAl系酸化物とは、オージェ電子分光法(AES)で評価した表層でのZn/Al比(at比)により区別するものとし、Zn/Al比が1.0を越える部分をZn系酸化物、Zn/Al比が1.0以下の部分をAl系酸化物とする。また、Zn系酸化物とは、Zn系の酸化物だけでなく、Zn系の水酸化物を含んでいても良いし、すべてがZn系の水酸化物であってもよい。また、Al系酸化物についても前記Zn系酸化物同様、Al系の酸化物だけでなく、Al系の水酸化物を含んでいても良いし、すべてがZn系の水酸化物であってもよい。   In the present invention, the Zn-based oxide and the Al-based oxide are distinguished by the Zn / Al ratio (at ratio) in the surface layer evaluated by Auger electron spectroscopy (AES), and the Zn / Al ratio is A portion exceeding 1.0 is a Zn-based oxide, and a portion having a Zn / Al ratio of 1.0 or less is an Al-based oxide. In addition, the Zn-based oxide may include not only a Zn-based oxide but also a Zn-based hydroxide, or all may be a Zn-based hydroxide. Also, the Al-based oxides may contain not only Al-based oxides but also Al-based hydroxides as well as the Zn-based oxides, and all of them may be Zn-based hydroxides. Good.

本発明によれば、プレス成形時の摺動抵抗が小さく、安定して優れたプレス成形性を示す溶融亜鉛めっき鋼板を安定して製造できる。   According to the present invention, it is possible to stably produce a hot-dip galvanized steel sheet having a small sliding resistance during press forming and stably exhibiting excellent press formability.

溶融亜鉛めっき鋼板は、通常、微量のAlを含んだ亜鉛浴に浸漬することにより製造されるため、めっき皮膜は主としてη相からなり、また表層には、亜鉛浴に含まれているAlによるAl系酸化物層が形成された皮膜である。このη相は、合金化溶融亜鉛めっき皮膜の合金相であるζ相、δ相と比較すると軟らかく、かつ融点が低いことから、凝着が発生しやすく、プレス成形時の摺動性に劣る。ただし、溶融亜鉛めっき鋼板の場合、表面にAl系酸化物層が形成されていることにより、金型の凝着を抑制する効果がわずかに見られるため、特に金型との摺動距離が短い場合には、摺動特性の劣化が見られないことがある。しかしながら、この表面に形成されているAl系酸化物層は薄いため、摺動距離が長くなると凝着が発生しやすくなり、広範な摺動条件で満足するプレス成形性を得ることができない。さらに、溶融亜鉛めっき鋼板は軟質であり、他のめっきと比較して金型と凝着しやすく面圧が低い場合に、摺動特性が低くなる。   Since the hot dip galvanized steel sheet is usually manufactured by dipping in a zinc bath containing a small amount of Al, the plating film is mainly composed of η phase, and the surface layer is made of Al by Al contained in the zinc bath. It is a film on which a system oxide layer is formed. The η phase is softer than the ζ phase and δ phase, which are alloy phases of the alloyed hot-dip galvanized film, and has a low melting point. Therefore, adhesion is likely to occur and the slidability during press forming is poor. However, in the case of hot-dip galvanized steel sheet, the effect of suppressing adhesion of the mold is slightly seen due to the formation of the Al-based oxide layer on the surface, so the sliding distance with the mold is particularly short. In some cases, deterioration of sliding characteristics may not be observed. However, since the Al-based oxide layer formed on the surface is thin, adhesion tends to occur when the sliding distance becomes long, and satisfactory press formability cannot be obtained over a wide range of sliding conditions. Furthermore, the hot dip galvanized steel sheet is soft and has a low sliding characteristic when it is easy to adhere to the mold and has a low surface pressure compared to other plating.

このような溶融亜鉛めっき鋼板と金型との凝着を抑制するためには、表面に厚い酸化物層を均一に被覆形成することが有効である。すなわち、めっき鋼板表面に存在するAl系酸化物層の一部を破壊し、酸化処理を行うことによりZn系酸化物層を形成し、Zn系酸化物とAl系酸化物が共存した酸化物層を形成することが溶融亜鉛めっき鋼板の摺動特性の向上に対して重要である。かつ、前記酸化物層の平均厚さは10nm以上であり、前記酸化物層に含まれるZn主体の酸化物はめっき表面に占める割合(被覆率)が面積率で70%以上とすることにより、摺動抵抗の低下を実現できる。
まず、平均厚さについて説明する。
In order to suppress such adhesion between the hot dip galvanized steel sheet and the mold, it is effective to uniformly coat a thick oxide layer on the surface. That is, a part of the Al-based oxide layer present on the surface of the plated steel sheet is destroyed and oxidized to form a Zn-based oxide layer, and the oxide layer in which the Zn-based oxide and the Al-based oxide coexist. It is important to improve the sliding characteristics of the hot dip galvanized steel sheet. And, the average thickness of the oxide layer is 10 nm or more, the ratio of the Zn-based oxide contained in the oxide layer to the plating surface (coverage) is 70% or more by area ratio, A reduction in sliding resistance can be realized.
First, the average thickness will be described.

本発明において、めっき表面に存在する酸化物層については、良好な摺動性を得る点からその平均厚さを10nm以上、より好ましくは20nm以上とする。上記の厚さであれば、金型と被加工物の接触面積が大きくなるプレス成形加工において、めっき表面の酸化物が一部磨耗しながらも残存し、摺動性の低下を招くことがないためである。一方、摺動性の観点から酸化物層の平均厚さに上限はないが、厚い酸化物層が形成されると、表面の反応性が極端に低下し、化成処理皮膜を形成するのが困難になるため、平均厚さは200nm以下とするのが望ましい。   In the present invention, the oxide layer present on the plating surface has an average thickness of 10 nm or more, more preferably 20 nm or more from the viewpoint of obtaining good slidability. With the above thickness, in the press molding process in which the contact area between the mold and the workpiece increases, the oxide on the plating surface remains even though it is partially worn, and does not cause a decrease in slidability. Because. On the other hand, there is no upper limit to the average thickness of the oxide layer from the viewpoint of slidability, but when a thick oxide layer is formed, the surface reactivity is extremely lowered and it is difficult to form a chemical conversion treatment film. Therefore, the average thickness is desirably 200 nm or less.

なお、めっき表面における酸化物層の平均厚さは、Arイオンスパッタリングと組み合わせたオージェ電子分光(AES)により求めることができる。この方法においては、所定厚さまでスパッタした後、測定対象の各元素のスペクトル強度から相対感度因子補正により、その深さでの組成を求めることができる。このうち、酸化物に起因するOの含有率は、ある深さで最大値となった後(これが最表層の場合もある)、減少し、一定となる。Oの含有率が最大値より深い位置で、最大値と一定値との和の1/2となる深さを、酸化物層の厚さとする。   The average thickness of the oxide layer on the plating surface can be obtained by Auger electron spectroscopy (AES) combined with Ar ion sputtering. In this method, after sputtering to a predetermined thickness, the composition at that depth can be obtained by correcting the relative sensitivity factor from the spectral intensity of each element to be measured. Among these, the O content caused by the oxide decreases and becomes constant after reaching a maximum value at a certain depth (this may be the outermost layer). At a position where the O content is deeper than the maximum value, a depth that is ½ of the sum of the maximum value and the constant value is defined as the thickness of the oxide layer.

また、めっき表面における酸化物層の厚さを制御するにあたり、厚く生成させようとすると、Zn系酸化物が存在する部分では厚くなり、逆にAl系酸化物が残存した部分では厚くならないため、めっき鋼板表面全体を見ると、酸化物層の厚さが厚い部分と薄い部分とが共存する厚さの不均一な酸化物層が形成される場合がある。しかし、何らかの理由で薄い部分の一部で酸化物層が形成されていない部分が存在していたとしても、前述したメカニズムと同じ理由で摺動性の向上を得ることができる。   In addition, when controlling the thickness of the oxide layer on the plating surface, if you try to make it thicker, it will be thicker in the part where the Zn-based oxide exists, and conversely it will not be thicker in the part where the Al-based oxide remains, When the entire surface of the plated steel sheet is viewed, there may be a case where an oxide layer having a non-uniform thickness in which a thick portion and a thin portion of the oxide layer coexist is formed. However, even if there is a part where the oxide layer is not formed in a part of the thin part for some reason, the slidability can be improved for the same reason as described above.

次いで、Zn主体の酸化物の被覆率について説明する。   Next, the coverage of the Zn-based oxide will be described.

本発明の特徴であるZn主体の酸化物をめっき表面に十分被覆させるため、化成処理の際には化成処理液においてめっき層のZnとリン酸の反応性できるだけ阻害しないようにするため、そして、接着接合性の点では接着剤との接合強度を高めるために、Al系酸化物量の低減は重要であり、Al系酸化物量を低減することにより、Zn主体の酸化物がめっき表面に占める割合(被覆率)として面積率で70%以上となるようにする必要がある。70%未満では、接着剤とめっき層表面での剥離が生じやすい。これは、Zn主体の酸化物に覆われていない部分で、局部的に接着剤が剥離するため、接着剤/めっき層界面での密着力が低くなるためである。なお、Zn主体の酸化物にはAlを含まない場合も含まれる。   In order to sufficiently coat the plating surface with the oxide mainly composed of Zn, which is a feature of the present invention, in order to prevent as much as possible the reactivity of Zn and phosphoric acid in the plating layer in the chemical conversion treatment solution during the chemical conversion treatment, and In terms of adhesive bondability, it is important to reduce the amount of Al-based oxides in order to increase the bonding strength with the adhesive. By reducing the amount of Al-based oxides, the ratio of Zn-based oxides to the plating surface ( It is necessary that the area ratio is 70% or more as the coverage ratio. If it is less than 70%, peeling between the adhesive and the surface of the plating layer tends to occur. This is because the adhesive peels locally at the portion not covered with the Zn-based oxide, and the adhesion at the adhesive / plating layer interface is reduced. The Zn-based oxide includes a case where Al is not included.

Al系酸化物量を低減する方法としては、後述するように、活性化処理方法が有効であり、例えば、ロールでの圧延、ショットブラスト、ブラシ研削のような機械的な除去方法、アルカリ液による溶解などの方法が可能である。   As described later, an activation treatment method is effective as a method for reducing the amount of Al-based oxide. For example, a mechanical removal method such as rolling with a roll, shot blasting, or brush grinding, dissolution with an alkaline solution. Etc. are possible.

