JP2002302753A - Galvannealed steel sheet - Google Patents

Galvannealed steel sheet

Info

Publication number
JP2002302753A
JP2002302753A JP2001107059A JP2001107059A JP2002302753A JP 2002302753 A JP2002302753 A JP 2002302753A JP 2001107059 A JP2001107059 A JP 2001107059A JP 2001107059 A JP2001107059 A JP 2001107059A JP 2002302753 A JP2002302753 A JP 2002302753A
Authority
JP
Japan
Prior art keywords
steel sheet
layer
oxide layer
flat portion
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001107059A
Other languages
Japanese (ja)
Other versions
JP3644402B2 (en
Inventor
Shoichiro Taira
章一郎 平
Yoshiharu Sugimoto
芳春 杉本
Junichi Inagaki
淳一 稲垣
Masaaki Yamashita
正明 山下
Masayasu Nagoshi
正泰 名越
Kaoru Sato
馨 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2001107059A priority Critical patent/JP3644402B2/en
Publication of JP2002302753A publication Critical patent/JP2002302753A/en
Application granted granted Critical
Publication of JP3644402B2 publication Critical patent/JP3644402B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a galvannealed steel sheet having excellent sliding characteristics at press forming and also excellent chemical treatment properties. SOLUTION: In the galvannealed steel sheet; an iron-zinc alloy plating layer is provided to at least one side of a steel sheet; the surface of the above plating layer has a flat zone; an oxide layer of >=10 nm thickness is formed on the flat zone; and the ratio (atomic %) between Zn and Al in the surface layer of the above flat zone is made to 2.0-8.0. The area ratio of the above flat zone in the surface of the above iron-zinc alloy plating is made to 20-80%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、プレス成形時に
おける摺動性に優れ、しかも化成処理性にも優れた合金
化溶融亜鉛めっき鋼板に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alloyed hot-dip galvanized steel sheet having excellent slidability during press forming and excellent chemical conversion treatment.

【0002】[0002]

【従来の技術】合金化溶融亜鉛めっき鋼板は亜鉛めっき
鋼板と比較して溶接性および塗装性に優れることから、
自動車車体用途を中心に広範な分野で広く利用されてい
る。そのような用途での合金化溶融亜鉛めっき鋼板は、
プレス成形を施されて使用に供される。しかし、合金化
溶融亜鉛めっき鋼板は、冷延鋼板に比べてプレス成形性
が劣るという欠点を有する。これはプレス金型での合金
化溶融めっき鋼板の摺動抵抗が冷延鋼板に比べて大きい
ことが原因である。すなわち、金型とビードでの摺動抵
抗が大きい部分で合金化溶融亜鉛めっき鋼板がプレス金
型に流入しにくくなり、鋼板の破断が起こりやすい。
2. Description of the Related Art Alloyed hot-dip galvanized steel sheets have better weldability and paintability than galvanized steel sheets.
It is widely used in a wide range of fields, mainly for automotive body applications. Galvannealed steel sheets for such applications are:
It is press-formed and used. However, the galvannealed steel sheet has a drawback that press formability is inferior to that of a cold-rolled steel sheet. This is because the sliding resistance of the alloyed hot-dip coated steel sheet in the press die is larger than that of the cold-rolled steel sheet. That is, the galvannealed steel sheet hardly flows into the press die in a portion where the sliding resistance between the die and the bead is large, and the steel sheet is easily broken.

【0003】合金化溶融亜鉛めっき鋼板は、鋼板に亜鉛
めっきを施した後、加熱処理を行い、鋼板中のFeとめっ
き層中のZnが拡散する合金化反応が生じることにより、
Fe-Zn合金相を形成させたものである。このFe-Zn合金相
は、通常、Γ相、δ1相、ζ相からなる皮膜であり、Fe
濃度が低くなるに従い、すなわち、Γ相→δ1相→ζ相
の順で、硬度ならびに融点が低下する傾向がある。この
ため、摺動性の観点からは、高硬度で、融点が高く凝着
の起こりにくい高Fe濃度の皮膜が有効であり、プレス成
形性を重視する合金化溶融亜鉛めっき鋼板は、皮膜中の
平均Fe濃度を高めに製造されている。
[0003] An alloyed hot-dip galvanized steel sheet is subjected to a heat treatment after galvanizing the steel sheet, thereby causing an alloying reaction in which Fe in the steel sheet and Zn in the plating layer diffuse.
This is the one in which an Fe-Zn alloy phase is formed. This Fe-Zn alloy phase is usually a film composed of a Γ phase, a δ 1 phase, and a ζ phase,
As the concentration decreases, that is, in the order of す な わ ち phase → δ 1 phase → Γ phase, the hardness and melting point tend to decrease. For this reason, from the viewpoint of slidability, a coating having a high hardness, a high melting point and a high Fe concentration that is unlikely to cause adhesion is effective. It is manufactured with a high average Fe concentration.

【0004】しかしながら、高Fe濃度の皮膜では、めっ
き−鋼板界面に硬くて脆いΓ相が形成されやすく加工時
に、界面から剥離する現象、いわゆるパウダリングが生
じ易い問題を有している。このため、特開平1-319661号
公報に示されているように、摺動性と耐パウダリング性
を両立するために、上層に硬質のFe-Zn合金を電気めっ
きなどの手法により第二層を付与する方法がとられてい
る。
[0004] However, a film having a high Fe concentration has a problem that a hard and brittle や す く phase is easily formed at the interface between the plating and the steel sheet, and the phenomenon of peeling from the interface during processing, that is, so-called powdering is apt to occur. For this reason, as shown in JP-A-1-319661, in order to achieve both slidability and powdering resistance, a hard Fe-Zn alloy is coated on the second layer by a method such as electroplating to form an upper layer. Is given.

【0005】亜鉛系めっき鋼板使用時のプレス成形性を
向上させる方法としては、この他に、高粘度の潤滑油を
塗布する方法が広く用いられている。しかし、この方法
では、潤滑油の高粘性のために塗装工程で脱脂不良によ
る塗装欠陥が発生したり、また、プレス時の油切れによ
り、プレス性能が不安定になる等の問題がある。従っ
て、合金化溶融亜鉛めっき自身のプレス成形性が改善さ
れることが強く要請されている。
[0005] As a method for improving the press formability when using a galvanized steel sheet, a method of applying a high-viscosity lubricating oil is widely used. However, in this method, there are problems such as the occurrence of coating defects due to poor degreasing in the coating process due to the high viscosity of the lubricating oil, and the unstable press performance due to running out of oil during pressing. Therefore, there is a strong demand for improving the press formability of the galvannealed alloy itself.

【0006】上記の問題を解決する方法として、特開昭
53-60332号公報および特開平2-190483号公報には、亜鉛
系めっき鋼板の表面に電解処理、浸漬処理、塗布酸化処
理、または加熱処理を施すことにより、ZnOを主体とす
る酸化膜を形成させて溶接性、または加工性を向上させ
る技術を開示している。
As a method for solving the above problem, Japanese Patent Application Laid-Open
No. 53-60332 and JP-A-2-190483 describe that an oxide film mainly composed of ZnO is formed by subjecting the surface of a zinc-based plated steel sheet to electrolytic treatment, immersion treatment, coating oxidation treatment, or heat treatment. It discloses a technique for improving weldability or workability.

