JP6079891B2 - Steel plate for containers - Google Patents

Steel plate for containers Download PDF

Info

Publication number
JP6079891B2
JP6079891B2 JP2015538789A JP2015538789A JP6079891B2 JP 6079891 B2 JP6079891 B2 JP 6079891B2 JP 2015538789 A JP2015538789 A JP 2015538789A JP 2015538789 A JP2015538789 A JP 2015538789A JP 6079891 B2 JP6079891 B2 JP 6079891B2
Authority
JP
Japan
Prior art keywords
layer
steel plate
film
steel sheet
containers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015538789A
Other languages
Japanese (ja)
Other versions
JPWO2015186827A1 (en
Inventor
祐介 中川
祐介 中川
安秀 大島
安秀 大島
威 鈴木
威 鈴木
智文 重國
智文 重國
幹人 須藤
幹人 須藤
馬場 和彦
和彦 馬場
悦男 ▲濱▼田
悦男 ▲濱▼田
野呂 寿人
寿人 野呂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6079891B2 publication Critical patent/JP6079891B2/en
Publication of JPWO2015186827A1 publication Critical patent/JPWO2015186827A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

本発明は、容器用鋼板に関する。   The present invention relates to a steel plate for containers.

飲料や食品に適用される金属容器は、内容物を長期保管できることから世界中で使用されている。金属容器は、絞り加工された2ピース缶胴または溶接された3ピース缶胴と缶胴に巻き締められた蓋とから構成される。
以上の金属容器には、製缶前後の塗装工程および焼付け工程が不可欠である。これらの工程では、塗料の廃液や焼付け時のVOC(揮発性有機化合物)および温室効果ガスの一種である二酸化炭素が大量に発生する。近年では、地球環境保全の観点から、これらの廃棄物や二酸化炭素を低減する取り組みがなされている。さらに、塗料の成分であるエポキシ樹脂原料のBPA(ビスフェノールA)は、環境ホルモンであり、一部の国々で人体接触し得る用途には使用を規制されている。塗装工程および焼付け工程を省略できる代替技術として、PET(ポリエチレンテレフタレート)などの有機樹脂フィルムをラミネートした鋼板を使用した容器が注目されており、急速に拡大している。
Metal containers applied to beverages and foods are used all over the world because the contents can be stored for a long time. The metal container is composed of a drawn two-piece can body or a welded three-piece can body and a lid wound around the can body.
For the above metal containers, painting and baking processes before and after canning are indispensable. In these processes, a large amount of waste liquid of paint, VOC (volatile organic compound) during baking, and carbon dioxide, which is a kind of greenhouse gas, are generated. In recent years, efforts have been made to reduce these waste and carbon dioxide from the viewpoint of global environmental conservation. Furthermore, BPA (bisphenol A), which is an epoxy resin raw material that is a component of paint, is an environmental hormone and its use is restricted in applications that can be in human contact in some countries. As an alternative technique that can omit the painting process and baking process, containers using steel plates laminated with an organic resin film such as PET (polyethylene terephthalate) have attracted attention and are rapidly expanding.

一方、ラミネートフィルムの下地に用いられる鋼板には、一般的に電解クロメート処理を施したクロメート皮膜が用いられている。しかし、近年、欧米を中心に、鉛、カドミウム、クロムをはじめとする人体に有害な物質の使用制限や、製造環境の配慮から、クロメート処理ではない皮膜が求められている。
例えば、特許文献1には、「鋼板の少なくとも片面に、Ni層、Sn層、Fe−Ni合金層、Fe−Sn合金層およびFe−Ni−Sn合金層のうちから選ばれた少なくとも1層からなる耐食性皮膜を有し、該耐食性皮膜上に、Tiを含み、さらにCo、Fe、Ni、V、Cu、MnおよびZnのうちから選ばれた少なくとも1種をその合計でTiに対する質量比として0.01〜10含有する密着性皮膜を有することを特徴とする表面処理鋼板」が開示されている。
On the other hand, the steel sheet used for the base of the laminate film generally uses a chromate film that has been subjected to electrolytic chromate treatment. However, in recent years, mainly in Europe and the United States, a coating that is not a chromate treatment has been demanded due to restrictions on the use of substances harmful to the human body such as lead, cadmium, and chromium, and consideration of the manufacturing environment.
For example, Patent Document 1 states that “at least one layer selected from a Ni layer, a Sn layer, a Fe—Ni alloy layer, a Fe—Sn alloy layer, and a Fe—Ni—Sn alloy layer on at least one surface of a steel plate. A corrosion-resistant film comprising: Ti on the corrosion-resistant film; and at least one selected from Co, Fe, Ni, V, Cu, Mn, and Zn is 0 as a mass ratio to Ti in total. A surface-treated steel sheet characterized by having an adhesive film containing 0.01 to 10 is disclosed.

特開2010−031348号公報JP 2010-031348 A

本発明者らが、特許文献1に記載された容器用鋼板(表面処理鋼板)について検討した結果、PETフィルムに対する密着性(以下、「フィルム密着性」ともいう)が不十分となる場合があることが分かった。
本発明は、以上の点を鑑みてなされたものであり、フィルム密着性に優れる容器用鋼板を提供することを目的とする。
As a result of studying the steel plate for containers (surface-treated steel plate) described in Patent Document 1, the present inventors may have insufficient adhesion to the PET film (hereinafter also referred to as “film adhesion”). I understood that.
This invention is made | formed in view of the above point, and it aims at providing the steel plate for containers excellent in film adhesiveness.

本発明者らは、上記目的を達成するために鋭意検討を行なった結果、特定の表面形状を有する容器用鋼板のフィルム密着性が優れることを見出し、本発明を完成させた。   As a result of intensive studies to achieve the above object, the present inventors have found that the steel sheet for containers having a specific surface shape is excellent, and completed the present invention.

すなわち、本発明は、以下の(1)〜(4)を提供する。
(1)鋼板の表面の少なくとも一部にSn層を含むめっき層を有するめっき鋼板と、上記めっき鋼板の上記めっき層側の表面上に配置されたTiおよびNiを含有する表面処理皮膜と、を有する容器用鋼板であって、走査型電子顕微鏡を用いた測定により得られる表面積から算出される、上記容器用鋼板の上記表面処理皮膜側の表面の展開面積比Sdrが0.25%以上である、容器用鋼板。
(2)上記めっき層が、さらに、Ni層、Ni−Fe合金層、Fe−Sn合金層、および、Fe−Sn−Ni合金層からなる群から選ばれる少なくとも1層を含む、上記(1)に記載の容器用鋼板。
(3)上記表面処理皮膜は、上記めっき鋼板の片面あたりのTi換算の付着量が5〜30mg/m2であり、上記めっき鋼板の片面あたりのNi換算の付着量が1〜30mg/m2である、上記(1)または(2)に記載の容器用鋼板。
(4)走査型プローブ顕微鏡を用いた測定により得られる表面積から算出される、上記容器用鋼板の上記表面処理皮膜側の表面の展開面積比Sdraが5.00%以上である、上記(1)〜(3)のいずれかに記載の容器用鋼板。
That is, the present invention provides the following (1) to (4).
(1) A plated steel sheet having a plated layer containing an Sn layer on at least a part of the surface of the steel sheet, and a surface treatment film containing Ti and Ni disposed on the surface of the plated steel sheet on the plated layer side. A container steel plate having a developed area ratio Sdr of 0.25% or more of the surface of the container steel plate on the surface-treated film side, which is calculated from a surface area obtained by measurement using a scanning electron microscope. Steel plate for containers.
(2) The above (1), wherein the plating layer further includes at least one layer selected from the group consisting of a Ni layer, a Ni—Fe alloy layer, a Fe—Sn alloy layer, and a Fe—Sn—Ni alloy layer. The steel plate for containers as described in 4.
(3) The surface treatment coating has a Ti equivalent adhesion amount per side of the plated steel sheet of 5 to 30 mg / m 2 , and a Ni equivalent adhesion quantity per side of the plated steel plate of 1 to 30 mg / m 2. The steel plate for containers according to (1) or (2) above.
(4) The developed area ratio Sdra of the surface on the surface treatment film side of the steel plate for containers calculated from the surface area obtained by measurement using a scanning probe microscope is 5.00% or more, (1) The steel plate for containers according to any one of to (3).

本発明によれば、フィルム密着性に優れる容器用鋼板を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the steel plate for containers excellent in film adhesiveness can be provided.

展開面積比Sdrとフィルム密着性(評価1)との関係を示すグラフである。It is a graph which shows the relationship between development area ratio Sdr and film adhesiveness (evaluation 1). 試験材No.10の45°断面を示す反射電子像である。Test material No. 10 is a reflected electron image showing 10 45 ° cross sections. 試験材No.15の45°断面を示す反射電子像である。Test material No. 15 is a reflected electron image showing 15 45 ° cross sections.

[容器用鋼板]
本発明の容器用鋼板は、概略的には、めっき鋼板と、めっき鋼板のめっき層側の表面上に配置された表面処理皮膜とを有し、かつ、特定の展開面積比Sdrを有する。
以下に、めっき鋼板および表面処理皮膜の具体的な態様について詳述した後、展開面積比Sdrについて説明する。まず、めっき鋼板の態様について詳述する。
[Steel plate for containers]
The container steel plate of the present invention generally has a plated steel plate and a surface treatment film disposed on the surface of the plated steel plate on the plating layer side, and has a specific development area ratio Sdr.
In the following, after specific embodiments of the plated steel sheet and the surface treatment film are described in detail, the developed area ratio Sdr will be described. First, the aspect of a plated steel plate is explained in full detail.