なお、Zn/Al比は、オージェ電子分光(AES)で評価できる。前述した酸化物層の厚さの評価方法と同様、めっき皮膜表面の平坦部分の組成の深さ方向分布を測定し、そこから見積もられる酸化物層の厚さに相当する深さまでのZnの平均濃度(at%)とAlの平均濃度(at%)より、Zn/Al比を求めた。ただし、実際の表面に形成される酸化物の組成は必ずしも均一であるとは限らず、nmレベルの微小領域で見れば、Al濃度の高い部分もしくは低い部分が存在することがある。従ってZn/Al比の測定は、平均組成を評価することとして、2μm×2μm程度以上の比較的広い領域に対して行うのが重要である。   The Zn / Al ratio can be evaluated by Auger electron spectroscopy (AES). Similar to the method for evaluating the thickness of the oxide layer described above, the distribution in the depth direction of the composition of the flat portion of the plating film surface is measured, and the average of Zn up to the depth corresponding to the thickness of the oxide layer estimated therefrom The Zn / Al ratio was determined from the concentration (at%) and the average concentration of Al (at%). However, the composition of the oxide formed on the actual surface is not necessarily uniform, and there may be a portion with a high or low Al concentration in a minute region of the nm level. Therefore, it is important to measure the Zn / Al ratio in a relatively wide area of about 2 μm × 2 μm or more in order to evaluate the average composition.

スパッタリングしながらオージェ測定する方法は、TEMなどで断面を得て測定する値よりもAl濃度が高くなる可能性があるが、ここではオージェでの測定値として規定する。
Zn主体の酸化物の被覆率は、X線マイクロアナライザー(以下、EPMAと称す)による元素マッピング、もしくは走査電子顕微鏡(以下、SEMと称す)により評価できる。EPMAでは、着目する酸化物から得られるO、Al、Znの強度あるいはそれらの比をあらかじめ得ておき、それを基に測定した元素マップのデータ処理を行うことで、被覆率を見積もることができる。また、加速電圧0.5kV前後の電子線を用いたSEM像観察でも、より簡便に面積率を見積もることができる。なお、前記条件でのSEM像観察では、表面で酸化物の形成されている部分とされていない部分を明瞭に区別することができるため、得られた二次電子像を画像処理ソフトウエアによりニ値化することで面積率を評価できる。ただし、観察されるコントラストが、着目する酸化物に合致しているかどうかを、あらかじめAESやEDS等で確認しておくことが必要である。
溶融亜鉛めっきでは、調質圧延により調圧ロールの凹凸がめっき鋼板に転写され、めっき表面には凹凸が形成される。凹部ではめっき鋼板表面のAl系酸化物が機械的に破壊され、新生面が露出しており、凸部に比較し活性である。一方、凸部は調圧ロールによる変形をほとんど受けない部分であり、一般にめっきままの平坦な状態が維持されており、めっき鋼板表面のAl系酸化物の破壊程度が少ない。従って、調質圧延後の溶融亜鉛めっき鋼板の表面は不均一に活性、不活性な部分が存在する。この様な表面に対し酸化処理を施すと、凹部にZn系酸化物を形成することは可能であるが、凹部のみに酸化物が形成され、凹部以外の凸となっている平坦部分(凸部)へ酸化物を付与することが困難である。もちろん摺動条件によりAl系酸化物層が削り取られ、凝着が生じやすい状況が発生しても、共存するZn系酸化物層が凝着の抑制効果を発揮することができるため、プレス成形性には問題なく、プレス成形性を向上させることができるが、よりプレス成形性を向上させるためには、凸部は摺動時に工具と直接接触し、めっき鋼板の摺動性に大きく影響するので、凸部にもZn主体の酸化物が存在することが好ましい。
また、溶融亜鉛めっき鋼板は、Znめっき層が他のめっきと比較して軟質、低融点であるため、面圧により摺動特性が変化しやすく、低面圧での条件において摺動性が低い。これを解決するためにも、Zn主体の酸化物をめっき表面の凸部にも形成させることが好ましい。
In the method of performing Auger measurement while sputtering, the Al concentration may be higher than the value obtained by measuring the cross section with TEM or the like, but here, it is defined as the measured value by Auger.
The coverage of the Zn-based oxide can be evaluated by elemental mapping with an X-ray microanalyzer (hereinafter referred to as EPMA) or a scanning electron microscope (hereinafter referred to as SEM). With EPMA, the intensity of O, Al, Zn obtained from the oxide of interest, or their ratio, is obtained in advance, and the coverage can be estimated by performing data processing of the element map measured based on it. . Also, the area ratio can be estimated more simply by SEM image observation using an electron beam with an acceleration voltage of about 0.5 kV. In SEM image observation under the above conditions, the portion where the oxide is formed on the surface can be clearly distinguished from the portion where the oxide is not formed. The area ratio can be evaluated by converting into a value. However, it is necessary to confirm beforehand by AES, EDS, or the like whether the observed contrast matches the oxide of interest.
In hot dip galvanizing, the unevenness of the pressure adjusting roll is transferred to the plated steel sheet by temper rolling, and the unevenness is formed on the plating surface. In the concave portion, the Al-based oxide on the surface of the plated steel plate is mechanically destroyed, and the new surface is exposed, which is more active than the convex portion. On the other hand, a convex part is a part which hardly receives the deformation | transformation by a pressure-control roll, Generally the flat state as plating is maintained, and there is little destruction degree of the Al type oxide on the plated steel plate surface. Therefore, the surface of the hot dip galvanized steel sheet after temper rolling has unevenly active and inactive portions. When such a surface is subjected to an oxidation treatment, it is possible to form a Zn-based oxide in the concave portion, but the oxide is formed only in the concave portion, and a flat portion (convex portion) that is convex other than the concave portion. It is difficult to give an oxide to). Of course, even if the Al-based oxide layer is scraped off due to sliding conditions and the situation where adhesion is likely to occur, the coexisting Zn-based oxide layer can exert the effect of suppressing adhesion, so press formability The press formability can be improved without any problem, but in order to further improve the press formability, the convex part directly contacts the tool during sliding, which greatly affects the slidability of the plated steel sheet. In addition, it is preferable that a Zn-based oxide is also present in the convex portion.
In addition, hot-dip galvanized steel sheets have a Zn plating layer that is softer and has a lower melting point than other platings, so the sliding characteristics are likely to change due to surface pressure, and low slidability under low surface pressure conditions. . In order to solve this problem, it is preferable to form a Zn-based oxide also on the convex portion of the plating surface.

さらに、前記Zn主体の酸化物に、Feを含有させることで、より大きな摺動抵抗低減効果が得られる。Feの含有量としては、FeとZnの原子濃度からFe/(Zn+Fe)の式で算出されるFe原子比率を指標とした場合、1〜50%が好ましい。より好ましくは、5〜25%である。Fe原子比率が50%を超えると酸化物が剥離しやすいうえ、本発明で得られるような微細凹凸を有する結晶形態を得ることが困難となり十分な特性を得ることができない、1%未満では微細凹凸の形状制御効果が得られなくなる。なお、Zn主体の酸化物中のFeとZnの原子濃度の測定方法としては、FIB-μサンプリング法により作製した表面酸化物を含むめっき表面の断面試料に対し、透過電子顕微鏡(TEM)とエネルギー分散型X線分析器(EDS)を用いて測定したスペクトルから求める方法が最も適当である。他の手法(例えばAESやEPMA)では、分析領域の空間分解能を十分に小さくすることができず、表面の酸化物のみの分析を行うことが困難である。
また、前記Zn主体の酸化物に微細な凹凸を付与することにより、さらなる摺動抵抗の低下を実現できる。ここで微細凹凸とは、凸部と凸部より囲まれる不連続な凹部で形成され網目状構造からなるものであり、微細な凹部が分散していればよく、凹部の周囲の凸部は同じ高さである必要はなく、ある程度の高さ変動があってもかまわない。そして、好ましくは、微細凹凸は、粗さ曲線のRaで100 nm以下、Sで1000 nm以下の表面粗さとなっていることである。微細凹凸の構成例としては、Zn主体の酸化物の表面が微細凹凸を有しているものであって、あるいは、めっき表面に直接あるいは層状の酸化物層および/または水酸化物層の上に、粒状、板状、リン片状などの形状を有するZn系酸化物が分布することで微細凹凸が形成されているものであってもどちらでも良い。
Furthermore, a larger sliding resistance reduction effect can be obtained by adding Fe to the Zn-based oxide. The Fe content is preferably 1 to 50% when the Fe atomic ratio calculated from the Fe / Zn atomic concentration by the formula of Fe / (Zn + Fe) is used as an index. More preferably, it is 5 to 25%. If the Fe atomic ratio exceeds 50%, the oxide easily peels off, and it is difficult to obtain a crystal form having fine irregularities as obtained in the present invention, so that sufficient characteristics cannot be obtained. The uneven shape control effect cannot be obtained. The atomic concentration of Fe and Zn in the Zn-based oxide was measured using a transmission electron microscope (TEM) and energy on a cross-sectional sample of the plating surface containing the surface oxide prepared by the FIB-μ sampling method. The most suitable method is to obtain from a spectrum measured using a dispersive X-ray analyzer (EDS). In other methods (for example, AES and EPMA), the spatial resolution of the analysis region cannot be sufficiently reduced, and it is difficult to analyze only the surface oxide.
Further, by providing fine irregularities on the Zn-based oxide, a further reduction in sliding resistance can be realized. Here, the fine unevenness is formed by a convex structure and a discontinuous concave portion surrounded by the convex portion and has a network structure, and it is sufficient that the fine concave portions are dispersed, and the convex portions around the concave portions are the same. There is no need for the height, and there may be some height fluctuation. Preferably, the fine irregularities have a surface roughness of Ra of the roughness curve of 100 nm or less and S of 1000 nm or less. As an example of the structure of the fine irregularities, the surface of the Zn-based oxide has fine irregularities, or directly on the plating surface or on the layered oxide layer and / or hydroxide layer. Alternatively, fine unevenness may be formed by the distribution of Zn-based oxides having shapes such as granular, plate-like, and flake-like shapes.