【0007】特開平4-88196号公報は、亜鉛系めっき鋼
板の表面に、リン酸ナトリウム5〜60g/lを含みpH2〜6の
水溶液にめっき鋼板を浸漬するか、電解処理を行う、ま
たは、上記水溶液を塗布することにより、P酸化物を主
体とした酸化膜を形成して、プレス成形性及び化成処理
性を向上させる技術を開示している。
JP-A-4-88196 discloses that a galvanized steel sheet is immersed in an aqueous solution containing 5 to 60 g / l of sodium phosphate and having a pH of 2 to 6 or subjected to electrolytic treatment on the surface of a galvanized steel sheet. A technique for forming an oxide film mainly composed of P oxide by applying the aqueous solution to improve press formability and chemical conversion treatment is disclosed.

【0008】特開平3-191093号公報は、亜鉛系めっき鋼
板の表面に電解処理、浸漬処理、塗布処理、塗布酸化処
理、または加熱処理により、Ni酸化物を生成させること
により、プレス成形性および化成処理性を向上させる技
術を開示している。
[0008] Japanese Patent Application Laid-Open No. 3-91093 discloses that the surface of a galvanized steel sheet is subjected to electrolytic treatment, immersion treatment, coating treatment, coating oxidation treatment, or heat treatment to produce Ni oxide, thereby improving the press formability. A technique for improving chemical conversion treatment is disclosed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記の
先行技術を合金化溶融亜鉛めっき鋼板に適用した場合、
プレス成形性の改善効果を安定して得ることはできな
い。本発明者らは、その原因について詳細な検討を行っ
た結果、合金化溶融亜鉛めっき鋼板はAl酸化物が存在す
ることにより表面の反応性が劣ること、及び表面の凹凸
が大きいことが原因であることを見出した。即ち、先行
技術を合金化溶融亜鉛めっき鋼板に適用した場合、表面
の反応性が低いため、電解処理、浸漬処理、塗布酸化処
理及び加熱処理等を行っても、所定の皮膜を表面に形成
することは困難であり、反応性の低い部分、すなわち、
Al酸化物量が多い部分では膜厚が薄くなってしまう。ま
た、表面の凹凸が大きいため、プレス成型時にプレス金
型と直接接触するのは表面の凸部となるが、凸部のうち
膜厚の薄い部分と金型との接触部での摺動抵抗が大きく
なり、プレス成形性の改善効果が十分には得られない。
However, when the above prior art is applied to a galvannealed steel sheet,
The effect of improving press formability cannot be obtained stably. The present inventors have conducted a detailed study on the cause, and as a result, the alloyed hot-dip galvanized steel sheet has poor surface reactivity due to the presence of Al oxide, and has large surface irregularities. I found something. That is, when the prior art is applied to an alloyed hot-dip galvanized steel sheet, since the surface has low reactivity, even when performing electrolytic treatment, dipping treatment, coating oxidation treatment, heat treatment, etc., a predetermined film is formed on the surface. It is difficult and less reactive,
In portions where the amount of Al oxide is large, the film thickness becomes thin. Also, due to the large irregularities on the surface, the direct contact with the press mold during press molding is the convex part of the surface, but the sliding resistance at the contact part between the thin part of the convex part and the mold is high. And the effect of improving press formability cannot be sufficiently obtained.

【0010】本発明は上記の問題点を改善し、プレス成
形時の摺動性に優れ、さらに化成処理性にも優れた合金
化溶融亜鉛めっき鋼板を提供することを目的とする。
[0010] It is an object of the present invention to provide an alloyed hot-dip galvanized steel sheet which solves the above-mentioned problems, has excellent slidability during press forming, and is also excellent in chemical conversion treatment.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく、鋭意研究を重ねた結果、合金化溶融亜
鉛めっき鋼板表面に存在する平坦部表層の酸化物層厚さ
および酸化物形状を適正化することにより、安定して優
れたプレス成形性が得られるとともに、化成処理性にも
優れることを知見した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the thickness of the oxide layer on the surface layer of the flat portion existing on the surface of the galvannealed steel sheet and It has been found that, by optimizing the oxide shape, excellent press formability can be obtained stably and also excellent in chemical conversion treatment.

【0012】合金化溶融亜鉛めっき鋼板表面の上記平坦
部は、周囲と比較すると凸部として存在する。プレス成
形時に実際にプレス金型と接触するのは、この平坦部が
主体となるため、この平坦部における摺動抵抗を小さく
すれば、プレス成形性を安定して改善することができ
る。この平坦部における摺動抵抗を小さくするには、め
っき層と金型との凝着を防ぐのが有効であり、そのため
には、めっき層の表面に、硬質かつ高融点の皮膜を形成
することが有効である。この観点から検討を進めた結
果、平坦部表層の酸化物層厚さを制御することが有効で
あることを見出した。
The flat part on the surface of the galvannealed steel sheet exists as a convex part as compared with the surrounding area. The flat portion mainly contacts the press mold during the press forming, so that if the sliding resistance in the flat portion is reduced, the press formability can be stably improved. In order to reduce the sliding resistance in this flat part, it is effective to prevent adhesion between the plating layer and the mold. For this purpose, it is necessary to form a hard and high-melting coating on the surface of the plating layer. Is valid. As a result of studying from this viewpoint, it was found that it is effective to control the thickness of the oxide layer on the surface layer of the flat portion.

【0013】一方、このような酸化物層は化成処理皮膜
の形成を抑制するため、プレス成形性の確保のために厚
い酸化物層を形成させた場合には、化成処理の前処理と
して酸化物層を除去し活性化するのに長時間を有し、実
用上には問題となる。しかしながら、平坦部表層に厚い
酸化膜を形成させた場合においても、酸化物層に凹凸が
存在すると、酸化膜厚の薄い凹部が化成処理皮膜形成の
核となるため、化成処理性にも優れる。
On the other hand, such an oxide layer suppresses the formation of a chemical conversion treatment film. Therefore, when a thick oxide layer is formed to ensure press formability, the oxide treatment is performed as a pretreatment before the chemical conversion treatment. It has a long time to remove and activate the layer, which is problematic in practice. However, even when a thick oxide film is formed on the surface layer of the flat portion, if the oxide layer has irregularities, the concave portion having a small oxide film thickness serves as a nucleus for the formation of the chemical conversion treatment film, so that the chemical conversion treatment is also excellent.

【0014】このように、酸化物層の凸部での効果によ
りプレス成形性が向上し、さらに酸化物層の凹部の効果
により、化成処理性への悪影響のない合金化溶融亜鉛め
っき鋼板を得ることができる。また、この酸化物層の凹
凸の指標としては、めっき表面でのZn/Al濃度比を用い
ることができ、この値には適正値が存在することを知見
した。
As described above, the press formability is improved by the effect of the convex portion of the oxide layer, and the galvannealed steel sheet having no adverse effect on the chemical conversion property is obtained by the effect of the concave portion of the oxide layer. be able to. Further, as an index of the unevenness of the oxide layer, a Zn / Al concentration ratio on the plating surface can be used, and it has been found that an appropriate value exists for this value.

【0015】本発明は、以上の知見に基いてなされたも
のであり、第1発明は、鉄−亜鉛合金めっき層を少なく
とも鋼板の片面に有し、かつ前記めっき層の表面に平坦
部を有し、その平坦部に厚さ10nm以上の酸化物層が形成
され、かつ前記平坦部表層におけるZn/Al比(at%)が2.0
以上、8.0以下であることを特徴とする合金化溶融亜鉛
めっき鋼板を提供する。
The present invention has been made based on the above findings, and the first invention has an iron-zinc alloy plating layer on at least one surface of a steel sheet and a flat portion on the surface of the plating layer. An oxide layer having a thickness of 10 nm or more is formed on the flat portion, and the Zn / Al ratio (at%) in the flat portion surface layer is 2.0.
As described above, there is provided an alloyed hot-dip galvanized steel sheet characterized by being 8.0 or less.