〔めっき鋼板〕
めっき鋼板は、鋼板と、鋼板の表面の少なくとも一部を覆うめっき層とを有し、めっき層は、少なくともSn層を含む。
素材の鋼板としては、一般的な缶用の鋼板を使用できる。めっき層は、連続層であってもよいし、不連続の島状であってもよい。また、めっき層は、鋼板の少なくとも片面に設けられていればよく、両面に設けられていてもよい。めっき層の形成は、含有される金属元素に応じた公知の方法で行える。
以下に、鋼板およびめっき層の好適態様について詳述する。
[Plated steel sheet]
The plated steel sheet includes a steel sheet and a plating layer that covers at least a part of the surface of the steel sheet, and the plating layer includes at least a Sn layer.
As a raw steel plate, a general steel plate for cans can be used. The plating layer may be a continuous layer or a discontinuous island shape. Moreover, the plating layer should just be provided in the at least single side | surface of the steel plate, and may be provided in both surfaces. The plating layer can be formed by a known method according to the contained metal element.
Below, the suitable aspect of a steel plate and a plating layer is explained in full detail.

〈鋼板〉
鋼板の種類は特に限定されるものではなく、通常、容器材料として使用される鋼板(例えば、低炭素鋼板、極低炭素鋼板)を用いることができる。この鋼板の製造方法、材質なども特に限定されるものではなく、通常の鋼片製造工程から熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の工程を経て製造される。
鋼板は、必要に応じて、その表面にニッケル(Ni)含有層を形成したものを用い、このNi含有層上に後述するSn層を含むめっき層を形成してもよい。Ni含有層を有する鋼板を用いてSnめっきを施すことにより、島状Snを含むめっき層を形成することができ、溶接性が向上する。
Ni含有層としてはニッケルが含まれていればよく、例えば、Niめっき層(Ni層)、Ni−Fe合金層などが挙げられる。
鋼板にNi含有層を付与する方法は特に限定されず、例えば、公知の電気めっきなどの方法が挙げられる。また、Ni含有層としてNi−Fe合金層を付与する場合、電気めっきなどにより鋼板表面上にNi付与後、焼鈍することにより、Ni拡散層を配位させ、Ni−Fe合金層を形成できる。
Ni含有層中のNi付着量は特に限定されず、片面当たりの金属Ni換算量として50〜2000mg/m2が好ましい。上記範囲内であれば、コスト面でも有利となる。
なお、Ni付着量は、蛍光X線により表面分析して測定できる。この場合、Ni付着量既知のNi付着サンプルを用いて、Ni付着量に関する検量線をあらかじめ特定しておき、同検量線を用いて相対的にNi付着量を特定する。
ただし、後述する皮膜がNiを含む場合には、上記の蛍光X線による表面分析によりNi含有層中のNi付着量のみを測定することは困難である。その場合は、Ni含有層中のNi付着量は、蛍光X線により求めたNi付着量から後述する皮膜中に含まれるNi付着量を差し引いて求めることができる。
<steel sheet>
The kind of steel plate is not particularly limited, and a steel plate (for example, a low carbon steel plate or an extremely low carbon steel plate) that is usually used as a container material can be used. The manufacturing method and material of the steel plate are not particularly limited, and the steel plate is manufactured through processes such as hot rolling, pickling, cold rolling, annealing, temper rolling, etc. from a normal slab manufacturing process.
If necessary, a steel sheet having a nickel (Ni) -containing layer formed on the surface thereof may be used, and a plated layer including an Sn layer described later may be formed on the Ni-containing layer. By performing Sn plating using a steel sheet having a Ni-containing layer, a plating layer containing island-shaped Sn can be formed, and weldability is improved.
The Ni-containing layer only needs to contain nickel, and examples thereof include a Ni plating layer (Ni layer) and a Ni—Fe alloy layer.
The method for applying the Ni-containing layer to the steel sheet is not particularly limited, and examples thereof include a known method such as electroplating. Moreover, when providing a Ni-Fe alloy layer as a Ni containing layer, a Ni diffused layer can be coordinated by forming Ni on a steel plate surface by electroplating etc., and annealing, thereby forming a Ni-Fe alloy layer.
The amount of Ni deposited in the Ni-containing layer is not particularly limited, and is preferably 50 to 2000 mg / m 2 as the amount of metal Ni converted on one side. If it is in the said range, it will become advantageous also in terms of cost.
The Ni adhesion amount can be measured by surface analysis with fluorescent X-rays. In this case, a calibration curve related to the Ni adhesion amount is specified in advance using a Ni adhesion sample with a known Ni adhesion amount, and the Ni adhesion amount is relatively specified using the calibration curve.
However, when the film described later contains Ni, it is difficult to measure only the amount of Ni deposited in the Ni-containing layer by the surface analysis using the fluorescent X-ray. In that case, the Ni adhesion amount in the Ni-containing layer can be obtained by subtracting the Ni adhesion amount contained in the film described later from the Ni adhesion amount obtained by fluorescent X-rays.

〈めっき層〉
めっき鋼板は、鋼板表面の少なくとも一部に、Sn層を含むめっき層を有する。このめっき層は鋼板の少なくとも片面に設けられていればよく、両面に設けられていてもよい。また、めっき層は、鋼板表面上の少なくとも一部を覆う層であり、連続層であってもよいし、不連続の島状であってもよい。
めっき層の鋼板片面当たりのSn付着量は、0.1〜15.0g/m2が好ましい。Sn付着量が上記範囲内であれば、容器用鋼板の外観特性および耐食性に優れる。なかでも、これらの特性がより優れる点で、0.2〜15.0g/m2がより好ましく、加工性が優れる点で、1.0〜15.0g/m2がさらに好ましい。
なお、Sn付着量は、蛍光X線により表面分析して測定できる。蛍光X線の場合、Sn量既知のSn付着サンプルを用いて、Sn量に関する検量線をあらかじめ特定しておき、同検量線を用いて相対的にSn量を特定する。
<Plating layer>
The plated steel sheet has a plating layer including a Sn layer on at least a part of the surface of the steel sheet. The plating layer only needs to be provided on at least one side of the steel plate, and may be provided on both sides. Moreover, a plating layer is a layer which covers at least one part on the steel plate surface, A continuous layer may be sufficient and a discontinuous island shape may be sufficient as it.
The Sn adhesion amount per one side of the steel sheet of the plating layer is preferably 0.1 to 15.0 g / m 2 . When the Sn adhesion amount is within the above range, the outer appearance characteristics and the corrosion resistance of the steel plate for containers are excellent. Among them, in that these characteristics are more excellent, more preferably 0.2~15.0g / m 2, workability in view of excellent, more preferably 1.0~15.0g / m 2.
Note that the Sn adhesion amount can be measured by surface analysis using fluorescent X-rays. In the case of X-ray fluorescence, a calibration curve related to the Sn amount is specified in advance using a Sn-attached sample with a known Sn amount, and the Sn amount is relatively specified using the calibration curve.

めっき層としては、Snをめっきして得られるSn層からなるめっき層のほか、Snめっき後通電加熱などによりSnを加熱溶融させて得られる、Sn層の最下層(Sn層/鋼板界面)にFe−Sn合金層が一部形成されためっき層も挙げられる。
また、めっき層としては、Ni含有層を表面に有する鋼板に対してSnめっきを行い、さらに通電加熱などによりSnを加熱溶融させて得られる、Sn層の最下層(Sn層/鋼板界面)にFe−Sn−Ni合金層、Fe−Sn合金層などが一部形成されためっき層も挙げられる。
なお、本発明においては、上述したNi含有層(Ni層、Ni−Fe合金層)も、めっき鋼板のめっき層に含まれるものとする。
As a plating layer, in addition to a plating layer composed of an Sn layer obtained by plating Sn, the lowermost layer (Sn layer / steel plate interface) of the Sn layer obtained by heating and melting Sn by energization heating after Sn plating, etc. A plating layer in which a part of the Fe—Sn alloy layer is formed is also included.
Moreover, as a plating layer, Sn plating is performed on a steel sheet having a Ni-containing layer on the surface, and Sn is heated and melted by current heating or the like, and is formed on the lowermost layer (Sn layer / steel sheet interface) of the Sn layer. Examples thereof include a plating layer in which an Fe—Sn—Ni alloy layer, an Fe—Sn alloy layer, etc. are partially formed.
In the present invention, the aforementioned Ni-containing layer (Ni layer, Ni—Fe alloy layer) is also included in the plated layer of the plated steel sheet.

めっき層の製造方法としては、周知の方法(例えば、電気めっき法や溶融したSnに浸漬してめっきする方法)が挙げられる。
例えば、フェノールスルフォン酸Snめっき浴、メタンスルフォン酸Snめっき浴、またはハロゲン系Snめっき浴を用い、片面あたりの付着量が所定量(例えば、2.8g/m2)となるように鋼板表面にSnを電気めっきした後、Snの融点(231.9℃)以上の温度で加熱溶融処理を行って、Sn単体のめっき層(Sn層)の最下層(Sn層/鋼板界面)にFe−Sn合金層を形成しためっき層を製造できる。加熱溶融処理を省略した場合、Sn単体のめっき層(Sn層)を製造できる。
また、鋼板がその表面上にNi含有層を有する場合、Ni含有層上にSnめっき後、加熱溶融処理を行うと、Sn単体のめっき層(Sn層)の最下層(Sn層/鋼板界面)にFe−Sn−Ni合金層、Fe−Sn合金層などが形成される。
Examples of the method for producing the plating layer include a known method (for example, an electroplating method or a method of plating by immersing in molten Sn).
For example, a phenol sulfonic acid Sn plating bath, a methane sulfonic acid Sn plating bath, or a halogen-based Sn plating bath is used, and the adhesion amount per one surface is set to a predetermined amount (for example, 2.8 g / m 2 ). After Sn is electroplated, it is heated and melted at a temperature equal to or higher than the melting point of Sn (231.9 ° C.), and Fe—Sn is applied to the bottom layer (Sn layer / steel plate interface) of the Sn single layer. A plating layer on which an alloy layer is formed can be manufactured. When the heat melting treatment is omitted, a Sn single plating layer (Sn layer) can be manufactured.
In addition, when the steel sheet has a Ni-containing layer on its surface, the lowermost layer (Sn layer / steel sheet interface) of the plating layer (Sn layer) of Sn alone is obtained by performing a heat melting treatment after Sn plating on the Ni-containing layer. An Fe—Sn—Ni alloy layer, an Fe—Sn alloy layer, and the like are formed.