微細な凹凸により摺動抵抗が低下する理由は、微細凹凸の凹部が微細なオイルピット群として働き、ここに潤滑油を効果的に保持できることによるものと考えられる。すなわち、前述の酸化物としての摺動抵抗低減効果に加えて、潤滑油を摺動部に効果的に保持できる微細な油だめ効果により更なる摺動抵抗低減効果が発現される。このような微細凹凸の潤滑油保持効果は、マクロ的な視点で比較的平滑な表面を有しておりマクロ的に潤滑油を保持しにくく、圧延などにより潤滑性を狙ってマクロな表面粗さを安定して付与することが困難な、溶融亜鉛めっきの安定した摺動抵抗低減に特に有効である。また、摺動条件としては接触面圧の低い摺動条件下で特に有効である。   The reason why the sliding resistance is reduced by the fine unevenness is considered to be that the concave portions of the fine unevenness work as a group of fine oil pits and can effectively hold the lubricating oil therein. That is, in addition to the above-described sliding resistance reduction effect as an oxide, a further sliding resistance reduction effect is manifested by a fine oil sump effect that can effectively hold the lubricating oil in the sliding portion. The effect of retaining lubricating oil with such fine irregularities has a relatively smooth surface from a macro point of view, making it difficult to retain lubricating oil macroscopically, and macroscopic surface roughness aiming at lubricity by rolling or the like. This is particularly effective for stable sliding resistance reduction of hot dip galvanizing, which is difficult to stably apply. The sliding condition is particularly effective under a sliding condition with a low contact surface pressure.

微細凹凸の大きさは、上記のように、Ra及びSで表すことができる。本発明では、Raは1nm以上100 nm以下、Sは10nm以上1000 nm以下で摺動抵抗低減効果があり好ましことを確認した。RaやSを上記より小さくすると平滑表面に近づき、粘性のある油の油だめとしての効果が低減するため、好ましくない。一方、RaやSを上記より大きくしても、油だめ効果の大幅な改善は見られなく、また酸化物を厚く付ける必要があり製造することが難しくなる。さらに、酸化物が摺動時に工具と接触する際、粗大なZn系酸化物では、油溜めの効果よりも酸化物の破壊抵抗を増大させるという悪影響が生じる。以上から、より好ましくは、Sは500nm以下とする。   The size of the fine irregularities can be represented by Ra and S as described above. In the present invention, it was confirmed that Ra is 1 nm or more and 100 nm or less, and S is 10 nm or more and 1000 nm or less, which has a sliding resistance reducing effect and is preferable. If Ra or S is made smaller than the above, it will approach a smooth surface, and the effect of a viscous oil as a sump will be reduced, which is not preferable. On the other hand, even if Ra or S is made larger than the above, no significant improvement in the sump effect is observed, and it is necessary to thicken the oxide, making it difficult to manufacture. Further, when the oxide comes into contact with the tool during sliding, a coarse Zn-based oxide has an adverse effect of increasing the fracture resistance of the oxide rather than the effect of the oil sump. From the above, more preferably, S is 500 nm or less.

Zn主体の酸化物に微細な凹凸を付与し、RaおよびSを制御する有効な一つの方法は、Zn主体の酸化物にFeを含ませることである。Zn主体の酸化物にFeを含有させることにより、Zn酸化物はその含有量に応じて徐々に微細となり数が増加する。その微細なサイズの酸化物の集合として、微細凹凸を形成する。ZnとFeを含む酸化物が微細な凹凸を有する酸化物となる理由は明らかになっていないが、Zn酸化物の成長がFeあるいはFeの酸化物によって抑制されるためと推定している。ZnとFeの和に対するFeの好適割合(百分率)は明確になっていないが、Feが1at%以上、50at%以下、より好ましいくは、5〜25 at%の範囲で有効である。このようなZnとFeを含む酸化物は、後述のpH緩衝作用を有する酸性溶液に接触させるZn系酸化物の形成方法において、その酸性溶液にFeを添加することで形成することができる。   One effective method for imparting fine irregularities to a Zn-based oxide and controlling Ra and S is to include Fe in the Zn-based oxide. By including Fe in a Zn-based oxide, the Zn oxide gradually becomes finer and the number increases according to its content. Fine irregularities are formed as a collection of fine oxides. The reason why the oxide containing Zn and Fe becomes an oxide having fine irregularities is not clear, but it is estimated that the growth of Zn oxide is suppressed by Fe or the oxide of Fe. Although a suitable ratio (percentage) of Fe to the sum of Zn and Fe is not clear, Fe is effective in the range of 1 at% or more and 50 at% or less, more preferably 5 to 25 at%. Such an oxide containing Zn and Fe can be formed by adding Fe to the acidic solution in a method of forming a Zn-based oxide that is brought into contact with an acidic solution having a pH buffering action described later.

なお、Ra、Sの表面粗さパラメータは、Zn系酸化物の表面の形状を、三次元形状計測機能を有する走査電子顕微鏡や走査プローブ顕微鏡(原子間力顕微鏡など)を用いて数値化し抽出した長さ数μmの粗さ曲線より、日本工業規格の「表面粗さ-用語」B-0660-1998等に記載されている数式に従って計算することができる。また、微細凹凸の形状は高分解能の走査電子顕微鏡を用いて観察することができる。酸化物の厚さは数十nm程度と薄いため、低い加速電圧、例えば1 kV以下、を用いて観察することが有効である。特に、電子のエネルギーとして数eVを中心とする低エネルギーの二次電子を除いて二次電子像の観察を行うと、酸化物の帯電により生じるコントラストを低減することができるため、微細凹凸の形状の良好な観察を行うことができる(非特許文献1参照)。   The surface roughness parameters of Ra and S were extracted by quantifying the surface shape of the Zn-based oxide using a scanning electron microscope or a scanning probe microscope (such as an atomic force microscope) having a three-dimensional shape measurement function. From a roughness curve of several μm in length, it can be calculated according to the mathematical formula described in “Surface Roughness—Terminology” B-0660-1998 etc. of Japanese Industrial Standard. The shape of the fine irregularities can be observed using a high-resolution scanning electron microscope. Since the oxide is as thin as several tens of nanometers, it is effective to observe using a low acceleration voltage, for example, 1 kV or less. In particular, when the secondary electron image is observed except for low energy secondary electrons centered on several eV as the electron energy, the contrast caused by oxide charging can be reduced. Can be observed well (see Non-Patent Document 1).

次に本発明のめっき表面にZn系酸化物を形成する方法について説明する。   Next, a method for forming a Zn-based oxide on the plating surface of the present invention will be described.

Zn系酸化物を形成する方法としては、溶融亜鉛めっき鋼板をpH緩衝作用を有する酸性溶液に接触させ、その後、1〜30秒放置する酸化処理を行った後、水洗・乾燥する方法が有効である。   As a method for forming a Zn-based oxide, it is effective to bring a hot dip galvanized steel sheet into contact with an acidic solution having a pH buffering action, and then perform an oxidation treatment that is allowed to stand for 1 to 30 seconds, followed by washing with water and drying. is there.

また、前述したように、ZnとFeを含む酸化物は、上記方法において、その酸性溶液にFeを添加することで形成することができる。Feの好適な濃度範囲としては、2価もしくは3価のFeイオンとして、1〜200g/lである。さらにより好ましい範囲としては、1〜80g/lである。Feイオンの添加方法については特に規定されないが、例えば1〜80g/lのFeイオン濃度であれば、硫酸第一鉄(7水和物)として5〜400g/lの範囲で添加することが可能である。   As described above, the oxide containing Zn and Fe can be formed by adding Fe to the acidic solution in the above method. A preferable concentration range of Fe is 1 to 200 g / l as divalent or trivalent Fe ions. An even more preferable range is 1 to 80 g / l. The method for adding Fe ions is not particularly specified. For example, if the Fe ion concentration is 1 to 80 g / l, ferrous sulfate (7 hydrate) can be added in the range of 5 to 400 g / l. It is.

このZn系酸化物形成メカニズムについては明確でないが、次のように考えることができる。溶融亜鉛めっき鋼板を酸性溶液に接触させると、鋼板側からは亜鉛の溶解が生じる。この亜鉛の溶解は、同時に水素発生反応を生じるため、亜鉛の溶解が進行すると、溶液中の水素イオン濃度が減少し、その結果溶液のpHが上昇し、溶融亜鉛めっき鋼板表面にZn系酸化物を形成すると考えられる。このように、Zn系酸化物の形成のためには、亜鉛の溶解とともに、鋼板に接触している溶液のpHが上昇することが必要であるため、鋼板を酸性溶液に接触させた後に水洗までの保持時間を調整することは有効である。この際、保持時間が1秒未満であると、鋼板に接触している溶液のpHが上昇する前に液が洗い流されるためにZn系酸化物を形成できず、一方、30秒を超えて放置しても酸化物生成に変化が見られないためである。このように、保持過程で、特殊な微細凹凸構造を有するZn系酸化物が成長する。より好ましい保持時間は、2〜10秒である。   Although the Zn-based oxide formation mechanism is not clear, it can be considered as follows. When the hot dip galvanized steel sheet is brought into contact with an acidic solution, dissolution of zinc occurs from the steel sheet side. This dissolution of zinc causes a hydrogen generation reaction at the same time. As the dissolution of zinc proceeds, the hydrogen ion concentration in the solution decreases, resulting in an increase in the pH of the solution, and a Zn-based oxide on the surface of the hot-dip galvanized steel sheet. It is thought to form. Thus, in order to form Zn-based oxides, it is necessary to increase the pH of the solution in contact with the steel sheet along with the dissolution of zinc. It is effective to adjust the holding time. At this time, if the holding time is less than 1 second, the Zn-based oxide cannot be formed because the solution is washed away before the pH of the solution in contact with the steel plate rises, while it is left for more than 30 seconds. This is because there is no change in oxide formation. Thus, in the holding process, a Zn-based oxide having a special fine relief structure grows. A more preferable holding time is 2 to 10 seconds.