【0016】第2発明は、第1発明において、鉄−亜鉛合
金めっき表面における前記平坦部の面積率が20〜80%で
あることを特徴とする合金化溶融亜鉛めっき鋼板を提供
する。
According to a second invention, there is provided the galvannealed steel sheet according to the first invention, wherein the area ratio of the flat portion on the surface of the iron-zinc alloy plating is 20 to 80%.

【0017】[0017]

【発明の実施の形態】合金化溶融亜鉛めっき鋼板の製造
の際には、鋼板に溶融亜鉛めっきを施した後に、さらに
加熱し合金化処理が施されるが、この合金化処理時の鋼
板−めっき界面の反応性の差により、合金化溶融亜鉛め
っき鋼板表面には凹凸が存在する。しかしながら、合金
化処理後には、通常、材質確保のために調質圧延が施さ
れ、この調質圧延時のロールとの接触により、めっき表
面は平滑化され凹凸が緩和される。従って、プレス成型
時には、金型がめっき表面の凸部を押しつぶすのに必要
な力が低下し、摺動特性を向上させることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the production of an alloyed hot-dip galvanized steel sheet, the steel sheet is subjected to hot-dip galvanizing and then further heated and alloyed. Irregularities exist on the surface of the galvannealed steel sheet due to the difference in reactivity at the plating interface. However, after the alloying treatment, temper rolling is usually performed to secure the material, and the contact with the roll at the time of the temper rolling causes the plating surface to be smoothed and unevenness is reduced. Therefore, at the time of press molding, the force required for the mold to crush the projections on the plating surface is reduced, and the sliding characteristics can be improved.

【0018】合金化溶融亜鉛めっき鋼板表面の平坦部
は、プレス成形時に金型が直接接触する部分であるた
め、金型との凝着を防止する硬質かつ高融点の物質が存
在することが、摺動性の向上には重要である。この点で
は、表層にζ相を含まないδ1単相の皮膜とすると、摺
動性の向上には効果的であるが、表層が完全にδ1相と
なるためには、皮膜中のFe濃度が高くなるよう合金化処
理を施さなければならず、この結果、めっき−鋼板界面
には、硬質で脆いΓ相が厚く生成し、プレス成形の際に
パウダリングを生じやすい問題がある。一方、パウダリ
ングを防止するために、Γ相が薄くなるような合金化処
理を施すと、表層にはζ相が残存し、摺動性に劣る問題
がある。
Since the flat part of the surface of the alloyed hot-dip galvanized steel sheet is in direct contact with the mold at the time of press forming, the presence of a hard and high-melting substance that prevents adhesion to the mold is present. It is important for improving the slidability. In this regard, a δ 1 single-phase film containing no ζ phase in the surface layer is effective for improving the slidability, but in order for the surface layer to be completely δ 1 phase, the Fe An alloying treatment must be performed to increase the concentration. As a result, a thick, hard and brittle Γ phase is formed at the interface between the plating and the steel sheet, and there is a problem that powdering is likely to occur during press forming. On the other hand, if an alloying treatment is performed to reduce the thickness of the Γ phase in order to prevent powdering, the ζ phase remains on the surface layer, and there is a problem that the slidability is poor.

【0019】この観点から、本発明で用いる合金化溶融
亜鉛めっき鋼板のめっき皮膜のFe濃度及びAl濃度につい
ては特に規定しないが、めっき層としては、主としてδ
1相からなり、更にζ相を含んでいる構造が理想的であ
る。
From this viewpoint, although the Fe concentration and the Al concentration of the plating film of the galvannealed steel sheet used in the present invention are not particularly specified, the plating layer is mainly δ
An ideal structure is composed of one phase and further contains a ζ phase.

【0020】一方、表層に酸化物層を存在させること
は、ζ相が残存する皮膜でも、酸化物層が金型との凝着
を防止するため、摺動特性の向上に有効である。更に、
めっき皮膜表面にζ相が存在すると、表面の反応性が高
まるため、表面がδ1単相の場合と比較して、平坦部に
効果的に酸化物層を生成させることができる。
On the other hand, the presence of the oxide layer on the surface layer is effective in improving the sliding characteristics even in a film in which the ζ phase remains, since the oxide layer prevents adhesion to the mold. Furthermore,
If ζ phase plating film surface is present, since the reactivity of the surface is increased, the surface as compared with the case of [delta] 1 single phase, it is possible to generate effectively the oxide layer on the flat portion.

【0021】実際のプレス成形時には、表層の酸化物は
摩耗し、削り取られるため、金型と被加工材の接触面積
が大きい場合には、十分に厚い酸化膜の存在が必要であ
る。しかしながら、めっき表面には合金化処理時の加熱
により酸化物層が形成されており、調質圧延などの方法
により平坦化された際に、一部破壊されているものの、
大部分が残存しているため、表面の反応性が十分ではな
く、その後の酸化処理により所定の酸化膜厚を得ること
は困難である。そこで、表層に残存した酸化膜を除去す
ることにより、表面を活性化でき、その後の酸化処理で
十分に厚い酸化物層を付与することができるため、良好
な摺動性を得ることができる。
At the time of actual press forming, the oxide on the surface layer is worn away and scraped off. Therefore, when the contact area between the mold and the workpiece is large, a sufficiently thick oxide film must be present. However, an oxide layer is formed on the plating surface by heating during the alloying process, and when partially flattened by a method such as temper rolling, although partially destroyed,
Since most remains, the reactivity of the surface is not sufficient, and it is difficult to obtain a predetermined oxide film thickness by the subsequent oxidation treatment. Therefore, by removing the oxide film remaining on the surface layer, the surface can be activated and a sufficiently thick oxide layer can be provided by the subsequent oxidation treatment, so that good slidability can be obtained.

【0022】ここで、表層にζ相が残存する皮膜である
か否かについてはX線回折あるいはめっき表面のSEM像を
撮影した写真より判断することができる。すなわち、め
っき表面のX線回折ピークの中から、d=1.900Å(ζ
相)、およびd=1.990Å(δ相)に対するピーク強度か
らそれぞれバックグラウンド値を引いたものの比率(ζ
/δ)が0.2以上であればζ相が残存する皮膜、0.2未満
であればζ相が残存しない皮膜とみなすことができる。
まためっき表面のSEM像より形状が柱状晶であるものを
ζ相として、写真全体に対するζ相の割合(面積率)が
10%以上のものをζ相が残存する皮膜、10%未満のものを
ζ相が残存しない皮膜とみなすことができる。なお、調
圧などによりつぶされた部分がめっき表面に存在する場
合は、形状より判断することが困難であるため、このよ
うな部分はあらかじめ除外して面積率の計算を行うこと
とする。
Here, whether or not the film has the ζ phase remaining on the surface layer can be determined from X-ray diffraction or a photograph taken of an SEM image of the plating surface. That is, from among the X-ray diffraction peaks on the plating surface, d = 1.900Å (ζ
Phase) and the ratio of peak intensity for d = 1.990Å (δ phase) minus the background value, respectively (ζ
If / δ) is 0.2 or more, it can be regarded as a film in which the Δ phase remains, and if it is less than 0.2, it can be regarded as a film in which the Δ phase does not remain.
In addition, the ratio (area ratio) of the ζ phase to the entire photograph is defined as the ζ phase where the shape is columnar from the SEM image of the plating surface.
A film having 10% or more can be regarded as a film in which a ζ phase remains, and a film having less than 10% can be regarded as a film in which a ζ phase does not remain. When a portion crushed by pressure adjustment or the like is present on the plating surface, it is difficult to judge the shape based on the shape. Therefore, such a portion is excluded in advance and the area ratio is calculated.