本発明において、Sn層(純Sn層)の面積率(めっき層全体の面積に対するSn層の面積の割合)は、耐食性、溶接性および後述する優れたフィルム密着性の観点から、少なくとも10%以上が好ましい。
なお、面積率における「Sn層」とは、その最表層がSn層(純Sn層)であればよく、その最下層にFe−Sn−Ni合金層、Fe−Sn合金層などが形成されているものも含む。
Snの面積率の測定方法については、後述[実施例]にて説明する。
In the present invention, the area ratio of the Sn layer (pure Sn layer) (ratio of the area of the Sn layer to the total area of the plating layer) is at least 10% or more from the viewpoint of corrosion resistance, weldability, and excellent film adhesion described later. Is preferred.
The “Sn layer” in the area ratio may be an Sn layer (pure Sn layer) as the outermost layer, and an Fe—Sn—Ni alloy layer, an Fe—Sn alloy layer, or the like is formed in the lowermost layer. Including those that are.
The method for measuring the area ratio of Sn will be described later in [Example].

〔表面処理皮膜〕
次に、上述しためっき鋼板のめっき層側の表面上に配置される表面処理皮膜について説明する。表面処理皮膜は、概略的には、その成分として、Ti(チタニウム元素)およびNi(ニッケル元素)を含有する皮膜であり、後述する処理液を用いて形成される。
表面処理皮膜は、本発明の容器用鋼板のフィルム密着性がより優れるという理由から、めっき鋼板の片面あたりのTi換算の付着量(以下、「Ti付着量」ともいう)が、5〜30mg/m2であるのが好ましい。Ti付着量は、フィルム密着性がさらに優れるという理由から、7〜25mg/m2がより好ましい。
また、表面処理皮膜は、本発明の容器用鋼板のフィルム密着性がより優れるという理由から、めっき鋼板の片面あたりのNi換算の付着量(以下、「Ni付着量」ともいう)が、1〜30mg/m2であるのが好ましい。Ni付着量は、皮膜とめっき鋼板との密着性が優れるという理由から、1〜10mg/m2がより好ましい。
[Surface treatment film]
Next, the surface treatment film disposed on the surface of the plated steel sheet on the plating layer side will be described. The surface treatment film is roughly a film containing Ti (titanium element) and Ni (nickel element) as its components, and is formed using a treatment liquid described later.
The surface treatment film has an adhesion amount in terms of Ti per one side of the plated steel sheet (hereinafter also referred to as “Ti adhesion amount”) of 5 to 30 mg / day because the film adhesion of the steel sheet for containers of the present invention is more excellent. m 2 is preferred. The Ti adhesion amount is more preferably 7 to 25 mg / m 2 because the film adhesion is further excellent.
Moreover, the surface treatment film has a Ni conversion adhesion amount (hereinafter also referred to as “Ni adhesion amount”) per one side of the plated steel plate because the film adhesion of the steel plate for containers of the present invention is more excellent. 30 mg / m 2 is preferred. The Ni adhesion amount is more preferably 1 to 10 mg / m 2 because the adhesion between the coating and the plated steel sheet is excellent.

Ti付着量およびNi付着量は、蛍光X線による表面分析により測定する。
表面処理皮膜中のTi、Ni等は、それぞれ、各種のチタン化合物、ニッケル化合物として含まれ、これら化合物の種類や態様は特に限定されない。
なお、蛍光X線分析は、例えば、下記条件により実施される。
・装置:リガク社製蛍光X線分析装置System3270
・測定径:30mm
・測定雰囲気:真空
・スペクトル:Ti−Kα、Ni−Kα
・スリット:COARSE
・分光結晶:TAP
上記条件により測定した表面処理皮膜の蛍光X線分析のTi−Kα、Ni−Kαのピークカウント数を用いる。付着量既知の標準サンプルを用いて、Ti付着量およびNi付着量に関する検量線をあらかじめ特定しておき、同検量線を用いて相対的にTi付着量およびNi付着量を求める。
Ti adhesion amount and Ni adhesion amount are measured by surface analysis using fluorescent X-rays.
Ti, Ni, and the like in the surface treatment film are included as various titanium compounds and nickel compounds, respectively, and the types and aspects of these compounds are not particularly limited.
Note that the fluorescent X-ray analysis is performed, for example, under the following conditions.
Apparatus: X-ray fluorescence analyzer System 3270 manufactured by Rigaku Corporation
・ Measurement diameter: 30 mm
・ Measurement atmosphere: Vacuum ・ Spectrum: Ti-Kα, Ni-Kα
・ Slit: COARSE
-Spectral crystal: TAP
The peak count numbers of Ti-Kα and Ni-Kα in the fluorescent X-ray analysis of the surface treatment film measured under the above conditions are used. Using a standard sample with a known adhesion amount, a calibration curve relating to the Ti adhesion amount and the Ni adhesion amount is specified in advance, and the Ti adhesion amount and the Ni adhesion amount are relatively determined using the calibration curve.

ただし、めっき層がNiを含む場合は、上記の蛍光X線による表面分析により表面処理皮膜中に含まれるNi付着量のみを測定することは困難である。
その場合は、走査型電子顕微鏡(Scanning Electron Microscope:SEM)や透過型電子顕微鏡(Transmission Electron Microscope:TEM)による断面観察とグロー放電発光分析とを併用することで、表面処理皮膜中に含まれるNi付着量とめっき層中に含まれるNi量とを区別できる。
具体的には、表面処理皮膜およびめっき層の断面を収束イオンビーム(Focused Ion Beam:FIB)加工により露出させ、SEMまたはTEMによる断面観察から表面処理皮膜の厚さを算出する。次いで、グロー放電発光分析によるスパッタリング深さとスパッタリング時間との関係を求める。その後、表面処理皮膜厚さに相当するスパッタリング時間までのグロー放電発光分析のNi元素による発光カウント積算値を求める。このNi元素による発光カウント積算値から、あらかじめ求めておいた検量線を用いて、Ni付着量を求めることができる。
ここで、検量線は以下の方法で作成する。
まず、Niを含まないめっき層上にNiを含む表面処理皮膜を有する、Ni付着量の異なる複数のサンプルについてグロー放電発光分析し、Ni元素による発光カウントが検出されなくなるスパッタリング時間までのカウント積算値を求める。次いでこれらのサンプルのNi付着量を蛍光X線による表面分析により求める。このようにして、グロー放電発光分析によるNiカウント積算値とNi付着量との検量線を作成する。
However, when the plating layer contains Ni, it is difficult to measure only the Ni adhesion amount contained in the surface treatment film by the surface analysis using the fluorescent X-ray.
In that case, Ni contained in the surface treatment film can be obtained by using cross-sectional observation with a scanning electron microscope (SEM) or a transmission electron microscope (TEM) and glow discharge emission analysis in combination. The amount of adhesion and the amount of Ni contained in the plating layer can be distinguished.
Specifically, the cross section of the surface treatment film and the plating layer is exposed by focused ion beam (FIB) processing, and the thickness of the surface treatment film is calculated from cross-sectional observation by SEM or TEM. Next, the relationship between the sputtering depth and the sputtering time by glow discharge emission analysis is obtained. Thereafter, an integrated emission count value of Ni in glow discharge emission analysis up to the sputtering time corresponding to the surface treatment film thickness is obtained. From the integrated emission count value of the Ni element, the Ni adhesion amount can be obtained using a calibration curve obtained in advance.
Here, the calibration curve is created by the following method.
First, glow discharge emission analysis is performed on a plurality of samples with different Ni adhesion amounts having a surface treatment film containing Ni on a plating layer not containing Ni, and the count integrated value up to the sputtering time at which no emission count due to Ni element is detected Ask for. Next, the Ni adhesion amount of these samples is obtained by surface analysis using fluorescent X-rays. In this way, a calibration curve between the Ni count integrated value and the Ni adhesion amount by glow discharge emission analysis is created.

〔展開面積比Sdr〕
本発明の容器用鋼板は、走査型電子顕微鏡(Scanning Electron Microscope:SEM)を用いた測定により得られる表面積から算出される、表面処理皮膜側の表面の展開面積比Sdrが、0.25%以上である。
展開面積比Sdr(以下、単に「Sdr」ともいう)は、下記式で表される。
展開面積比Sdr={(A−B)/B}×100[%]
A:測定領域における実際の凹凸が反映された表面積(展開面積)
B:測定領域における凹凸のない平面の面積
[Development area ratio Sdr]
The steel sheet for containers of the present invention has a surface area ratio Sdr of 0.25% or more calculated from the surface area obtained by measurement using a scanning electron microscope (SEM). It is.
The development area ratio Sdr (hereinafter also simply referred to as “Sdr”) is represented by the following equation.
Development area ratio Sdr = {(A−B) / B} × 100 [%]
A: Surface area (development area) reflecting actual irregularities in the measurement region
B: Area of a flat surface without unevenness in the measurement region

本発明の容器用鋼板は、表面に凹凸形状が存在することによって、密着する有効表面積(展開面積比)が増大する効果と凹凸自身のアンカー効果とが発現し、フィルム密着性に優れると考えられる。
なお、このような表面凹凸形状は、後述する表面処理皮膜形成工程の前に、後述する無通電浸漬工程を経ることで得られる。
The steel plate for containers according to the present invention is considered to have excellent film adhesion due to the effect of increasing the effective surface area (development area ratio) to be adhered and the anchor effect of the unevenness itself due to the presence of the uneven shape on the surface. .
In addition, such a surface uneven | corrugated shape is obtained by passing through the below-mentioned electroless immersion process before the surface treatment film formation process mentioned later.

したがって、Sdrが大きいほどフィルム密着性は高くなり、本発明においては、良好なフィルム密着性のためにSdrを0.25%以上とする。Sdrは、0.50%以上が好ましく、0.85%以上がより好ましい。なお、Sdrの上限値としては、1.0%以下が好ましく、1.0%未満がより好ましい。
なお、後述する条件で算出されるSdrは、めっき層および表面処理皮膜を有する容器用鋼板の表面凹凸形状を反映するものであって、特に、Sn層表面の形状の情報を反映しており、Sn層表面の形状がフィルム密着性に影響を及ぼしていると考えられる。
Therefore, the larger the Sdr, the higher the film adhesion. In the present invention, the Sdr is set to 0.25% or more for good film adhesion. Sdr is preferably 0.50% or more, and more preferably 0.85% or more. In addition, as an upper limit of Sdr, 1.0% or less is preferable and less than 1.0% is more preferable.
In addition, Sdr calculated on the conditions mentioned later reflects the surface uneven | corrugated shape of the steel plate for containers which has a plating layer and a surface treatment film, and especially reflects the information on the shape of the Sn layer surface, It is thought that the shape of the Sn layer surface affects the film adhesion.