酸化処理に使用する酸性溶液のpHは1〜5の範囲にあることが望ましい。これはpHが5を超えると、亜鉛の溶解速度が遅く、一方1未満では、亜鉛の溶解の促進が過剰となり、Zn系酸化物の形成速度がいずれも遅くなるためである。また、酸性溶液には、pH緩衝効果をもった薬液を添加することが不可欠である。これは、実際の製造時に処理液のpH安定性をもたせるのみでなく、前述のZn溶解に伴うpH上昇によるZn系酸化物形成過程において、局部的なpH上昇を阻止し、適度な反応時間を付与することにより、Zn系酸化物成長時間を確保し、本発明の特徴である微細凹凸形状を有するZn系酸化物形成に作用するためである。また、酸性溶液のアニオン種は特に規定されず、塩素イオン、硝酸イオン、硫酸イオンなどが挙げられる。より好ましくは、硫酸イオンである。   The pH of the acidic solution used for the oxidation treatment is preferably in the range of 1-5. This is because if the pH exceeds 5, the dissolution rate of zinc is slow, whereas if it is less than 1, the dissolution of zinc is excessively accelerated and the formation rate of Zn-based oxides is slow. In addition, it is essential to add a chemical solution having a pH buffering effect to the acidic solution. This not only provides the pH stability of the treatment solution during actual production, but also prevents a local pH increase in the Zn-based oxide formation process due to the pH increase associated with the above-mentioned Zn dissolution, and provides an appropriate reaction time. This is because the Zn-based oxide growth time is secured by the application, and this acts on the formation of a Zn-based oxide having fine unevenness, which is a feature of the present invention. In addition, the anionic species of the acidic solution is not particularly defined, and examples include chlorine ions, nitrate ions, sulfate ions, and the like. More preferably, it is a sulfate ion.

このようなpH緩衝性を有する薬液(酸性溶液)としては、酸性領域でpH緩衝性を有すれば、その薬液種に制限はないが、例えば、酢酸ナトリウム(CH3COONa)などの酢酸塩、フタル酸水素カリウム((KOOC)2C6H4)などのフタル酸塩、クエン酸ナトリウム(Na3C6H5O7)やクエン酸二水素カリウム(KH2C6H5O7)などのクエン酸塩、コハク酸ナトリウム(Na2C4H4O4)などのコハク酸塩、乳酸ナトリウム(NaCH3CHOHCO2)などの乳酸塩、酒石酸ナトリウム(Na2C4H4O6)などの酒石酸塩、ホウ酸塩、リン酸塩のうちの一種以上を用いることができる。 As such a chemical solution (acidic solution) having pH buffering properties, there is no limitation on the type of chemical solution as long as it has pH buffering properties in the acidic region. For example, acetate salts such as sodium acetate (CH 3 COONa), Phthalate such as potassium hydrogen phthalate ((KOOC) 2 C 6 H 4 ), sodium citrate (Na 3 C 6 H 5 O 7 ), potassium dihydrogen citrate (KH 2 C 6 H 5 O 7 ), etc. Citrates, succinates such as sodium succinate (Na 2 C 4 H 4 O 4 ), lactates such as sodium lactate (NaCH 3 CHOHCO 2 ), sodium tartrate (Na 2 C 4 H 4 O 6 ), etc. One or more of tartrate, borate and phosphate can be used.

また、その濃度としては、それぞれ5〜50g/lの範囲であることが望ましい、これは、5g/l未満であると、pH緩衝効果が不十分で、所定の酸化物層を形成できないためであり、50g/lを超えても、効果が飽和するだけでなく、Zn系酸化物の形成に長時間を要するためである。酸性溶液には、めっき鋼板を接触させることにより、めっきよりZnが溶出混入するが、これはZn系酸化物の形成を著しく妨げるものではない。従って、酸性溶液中のZn濃度は特に規定しない。より好ましいpH緩衝剤及びその濃度としては、酢酸ナトリウム3水和物を10〜50g/lの範囲、さらに好ましくは、20〜50g/lの範囲とした液であり、本溶液を用いれば有効に本発明の酸化物を得ることができる。   In addition, the concentration is preferably in the range of 5 to 50 g / l, respectively, because if it is less than 5 g / l, the pH buffering effect is insufficient and a predetermined oxide layer cannot be formed. This is because even if it exceeds 50 g / l, not only is the effect saturated, but it takes a long time to form the Zn-based oxide. When the plated steel sheet is brought into contact with the acidic solution, Zn is eluted and mixed from the plating, but this does not significantly disturb the formation of the Zn-based oxide. Therefore, the Zn concentration in the acidic solution is not particularly specified. A more preferred pH buffering agent and its concentration are those in which sodium acetate trihydrate is in the range of 10-50 g / l, more preferably in the range of 20-50 g / l. The oxide of the present invention can be obtained.

酸性溶液に接触させる方法には特に制限はなく、めっき鋼板を酸性溶液に浸漬する方法、めっき鋼板に酸性溶液をスプレーする方法、塗布ロールを介して酸性溶液をめっき鋼板に塗布する方法等があげられ、最終的に薄い液膜状で鋼板表面に存在することが望ましい。これは、鋼板表面に存在する酸性溶液の量が多いと、亜鉛の溶解が生じても溶液のpHが上昇せず、次々と亜鉛の溶解が生じるのみであり、酸化物層を形成するまでに長時間を有するだけでなく、めっき層の損傷も激しく、本来の防錆鋼板としての役割も失うことが考えられるためである。この観点から、液膜の量は、3g/m2以下に調整することが望ましく、液膜量の調整は、絞りロール、エアワイピング等で行うことができる。 There is no particular limitation on the method of contacting with the acidic solution, such as a method of immersing the plated steel plate in the acidic solution, a method of spraying the acidic solution onto the plated steel plate, a method of applying the acidic solution to the plated steel plate via a coating roll, and the like. It is desirable that it is finally in the form of a thin liquid film and exists on the surface of the steel sheet. This is because when the amount of acidic solution present on the steel sheet surface is large, the pH of the solution does not increase even if zinc dissolution occurs, and only zinc dissolution occurs one after another. This is because it not only has a long time but also severely damages the plating layer, and it is considered that the original role as a rust-proof steel sheet is lost. From this viewpoint, the amount of the liquid film is desirably adjusted to 3 g / m 2 or less, and the liquid film amount can be adjusted by a squeeze roll, air wiping, or the like.

また、このようなZn系酸化物を形成する処理を行う前には、溶融亜鉛めっき鋼板に調質圧延を施す必要がある。これは、通常は材質調整が主目的であるが、本発明では同時に鋼板表面に存在するAl系酸化物層の一部を破壊する効果もあるためである。   Moreover, before performing the process which forms such a Zn type oxide, it is necessary to perform temper rolling to a hot dip galvanized steel plate. This is because the main purpose is usually to adjust the material, but the present invention also has an effect of destroying a part of the Al-based oxide layer existing on the surface of the steel sheet at the same time.

発明者らが、Zn系酸化物形成処理前、およびZn系酸化物形成処理後のめっき鋼板の各々の表面を走査型電子顕微鏡で観察したところ、Zn系酸化物皮膜は、主に調質圧延の際に圧延ロールがめっき表面に接触することで圧延ロールのダル目の凸部で押圧されてAl系酸化物層が破壊された部分に生成していることがわかった。従って、Zn系酸化物の被覆率および分布は、調質圧延の圧延ロールの粗さや伸長率を制御し、Al系酸化物層が破壊される面積を制御することで制御可能となる。と、同時にめっき表面に凹部を形成させることができる。   When the inventors observed the surface of each of the plated steel sheets before and after the Zn-based oxide formation treatment with a scanning electron microscope, the Zn-based oxide film was mainly temper rolled. It was found that when the rolling roll was in contact with the plating surface at this time, the Al-based oxide layer was generated in a portion where the rolling roll was pressed by a dull convex part of the rolling roll and destroyed. Therefore, the coverage and distribution of the Zn-based oxide can be controlled by controlling the roughness and elongation of the roll of temper rolling and controlling the area where the Al-based oxide layer is broken. At the same time, a concave portion can be formed on the plating surface.

ただし、ここでは調質圧延による例を示したが、本発明では上記調質圧延に限定せずに、めっき表面のAl系酸化物層を機械的に破壊でき、Zn系酸化物を形成させ、Zn系酸化物の被覆率の制御に有効であれば他の方法でも構わない。その一例としては、金属ブラシによる処理やショットブラストなどがあげられる。   However, although an example by temper rolling was shown here, the present invention is not limited to the above temper rolling, but the Al-based oxide layer on the plating surface can be mechanically broken to form a Zn-based oxide, Other methods may be used as long as they are effective for controlling the coverage of the Zn-based oxide. Examples thereof include metal brush processing and shot blasting.

前述したように、溶融亜鉛めっき鋼板の表面は不均一に活性、不活性な部分が存在する。凹部はAl系酸化物が破壊され、相対的に活性であるため酸化物が形成されやすいが、凸部では、酸化物形成がされにくい。そこで、適正な活性化処理により、Al系酸化物量を低減することが凸部へのZn主体の酸化物の付与に対して有効である。すなわち、活性化処理を行いAl系酸化物量を適正量まで低減した後にpH緩衝作用を有する酸性溶液と接触させ、水洗までの保持時間を1〜30秒確保する事により、めっき鋼板表面の大部分に摺動性に有効な微細凹凸を有するZn主体の酸化物を形成させることが可能となり、低面圧での摺動特性を大幅に向上させることを実現した。   As described above, the surface of the hot dip galvanized steel sheet has unevenly active and inactive portions. Since the Al-based oxide is destroyed in the recess and is relatively active, an oxide is likely to be formed, but the oxide is not easily formed in the recess. Therefore, reducing the amount of Al-based oxide by an appropriate activation treatment is effective for imparting a Zn-based oxide to the convex portion. In other words, activation treatment is performed to reduce the amount of Al-based oxides to an appropriate amount, and then contact with an acidic solution having a pH buffering action, and a retention time of 1 to 30 seconds until washing with water is ensured. In addition, it is possible to form a Zn-based oxide with fine irregularities that is effective for slidability, and to achieve a significant improvement in sliding characteristics at low surface pressure.

具体的な活性化処理方法として、ロールでの圧延、ショットブラスト、ブラシ研削のような機械的な除去方法、アルカリ性溶液に接触させ、表面を活性化する方法があげられる。上記処理により、Al系酸化物を除去し、表面に新生面を露出することが可能となる。   Specific activation treatment methods include mechanical removal methods such as rolling with a roll, shot blasting, and brush grinding, and methods of activating the surface by contacting with an alkaline solution. By the above treatment, it is possible to remove the Al-based oxide and expose the new surface on the surface.