【0023】本発明における酸化物層とは、Zn、Fe、Al
及びその他の金属元素の1種以上の酸化物及び/又は水酸
化物などからなる層のことである。
The oxide layer in the present invention includes Zn, Fe, Al
And one or more oxides and / or hydroxides of other metal elements.

【0024】めっき表層の平坦部における酸化物層の厚
さを10nm以上とすることにより、良好な摺動性を示す合
金化溶融亜鉛めっき鋼板が得られるが、酸化物層の厚さ
を20nm以上とするとより効果的である。これは、金型と
被加工物の接触面積が大きくなるプレス成形加工におい
て、表層の酸化物層が摩耗した場合でも残存し、摺動性
の低下を招くことがないためである。
By making the thickness of the oxide layer in the flat portion of the plating surface layer 10 nm or more, an alloyed hot-dip galvanized steel sheet showing good slidability can be obtained, but the thickness of the oxide layer is 20 nm or more. Is more effective. This is because in a press forming process in which the contact area between the mold and the workpiece increases, even if the surface oxide layer is worn, the oxide layer remains and does not cause a decrease in slidability.

【0025】さらに、上記酸化物層について詳細な調査
を行ったところ、本発明者らは、酸化物層の表面形状に
は凹凸が存在することを見出した。すなわち、Zn系酸化
物層には微細な隙間が存在し、その隙間上には薄いAl系
酸化物層が残存しており、このような酸化物層を有する
合金化溶融亜鉛めっき鋼板は、化成処理性にも優れ有利
であることが明らかになった。このメカニズムは以下の
ように考えることができる。
Further, upon conducting a detailed investigation on the oxide layer, the present inventors have found that the surface shape of the oxide layer has irregularities. That is, fine gaps exist in the Zn-based oxide layer, and a thin Al-based oxide layer remains on the gaps. The alloyed hot-dip galvanized steel sheet having such an oxide layer is It has been revealed that it is excellent in processing property and advantageous. This mechanism can be considered as follows.

【0026】通常、めっき表層に均一な酸化物層が形成
されていると、化成処理液とZnとの反応が阻害され、均
一な化成処理皮膜を形成できないため、化成処理時に
は、酸化物層をできるだけ除去する前処理に長時間を有
する。これに対して、前記のような酸化膜厚の薄い凹部
が存在すると、この凹部については通常の条件下で酸化
物層を除去することができ、この部分を起点として化成
処理皮膜を形成することができる。また、このような凹
凸のある酸化物層は、凹部においてプレス油を保持する
効果があるため、プレス成形性の向上効果も得られると
考えられる。
Usually, if a uniform oxide layer is formed on the plating surface layer, the reaction between the chemical conversion treatment solution and Zn is inhibited, and a uniform chemical conversion treatment film cannot be formed. Pretreatment to remove as much as possible has a long time. On the other hand, if there is a concave portion having a thin oxide film as described above, the oxide layer can be removed from this concave portion under normal conditions, and a chemical conversion treatment film is formed starting from this portion. Can be. In addition, since the oxide layer having such irregularities has an effect of retaining the press oil in the concave portions, it is considered that the effect of improving the press formability is also obtained.

【0027】以上の観点から、さらに調査を行ったとこ
ろ、めっき表面におけるZn/Al濃度比が、表層の酸化物
の凹凸と密接な関係があることが明らかになった。すな
わち、表面にZn系酸化物層が均一に形成され凹部が少な
いと、凹部に存在するAl系酸化物層を検出できず、Zn/A
l濃度比が大きくなる。これに対して、凹部が多く存在
する酸化物層が形成されると、表面ではAl系酸化物層が
多く検出され、Zn/Al濃度比が小さくなる。そこで、種
々の合金化溶融亜鉛めっき鋼板を詳細に調査し、プレス
成形性と化成処理性を満足するには、めっき表面のZn/A
l濃度比(at%)が2.0以上8.0以下の範囲にあることが必
要であることを見出した。これは、Zn/Al濃度比が2.0未
満であると酸化物層がまばらでプレス成形性の改善効果
が見られず、また8.0を超えると緻密な酸化物層が形成
され、化成処理性に悪影響が及ぼされるためである。
Further investigations from the above viewpoints have revealed that the Zn / Al concentration ratio on the plating surface has a close relationship with the unevenness of the oxide on the surface layer. That is, if the Zn-based oxide layer is uniformly formed on the surface and the number of concave portions is small, the Al-based oxide layer present in the concave portions cannot be detected, and Zn / A
l The concentration ratio increases. On the other hand, when an oxide layer having many concave portions is formed, many Al-based oxide layers are detected on the surface, and the Zn / Al concentration ratio decreases. Therefore, various alloyed hot-dip galvanized steel sheets were investigated in detail, and in order to satisfy press formability and chemical conversion treatment properties, the Zn / A
l It was found that the concentration ratio (at%) needs to be in the range of 2.0 or more and 8.0 or less. This is because if the Zn / Al concentration ratio is less than 2.0, the oxide layer is sparse and no improvement effect on press formability is observed, and if it exceeds 8.0, a dense oxide layer is formed, which adversely affects the chemical conversion treatment property. Is exerted.

【0028】一方、このように凹凸が存在する酸化物層
により、厚い酸化物層が形成されても化成処理皮膜を均
一に形成できるが、酸化物層の厚さが200nmを超える
と、凹凸のある酸化物が形成されていても表面の反応性
が極端に低下し、化成処理皮膜を形成するのが困難にな
るため、200nm以下とするのが望ましい。
On the other hand, even if a thick oxide layer is formed, a chemical conversion treatment film can be formed uniformly by the oxide layer having such irregularities. Even if a certain oxide is formed, the reactivity of the surface is extremely reduced and it becomes difficult to form a chemical conversion treatment film.

【0029】このような凹凸の存在する酸化物層は、例
えば、合金化処理後の溶融亜鉛めっき鋼板を酸性溶液に
浸漬し、水洗を施すまでの乾燥時間を制御することによ
り形成できるが、最終的にめっき表面でのZn/Al濃度比
が本発明で規定した範囲内にあるような凹凸のある酸化
物層が形成されていればよく、その手法に制限はない。
The oxide layer having such irregularities can be formed, for example, by immersing the galvanized steel sheet after the alloying treatment in an acidic solution and controlling the drying time until washing with water. It is only necessary that an oxide layer having irregularities such that the Zn / Al concentration ratio on the plating surface falls within the range specified in the present invention is formed, and the method is not limited.