本発明において、Sdrは、走査型電子顕微鏡(SEM)を用いた測定により得られる表面積から算出される。より詳細には、電子線三次元走査型電子顕微鏡(3D−SEM)を用いて、容器用鋼板の表面処理皮膜側の表面の三次元表面形状(3D−SEM像)を測定し、測定した三次元表面形状データのゆがみを除去することによって算出する。
本発明におけるSdrは、各試料のSn層上の任意の5箇所の視野(測定領域)の平均値とする。
In the present invention, Sdr is calculated from the surface area obtained by measurement using a scanning electron microscope (SEM). More specifically, the three-dimensional surface shape (3D-SEM image) of the surface of the steel plate for containers on the surface treatment film side was measured using an electron beam three-dimensional scanning electron microscope (3D-SEM), and the measured tertiary Calculation is performed by removing the distortion of the original surface shape data.
Sdr in the present invention is an average value of arbitrary five visual fields (measurement regions) on the Sn layer of each sample.

ここで、測定した三次元表面形状データのゆがみとは、3D−SEMの測定原理上、本来の三次元形状に重畳する二次式で表される放物線状の歪みのことである。このため、本発明においては、測定した三次元表面形状データに対し、最小二乗法で当てはめた二次曲面を測定データから差し引く二次曲面回帰処理を施して、粗さ曲面データを求める。
ところで、二次曲面回帰処理を施して求めた粗さ曲面データは、めっき原板(素材の鋼板)のマクロな凹凸の上に微細なめっき層の形状が重畳したものであるが、めっき原板(素材の鋼板)のマクロな凹凸はフィルム密着性の向上には寄与しない。このため、本発明では、二次曲面回帰処理を施して求めた粗さ曲面データに対し、さらにハイパスフィルタ処理を施すことで得られる、微細なめっき層の形状のみを抽出したデータからSdrを算出する。
上記ハイパスフィルタ処理のカットオフ波長は、取得した3D−SEM像の長手方向の測定長の1/2に設定したカットオフ波長とする。具体的には、本発明では、3D−SEM像を3μm×4μmとし、カットオフ波長は、3D−SEM像の長手方向(4μm)の1/2である2μmとする。
Here, the distortion of the measured three-dimensional surface shape data is a parabolic distortion expressed by a quadratic equation superimposed on the original three-dimensional shape on the measurement principle of 3D-SEM. Therefore, in the present invention, the curved surface data is obtained by subjecting the measured three-dimensional surface shape data to a quadratic surface regression process for subtracting a quadratic surface fitted by the least square method from the measured data.
By the way, the roughness curved surface data obtained by performing the quadratic curved surface regression processing is obtained by superimposing the shape of the fine plating layer on the macro unevenness of the plating original plate (material steel plate). ) Does not contribute to the improvement of film adhesion. For this reason, in the present invention, Sdr is calculated from data obtained by extracting only the shape of a fine plating layer, which is obtained by further applying high-pass filter processing to roughness curved surface data obtained by performing quadratic curved surface regression processing. To do.
The cut-off wavelength of the high-pass filter process is a cut-off wavelength set to ½ of the measurement length in the longitudinal direction of the acquired 3D-SEM image. Specifically, in the present invention, the 3D-SEM image is 3 μm × 4 μm, and the cutoff wavelength is 2 μm, which is 1/2 of the longitudinal direction (4 μm) of the 3D-SEM image.

なお、本発明では、エリオニクス社製の高分解能3D−SEM ERA−8800FEを用いる。電子銃は、フィールドエミッション型である。この3D−SEMは、試料方向を向いた4本の二次電子検出器を備えており、二次電子の和信号や差信号から組成の違いを強調した像や特定方向の凹凸を反映した像を表示できる。本発明では、加速電圧5kV、照射電流はpAオーダーとし、倍率30000倍で3D−SEM像を取得する。
さらに、取得した3D−SEM像から、長岡技術科学大学 柳研究室が開発した三次元表面形状解析ソフト「SUMMIT」を用いて、Sdrを求める。
In the present invention, high resolution 3D-SEM ERA-8800FE manufactured by Elionix is used. The electron gun is a field emission type. This 3D-SEM is provided with four secondary electron detectors facing the sample direction, an image in which the difference in composition is emphasized from the sum signal and difference signal of the secondary electrons, and an image in which irregularities in a specific direction are reflected. Can be displayed. In the present invention, a 3D-SEM image is acquired at an acceleration voltage of 5 kV, an irradiation current of pA order, and a magnification of 30000 times.
Furthermore, Sdr is obtained from the acquired 3D-SEM image using 3D surface shape analysis software “SUMMIT” developed by Yanagi Laboratory, Nagaoka University of Technology.

〔展開面積比Sdra〕
さらに、本発明の容器用鋼板は、走査型プローブ顕微鏡(Scanning Probe Microscope:SPM)を用いた測定により得られる表面積から算出される、表面処理皮膜側の表面の展開面積比Sdraが、5.00%以上であることが好ましい。
展開面積比Sdra(以下、単に「Sdra」ともいう)は、上述した開面積比Sdrと同様に、下記式で表される。
展開面積比Sdra={(C−D)/D}×100[%]
C:測定領域における実際の凹凸が反映された表面積(展開面積)
D:測定領域における凹凸のない平面の面積
[Development area ratio Sdra]
Further, the steel plate for containers of the present invention has a surface development area ratio Sdra of 5.00 calculated from the surface area obtained by measurement using a scanning probe microscope (SPM) of 5.00. % Or more is preferable.
The developed area ratio Sdra (hereinafter, also simply referred to as “Sdra”) is expressed by the following equation, similarly to the open area ratio Sdr described above.
Development area ratio Sdra = {(C−D) / D} × 100 [%]
C: Surface area (development area) reflecting actual irregularities in the measurement region
D: Area of a flat surface without unevenness in the measurement region

展開面積比Sdrでは走査型電子顕微鏡(SEM)を用いるのに対して、展開面積比Sdraでは、走査型プローブ顕微鏡(SPM)を用いる。原子レベルの微細な凹凸情報が取得できる走査型プローブ顕微鏡を用いることで、展開面積比Sdraには、表面処理皮膜の最表面のナノメートルオーダーの微細な凹凸形状が反映される。   A scanning electron microscope (SEM) is used for the development area ratio Sdr, whereas a scanning probe microscope (SPM) is used for the development area ratio Sdra. By using a scanning probe microscope that can acquire fine unevenness information at the atomic level, the developed surface ratio Sdra reflects the fine unevenness shape on the outermost surface of the surface treatment film in the order of nanometers.

なお、展開面積比Sdraに反映されるような表面処理皮膜の微細な凹凸形状は、後述する好適な電解電流密度条件下での表面処理皮膜形成工程を経ることで得られ、後述する無通電浸漬工程によっても影響を受ける。   In addition, the fine uneven shape of the surface treatment film as reflected in the development area ratio Sdra is obtained through a surface treatment film formation step under a suitable electrolytic current density condition described later, It is also affected by the process.

Sdrと同様に、Sdraが大きいほどフィルム密着性が高くなる。本発明においては、良好なフィルム密着性の観点から、Sdraは、5.00%以上が好ましく、10.00%以上がより好ましく、20.00%以上がさらに好ましい。なお、Sdraの上限値としては、特に限定されないが、例えば、50.00%未満である。   Similar to Sdr, the larger the Sdra, the higher the film adhesion. In the present invention, from the viewpoint of good film adhesion, Sdra is preferably 5.00% or more, more preferably 10.00% or more, and further preferably 20.00% or more. The upper limit value of Sdra is not particularly limited, but is, for example, less than 50.00%.

上述したように、Sdraは、走査型プローブ顕微鏡(SPM)を用いた測定により得られる。より具体的には、まず、SHIMADZU社製のSFT−4500を用いて、試料のSn層上の視野(測定領域)(2μm×2μm)のSPM高さ像を測定し、SPM解析ソフトウェアにより、形態解析(表面積の解析)を行う。すなわち、三次元の画像情報をもとに統計処理から表面積を求め、上記式を用いてSdraを算出する。
測定に使用するカンチレバーは、低バネ定数シリコンカンチレバーを使用し、具体的には、オリンパス社製OMCL−AC240TSまたはこれに相当するカンチレバーを用いる。測定点は、上述の測定領域2μm×2μmに対し、縦512点、横512点とする。走査速度は、凹凸形状に追従できる範囲であれば適宜変えてもよく、好ましくは、目安として1視野の測定時間が約5分から10分に収まる範囲で走査速度を調整する。
本発明におけるSdraは、各試料のSn層上の任意の3箇所の視野(測定領域)の平均値とする。
As described above, Sdra is obtained by measurement using a scanning probe microscope (SPM). More specifically, first, an SPM height image of the visual field (measurement region) (2 μm × 2 μm) on the Sn layer of the sample is measured using SFT-4500 manufactured by SHIMADZU, and the form is determined by SPM analysis software. Perform analysis (surface area analysis). That is, the surface area is obtained from statistical processing based on the three-dimensional image information, and Sdra is calculated using the above formula.
The cantilever used for the measurement is a low spring constant silicon cantilever, and specifically, an OMCL-AC240TS manufactured by Olympus or a corresponding cantilever is used. The measurement points are 512 points in the vertical direction and 512 points in the horizontal direction with respect to the above-described measurement region of 2 μm × 2 μm. The scanning speed may be appropriately changed as long as it can follow the uneven shape. Preferably, the scanning speed is adjusted in a range in which the measurement time for one field of view is about 5 to 10 minutes.
Sdra in the present invention is an average value of arbitrary three visual fields (measurement regions) on the Sn layer of each sample.