また、前記活性化処理は、酸化物の被覆領域を広くすることによる摺動特性向上効果のみでなく化成処理性、接着接合性の向上効果に対しても有効である。化成処理は化成処理液においてAl系酸化物がめっき層のZnとリン酸の反応性できるだけ阻害しないようにする必要があり、活性化処理により、弱酸性の化成処理液で溶解し難いAl系酸化物成分を低減する効果がある。また、接着剤との接合強度を高めるためにも、同様にAl系酸化物量の低減が有効である。
自動車製造における化成処理工程では、化成処理液の状態によっては、エッチング性が低下し、リン酸塩結晶が形成されない場合がある。溶融亜鉛めっき鋼板の場合、特に不活性な表層Al系酸化物の存在により、化成処理液のエッチング性が不十分な場合、ムラとなりやすい。化成処理前のアルカリ脱脂で、Al系酸化物が除去され化成処理性が問題とならないケースもあるが、このような場合でもアルカリ脱脂がマイルドな条件に触れると、その効果が得られず、不均一なAl系酸化物分布となる。化成処理後のムラは、引き続き行われる電着塗装後のムラや欠陥の原因になる。
In addition, the activation treatment is effective not only for the effect of improving the sliding property by widening the oxide coating region but also for the effect of improving the chemical conversion treatment property and the adhesive bondability. In the chemical conversion treatment, it is necessary to prevent the Al-based oxide from inhibiting the reactivity of Zn and phosphoric acid of the plating layer as much as possible in the chemical conversion treatment solution. By the activation treatment, the Al-based oxidation is difficult to dissolve in the weakly acidic chemical conversion treatment solution. There is an effect of reducing physical components. Similarly, reducing the amount of Al-based oxide is also effective for increasing the bonding strength with the adhesive.
In the chemical conversion treatment process in automobile manufacturing, depending on the state of the chemical conversion treatment liquid, the etching property may be lowered and phosphate crystals may not be formed. In the case of a hot-dip galvanized steel sheet, unevenness tends to occur when the etching property of the chemical conversion solution is insufficient due to the presence of an inactive surface layer Al-based oxide. Alkaline degreasing before chemical conversion treatment may remove Al-based oxides and chemical conversion treatment properties may not be a problem, but even in such a case, if alkaline degreasing is exposed to mild conditions, the effect cannot be obtained and it may not be possible. Uniform Al-based oxide distribution. The unevenness after the chemical conversion treatment causes unevenness and defects after the subsequent electrodeposition coating.

また、自動車製造では、防食、振動防止、接合強度向上などの目的から、接着剤が使用される。冷延鋼板、Zn−Fe合金系めっきに適用されている一部接着剤では、Al系酸化物との相性が悪く、十分な接着強度が得られないケースがある。   In the manufacture of automobiles, an adhesive is used for the purpose of anticorrosion, vibration prevention, and improvement of bonding strength. In some adhesives applied to cold-rolled steel sheets and Zn-Fe alloy-based plating, there are cases where the compatibility with Al-based oxides is poor and sufficient adhesive strength cannot be obtained.

この様な問題は、溶融亜鉛めっき鋼板の表面のAl酸化物層をアルカリ処理などで除去することにより解消することが可能であるが、一方で、表面の酸化物層が除去されるため、プレス時の金型との凝着抑制に対しては不利となり、プレス成形性が低下する場合がある。しかし、本発明では、溶融亜鉛めっき鋼板の表面のAl系酸化物層が除去された後に、表面に特有のZn系酸化物を形成、付与するため、上記のような問題は起こらず、充分な化成処理生と接着強度が得られる。   Such a problem can be solved by removing the Al oxide layer on the surface of the hot dip galvanized steel sheet by alkali treatment or the like, but on the other hand, the oxide layer on the surface is removed. It is disadvantageous for the suppression of adhesion with the mold at the time, and press formability may be reduced. However, in the present invention, after the Al-based oxide layer on the surface of the hot-dip galvanized steel sheet is removed, a specific Zn-based oxide is formed and imparted to the surface. Chemical conversion treatment and adhesive strength can be obtained.

活性化処理による表面のAl系酸化物量を適正量、すなわち、本発明のZn系酸化物を酸化処理により形成するのに有効なめっき鋼板表面Al系酸化物の好ましい形態は以下のとおりである。
めっき鋼板表面のAl系酸化物は完全に除去する必要は無く、ある程度、めっき表面のZn系酸化物と混在している状態で良いが、酸化物層に平均的に含まれるAl濃度が20at%未満となる状態にすることが好ましい。ここで示したAl濃度は、オージェ電子分光(AES)とArスパッタリングによる深さ方向分析により、2μm×2μm程度の領域における平均的な酸化物厚さとAl濃度の深さ方向分布を測定したときの、酸化物の厚さに相当する深さまでの範囲におけるAl濃度の最大値である。
Al濃度が20at%以上となると、局部的に微細凹凸構造を有するZn主体の酸化物が形成され難くなり、70%以上の被覆率で、微細凹凸構造を有するZn主体の酸化物をめっき表面に被覆することが困難となる。この結果、摺動特性、特に低面圧条件での摺動特性、化成処理性、接着接合性が低下する。
表面のAl系酸化物を適正量とする為には、例えば、アルカリ性溶液に接触させる場合は、溶液のpHは11以上、浴温は50℃以上とし、アルカリ溶液との接触時間は1秒以上とすることが好ましい。上記範囲内であればアルカリ溶液の種類に制限はなく、水酸化ナトリウムや水酸化ナトリウム系の脱脂剤などを用いることができる。
An appropriate amount of the Al-based oxide on the surface by the activation treatment, that is, a preferred form of the Al-based oxide on the surface of the plated steel sheet effective for forming the Zn-based oxide of the present invention by the oxidation treatment is as follows.
It is not necessary to completely remove the Al-based oxide on the surface of the plated steel sheet, and it may be mixed to some extent with the Zn-based oxide on the plated surface, but the average concentration of Al contained in the oxide layer is 20at% It is preferable to be in a state of less than. The Al concentration shown here is obtained by measuring the average oxide thickness and Al concentration in the depth direction in a region of about 2 μm x 2 μm by Auger electron spectroscopy (AES) and depth direction analysis by Ar sputtering. The maximum value of the Al concentration in the range up to the depth corresponding to the thickness of the oxide.
When the Al concentration is 20 at% or more, it becomes difficult to form a Zn-based oxide having a fine uneven structure locally, and a Zn-based oxide having a fine uneven structure on the plating surface with a coverage of 70% or more. It becomes difficult to coat. As a result, sliding characteristics, particularly sliding characteristics under low surface pressure conditions, chemical conversion properties, and adhesive bondability are deteriorated.
In order to obtain an appropriate amount of Al-based oxide on the surface, for example, when contacting with an alkaline solution, the pH of the solution is 11 or more, the bath temperature is 50 ° C. or more, and the contact time with the alkaline solution is 1 second or more. It is preferable that If it is in the said range, there will be no restriction | limiting in the kind of alkaline solution, Sodium hydroxide, a sodium hydroxide type | system | group degreasing agent, etc. can be used.

なお、活性化処理は酸化処理の前に実施する必要があるが、溶融亜鉛めっき後調質圧延の前、もしくは調質圧延の後のいずれで実施しても良い。しかし、活性化処理を調質圧延の後に施すと、圧延ロールにより押しつぶされ凹部となった部分でAl系酸化物が機械的に破壊されるため、凹部と凹部以外の凸部とではAl酸化物の除去量が異なる傾向がある。このため、活性化処理後のAl酸化物量が、めっき鋼板表面内で不均一となり、引き続き行われる酸化処理が不均一となり十分な特性を得られない場合がある。このため、溶融亜鉛めっき後調質圧延の前に活性化処理を施し、めっき鋼板表面内で均一にAl酸化物を適正量除去した後、調質圧延を実施、引き続き酸化処理とするプロセスが好ましい。
本発明に係る溶融亜鉛めっき鋼板を製造するに関しては、めっき浴中にAlが添加されていることが必要であるが、Al以外の添加元素成分は特に限定されない。すなわち、Alの他に、Pb、Sb、Si、Sn、Mg、Mn、Ni、Ti、Li、Cuなどが含有または添加されていても、本発明の効果が損なわれるものではない。
The activation treatment needs to be performed before the oxidation treatment, but it may be performed either before temper rolling after galvanizing or after temper rolling. However, when the activation treatment is performed after temper rolling, the Al-based oxide is mechanically destroyed at the portion that has been crushed by the rolling roll into a recess, so that the Al oxide is not formed at the recess and the protrusion other than the recess. There is a tendency for the amount of removal to differ. For this reason, the amount of Al oxide after the activation treatment is not uniform within the surface of the plated steel sheet, and the subsequent oxidation treatment is not uniform, and sufficient characteristics may not be obtained. For this reason, a process is preferred in which activation treatment is performed after hot dip galvanization and before temper rolling, and after removing an appropriate amount of Al oxide uniformly within the surface of the plated steel sheet, temper rolling is performed, followed by oxidation treatment. .
Regarding the production of the hot dip galvanized steel sheet according to the present invention, it is necessary that Al is added to the plating bath, but the additive element components other than Al are not particularly limited. That is, the effect of the present invention is not impaired even if Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu or the like is contained or added in addition to Al.

また、酸化処理中に不純物が含まれることにより、P、S、N、B、Cl、Na、Mn、Ca、Mg、Ba、Sr、Siなどが酸化物層中に微量取り込まれても、本発明の効果が損なわれるものではない。   In addition, since impurities are included during the oxidation treatment, even if a small amount of P, S, N, B, Cl, Na, Mn, Ca, Mg, Ba, Sr, Si, etc. is taken into the oxide layer, The effects of the invention are not impaired.

次に、本発明を実施例により更に詳細に説明する。
(実施例1)
板厚0.8mmの冷延鋼板上に、溶融亜鉛めっき皮膜を形成し、更に調質圧延を行った。一部試料では、調質圧延前、もしくは調質圧延後に、活性化処理として、水酸化ナトリウム系脱脂剤、日本パーカライジング(株)製FC-4370の濃度を適宜変えることにより、pHを変化させた溶液に所定時間接触させた。
Next, the present invention will be described in more detail with reference to examples.
(Example 1)
A hot-dip galvanized film was formed on a cold-rolled steel sheet having a thickness of 0.8 mm, and temper rolling was further performed. In some samples, the pH was changed by appropriately changing the concentration of sodium hydroxide-based degreasing agent and FC-4370 manufactured by Nihon Parkerizing Co., Ltd. as an activation treatment before or after temper rolling. The solution was contacted for a predetermined time.