【0030】なお、平坦部表面の酸化物層の厚さは、Ar
イオンスパッタリングと組み合わせたオージェ電子分光
(AES)により求めることができる。この方法において
は、所定厚さまでスパッタした後、測定対象の各元素の
スペクトル強度から相対感度因子補正により、その深さ
での組成を求めることができる。酸化物または水酸化物
に起因するOの含有率は、ある深さで最大値となった後
(これが最表層の場合もある)、減少し、一定となる。
Oの含有率が最大値より深い位置で、最大値と一定値と
の和の1/2となる深さを、酸化物の厚さとする。同時
に、ZnおよびAlの含有率についても、深さ方向の分析を
行い、表層での濃度(at%)、すなわちスパッタ時間0秒
の段階での濃度を測定し、この測定値をもとに比率を計
算することによりZn/Al濃度比が得られる。
The thickness of the oxide layer on the surface of the flat part is Ar
It can be determined by Auger electron spectroscopy (AES) in combination with ion sputtering. In this method, after sputtering to a predetermined thickness, the composition at the depth can be obtained by correcting the relative sensitivity factor from the spectral intensity of each element to be measured. The O content due to oxides or hydroxides reaches a maximum at a certain depth (which may be the outermost layer), and then decreases and becomes constant.
At a position where the O content is deeper than the maximum value, the depth at which the sum of the maximum value and the constant value is 1/2 is defined as the oxide thickness. At the same time, the Zn and Al contents were also analyzed in the depth direction, and the concentration in the surface layer (at%), that is, the concentration at the stage of 0 second sputtering time, was measured. Is calculated, the Zn / Al concentration ratio is obtained.

【0031】ここで、めっき表面における平坦部の面積
率は、20〜80%とするのが望ましい。20%未満では、平坦
部を除く部分(凹部)での金型との接触面積が大きくな
り、実際に金型に接触する面積のうち、酸化物厚さを確
実に制御できる平坦部の面積率が小さくなるため、プレ
ス成形性の改善効果が小さくなる。また、平坦部を除く
部分は、プレス成型時にプレス油を保持する役割を持
つ。従って、平坦部を除く部分の面積率が20%未満にな
ると(平坦部の面積率が80%を超えると)プレス成形時
に油切れを起こしやすくなり、プレス成形性の改善効果
が小さくなる。
Here, the area ratio of the flat portion on the plating surface is desirably 20 to 80%. If it is less than 20%, the contact area with the mold in the portion (concave portion) excluding the flat portion becomes large, and the area ratio of the flat portion in which the oxide thickness can be reliably controlled in the area actually in contact with the mold. , The effect of improving press formability is reduced. In addition, the portion excluding the flat portion has a role of holding press oil at the time of press molding. Therefore, when the area ratio of the portion excluding the flat portion is less than 20% (when the area ratio of the flat portion exceeds 80%), oil shortage tends to occur during press molding, and the effect of improving press moldability is reduced.

【0032】なお、めっき表面の平坦部は、光学顕微鏡
あるいは走査型電子顕微鏡等で表面を観察することで容
易に識別可能である。めっき表面における平坦部の面積
率は、上記顕微鏡写真を画像解析することにより求める
ことができる。
The flat portion of the plating surface can be easily identified by observing the surface with an optical microscope or a scanning electron microscope. The area ratio of the flat portion on the plating surface can be determined by image analysis of the micrograph.

【0033】本発明に係る合金化溶融亜鉛めっき鋼板を
製造するに関しては、めっき浴中にAlが添加されている
ことが必要であるが、Al以外の添加元素成分は特に限定
されない。すなわち、Alの他に、Pb、Sb、Si、Sn、Mg、
Mn、Ni、Ti、Li、Cuなどが含有または添加されていて
も、本発明の効果が損なわれるものではない。
In producing the alloyed hot-dip galvanized steel sheet according to the present invention, it is necessary that Al is added to the plating bath, but the additional element components other than Al are not particularly limited. That is, in addition to Al, Pb, Sb, Si, Sn, Mg,
Even if Mn, Ni, Ti, Li, Cu, etc. are contained or added, the effects of the present invention are not impaired.

【0034】また、酸化処理などに使用する処理液中に
不純物が含まれることにより、P、S、N、B、Cl、Na、M
n、Ca、Mg、Ba、Sr、Siなどが酸化物層中に取り込まれ
ても、本発明の効果が損なわれるものではない。
Further, since impurities are contained in the treatment liquid used for the oxidation treatment, etc., P, S, N, B, Cl, Na, M
Even if n, Ca, Mg, Ba, Sr, Si and the like are taken into the oxide layer, the effects of the present invention are not impaired.

【0035】[0035]

【実施例】次に、本発明を実施例により更に詳細に説明
する。 (実施例1)板厚0.8mmの冷延鋼板上に、常法の合金化
溶融亜鉛めっき皮膜を形成し、さらに調質圧延を行っ
た。この際に、合金化条件を変更することで表層のζ相
比率を変化させ、調質圧延の圧下荷重を変化させること
で、表面における平坦部面積率を変化させた。引き続
き、50℃、pH2.0の硫酸酸性溶液に浸漬し、しばらく放
置した後、水洗することにより、平坦部の表層に酸化物
層を形成させる処理を行った。この際、放置時間を種々
変化させて、酸化物層の凹凸割合(=めっき表面のZn/A
l濃度比)および酸化膜厚を調整した。また上記処理前
にはpH12の水酸化ナトリウム水溶液に浸漬し、合金化処
理時の加熱により生成した酸化物層を除去した。
Next, the present invention will be described in more detail with reference to examples. (Example 1) An alloyed hot-dip galvanized film was formed on a cold-rolled steel sheet having a thickness of 0.8 mm by a conventional method, followed by temper rolling. At this time, the ζ phase ratio of the surface layer was changed by changing the alloying conditions, and the flat area ratio on the surface was changed by changing the rolling load of the temper rolling. Subsequently, the substrate was immersed in a sulfuric acid solution having a pH of 2.0 at 50 ° C., allowed to stand for a while, and then washed with water to form an oxide layer on the surface layer of the flat portion. At this time, the standing time was changed variously, and the unevenness ratio of the oxide layer (= Zn / A
l concentration ratio) and the oxide film thickness were adjusted. Before the above treatment, the substrate was immersed in an aqueous solution of sodium hydroxide having a pH of 12 to remove an oxide layer generated by heating during the alloying treatment.

【0036】次いで、上記方法で作製した供試材につい
て、めっき皮膜中のFe含有率、ζ/δ値、ζ相面積率、
平坦部面積率、プレス成形性試験、化成処理性の評価、
ならびに酸化物層の厚さ、めっき表面のZn/Al濃度比の
測定を行った。プレス成形性試験、化成処理性の評価、
ならびに酸化物層の厚さ、めっき表面のZn/Al濃度比の
測定は次のようにして行った。
Next, for the test material produced by the above method, the Fe content in the plating film, the ζ / δ value, the ζ phase area ratio,
Flat area ratio, press formability test, chemical conversion treatment evaluation,
The thickness of the oxide layer and the Zn / Al concentration ratio on the plating surface were measured. Press formability test, chemical conversion treatment evaluation,
In addition, the thickness of the oxide layer and the Zn / Al concentration ratio on the plating surface were measured as follows.