[容器用鋼板の製造方法および処理液]
上述した本発明の容器用鋼板を製造する方法としては、後述する処理液(以下、便宜的に「本発明の処理液」ともいう)中に浸漬しためっき鋼板に陰極電解処理を施すことにより上述した表面処理皮膜を形成する表面処理皮膜形成工程と、この表面処理皮膜形成工程の前に、本発明の処理液中にめっき鋼板を無通電状態で浸漬させる無通電浸漬工程と、を少なくとも備える方法(以下、便宜的に「本発明の製造方法」ともいう)が好ましい。
以下、本発明の製造方法について説明を行い、この説明の中で、併せて本発明の処理液についても説明する。
[Manufacturing method and processing solution for steel plate for containers]
As a method for producing the above-described container steel plate of the present invention, the above-described method is performed by subjecting a plated steel plate immersed in a treatment liquid (hereinafter also referred to as “treatment liquid of the present invention” for convenience) to cathodic electrolysis. A method comprising at least a surface treatment film forming step for forming the surface treatment film, and a non-energizing dipping step for dipping the plated steel sheet in the non-energized state in the treatment liquid of the present invention before the surface treatment film forming step. (Hereinafter also referred to as “the production method of the present invention” for convenience) is preferable.
Hereinafter, the production method of the present invention will be described, and in this description, the treatment liquid of the present invention will also be described.

〔表面処理皮膜形成工程〕
表面処理皮膜形成工程は、後述する本発明の処理液中に浸漬しためっき鋼板に陰極電解処理を施すことにより、めっき鋼板のめっき層側の表面上に、上述した表面処理皮膜を形成する工程である。なお、陰極電解処理と陽極電解処理とを交互に行う交番電解を実施してもよい。
以下に、使用される本発明の処理液や陰極電解処理の条件などについて詳述する。
[Surface treatment film formation process]
The surface treatment film forming step is a step of forming the above-mentioned surface treatment film on the surface of the plated steel sheet on the plating layer side by subjecting the plated steel sheet immersed in the treatment liquid of the present invention described later to cathodic electrolysis. is there. In addition, you may implement the alternating electrolysis which performs a cathode electrolytic treatment and an anodic electrolytic treatment alternately.
Hereinafter, the treatment liquid of the present invention used, conditions for the cathodic electrolysis, and the like will be described in detail.

〈処理液〉
本発明の処理液は、上述した表面処理皮膜にTi(チタニウム元素)を供給するためのTi成分(Ti化合物)を含有する。
このTi成分としては、特に限定されないが、例えば、チタンアルコキシド、シュウ酸チタニルアンモニウム、シュウ酸チタニルカリウム二水和物、硫酸チタン、チタンラクテート、チタンフッ化水素酸(H2TiF6)および/またはその塩などが挙げられる。なお、チタンフッ化水素酸の塩としては、例えば、六フッ化チタン酸カリウム(K2TiF6)、六フッ化チタン酸ナトリウム(Na2TiF6)、六フッ化チタン酸アンモニウム((NH42TiF6)等が挙げられる。
これらのうち、処理液の安定性、入手の容易性などの観点から、チタンフッ化水素酸および/またはその塩が好ましい。
本発明の処理液におけるTi含有量は、特に限定されないが、チタンフッ化水素酸および/またはその塩を使用する場合、六フッ化チタン酸イオン(TiF6 2-)に換算した量が、0.004〜0.4mol/Lであるのが好ましく、0.02〜0.2mol/Lがより好ましい。
<Processing liquid>
The treatment liquid of the present invention contains a Ti component (Ti compound) for supplying Ti (titanium element) to the above-described surface treatment film.
The Ti component is not particularly limited. For example, titanium alkoxide, titanyl ammonium oxalate, potassium titanyl oxalate dihydrate, titanium sulfate, titanium lactate, titanium hydrofluoric acid (H 2 TiF 6 ) and / or its Examples include salt. Examples of the salt of titanium hydrofluoric acid include potassium hexafluorotitanate (K 2 TiF 6 ), sodium hexafluorotitanate (Na 2 TiF 6 ), and ammonium hexafluorotitanate ((NH 4 ). 2 TiF 6 ) and the like.
Of these, titanium hydrofluoric acid and / or a salt thereof is preferable from the viewpoints of stability of the treatment liquid, availability, and the like.
The Ti content in the treatment liquid of the present invention is not particularly limited, but when titanium hydrofluoric acid and / or a salt thereof is used, the amount converted to hexafluorotitanate ion (TiF 6 2− ) is 0.00. It is preferable that it is 004-0.4 mol / L, and 0.02-0.2 mol / L is more preferable.

また、本発明の処理液は、上述した表面処理皮膜にNi(ニッケル元素)を供給するためのNi成分(Ni化合物)を含有する。
このNi成分としては、特に限定されないが、硫酸ニッケル(NiSO4)、硫酸ニッケル六水和物、塩化ニッケル(NiCl2)、塩化ニッケル六水和物などが挙げられる。
本発明の処理液におけるNi含有量は、特に限定されないが、Niイオン(Ni2+)に換算した量が、0.002〜0.04mol/Lであるのが好ましく、0.004〜0.02mol/Lがより好ましい。
Further, the treatment liquid of the present invention contains a Ni component (Ni compound) for supplying Ni (nickel element) to the above-described surface treatment film.
As the Ni component is not particularly limited, nickel sulfate (NiSO 4), nickel sulfate hexahydrate, nickel chloride (NiCl 2), etc. nickel chloride hexahydrate and the like.
The Ni content in the treatment liquid of the present invention is not particularly limited, but the amount converted to Ni ions (Ni 2+ ) is preferably 0.002 to 0.04 mol / L, and preferably 0.004 to 0.02 mol. / L is more preferable.

なお、本発明の処理液中の溶媒としては、通常水が使用されるが、有機溶媒を併用してもよい。
本発明の処理液のpHは、特に限定されないが、pH2.0〜5.0が好ましい。この範囲内であれば、処理時間を短くでき、かつ、処理液の安定性に優れる。pHの調整には公知の酸成分(例えば、リン酸、硫酸)・アルカリ成分(例えば、水酸化ナトリウム、アンモニア水)を使用できる。
また、本発明の処理液には、必要に応じて、ラウリル硫酸ナトリウム、アセチレングリコールなどの界面活性剤が含まれていてもよい。また、付着挙動の経時的な安定性の観点から、処理液には、ピロリン酸塩などの縮合リン酸塩が含まれていてもよい。
In addition, as a solvent in the process liquid of this invention, although water is normally used, you may use an organic solvent together.
Although the pH of the processing liquid of this invention is not specifically limited, pH 2.0-5.0 are preferable. Within this range, the treatment time can be shortened and the stability of the treatment liquid is excellent. A known acid component (for example, phosphoric acid, sulfuric acid) / alkali component (for example, sodium hydroxide, aqueous ammonia) can be used to adjust the pH.
Further, the treatment liquid of the present invention may contain a surfactant such as sodium lauryl sulfate or acetylene glycol as necessary. Further, from the viewpoint of the stability of the adhesion behavior over time, the treatment liquid may contain a condensed phosphate such as pyrophosphate.

ここで、再び表面処理皮膜形成工程の説明に戻る。
処理を実施する際の処理液の液温は、20〜80℃が好ましく、40〜60℃がより好ましい。
また、陰極電解処理を実施する際の電解電流密度は、形成される表面処理皮膜中のTiおよびNiが適量となり、かつ、表面処理皮膜における微細な凹凸形状の形成が促進されて、フィルム密着性がより優れるという理由から、1.0〜20.0A/dm2が好ましく、3.0〜15.0A/dm2がより好ましく、6.0〜10.0A/dm2がさらに好ましい。
このとき、陰極電解処理の通電時間は、好ましい電解電流密度と同様の理由から、0.1〜5秒が好ましく、0.3〜2秒がより好ましい。
なお、陰極電解処理の際の電気量密度は、電流密度と通電時間との積であり、適宜設定される。
なお、皮膜中に含まれるFを低減させるという理由から、陰極電解処理の後、得られた鋼板の水洗処理を行うのが好ましい。
水洗処理の方法は特に限定されず、例えば、連続ラインで製造を行う場合、処理液タンクの後に水洗タンクを設け、陰極電解処理後に連続して水に浸漬する方法などが挙げられる。水洗処理に用いる水の温度(水温)は、40〜90℃が好ましい。
このとき、水洗時間は、水洗処理による効果がより優れるという理由から、0.5秒超が好ましく、1.0〜5.0秒が好ましい。
さらに、水洗処理に代えて、または、水洗処理の後に、乾燥を行ってもよい。乾燥の際の温度および方式は特に限定されず、例えば、通常のドライヤーや電気炉乾燥方式が適用できる。乾燥処理の際の温度としては、100℃以下が好ましい。上記範囲内であれば、表面処理皮膜の酸化を抑制でき、表面処理皮膜組成の安定性が保たれる。なお、下限は特に限定されないが、通常室温程度である。
Here, it returns to description of a surface treatment film formation process again.
20-80 degreeC is preferable and, as for the liquid temperature of the process liquid at the time of implementing a process, 40-60 degreeC is more preferable.
In addition, the electrolytic current density at the time of cathodic electrolysis is such that the proper amount of Ti and Ni in the surface treatment film to be formed, and the formation of fine irregularities in the surface treatment film is promoted, and film adhesion 1.0 to 20.0 A / dm 2 is preferable, 3.0 to 15.0 A / dm 2 is more preferable, and 6.0 to 10.0 A / dm 2 is even more preferable.
At this time, the energization time of the cathodic electrolysis treatment is preferably 0.1 to 5 seconds, and more preferably 0.3 to 2 seconds, for the same reason as the preferable electrolytic current density.
The quantity of electricity at the time of cathodic electrolysis is the product of the current density and the energization time, and is appropriately set.
In addition, it is preferable to perform the water-washing process of the obtained steel plate after a cathodic electrolysis process for the reason of reducing F contained in a film | membrane.
The method of the water washing treatment is not particularly limited. For example, when the production is performed on a continuous line, a method of providing a water washing tank after the treatment liquid tank and continuously immersing in water after the cathodic electrolysis treatment may be mentioned. As for the temperature (water temperature) of the water used for a water-washing process, 40-90 degreeC is preferable.
At this time, the washing time is preferably more than 0.5 seconds, and more preferably 1.0 to 5.0 seconds, because the effect of the washing treatment is more excellent.
Further, drying may be performed instead of or after the washing process. The temperature and method during drying are not particularly limited, and for example, a normal dryer or an electric furnace drying method can be applied. The temperature during the drying treatment is preferably 100 ° C. or lower. If it is in the said range, the oxidation of a surface treatment film | membrane can be suppressed and stability of a surface treatment film | membrane composition is maintained. The lower limit is not particularly limited, but is usually about room temperature.