活性化処理及び調質圧延を施した試料を、引き続き表1に記載の処理液に2〜5秒浸漬し、引き続きロール絞りを行い、液量が3g/m2以下となる様に調整した後、所定時間大気中、室温にて放置した。試料により、放置時間を変化させた。 After the sample subjected to the activation treatment and the temper rolling was immersed in the treatment liquid shown in Table 1 for 2 to 5 seconds and subsequently subjected to roll drawing to adjust the liquid amount to 3 g / m 2 or less. And left at room temperature in the atmosphere for a predetermined time. The standing time was changed depending on the sample.

上記方法で得られた供試材について、プレス成形性試験として摺動特性の評価、化成処理性、接着接合性の評価を行った。また、供試材について、酸化物層の厚さ、分布、組成の測定を行った。一部供試材については、活性化処理による効果を確認する為、酸化処理を施す前に、表面酸化物の解析を行った。得られた結果を表2に示すとともに、以下に特性評価方法、及び皮膜解析方法について記述する。   About the test material obtained by the said method, evaluation of sliding characteristics, chemical conversion property, and adhesive bondability were performed as a press-formability test. Moreover, the thickness, distribution, and composition of the oxide layer were measured for the test material. In order to confirm the effect of the activation treatment on some of the test materials, the surface oxide was analyzed before the oxidation treatment. The obtained results are shown in Table 2, and a characteristic evaluation method and a film analysis method are described below.

(1)プレス成形性(摺動特性)評価(摩擦係数測定)
プレス成形性を評価するために、各供試材の摩擦係数を以下のようにして測定した。図1は、摩擦係数測定装置を示す概略正面図である。同図に示すように、供試材から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押上げることにより、ビード6による摩擦係数測定用試料1への押付荷重Nを測定するための第1ロードセル7が、スライドテーブル支持台5に取付けられている。上記押付力を作用させた状態でスライドテーブル3を水平方向へ移動させるための摺動抵抗力Fを測定するための第2ロードセル8が、スライドテーブル3の一方の端部に取付けられている。なお、潤滑油として、スギムラ化学社製のプレス用洗浄油プレトンR352Lを試料1の表面に塗布して試験を行った。
(1) Evaluation of press formability (sliding characteristics) (coefficient of friction measurement)
In order to evaluate the press formability, the friction coefficient of each test material was measured as follows. FIG. 1 is a schematic front view showing a friction coefficient measuring apparatus. As shown in the figure, a friction coefficient measuring sample 1 collected from a test material is fixed to a sample table 2, and the sample table 2 is fixed to the upper surface of a slide table 3 that can move horizontally. On the lower surface of the slide table 3, there is provided a slide table support base 5 having a roller 4 in contact therewith and capable of moving up and down, and by pushing it up, a pressing load N on the friction coefficient measurement sample 1 by the bead 6 is applied. A first load cell 7 for measuring is attached to the slide table support 5. A second load cell 8 for measuring a sliding resistance force F for moving the slide table 3 in the horizontal direction with the pressing force applied is attached to one end of the slide table 3. In addition, the cleaning oil Preton R352L for press made by Sugimura Chemical Co., Ltd. was applied to the surface of the sample 1 as a lubricant, and the test was performed.

図2は使用したビードの形状・寸法を示す概略斜視図である。ビード6の下面が試料1の表面に押し付けられた状態で摺動する。図2に示すビード6の形状は幅10mm、試料の摺動方向長さ59mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ50mmの平面を有する。このビードを用いると、摺動距離が長い条件での摩擦係数を評価できる。摩擦係数測定試験は、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):20cm/minとした。なお、本条件の押付け面圧は、7.8MPaであり、比較的低い面圧条件である。
供試材とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。
(2)化成処理性
化成処理性については、以下の方法により評価した。試料に防錆油(パーカー興産製、ノックスラスト550HN)を約1g/m2塗布し、引き続きアルカリ脱脂(日本パーカライジング(株)製 FC-E2001、スプレー処理、スプレー圧1kgf/cm2)、水洗、表調処理(日本パーカライジング(株)製 PL-Z)、化成処理(日本パーカライジング(株)製 PB-L3080)の手順で、化成処理皮膜を形成した。このとき、化成処理時間は一定(2分)としたが、アルカリ脱脂では、脱脂液濃度を1/2、脱脂時間を30秒とし、標準条件よりマイルドな条件とした。
FIG. 2 is a schematic perspective view showing the shape and dimensions of the beads used. The bead 6 slides with its lower surface pressed against the surface of the sample 1. The bead 6 shown in FIG. 2 has a width of 10 mm, a length of 59 mm in the sliding direction of the sample, and a lower portion at both ends of the sliding direction is formed by a curved surface with a curvature of 4.5 mmR. It has a flat surface with a length of 50 mm. When this bead is used, the coefficient of friction under a long sliding distance can be evaluated. In the friction coefficient measurement test, the pressing load N was 400 kgf, and the sample drawing speed (the horizontal moving speed of the slide table 3) was 20 cm / min. The pressing surface pressure under this condition is 7.8 MPa, which is a relatively low surface pressure condition.
The coefficient of friction μ between the specimen and the bead was calculated by the formula: μ = F / N.
(2) Chemical conversion property Chemical conversion property was evaluated by the following method. Sample rust-preventive oil (Parker Kosan Co., Knoxville last 550HN) was about 1 g / m 2 coating, subsequently alkaline degreasing (Nippon Parkerizing Co. FC-E2001, spraying, spray pressure 1 kgf / cm 2), washed with water, A chemical conversion treatment film was formed by the procedure of surface tone treatment (PL-Z manufactured by Nihon Parkerizing Co., Ltd.) and chemical conversion treatment (PB-L3080 manufactured by Nihon Parkerizing Co., Ltd.). At this time, the chemical conversion treatment time was constant (2 minutes), but in alkaline degreasing, the concentration of the degreasing solution was 1/2 and the degreasing time was 30 seconds, which was milder than the standard conditions.

評価は、化成処理後の外観により評価した。
○:スケがなく緻密に全面をリン酸塩結晶が被覆する。
△:多少のスケが認められる
×:広い範囲でリン酸塩結晶が形成されない領域がある。
(3)接着接合性
25×100mmサイズの試験片、2本に油(スギムラ化学プレトンR352L)を塗布し、塩ビ系樹脂マスチックシーラーを25×10mmの領域に塗布、接着剤を塗布した部分を重ね合わせ、170℃×20分の乾燥炉で乾燥させ接着し、I型の1組の試験片とした。本試験片を引っ張り試験機で、5mm/分の速度で接着位置で破断するまで引っ張り、引き抜き時の最大荷重を測定、荷重を接着面積で割り、接着強度とした。
Evaluation was based on the appearance after the chemical conversion treatment.
○: There is no scale and the entire surface is densely covered with phosphate crystals.
Δ: Some squeal is observed ×: There is a region where phosphate crystals are not formed in a wide range.
(3) Adhesive bondability
Apply oil (Sugimura Chemical Preton R352L) to two test pieces of 25 x 100 mm size, apply a PVC resin mastic sealer to an area of 25 x 10 mm, and superimpose the parts where the adhesive is applied. It was dried and bonded in a drying oven for 1 minute to form a set of I-type test pieces. This test piece was pulled with a tensile tester at a speed of 5 mm / min until it broke at the bonding position, the maximum load at the time of pulling was measured, and the load was divided by the bonding area to obtain the bonding strength.

接着強度が、0.2Mpa以上であれば ○
接着強度が、0.2Mpa未満であれば ×
として評価した。
(4)酸化物層厚さ、及び酸化物のZn/Al比の測定
オージェ電子分光法(AES)を用い、Ar+スパッタリングとAESスペクトルの測定を繰り返すことで、めっき皮膜表面部分の組成の深さ方向分布を測定した。スパッタリングの時間から深さへの換算は、膜厚既知のSiO2膜を測定して求めたスパッタリングレートにより行った。組成(at%)は、各元素のオージェピーク強度から相対感度因子補正により求めたが、コンタミネーションの影響を除くためにCは考慮に入れなかった。酸化物、水酸化物に起因するO濃度の深さ分布は表面近傍で高く、内部へ行くに従って低下して一定となる。最大値と一定値との和の1/2となる深さを、酸化物の厚さとした。平坦な部分の2μm×2μm程度の領域を分析の対象とし、任意の2〜3点で測定した結果の平均値を平均酸化膜厚とした。酸化物のZn/Al比は、上記酸化物の厚さに相当する深さまでのZnの平均濃度(at%)とAlの平均濃度(at%)より求めた。
(5)活性化処理後の表面状態測定
活性化処理の効果を確認するため、前記(4)と同様の方法で、活性化処理後の表面の凸部における活性化処理後の酸化物層に含まれるAl濃度の深さ方向分布を測定した。結果を図3〜図5に示す。なお、図3は供試材No1の測定結果、図4は供試材No11の測定結果、図5は供試材No12の測定結果を示す図である。図3では酸化物のAl濃度はいずれの深さにおいても20at%未満である。これに対し、図4、図5では、Al濃度は20at%以上である。
(6)Zn主体の酸化物の被覆率測定
Zn主体の酸化物の被覆率を測定するために、走査電子顕微鏡(LEO社LEO1530)を用い、加速電圧0.5 kVでインレンズタイプの二次電子検出器を用いて低倍率の二次電子像を観察した。この観察条件で、Zn主体の酸化物が形成された部分は暗いコントラストとして、このような酸化物が形成されていない部分と明瞭に区別することができる。ここで観察される明るさの分布は、厳密に言えば酸化物の厚さ分布と考えられるが、ここでは、Zn主体の酸化物がそれ以外の酸化物よりも厚いことを別途AESにより確認しており、暗い部分がZn主体の酸化物であると判断した。得られた二次電子像を画像処理ソフトウエアによりニ値化し、暗い部分の面積率を求めてZn系酸化物の形成された被覆率とした。
(7)酸化物の微細凹凸の形状及び粗さパラメータの測定
Zn系酸化物の微細凹凸が形成されていることは、走査電子顕微鏡(LEO社LEO1530)を用い、加速電圧0.5 kVで試料室内に設置されたEverhart-Thornly型の二次電子検出器を用いて高倍率の二次電子像を観察することにより確認した。
○ If the adhesive strength is 0.2Mpa or more
If the adhesive strength is less than 0.2Mpa ×
As evaluated.
(4) Measurement of oxide layer thickness and oxide Zn / Al ratio Using Auger Electron Spectroscopy (AES), repeated Ar + sputtering and AES spectrum measurements can be used to determine the depth of the composition on the plating film surface. The lateral distribution was measured. The conversion from the sputtering time to the depth was performed by the sputtering rate obtained by measuring a SiO 2 film having a known film thickness. The composition (at%) was determined by correcting the relative sensitivity factor from the Auger peak intensity of each element, but C was not taken into account in order to eliminate the influence of contamination. The depth distribution of O concentration due to oxides and hydroxides is high near the surface and decreases and becomes constant as it goes inside. The depth which is 1/2 of the sum of the maximum value and the constant value was defined as the oxide thickness. The area of about 2 μm × 2 μm of the flat part was the object of analysis, and the average value of the results measured at any two to three points was taken as the average oxide film thickness. The Zn / Al ratio of the oxide was determined from the average Zn concentration (at%) and the average Al concentration (at%) up to a depth corresponding to the thickness of the oxide.
(5) Surface state measurement after activation treatment In order to confirm the effect of activation treatment, the oxide layer after activation treatment on the convex portion of the surface after activation treatment was subjected to the same method as in (4) above. The distribution of Al concentration contained in the depth direction was measured. The results are shown in FIGS. 3 shows the measurement result of the test material No1, FIG. 4 shows the measurement result of the test material No11, and FIG. 5 shows the measurement result of the test material No12. In FIG. 3, the Al concentration of the oxide is less than 20 at% at any depth. On the other hand, in FIGS. 4 and 5, the Al concentration is 20 at% or more.
(6) Measurement of Zn-based oxide coverage
In order to measure the coverage of Zn-based oxides, a scanning electron microscope (LEO LEO1530) was used, and an in-lens type secondary electron detector with an acceleration voltage of 0.5 kV was used to obtain a low-magnification secondary electron image. Observed. Under these observation conditions, the portion where the Zn-based oxide is formed has a dark contrast and can be clearly distinguished from the portion where such an oxide is not formed. Strictly speaking, the brightness distribution observed here is considered to be an oxide thickness distribution, but here we separately confirmed that the Zn-based oxide was thicker than the other oxides by AES. The dark portion was determined to be an oxide mainly composed of Zn. The obtained secondary electron image was binarized by image processing software, and the area ratio of the dark portion was obtained to obtain the coverage with the Zn-based oxide formed.
(7) Measurement of fine roughness and roughness parameters of oxide
The formation of fine unevenness of the Zn-based oxide is confirmed by using a scanning electron microscope (LEO LEO1530) and an Everhart-Thornly-type secondary electron detector installed in the sample chamber at an acceleration voltage of 0.5 kV. This was confirmed by observing a high-magnification secondary electron image.