【0037】(1)プレス成形性評価試験(摩擦係数測定
試験) プレス成形性を評価するために、各供試材の摩擦係数を
以下のようにして測定した。図1は、摩擦係数測定装置
を示す概略正面図である。同図に示すように、供試材か
ら採取した摩擦係数測定用試料1が試料台2に固定され、
試料台2は、水平移動可能なスライドテーブル3の上面に
固定されている。スライドテーブル3の下面には、これ
に接したローラ4を有する上下動可能なスライドテーブ
ル支持台5が設けられ、これを押上げることにより、ビ
ード6による摩擦係数測定用試料1への押付荷重Nを測定
するための第1ロードセル7が、スライドテーブル支持
台5に取付けられている。上記押付力を作用させた状態
でスライドテーブル3を水平方向へ移動させるための摺
動抵抗力Fを測定するための第2ロードセル8が、スライ
ドテーブル3の一方の端部に取付けられている。なお、
潤滑油として、日本パーカライジング社製ノックスラス
ト550HNを試料1の表面に塗布して試験を行った。
(1) Evaluation Test of Press Formability (Test for Measuring Friction Coefficient) In order to evaluate the press formability, the friction coefficient of each test material was measured as follows. FIG. 1 is a schematic front view showing a friction coefficient measuring device. As shown in the figure, a sample 1 for friction coefficient measurement collected from a test material is fixed to a sample table 2,
The sample table 2 is fixed to an upper surface of a horizontally movable slide table 3. On the lower surface of the slide table 3, a vertically movable slide table support 5 having a roller 4 in contact with the slide table 3 is provided. By pushing this up, a load N on the sample 1 for friction coefficient measurement by the bead 6 is measured. Is mounted on the slide table support 5. A second load cell 8 for measuring a sliding resistance force F for moving the slide table 3 in the horizontal direction with the pressing force applied is attached to one end of the slide table 3. In addition,
As a lubricating oil, Noxlast 550HN manufactured by Nippon Parkerizing Co., Ltd. was applied to the surface of Sample 1 to perform a test.

【0038】図2、3は使用したビードの形状・寸法を示
す概略斜視図である。ビード6の下面が試料1の表面に押
し付けられた状態で摺動する。図2に示すビード6の形状
は幅10mm、試料の摺動方向長さ12mm、摺動方向両端の下
部は曲率4.5mmRの曲面で構成され、試料が押し付けられ
るビード下面は幅10mm、摺動方向長さ3mmの平面を有す
る。図3に示すビード6の形状は幅10mm、試料の摺動方向
長さ69mm、摺動方向両端の下部は曲率4.5mmRの曲面で構
成され、試料が押し付けられるビード下面は幅10mm、摺
動方向長さ60mmの平面を有する。
FIGS. 2 and 3 are schematic perspective views showing the shapes and dimensions of the beads used. The lower surface of the bead 6 slides while being pressed against the surface of the sample 1. The shape of the bead 6 shown in Fig. 2 is 10 mm wide, the length in the sliding direction of the sample is 12 mm, the lower part of both ends in the sliding direction is a curved surface with a curvature of 4.5 mmR, the lower surface of the bead on which the sample is pressed is 10 mm in width, the sliding direction It has a plane with a length of 3 mm. The shape of the bead 6 shown in Fig. 3 is 10 mm wide, the length of the sample in the sliding direction is 69 mm, the lower part of both ends in the sliding direction is a curved surface with a curvature of 4.5 mmR, the lower surface of the bead against which the sample is pressed is 10 mm in width, the sliding direction It has a plane with a length of 60 mm.

【0039】摩擦係数測定試験は下に示す2条件で行っ
た。 [条件1]図2に示すビードを用い、押し付け荷重N:400
kgf、試料の引き抜き速度(スライドテーブル3の水平移
動速度):100cm/minとした。 [条件2]図3に示すビードを用い、押し付け荷重N:400
kgf、試料の引き抜き速度(スライドテーブル3の水平移
動速度):20cm/minとした。供試材とビードとの間の摩
擦係数μは、式:μ=F/Nで算出した。
The friction coefficient measurement test was performed under the following two conditions. [Condition 1] Using the bead shown in Fig. 2, pressing force N: 400
kgf, sample withdrawal speed (horizontal movement speed of slide table 3): 100 cm / min. [Condition 2] Using the bead shown in Fig. 3, pressing force N: 400
kgf, sample withdrawal speed (horizontal movement speed of slide table 3): 20 cm / min. The friction coefficient μ between the test material and the bead was calculated by the formula: μ = F / N.

【0040】なお、摩擦係数測定結果をもとに、条件1
の摩擦係数が、Fe濃度50%のFe-Zn合金電気めっきを合金
化溶融亜鉛めっき上層に施した二層めっき材レベル(μ
=0.140未満)であり、しかも条件2の摩擦係数が二層め
っき材に近いレベル(μ=0.200未満)が得られたもの
を○、それより高い摩擦係数を示したものを×と評価し
た。
It should be noted that, based on the friction coefficient measurement results, condition 1
Coefficient of friction is 50% of Fe-Zn alloy electroplating with a Fe concentration of 50%.
= Less than 0.140) and a coefficient of friction under condition 2 at a level close to that of a two-layer plated material (μ = less than 0.200) was evaluated as ○, and a sample showing a higher friction coefficient than that was evaluated as ×.

【0041】(2)化成処理性試験 各供試体を、自動車塗装下地用の浸漬型リン酸亜鉛処理
液(日本パーカライジング社製PBL3080)で通常の条件
で処理し、その表面にリン酸亜鉛皮膜を形成させた。こ
のように形成されたリン酸亜鉛皮膜の結晶状態を走査型
電子顕微鏡(SEM)により観察し、均一に皮膜が形成さ
れているものを○、皮膜にスケが確認され不均一である
ものを×と判定した。
(2) Chemical conversion test Each specimen was treated under normal conditions with an immersion type zinc phosphate treatment solution (PBL3080 manufactured by Nippon Parkerizing Co., Ltd.) for use as a base material for automobile coating, and a zinc phosphate film was formed on the surface. Formed. The crystalline state of the zinc phosphate film thus formed was observed with a scanning electron microscope (SEM). A sample in which the film was uniformly formed was evaluated as good, and a film in which the film was confirmed to be inhomogeneous was evaluated as x. It was determined.

【0042】(3)酸化物層の厚さ及びめっき表面のZn/Al
濃度比の測定 オージェ電子分光(AES)により平坦部の各元素の含有
率(at%)を測定し、引き続いて所定の深さまでArスパ
ッタリングした後、AESによりめっき皮膜中の各元素の
含有率の測定を行い、これを繰り返すことにより、深さ
方向の各元素の組成分布を測定した。酸化物、水酸化物
に起因するOの含有率はある深さで最大となった後、減
少し一定となる。Oの含有率が、最大値より深い位置
で、最大値と一定値との和の1/2となる深さを、酸化物
の厚さとした。また、同様に、ZnおよびAlの含有率を深
さ方向に測定した結果において、スパッタ時間0秒でのZ
nおよびAl濃度(at%)を用いて、めっき表面におけるZn
/Al濃度比の算出を行った。なお、予備処理として30秒
のArスパッタリングを行って、供試材表面のコンタミネ
ーションレイヤーを除去した。
(3) Thickness of oxide layer and Zn / Al on plating surface
Measurement of concentration ratio The content (at%) of each element in the flat portion was measured by Auger electron spectroscopy (AES), and subsequently, Ar sputtering was performed to a predetermined depth, and the content of each element in the plating film was measured by AES. By measuring and repeating this, the composition distribution of each element in the depth direction was measured. The O content due to oxides and hydroxides reaches a maximum at a certain depth, then decreases and becomes constant. The depth at which the O content was half of the sum of the maximum value and the constant value at a position deeper than the maximum value was defined as the oxide thickness. Similarly, the results of measuring the contents of Zn and Al in the depth direction show that Z at a sputtering time of 0 second.
Using Zn and Al concentration (at%), Zn on plating surface
/ Al concentration ratio was calculated. Note that, as a preliminary treatment, Ar sputtering was performed for 30 seconds to remove the contamination layer on the surface of the test material.