〔無通電浸漬工程〕
無通電浸漬工程は、表面処理皮膜形成工程の前に、本発明の処理液中にめっき鋼板を無通電状態で浸漬させる無通電浸漬処理を施す工程である。
本発明の容器用鋼板は、上述したように、展開面積比Sdrが0.25%以上であり、表面処理皮膜側の表面に凹凸形状が存在する。このような表面形状を得るために、本発明においては、表面処理皮膜形成工程で陰極電解処理を施す前に、本工程で無通電浸漬処理を施す。すなわち、めっき鋼板を、本発明の処理液中に無通電状態で浸漬させる。これにより、めっき層(特に、Sn層)の表面がエッチングされて凹凸形状が形成される。その後、凹凸形状が形成されためっき層上に表面処理皮膜を形成することで、表面処理皮膜の表面にもめっき層の凹凸形状が反映される。
好適な凹凸形状を形成するための浸漬条件として、浴温は20〜80℃が好ましく、40〜60℃がより好ましい。
浸漬時間が長いほどSn層表面のエッチングが進行し、凹凸形状は激しくなる。所望するSn層表面の凹凸形状に合わせて、無通電浸漬時間を適宜設定できるが、浸漬時間は、0.1〜5.0秒が好ましく、0.6〜5.0秒がより好ましく、1.0秒〜5.0秒がさらに好ましい。0.1秒以上であれば、浸漬時間が過少でなく、Sn層表面のエッチングが進行しやすくなる。一方、5.0秒以下であれば、Sn層表面の凹凸形状が好適範囲を外れにくくなり、溶接性や耐食性などの性能が劣ることが回避され得る。
[Non-energized immersion process]
The non-energized dipping process is a process of performing a non-conductive dipping process in which the plated steel sheet is dipped in the non-energized state in the treatment liquid of the present invention before the surface treatment film forming process.
As described above, the steel sheet for containers of the present invention has a development area ratio Sdr of 0.25% or more, and has an uneven shape on the surface on the surface treatment film side. In order to obtain such a surface shape, in the present invention, before applying a cathodic electrolysis treatment in the surface treatment film forming step, a non-electrical current immersion treatment is conducted in this step. That is, the plated steel sheet is immersed in a non-energized state in the treatment liquid of the present invention. Thereby, the surface of a plating layer (especially Sn layer) is etched and a concavo-convex shape is formed. Thereafter, by forming a surface treatment film on the plating layer on which the uneven shape is formed, the uneven shape of the plating layer is also reflected on the surface of the surface treatment film.
As immersion conditions for forming a suitable uneven shape, the bath temperature is preferably 20 to 80 ° C, more preferably 40 to 60 ° C.
The longer the dipping time, the more the etching of the Sn layer surface proceeds, and the uneven shape becomes severe. Although the non-energization dipping time can be appropriately set according to the desired uneven shape of the Sn layer surface, the dipping time is preferably from 0.1 to 5.0 seconds, more preferably from 0.6 to 5.0 seconds. More preferably, 0.0 second to 5.0 seconds. If it is 0.1 second or more, the immersion time is not too short, and the etching of the Sn layer surface easily proceeds. On the other hand, if it is 5.0 seconds or less, it is difficult for the uneven shape on the surface of the Sn layer to deviate from the preferred range, and it is possible to avoid poor performance such as weldability and corrosion resistance.

〔前処理工程〕
本発明の製造方法は、上述した無通電浸漬工程および表面処理皮膜形成工程の前に、以下に説明する前処理工程を備えていてもよい。
前処理工程は、アルカリ性水溶液(特に、炭酸ナトリウム水溶液)中で、めっき鋼板に陰極電解処理を施す工程である。
通常、めっき層の形成時にその表面は酸化されて、錫酸化物が形成される。このめっき鋼板に対して、陰極電解処理を施すことにより、不要な錫酸化物を除去して、錫酸化物量を調整できる。
前処理工程の陰極電解処理の際に使用される溶液としては、アルカリ性水溶液(例えば、炭酸ナトリウム水溶液)が挙げられる。アルカリ性水溶液中のアルカリ成分(例えば、炭酸ナトリウム)の濃度は特に限定されないが、錫酸化物の除去がより効率的に進行する点から、5〜15g/Lが好ましく、8〜12g/Lがより好ましい。
陰極電解処理の際のアルカリ性水溶液の液温は特に限定されないが、40〜60℃が好ましい。陰極電解処理の電解条件(電流密度、電解時間)は、適宜調整される。なお、陰極電解処理の後に、必要に応じて、水洗処理を施してもよい。
[Pretreatment process]
The manufacturing method of this invention may be equipped with the pre-processing process demonstrated below before the non-energizing immersion process and surface treatment film formation process mentioned above.
The pretreatment step is a step of subjecting the plated steel plate to cathodic electrolysis in an alkaline aqueous solution (particularly, an aqueous sodium carbonate solution).
Usually, when the plating layer is formed, its surface is oxidized to form a tin oxide. By subjecting this plated steel sheet to cathodic electrolysis, unnecessary tin oxide can be removed and the amount of tin oxide can be adjusted.
Examples of the solution used for the cathodic electrolysis in the pretreatment step include an alkaline aqueous solution (for example, an aqueous sodium carbonate solution). The concentration of the alkaline component (for example, sodium carbonate) in the alkaline aqueous solution is not particularly limited, but is preferably 5 to 15 g / L, more preferably 8 to 12 g / L from the viewpoint that removal of tin oxide proceeds more efficiently. preferable.
The temperature of the alkaline aqueous solution during the cathodic electrolysis is not particularly limited, but is preferably 40 to 60 ° C. The electrolysis conditions (current density, electrolysis time) of the cathodic electrolysis are appropriately adjusted. In addition, you may perform a water washing process after a cathode electrolytic process as needed.

本発明の製造方法によって得られる本発明の容器用鋼板は、例えば、食缶、飲料缶などの2ピース缶胴および3ピース缶胴ならびに蓋などの製造に使用される。   The steel plate for containers of the present invention obtained by the production method of the present invention is used, for example, for the production of 2-piece can bodies and 3-piece can bodies such as food cans and beverage cans and lids.

以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

〈めっき鋼板の製造〉
以下の方法によって、めっき鋼板を製造した。
まず、板厚0.22mmの鋼板(T4原板)を電解脱脂し、ワット浴を用いて第3表に示す片面当たりのNi付着量でニッケルめっき層を両面に形成した。その後、10vol.%H2+90vol.%N2雰囲気中にて700℃で焼鈍してニッケルめっきを拡散浸透させることによりFe−Ni合金層(Ni含有層)(第3表にNi付着量を示す)を両面に形成した。
引き続き、上記表層にNi含有層を有する鋼板を、Snめっき浴を用い、第3表中に示す片面当たりのSn付着量でSn層を両面に形成した。その後、Snの融点以上で加熱溶融処理を施し、めっき層をT4原板の両面に形成した。このようにして、下層側から順に、Ni−Fe合金層/Fe−Sn−Ni合金層/Sn層からなるめっき層を両面に形成した。
<Manufacture of plated steel sheets>
A plated steel sheet was produced by the following method.
First, a steel plate (T4 original plate) having a thickness of 0.22 mm was electrolytically degreased, and a nickel plating layer was formed on both sides with a Ni adhesion amount per one side shown in Table 3 using a Watt bath. Thereafter, the Fe-Ni alloy layer (Ni-containing layer) was annealed at 700 ° C. in a 10 vol.% H 2 +90 vol.% N 2 atmosphere to diffuse and infiltrate the nickel plating (the Ni adhesion amount is shown in Table 3). ) Was formed on both sides.
Subsequently, the Sn layer was formed on both surfaces of the steel sheet having the Ni-containing layer as the surface layer, using an Sn plating bath, with the Sn adhesion amount per one side shown in Table 3. Thereafter, a heat melting treatment was performed at a melting point of Sn or higher, and plating layers were formed on both surfaces of the T4 original plate. Thus, the plating layer which consists of a Ni-Fe alloy layer / Fe-Sn-Ni alloy layer / Sn layer was formed in both surfaces sequentially from the lower layer side.

また、Ni含有層を有しないめっき鋼板も製造した。具体的には、上記と同様に、板厚0.22mmの鋼板(T4原板)を電解脱脂し、Snめっき浴を用い第3表中に示す片面当たりのSn付着量でSn層を両面に形成した。その後、Snの融点以上で加熱溶融処理を施し、めっき層をT4原板の両面に形成した。このようにして、下層側から順に、Fe−Sn合金層/Sn層からなるめっき層を両面に形成した。   Moreover, the plated steel plate which does not have a Ni content layer was also manufactured. Specifically, in the same manner as described above, a steel plate (T4 original plate) having a thickness of 0.22 mm is electrolytically degreased, and an Sn layer is formed on both sides with an Sn deposition amount per one side shown in Table 3 using an Sn plating bath. did. Thereafter, a heat melting treatment was performed at a melting point of Sn or higher, and plating layers were formed on both surfaces of the T4 original plate. Thus, the plating layer which consists of a Fe-Sn alloy layer / Sn layer was formed in both surfaces sequentially from the lower layer side.