Zn系酸化物の表面粗さの計測は、電子線三次元粗さ解析装置(エリオニクス社製ERA-8800FE)を用いた。測定は加速電圧5kV、ワーキングディスタンス(作動距離)15mmにて行い、測定時の面内方向のサンプリング間隔は5 nm以下とした(観察倍率は40000倍以上)。なお、電子線照射による帯電を避けるため金蒸着を施した。Zn系酸化物が存在する領域一箇所当たり電子線の走査方向から長さ3μm程度の450本以上の粗さ曲線を切出した。測定した場所は一試料当たり3箇所以上である。   The surface roughness of the Zn-based oxide was measured by using an electron beam three-dimensional roughness analyzer (ERA-8800FE manufactured by Elionix). The measurement was performed at an acceleration voltage of 5 kV and a working distance (working distance) of 15 mm, and the sampling interval in the in-plane direction during the measurement was 5 nm or less (observation magnification was 40000 times or more). In order to avoid charging by electron beam irradiation, gold deposition was performed. More than 450 roughness curves with a length of about 3 μm were cut out from the scanning direction of the electron beam per region where the Zn-based oxide was present. There are 3 or more measured locations per sample.

上記の粗さ曲線から装置に付属の解析ソフトウエアを用いて、粗さ曲線のRaと粗さ曲線の局部凹凸のSを計算した。ここで、Ra、Sは、それぞれ、微細凹凸の粗さ、周期を評価するパラメータである。これらの一般的な定義に関しては、日本工業規格の「表面粗さ-用語」B-0660-1998等に記載されている。本発明例は、数μmの長さの粗さ曲線についての粗さパラメータであるが、そのRa、Sは、上記文献で定義される数式に従って計算されている。   Using the analysis software attached to the apparatus, the roughness curve Ra and the roughness unevenness S of the roughness curve were calculated from the above roughness curve. Here, Ra and S are parameters for evaluating the roughness and period of the fine irregularities, respectively. These general definitions are described in Japanese Industrial Standard “Surface Roughness—Terminology” B-0660-1998 and the like. The example of the present invention is a roughness parameter for a roughness curve having a length of several μm, and Ra and S thereof are calculated according to mathematical formulas defined in the above document.

電子線を試料表面に照射するとカーボン主体のコンタミネ−ションが成長し、それが測定データに現れる場合がある。この影響は今回のように測定領域が小さい場合顕著になりやすい。そこでデータ解析に当たっては、測定方向の長さ(約3μm)の半分をカットオフ波長とするSplineハイパーフィルターをかけて、この影響を除去した。本装置の較正には、米国の国立研究機関NISTにトレーサブルなVLSIスタンダード社のSHS薄膜段差スタンダード(段差18nm、88nm、450nm)を用いた。   When an electron beam is irradiated on the sample surface, carbon-based contamination grows and may appear in the measurement data. This effect is likely to be noticeable when the measurement area is small as in this case. Therefore, in the data analysis, this effect was removed by applying a Spline hyperfilter with half the length in the measurement direction (about 3 μm) as the cutoff wavelength. For calibration of this equipment, the SHS thin film step standard (step difference 18nm, 88nm, 450nm) of VLSI Standard, Inc. traceable to the national research institute NIST in the United States was used.

Figure 2005120447
Figure 2005120447

Figure 2005120447
Figure 2005120447

表2によれば、No1〜7の本発明例は摩擦係数が低く摺動特性に優れ、また化成処理性及び接着接合性にも優れている。   According to Table 2, the inventive examples No. 1 to No. 7 have a low coefficient of friction and excellent sliding properties, and also excellent chemical conversion treatment properties and adhesive bonding properties.

一方、酸化物層の平均厚さもしくはZn主体の酸化物の被覆率が本発明範囲外であるNo8〜12の比較例は本発明例に比べると摩擦係数も高く、化成処理性、接着接合性のいずれか一つ以上が劣っている。   On the other hand, the comparative examples of Nos. 8 to 12 in which the average thickness of the oxide layer or the coverage ratio of the oxide mainly composed of Zn is outside the scope of the present invention also have a higher coefficient of friction than the examples of the present invention. One or more of them are inferior.

摩擦係数測定装置を示す概略正面図。The schematic front view which shows a friction coefficient measuring apparatus. 図1中のビード形状・寸法を示す概略斜視図。FIG. 2 is a schematic perspective view showing bead shapes and dimensions in FIG. 活性化処理後の表面の凸状部分における活性化処理後の酸化物層に含まれるAl濃度の深さ方向分布を示す図。The figure which shows the depth direction distribution of Al concentration contained in the oxide layer after the activation process in the convex-shaped part of the surface after the activation process. 活性化処理後の表面の凸状部分における活性化処理後の酸化物層に含まれるAl濃度の深さ方向分布を示す図。The figure which shows the depth direction distribution of Al concentration contained in the oxide layer after the activation process in the convex-shaped part of the surface after the activation process. 活性化処理後の表面の凸状部分における活性化処理後の酸化物層に含まれるAl濃度の深さ方向分布を示す図。The figure which shows the depth direction distribution of Al concentration contained in the oxide layer after the activation process in the convex-shaped part of the surface after the activation process.

符号の説明Explanation of symbols

1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第1ロードセル
8 第2ロードセル
N 押付荷重
F 摺動抵抗力
1 Sample for friction coefficient measurement
2 Sample stage
3 Slide table
4 Roller
5 Slide table support
6 beads
7 First load cell
8 Second load cell
N Push load
F Sliding resistance force

Claims (8)