【0043】試験結果を表1および図4、5に示す。The test results are shown in Table 1 and FIGS.

【0044】[0044]

【表1】 【table 1】

【0045】表1に示すように、めっき表面のZn/Al濃度
比、平坦部の酸化膜厚、平坦部面積率が本発明範囲内に
ある場合(本発明例1〜14)には、ζ/δ値、ζ相面積率
が高く、明らかに表層にζ相が残存する皮膜でも、摩擦
係数は二層めっき材なみに低い値であり、良好な摺動特
性を示し、また化成処理性も良好であった。これに対し
て、平坦部が形成されていない場合(比較例1)、平坦
部表面の酸化物層厚さが本発明範囲内をはずれる場合
(比較例2)、平坦部の酸化膜厚、および平坦部面積率
が本発明範囲内に含まれていても、めっき表面のZn/Al
濃度比が本発明範囲内をはずれる場合(比較例3〜14)
は、摺動特性および化成処理性のいずれかが劣ってい
た。
As shown in Table 1, when the Zn / Al concentration ratio of the plating surface, the oxide film thickness of the flat portion, and the area ratio of the flat portion were within the range of the present invention (Examples 1 to 14 of the present invention), / δ value, ζ phase area ratio is high, and even in a film where ζ phase remains clearly on the surface layer, the coefficient of friction is as low as a two-layer plated material, showing good sliding characteristics, It was good. In contrast, when the flat portion is not formed (Comparative Example 1), when the oxide layer thickness on the flat portion surface is out of the range of the present invention (Comparative Example 2), the oxide film thickness of the flat portion, and Even if the flat area ratio is included in the range of the present invention, Zn / Al
When the concentration ratio is out of the range of the present invention (Comparative Examples 3 to 14)
Was inferior in either sliding characteristics or chemical conversion treatment.

【0046】(実施例2)板厚0.8mmの冷延鋼板上に、常
法の合金化溶融亜鉛めっき皮膜を形成し、更に調質圧延
を行った。この際に、合金化条件を変更することで、表
面にζ相が存在しない皮膜を形成し、調質圧延の圧下荷
重を変化させることで、表面における平坦部面積率を変
化させた。引き続き、50℃、pH2.0の硫酸酸性溶液に浸
漬し、しばらく放置した後、水洗することにより、平坦
部の表層に酸化物層を形成させる処理を行った。この
際、放置時間を種々変化させて、酸化物層の凹凸割合
(=めっき表面のZn/Al濃度比)および酸化膜厚を調整
した。また上記処理前にはpH12の水酸化ナトリウム水溶
液に浸漬し、合金化処理時の加熱により生成した酸化物
層を除去した。
(Example 2) An alloyed hot-dip galvanized film was formed on a cold-rolled steel sheet having a thickness of 0.8 mm by a conventional method, and temper rolling was further performed. At this time, a film having no 条件 phase was formed on the surface by changing the alloying conditions, and the flat portion area ratio on the surface was changed by changing the rolling load of the temper rolling. Subsequently, the substrate was immersed in a sulfuric acid solution having a pH of 2.0 at 50 ° C., allowed to stand for a while, and then washed with water to form an oxide layer on the surface layer of the flat portion. At this time, the unevenness ratio of the oxide layer (= Zn / Al concentration ratio on the plating surface) and the oxide film thickness were adjusted by variously changing the standing time. Before the above treatment, the substrate was immersed in an aqueous solution of sodium hydroxide having a pH of 12 to remove an oxide layer generated by heating during the alloying treatment.

【0047】次いで、上記方法で作製した供試材につい
て、実施例1と同様にして、めっき皮膜中のFe含有率、
ζ/δ値、ζ相面積率、平坦部面積率、プレス成形性試
験、化成処理性の評価、ならびに酸化物層の厚さ、めっ
き表面のZn/Al濃度比の測定を行った。
Next, for the test material produced by the above method, the Fe content in the plating film was determined in the same manner as in Example 1.
ζ / δ value, ζ phase area ratio, flat portion area ratio, press formability test, evaluation of chemical conversion treatment, thickness of oxide layer, and Zn / Al concentration ratio of plating surface were measured.

【0048】試験結果を表2および図6、7に示す。The test results are shown in Table 2 and FIGS.

【0049】[0049]

【表2】 [Table 2]

【0050】表2に示すように、めっき表面のZn/Al濃度
比、平坦部の酸化膜厚、平坦部面積率が本発明範囲内に
ある場合(本発明例1〜14)には、ζ/δ値、ζ相面積率
が低く表面にζ相を含まない皮膜であっても、摩擦係数
は二層めっき材なみに低い値であり、良好な摺動特性を
示し、また化成処理性も良好であった。これに対して、
平坦部が形成されていない場合(比較例1)、平坦部表
面の酸化物層厚さが本発明範囲内をはずれる場合(比較
例2)、平坦部の酸化膜厚,および平坦部面積率が本発
明範囲内に含まれていても、めっき表面のZn/Al濃度比
が本発明範囲内をはずれる場合(比較例3〜14)は、摺
動特性および化成処理性のいずれかが劣っていた。
As shown in Table 2, when the Zn / Al concentration ratio of the plating surface, the oxide film thickness of the flat portion, and the area ratio of the flat portion are within the range of the present invention (Examples 1 to 14 of the present invention), / δ value, ζ phase area ratio is low, even if the film does not contain 二 phase on the surface, the coefficient of friction is as low as a two-layer plated material, showing good sliding characteristics, It was good. On the contrary,
When the flat portion is not formed (Comparative Example 1), when the oxide layer thickness on the flat portion surface is out of the range of the present invention (Comparative Example 2), the oxide film thickness of the flat portion and the flat portion area ratio are reduced. Even when included in the range of the present invention, when the Zn / Al concentration ratio of the plating surface deviates from the range of the present invention (Comparative Examples 3 to 14), either of the sliding characteristics and the chemical conversion treatment was inferior. .

【0051】[0051]

【発明の効果】本発明の合金化溶融亜鉛めっき鋼板は、
めっき層中にζ相の残存有無によらず、プレス成形時の
摺動抵抗が小さく、安定して優れたプレス成形性が得ら
れるとともに、均一な化成処理皮膜の形成も可能であ
る。
The alloyed hot-dip galvanized steel sheet of the present invention comprises:
Irrespective of the presence or absence of the ζ phase in the plating layer, the sliding resistance at the time of press molding is small, excellent press moldability can be obtained stably, and a uniform chemical conversion coating can be formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】摩擦係数測定装置を示す概略正面図。FIG. 1 is a schematic front view showing a friction coefficient measuring device.

【図2】図1中のビード形状・寸法を示す概略斜視図。FIG. 2 is a schematic perspective view showing a bead shape and dimensions in FIG.

【図3】図1中のビード形状・寸法を示す概略斜視図。FIG. 3 is a schematic perspective view showing a bead shape and dimensions in FIG. 1.

【図4】実施例1に示しためっき表面のZn/Al濃度比と条
件1の摩擦係数の関係を示す図。
FIG. 4 is a view showing the relationship between the Zn / Al concentration ratio of the plating surface shown in Example 1 and the friction coefficient under Condition 1.