〈Sn層の面積率〉
製造しためっき鋼板表面におけるSn層(純Sn層)の面積率を測定した。具体的には、製造しためっき鋼板の表面を、走査型電子顕微鏡を用いて、加速電圧15kVで反射電子像として500倍で観察した。次いで、元素分析により純Sn部を確認した後、めっき層における純Sn部と非純Sn部とのコントラスト差から、画像処理にて二値化して、Sn層の面積率を算出した(単位:%)。任意の5箇所の視野(測定領域)の平均値を求めた。結果を下記第3表に示す。
<Area ratio of Sn layer>
The area ratio of the Sn layer (pure Sn layer) on the surface of the manufactured plated steel sheet was measured. Specifically, the surface of the manufactured plated steel sheet was observed as a reflected electron image at 500 times with an acceleration voltage of 15 kV using a scanning electron microscope. Next, after confirming the pure Sn portion by elemental analysis, binarization was performed by image processing from the contrast difference between the pure Sn portion and the non-pure Sn portion in the plating layer, and the area ratio of the Sn layer was calculated (unit: %). An average value of five arbitrary fields of view (measurement region) was obtained. The results are shown in Table 3 below.

〈皮膜の形成〉
浴温50℃、10g/Lの炭酸ナトリウム水溶液中に上記めっき鋼板を浸漬し、第2表に示す条件にて、陰極電解処理を行なった(前処理工程)。
次いで、得られた鋼板を水洗し、pHを4.0に調整した第1表に示す組成の処理液(溶媒:水)を用い、第2表に示す条件にて、無通電浸漬処理および陰極電解処理を施した。その後、得られた鋼板を水洗処理して、ブロアを用いて室温で乾燥を行ない、皮膜を両面に形成した(無通電浸漬工程・皮膜形成工程)。なお、水洗処理は、得られた鋼板を、85℃の水槽に、第3表に示す水洗時間だけ浸漬させることにより行なった。
これにより、容器用鋼板の試験材を作製した。
<Film formation>
The plated steel sheet was immersed in an aqueous sodium carbonate solution having a bath temperature of 50 ° C. and 10 g / L, and cathodic electrolysis was performed under the conditions shown in Table 2 (pretreatment step).
Next, the obtained steel sheet was washed with water, and the treatment liquid (solvent: water) having the composition shown in Table 1 having a pH adjusted to 4.0 was used. Electrolytic treatment was performed. Then, the obtained steel plate was washed with water, dried at room temperature using a blower, and a film was formed on both sides (non-energized dipping process / film forming process). The washing treatment was performed by immersing the obtained steel sheet in a water bath at 85 ° C. for the washing time shown in Table 3.
Thereby, the test material of the steel plate for containers was produced.

その後、作製した容器用鋼板の試験材について、上述した方法により展開面積比Sdrおよび展開面積比Sdraを求め、以下の方法でフィルム密着性を評価した。結果を下記第3表に示す。
なお、Ni付着量、Sn付着量、Ti付着量およびNi付着量についても、上述した方法により測定ないし計算し、その結果を下記第3表に示す。
Thereafter, the developed area ratio Sdr and the developed area ratio Sdra were determined by the above-described method for the test material of the produced steel plate for containers, and the film adhesion was evaluated by the following method. The results are shown in Table 3 below.
The Ni adhesion amount, the Sn adhesion amount, the Ti adhesion amount, and the Ni adhesion amount were also measured or calculated by the method described above, and the results are shown in Table 3 below.

〈フィルム密着性(評価1)〉
作製した容器用鋼板の試験材表面に、市販のPETフィルム(Melinex850:デュポン社製)を、ロール加圧4kgf/cm2、板送り速度40mpm、ロール通過後の板の表面温度が160℃となるような条件で熱融着させ、次いで、バッチ炉中で後加熱(到達板温210℃で120秒保持)を行ない、ラミネート鋼板を作製した。
このようにして作製したラミネート鋼板に対し、先端半径3/16インチのポンチを用い、1kgの錘を40cmの高さから落下させ、フィルムを貼った面の側が凸になるようデュポン衝撃加工を行った。このような加工試験片を4つ作製し、レトルト装置内に、凸面が上になるように置き、130℃のレトルト環境で30分間保持後、取り出し、加工部のフィルム剥離の程度を目視で5段階評価し、4つの試験片の平均値(小数点以下1桁(小数点第二位を四捨五入))を用いて、フィルム密着性を評価した。実用上、結果が3.0以上であれば、フィルム密着性に優れるものとして評価できる。
5:剥離なし
4:加工部の面積の5%未満で剥離発生
3:加工部の面積の5%以上20%未満で剥離発生
2:加工部の面積の20%以上50%未満で剥離発生
1:加工部の面積の50%以上で剥離発生
<Film adhesion (Evaluation 1)>
A commercially available PET film (Melinex 850: manufactured by DuPont) is applied to the surface of the test material of the produced steel plate for containers, roll pressure is 4 kgf / cm 2 , plate feed rate is 40 mpm, and the surface temperature of the plate after passing through the roll is 160 ° C. Then, heat-sealing was performed under such conditions, followed by post-heating in a batch furnace (holding at a final plate temperature of 210 ° C. for 120 seconds) to produce a laminated steel plate.
Using a punch with a tip radius of 3/16 inch, a 1 kg weight is dropped from a height of 40 cm to the laminated steel sheet thus produced, and DuPont impact processing is performed so that the side on which the film is applied becomes convex. It was. Four such processed test pieces were prepared, placed in a retort apparatus with the convex surface facing upward, held for 30 minutes in a retort environment at 130 ° C., taken out, and the degree of film peeling of the processed part was visually observed 5 The film adhesion was evaluated using a stage evaluation and using the average value of the four test pieces (one decimal place (rounded off to the second decimal place)). Practically, if the result is 3.0 or more, it can be evaluated as having excellent film adhesion.
5: No peeling 4: Peeling occurs when less than 5% of the area of the processed part 3: Peeling occurs when the area of the processed part is 5% or more and less than 20% 2: Peeling occurs when the area of the processed part is 20% or more and less than 50% 1 : Peeling occurs at 50% or more of the processed area

〈フィルム密着性(評価2)〉
作製した容器用鋼板の試験材表面に、市販のPETフィルム(Melinex850:デュポン社製)を、ロール加圧4kgf/cm2、板送り速度40mpm、ロール通過後の板の表面温度が160℃となるような条件で熱融着させ、次いで、バッチ炉中で後加熱(到達板温210℃で120秒保持)を行ない、ラミネート鋼板を作製した。
このようにして作製したラミネート鋼板に対し、先端半径3/16インチのポンチを用い、1kgの錘を60cmの高さから落下させ、フィルムを貼った面の側が凸になるようデュポン衝撃加工を行った。このような加工試験片を4つ作製し、レトルト装置内に、凸面が上になるように置き、130℃のレトルト環境で30分間保持後、取り出し、加工部のフィルム剥離の程度を目視で5段階評価し、4つの試験片の平均値(小数点以下1桁(小数点第二位を四捨五入))を用いて、フィルム密着性を評価した。実用上、結果が2.0以上であれば、フィルム密着性に優れるものとして評価できる。
5:剥離なし
4:加工部の面積の5%未満で剥離発生
3:加工部の面積の5%以上20%未満で剥離発生
2:加工部の面積の20%以上50%未満で剥離発生
1:加工部の面積の50%以上で剥離発生
<Film adhesion (Evaluation 2)>
A commercially available PET film (Melinex 850: manufactured by DuPont) is applied to the surface of the test material of the produced steel plate for containers, roll pressure is 4 kgf / cm 2 , plate feed rate is 40 mpm, and the surface temperature of the plate after passing through the roll is 160 ° C. Then, heat-sealing was performed under such conditions, followed by post-heating in a batch furnace (holding at a final plate temperature of 210 ° C. for 120 seconds) to produce a laminated steel plate.
Using a punch with a tip radius of 3/16 inch, a 1 kg weight is dropped from a height of 60 cm to the laminated steel sheet thus produced, and DuPont impact processing is performed so that the side on which the film is applied becomes convex. It was. Four such processed test pieces were prepared, placed in a retort apparatus with the convex surface facing upward, held for 30 minutes in a retort environment at 130 ° C., taken out, and the degree of film peeling of the processed part was visually observed 5 The film adhesion was evaluated using a stage evaluation and using the average value of the four test pieces (one decimal place (rounded off to the second decimal place)). Practically, if the result is 2.0 or more, it can be evaluated as having excellent film adhesion.
5: No peeling 4: Peeling occurs when less than 5% of the area of the processed part 3: Peeling occurs when the area of the processed part is 5% or more and less than 20% 2: Peeling occurs when the area of the processed part is 20% or more and less than 50% 1 : Peeling occurs at 50% or more of the processed area

図1は、展開面積比Sdrとフィルム密着性(評価1)との関係を示すグラフであって、試験材No.1〜22の結果をプロットしたものであり、横軸が展開面積比Sdr[%]を表し、縦軸がフィルム密着性(評価1)の評価結果を表す。
上記第1表〜第3表および図1のグラフに示す結果から明らかなように、展開面積比Sdrが0.25%以上である本発明例(試験材No.1〜14および19〜22)は、いずれもフィルム密着性(評価1)に優れることが確認された。
これに対して、展開面積比Sdrが0.25%以上ではない比較例(試験材No.15〜18)は、フィルム密着性(評価1)に劣ることが確認された。
1 is a graph showing the relationship between the development area ratio Sdr and the film adhesion (Evaluation 1). The results of 1-22 are plotted, the horizontal axis represents the development area ratio Sdr [%], and the vertical axis represents the evaluation result of the film adhesion (Evaluation 1).
As is apparent from the results shown in Tables 1 to 3 and the graph of FIG. 1, the present invention examples (test materials No. 1 to 14 and 19 to 22) having a development area ratio Sdr of 0.25% or more. Were confirmed to be excellent in film adhesion (Evaluation 1).
On the other hand, it was confirmed that the comparative examples (test materials No. 15 to 18) in which the development area ratio Sdr is not 0.25% or more are inferior to the film adhesion (Evaluation 1).

なお、本発明例(試験材No.1〜14および19〜22)どうしを対比すると、展開面積比Sdraが5.00%以上である試験材No.1〜14および19は、展開面積比Sdraが5.00%未満である試験材No.20〜22よりも、フィルム密着性(評価2)がより優れていた。   In addition, when the inventive examples (test materials No. 1 to 14 and 19 to 22) are compared with each other, the test material No. 1 having a development area ratio Sdra of 5.00% or more is used. Nos. 1 to 14 and 19 are test materials No. 1 having a development area ratio Sdra of less than 5.00%. The film adhesion (Evaluation 2) was more excellent than 20-22.