めっき層が主としてη相からなる溶融亜鉛めっき鋼板において、めっき表面に、平均厚さが10nm以上の、Zn系酸化物及びAl系酸化物を含む酸化物層が存在し、かつ、前記酸化物層に含まれるZn/Al比(酸化物層中の原子濃度での比率)が4以上のZn主体の酸化物は、めっき表面に占める割合が面積率で70%以上であることを特徴とする溶融亜鉛めっき鋼板。   In the hot dip galvanized steel sheet in which the plating layer is mainly composed of η phase, an oxide layer containing Zn-based oxide and Al-based oxide having an average thickness of 10 nm or more exists on the plating surface, and the oxide layer A Zn-based oxide having a Zn / Al ratio (ratio in atomic concentration in the oxide layer) of 4 or more is contained in the alloy, and the ratio of the area occupied by the plating surface to the plating surface is 70% or more. Galvanized steel sheet. 前記Zn/Al比が4以上のZn主体の酸化物は、凹凸を有しためっき表面の凸部に存在することを特徴とする請求項1に記載の溶融亜鉛めっき鋼板。   2. The hot dip galvanized steel sheet according to claim 1, wherein the Zn-based oxide having a Zn / Al ratio of 4 or more exists on a convex portion of a plated surface having irregularities. 前記Zn/Al比が4以上のZn主体の酸化物は、Feを、Fe/(Zn+Fe)で定義されるFe原子濃度として、1〜50at%を含むことを特徴とする請求項1または2に記載の溶融亜鉛めっき鋼板。   3. The Zn-based oxide having a Zn / Al ratio of 4 or more contains 1 to 50 at% of Fe as a Fe atom concentration defined by Fe / (Zn + Fe). Hot-dip galvanized steel sheet as described. 前記Zn/Al比が4以上のZn主体の酸化物は、前記めっき表面の凹凸の凸部よりも小さな凸部と、該凸部より囲まれる不連続な前記めっき表面の凹凸の凹部よりも小さな凹部で形成され網目状構造からなる微細凹凸を有することを特徴とする請求項1ないし3に記載の溶融亜鉛めっき鋼板。   The Zn-based oxide having a Zn / Al ratio of 4 or more is smaller than the convexity of the unevenness on the plating surface and smaller than the concaveity of the unevenness of the discontinuous plating surface surrounded by the convexity. The hot-dip galvanized steel sheet according to claim 1, wherein the hot-dip galvanized steel sheet has fine irregularities formed of concave portions and having a network structure. 請求項1ないし4に記載の溶融亜鉛めっき鋼板を製造するに際し、鋼板に溶融亜鉛めっきを施し、さらに調質圧延の前もしくは調質圧延を施した後に活性化処理を行い、次いで、pH緩衝剤を有する酸性溶液に接触させ、1〜30秒保持した後に水洗する酸化処理を行うことを特徴とする溶融亜鉛めっき鋼板の製造方法。   When producing the hot dip galvanized steel sheet according to claim 1 to 4, the steel sheet is hot dip galvanized, and further subjected to an activation treatment before or after temper rolling, and then a pH buffering agent. The manufacturing method of the hot dip galvanized steel sheet characterized by performing the oxidation process which makes it contact with the acidic solution which has and hold | maintains for 1 to 30 seconds, and then rinses with water. 前記活性化処理により、活性化処理後の酸化物層に含まれるAl濃度が20at%未満であることを特徴とする請求項5に記載の溶融亜鉛めっき鋼板の製造方法。   The method for producing a hot-dip galvanized steel sheet according to claim 5, wherein an Al concentration contained in the oxide layer after the activation treatment is less than 20 at% by the activation treatment. 活性化処理は、pH11以上、50℃以上のアルカリ性溶液に1秒以上接触させて行うことを特徴とする請求項5または6に記載の溶融亜鉛めっき鋼板の製造方法。   The method for producing a hot dip galvanized steel sheet according to claim 5 or 6, wherein the activation treatment is carried out by contact with an alkaline solution having a pH of 11 or more and 50 ° C or more for 1 second or more. 前記酸性水溶液にさらにFeイオンを1〜200g/l添加することを特徴とする請求項5ないし7に記載の溶融亜鉛めっき鋼板の製造方法。   The method for producing a hot-dip galvanized steel sheet according to claim 5, wherein Fe ions are further added to the acidic aqueous solution in an amount of 1 to 200 g / l.
JP2003358062A 2003-10-17 2003-10-17 Hot-dip galvanized steel sheet excellent in press formability and manufacturing method thereof Expired - Lifetime JP4849501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003358062A JP4849501B2 (en) 2003-10-17 2003-10-17 Hot-dip galvanized steel sheet excellent in press formability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003358062A JP4849501B2 (en) 2003-10-17 2003-10-17 Hot-dip galvanized steel sheet excellent in press formability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005120447A true JP2005120447A (en) 2005-05-12
JP4849501B2 JP4849501B2 (en) 2012-01-11

Family

ID=34614760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003358062A Expired - Lifetime JP4849501B2 (en) 2003-10-17 2003-10-17 Hot-dip galvanized steel sheet excellent in press formability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4849501B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183074A (en) * 2004-12-27 2006-07-13 Jfe Steel Kk Hot-dip galvanized steel sheet and manufacturing method therefor
JP2007119872A (en) * 2005-10-31 2007-05-17 Jfe Steel Kk Method for producing galvannealed steel sheet and galvannealed steel sheet
JP2009191319A (en) * 2008-02-14 2009-08-27 Sumitomo Metal Ind Ltd Manufacturing method of hot-dip galvanized steel sheet having excellent degreasing power
JP2014185381A (en) * 2013-03-25 2014-10-02 Jfe Steel Corp Hot-dip galvanized steel sheet and method for producing the same
WO2015186827A1 (en) * 2014-06-05 2015-12-10 Jfeスチール株式会社 Steel sheet for containers
JP2019116654A (en) * 2017-12-27 2019-07-18 日本製鉄株式会社 Hot stamp hot-dip galvanized steel sheet and method for manufacturing the same
JP2019116655A (en) * 2017-12-27 2019-07-18 日本製鉄株式会社 Hot stamp molding and method for manufacturing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02190483A (en) * 1989-01-19 1990-07-26 Nippon Steel Corp Galvanized steel sheet having superior press formability
JPH08325689A (en) * 1995-05-30 1996-12-10 Nippon Steel Corp Equipment for manufacturing hot dip galvanized hot rolled steel sheet excellent in lubricity and chemical conversion
JP2000160358A (en) * 1998-11-25 2000-06-13 Sumitomo Metal Ind Ltd Hot dip galvanized steel sheet
JP2001262304A (en) * 2000-03-16 2001-09-26 Nkk Corp Alloyed galvannealed steel sheet excellent in press- formability and its producing method
JP2001323358A (en) * 2000-03-07 2001-11-22 Nkk Corp Hot dip galvannealed steel sheet
JP2002012958A (en) * 1999-07-15 2002-01-15 Nkk Corp Alloyed hot-dip galvanized steel sheet and its manufacturing method
JP2002060917A (en) * 2000-08-15 2002-02-28 Nkk Corp Method for producing galvanized steel sheet
JP2002256448A (en) * 2001-03-05 2002-09-11 Nkk Corp Method for manufacturing galvannealed steel sheet
JP2002302753A (en) * 2001-04-05 2002-10-18 Nkk Corp Galvannealed steel sheet
JP2004003004A (en) * 2002-04-18 2004-01-08 Jfe Steel Kk Hot-dip galvanized steel sheet showing excellent press formability and its manufacturing process

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02190483A (en) * 1989-01-19 1990-07-26 Nippon Steel Corp Galvanized steel sheet having superior press formability
JPH08325689A (en) * 1995-05-30 1996-12-10 Nippon Steel Corp Equipment for manufacturing hot dip galvanized hot rolled steel sheet excellent in lubricity and chemical conversion
JP2000160358A (en) * 1998-11-25 2000-06-13 Sumitomo Metal Ind Ltd Hot dip galvanized steel sheet
JP2002012958A (en) * 1999-07-15 2002-01-15 Nkk Corp Alloyed hot-dip galvanized steel sheet and its manufacturing method
JP2001323358A (en) * 2000-03-07 2001-11-22 Nkk Corp Hot dip galvannealed steel sheet
JP2001262304A (en) * 2000-03-16 2001-09-26 Nkk Corp Alloyed galvannealed steel sheet excellent in press- formability and its producing method
JP2002060917A (en) * 2000-08-15 2002-02-28 Nkk Corp Method for producing galvanized steel sheet
JP2002256448A (en) * 2001-03-05 2002-09-11 Nkk Corp Method for manufacturing galvannealed steel sheet
JP2002302753A (en) * 2001-04-05 2002-10-18 Nkk Corp Galvannealed steel sheet
JP2004003004A (en) * 2002-04-18 2004-01-08 Jfe Steel Kk Hot-dip galvanized steel sheet showing excellent press formability and its manufacturing process

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183074A (en) * 2004-12-27 2006-07-13 Jfe Steel Kk Hot-dip galvanized steel sheet and manufacturing method therefor
JP4604712B2 (en) * 2004-12-27 2011-01-05 Jfeスチール株式会社 Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP2007119872A (en) * 2005-10-31 2007-05-17 Jfe Steel Kk Method for producing galvannealed steel sheet and galvannealed steel sheet
JP2009191319A (en) * 2008-02-14 2009-08-27 Sumitomo Metal Ind Ltd Manufacturing method of hot-dip galvanized steel sheet having excellent degreasing power
JP2014185381A (en) * 2013-03-25 2014-10-02 Jfe Steel Corp Hot-dip galvanized steel sheet and method for producing the same
WO2015186827A1 (en) * 2014-06-05 2015-12-10 Jfeスチール株式会社 Steel sheet for containers
JP6079891B2 (en) * 2014-06-05 2017-02-15 Jfeスチール株式会社 Steel plate for containers
JP2019116654A (en) * 2017-12-27 2019-07-18 日本製鉄株式会社 Hot stamp hot-dip galvanized steel sheet and method for manufacturing the same
JP2019116655A (en) * 2017-12-27 2019-07-18 日本製鉄株式会社 Hot stamp molding and method for manufacturing the same
JP7006257B2 (en) 2017-12-27 2022-01-24 日本製鉄株式会社 A method for manufacturing a hot stamped body and a hot stamped body
JP7006256B2 (en) 2017-12-27 2022-02-10 日本製鉄株式会社 Manufacturing method of hot-stamped hot-dip galvanized steel sheet and hot-stamped hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JP4849501B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
KR100707255B1 (en) Hot-dip galvanized steel sheet having excellent press formability and method for producing the same
JP4329387B2 (en) Hot-dip galvanized steel sheet with excellent press formability and manufacturing method thereof
KR101878222B1 (en) Galvanized steel sheet and method for producing the same
KR20050061533A (en) Steel sheet plated by hot dipping with alloyed zinc with excellent adhesion and process for producing the same
EP3112501B1 (en) Galvanized steel sheet and method for manufacturing the same
CN109642303A (en) Wearability, mouldability and the excellent hot-dip galvanized steel sheet and its manufacturing method of sealer adhesion
JP4849501B2 (en) Hot-dip galvanized steel sheet excellent in press formability and manufacturing method thereof
JP2010077456A (en) Hot-dip galvanized steel sheet and method for manufacturing the same
JP2002012958A (en) Alloyed hot-dip galvanized steel sheet and its manufacturing method
JP4517887B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP2001323358A (en) Hot dip galvannealed steel sheet
JP2005248262A (en) Electrogalvanized steel sheet, and method and apparatus for producing the same
JP4604712B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP4329481B2 (en) Hot-dip galvanized steel sheet with excellent press formability
JP4826486B2 (en) Method for producing galvannealed steel sheet
JP2007231376A (en) Galvannealed steel sheet
JP2005120445A (en) Galvanized steel sheet excellent in press formability
JP4539255B2 (en) Alloy hot-dip galvanized steel sheet
JP2002302753A (en) Galvannealed steel sheet
JP5045231B2 (en) Alloy hot-dip galvanized steel sheet
JP2003306756A (en) Hot dip galvanized steel sheet and method of producing the same
JP3575390B2 (en) Galvannealed steel sheet with excellent press formability
JP2002256406A (en) Galvannealed steel sheet
JP2005002477A (en) Galvannealed steel sheet
JP2003171751A (en) Galvannealed steel sheet

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111013

R150 Certificate of patent or registration of utility model

Ref document number: 4849501

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term