次に、容器用鋼板の試験材のうち、試験材No.10および15について、めっき層の表面凹凸形状を直接確認した。
具体的には、まず、FIB(Focused Ion Beam)法を用いて、めっき層表面に対して45°の角度からイオンビームを照射してボックス加工を施し、その断面をSEM観察した。このとき、表面処理皮膜の表面上に、カーボンからなる保護膜を形成してから、加工を行なった。加工場所は任意で、加工ボックスの方向も任意とし、加速電圧5kVの反射電子像により断面を観察した。なお、高さ方向は、45°断面のため実際より√2倍長くなっているので1/√2倍して補正した。
Next, among the test materials of the steel plate for containers, the test material No. About 10 and 15, the surface uneven | corrugated shape of the plating layer was confirmed directly.
Specifically, first, using FIB (Focused Ion Beam) method, the ion beam was irradiated from a 45 ° angle to the plating layer surface to perform box processing, and the cross section was observed by SEM. At this time, processing was performed after forming a protective film made of carbon on the surface of the surface treatment film. The processing place was arbitrary, the direction of the processing box was also arbitrary, and the cross section was observed by a reflected electron image with an acceleration voltage of 5 kV. Since the height direction is 45 times longer than the actual length because it is a 45 ° cross section, it was corrected by 1 / √2 times.

図2は、試験材No.10の45°断面を示す反射電子像であり、図3は、試験材No.15の45°断面を示す反射電子像である。図2および図3中、符号1は鋼板を、符号2はめっき層を、符号3は表面処理皮膜を、符号4は保護膜を、符号5はめっき層の表面を示す。
図2および図3に示すように、フィルム密着性に優れる発明例である試験材No.10では、めっき層(Sn層)表面の凹凸形状が明瞭に確認できるが、フィルム密着性に劣る比較例である試験材No.15では凹凸形状は確認できなかった。
FIG. 10 is a reflected electron image showing a 45 ° section of FIG. 15 is a reflected electron image showing 15 45 ° cross sections. 2 and 3, reference numeral 1 denotes a steel plate, reference numeral 2 denotes a plating layer, reference numeral 3 denotes a surface treatment film, reference numeral 4 denotes a protective film, and reference numeral 5 denotes a surface of the plating layer.
As shown in FIG. 2 and FIG. 3, test material No. No. 10, the uneven shape on the surface of the plating layer (Sn layer) can be clearly confirmed, but the test material No. 10 is a comparative example inferior in film adhesion. In FIG. 15, the uneven shape could not be confirmed.

1:鋼板
2:めっき層
3:表面処理皮膜
4:保護膜
5:めっき層の表面
1: Steel plate 2: Plating layer 3: Surface treatment film 4: Protective film 5: Surface of the plating layer

Claims (4)

鋼板の表面の少なくとも一部にSn層を含むめっき層を有するめっき鋼板と、前記めっき鋼板の前記めっき層側の表面上に配置されたTiおよびNiを含有する表面処理皮膜と、を有する容器用鋼板であって、
走査型電子顕微鏡を用いた測定により得られる表面積から算出される、前記容器用鋼板の前記表面処理皮膜側の表面の展開面積比Sdrが0.25%以上である、容器用鋼板。
For a container having a plated steel sheet having a plated layer containing an Sn layer on at least a part of the surface of the steel sheet, and a surface treatment film containing Ti and Ni disposed on the surface of the plated steel sheet on the plated layer side A steel plate,
A container steel plate having a developed area ratio Sdr of the surface on the surface treatment film side of the steel plate for containers, calculated from a surface area obtained by measurement using a scanning electron microscope, of 0.25% or more.
前記めっき層が、さらに、Ni層、Ni−Fe合金層、Fe−Sn合金層、および、Fe−Sn−Ni合金層からなる群から選ばれる少なくとも1層を含む、請求項1に記載の容器用鋼板。   The container according to claim 1, wherein the plating layer further includes at least one layer selected from the group consisting of a Ni layer, a Ni-Fe alloy layer, a Fe-Sn alloy layer, and a Fe-Sn-Ni alloy layer. Steel plate. 前記表面処理皮膜は、前記めっき鋼板の片面あたりのTi換算の付着量が5〜30mg/m2であり、前記めっき鋼板の片面あたりのNi換算の付着量が1〜30mg/m2である、請求項1または2に記載の容器用鋼板。The surface treatment film has a Ti equivalent adhesion amount per side of the plated steel sheet of 5 to 30 mg / m 2 and a Ni equivalent adhesion amount per side of the plated steel sheet of 1 to 30 mg / m 2 . The steel plate for containers according to claim 1 or 2. 走査型プローブ顕微鏡を用いた測定により得られる表面積から算出される、前記容器用鋼板の前記表面処理皮膜側の表面の展開面積比Sdraが5.00%以上である、請求項1〜3のいずれか1項に記載の容器用鋼板。   The development area ratio Sdra of the surface on the surface treatment film side of the steel plate for containers, calculated from the surface area obtained by measurement using a scanning probe microscope, is 5.00% or more, any one of claims 1 to 3 The container steel plate according to claim 1.
JP2015538789A 2014-06-05 2015-06-05 Steel plate for containers Active JP6079891B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014116554 2014-06-05
JP2014116554 2014-06-05
JP2015065095 2015-03-26
JP2015065095 2015-03-26
PCT/JP2015/066355 WO2015186827A1 (en) 2014-06-05 2015-06-05 Steel sheet for containers

Publications (2)

Publication Number Publication Date
JP6079891B2 true JP6079891B2 (en) 2017-02-15
JPWO2015186827A1 JPWO2015186827A1 (en) 2017-04-20

Family

ID=54766893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015538789A Active JP6079891B2 (en) 2014-06-05 2015-06-05 Steel plate for containers

Country Status (3)

Country Link
JP (1) JP6079891B2 (en)
TW (1) TW201600638A (en)
WO (1) WO2015186827A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6123847B2 (en) * 2014-10-24 2017-05-10 Jfeスチール株式会社 Steel plate for container and method for producing the same
EP3636429A4 (en) * 2017-06-09 2020-05-20 JFE Steel Corporation Multilayer structure and method for producing multilayer structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11197704A (en) * 1998-01-16 1999-07-27 Nippon Steel Corp Plating steel plate having excellent color tone, adhesion and weldability and its manufacture
JP2004263295A (en) * 2003-02-10 2004-09-24 Jfe Steel Kk Alloyed galvanized steel sheet excellent in solder plated adhesion and its production method
JP2005120447A (en) * 2003-10-17 2005-05-12 Jfe Steel Kk Galvanized steel sheet having excellent press formability, and its production method
JP2009155665A (en) * 2007-12-25 2009-07-16 Jfe Steel Corp Method for manufacturing surface-treated steel sheet
JP2010031348A (en) * 2007-10-31 2010-02-12 Jfe Steel Corp Surface treated steel sheet and resin-coated steel sheet
JP2012057257A (en) * 2011-12-22 2012-03-22 Jfe Steel Corp Surface-treated metal sheet, resin-coated metal sheet, metal can, and can lid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11197704A (en) * 1998-01-16 1999-07-27 Nippon Steel Corp Plating steel plate having excellent color tone, adhesion and weldability and its manufacture
JP2004263295A (en) * 2003-02-10 2004-09-24 Jfe Steel Kk Alloyed galvanized steel sheet excellent in solder plated adhesion and its production method
JP2005120447A (en) * 2003-10-17 2005-05-12 Jfe Steel Kk Galvanized steel sheet having excellent press formability, and its production method
JP2010031348A (en) * 2007-10-31 2010-02-12 Jfe Steel Corp Surface treated steel sheet and resin-coated steel sheet
JP2009155665A (en) * 2007-12-25 2009-07-16 Jfe Steel Corp Method for manufacturing surface-treated steel sheet
JP2012057257A (en) * 2011-12-22 2012-03-22 Jfe Steel Corp Surface-treated metal sheet, resin-coated metal sheet, metal can, and can lid

Also Published As

Publication number Publication date
JPWO2015186827A1 (en) 2017-04-20
TW201600638A (en) 2016-01-01
WO2015186827A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
JP6493520B2 (en) Steel plate for can and manufacturing method thereof
JP6601574B2 (en) Steel plate for can and manufacturing method thereof
JP6493519B2 (en) Steel plate for can and manufacturing method thereof
JP5447734B2 (en) Ni-containing surface-treated steel sheet for containers and containers
KR102313040B1 (en) Steel plate for cans and manufacturing method thereof
JP6079891B2 (en) Steel plate for containers
JP6658878B2 (en) Steel plate for containers
JP6197778B2 (en) Steel plate for container and method for producing the same
JP6540801B2 (en) Container steel plate and method of manufacturing container steel plate
JP6123847B2 (en) Steel plate for container and method for producing the same
JP5978923B2 (en) Steel plate for container, treatment liquid used for manufacturing the same, and method for manufacturing steel plate for container
JP6164206B2 (en) Steel plate for container and method for producing the same
JP5991140B2 (en) Steel plate for container, treatment liquid used for manufacturing the same, and method for manufacturing steel plate for container
JPWO2020044714A1 (en) Steel sheet for cans and its manufacturing method
JP6135650B2 (en) Steel plate for containers
JP2014111823A (en) Steel sheet for vessel, process liquid used for manufacturing the steel sheet, and manufacturing method of the steel sheet for vessel
JP5884191B2 (en) Steel plate for containers
JP6146402B2 (en) Steel plate for containers
JP6048441B2 (en) Steel plate for containers
JP6052305B2 (en) Steel plate for containers
JP6197911B2 (en) Treatment liquid and method for producing steel plate for container
JP6003910B2 (en) Steel plate for container and method for producing the same
JP6003553B2 (en) Treatment liquid, steel plate for container, and method for producing steel plate for container

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170102

R150 Certificate of patent or registration of utility model

Ref document number: 6079891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250