【図5】実施例1に示しためっき表面のZn/Al濃度比と条
件2の摩擦係数の関係を示す図。
FIG. 5 is a view showing the relationship between the Zn / Al concentration ratio of the plating surface shown in Example 1 and the friction coefficient under Condition 2.

【図6】実施例2に示しためっき表面のZn/Al濃度比と条
件1の摩擦係数の関係を示す図。
FIG. 6 is a view showing the relationship between the Zn / Al concentration ratio on the plating surface and the friction coefficient under condition 1 shown in Example 2.

【図7】実施例2に示しためっき表面のZn/Al濃度比と条
件2の摩擦係数の関係を示す図。
FIG. 7 is a view showing the relationship between the Zn / Al concentration ratio of the plating surface shown in Example 2 and the friction coefficient under Condition 2.

【符号の説明】[Explanation of symbols]

1 摩擦係数測定用試料 2 試料台 3 スライドテーブル 4 ローラ 5 スライドテーブル支持台 6 ビード 7 第1ロードセル 8 第2ロードセル 9 レール N 押付荷重 F 摺動抵抗力 P 引張荷重 1 Sample for coefficient of friction measurement 2 Sample table 3 Slide table 4 Roller 5 Slide table support 6 Bead 7 First load cell 8 Second load cell 9 Rail N Pressing load F Sliding resistance P Pulling load

───────────────────────────────────────────────────── フロントページの続き (72)発明者 稲垣 淳一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 山下 正明 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 名越 正泰 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 佐藤 馨 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K027 AA05 AA22 AB02 AB03 AB14 AB22 AB26 AB36 AB37 AB44 AC82 AC87 AE03 AE23 AE24 4K044 AA02 AB02 BA10 BA12 BB03 BC01 BC03 CA11 CA16 CA53 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Junichi Inagaki 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Inside the Nippon Kokan Co., Ltd. (72) Inventor Masaaki Yamashita 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan (72) Inventor Masayasu Nagoshi 1-2-1, Marunouchi, Chiyoda-ku, Tokyo, Japan Nihon Kokan Co., Ltd. (72) Inventor Kaoru Sato 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Steel Pipe F term (reference) 4K027 AA05 AA22 AB02 AB03 AB14 AB22 AB26 AB36 AB37 AB44 AC82 AC87 AE03 AE23 AE24 4K044 AA02 AB02 BA10 BA12 BB03 BC01 BC03 CA11 CA16 CA53

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鉄−亜鉛合金めっき層を少なくとも鋼板
の片面に有し、かつ前記めっき層の表面に平坦部を有
し、その平坦部に厚さ10nm以上の酸化物層が形成され、
かつ前記平坦部表層におけるZn/Al比(at%)が2.0以上、
8.0以下であることを特徴とする合金化溶融亜鉛めっき
鋼板。
Claims: 1. An iron-zinc alloy plating layer is provided on at least one side of a steel sheet, and has a flat portion on the surface of the plating layer, and an oxide layer having a thickness of 10 nm or more is formed on the flat portion.
And Zn / Al ratio (at%) in the flat layer surface layer is 2.0 or more,
An alloyed hot-dip galvanized steel sheet characterized by being 8.0 or less.
【請求項2】 鉄−亜鉛合金めっき表面における前記平
坦部の面積率が20〜80%であることを特徴とする請求項1
に記載の合金化溶融亜鉛めっき鋼板。
2. The area ratio of the flat portion on an iron-zinc alloy plating surface is 20 to 80%.
2. A galvannealed steel sheet according to claim 1.
JP2001107059A 2001-04-05 2001-04-05 Alloy hot-dip galvanized steel sheet Expired - Fee Related JP3644402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001107059A JP3644402B2 (en) 2001-04-05 2001-04-05 Alloy hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001107059A JP3644402B2 (en) 2001-04-05 2001-04-05 Alloy hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2002302753A true JP2002302753A (en) 2002-10-18
JP3644402B2 JP3644402B2 (en) 2005-04-27

Family

ID=18959446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001107059A Expired - Fee Related JP3644402B2 (en) 2001-04-05 2001-04-05 Alloy hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP3644402B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005120447A (en) * 2003-10-17 2005-05-12 Jfe Steel Kk Galvanized steel sheet having excellent press formability, and its production method
JP2006183074A (en) * 2004-12-27 2006-07-13 Jfe Steel Kk Hot-dip galvanized steel sheet and manufacturing method therefor
JP2006183073A (en) * 2004-12-27 2006-07-13 Jfe Steel Kk Method of manufacturing hot-dip galvannealed steel sheet, and hot-dip galvannealed steel sheet
WO2007066600A1 (en) 2005-12-06 2007-06-14 Kabushiki Kaisha Kobe Seiko Sho High-strength galvannealed sheet steels excellent in powdering resistance and process for production of the same
JP2010106293A (en) * 2008-10-28 2010-05-13 Nisshin Steel Co Ltd Method of manufacturing mg, al-containing hot-dip galvanized steel sheet
US8083122B2 (en) 2003-06-05 2011-12-27 Lg Electronics Inc. Drum for washer and dryer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8083122B2 (en) 2003-06-05 2011-12-27 Lg Electronics Inc. Drum for washer and dryer
US8365437B2 (en) 2003-06-05 2013-02-05 Lg Electronics Inc. Drum for washer and dryer
JP2005120447A (en) * 2003-10-17 2005-05-12 Jfe Steel Kk Galvanized steel sheet having excellent press formability, and its production method
JP2006183074A (en) * 2004-12-27 2006-07-13 Jfe Steel Kk Hot-dip galvanized steel sheet and manufacturing method therefor
JP2006183073A (en) * 2004-12-27 2006-07-13 Jfe Steel Kk Method of manufacturing hot-dip galvannealed steel sheet, and hot-dip galvannealed steel sheet
JP4604712B2 (en) * 2004-12-27 2011-01-05 Jfeスチール株式会社 Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
WO2007066600A1 (en) 2005-12-06 2007-06-14 Kabushiki Kaisha Kobe Seiko Sho High-strength galvannealed sheet steels excellent in powdering resistance and process for production of the same
US8025982B2 (en) 2005-12-06 2011-09-27 Kobe Steel, Ltd. High-strength hot dip galvannealed steel sheet having high powdering resistance and method for producing the same
JP2010106293A (en) * 2008-10-28 2010-05-13 Nisshin Steel Co Ltd Method of manufacturing mg, al-containing hot-dip galvanized steel sheet

Also Published As

Publication number Publication date
JP3644402B2 (en) 2005-04-27

Similar Documents

Publication Publication Date Title
JP3807341B2 (en) Method for producing galvannealed steel sheet
JP5044976B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP5522185B2 (en) Galvanized steel sheet
JP3608519B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
MX2008013860A (en) Process for producing alloyed hot-dip zinc-plated steel sheet and alloyed hot-dip zinc-plated steel sheet.
JP3675313B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent slidability
JP5540459B2 (en) Alloy hot-dip galvanized steel sheet
JP2007231375A (en) Galvannealed steel sheet
JP3644402B2 (en) Alloy hot-dip galvanized steel sheet
JP5044924B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP2005139557A (en) Hot dip galvannealed steel sheet, and its production method
JP4848737B2 (en) Alloyed hot-dip galvanized steel sheet with excellent degreasing properties
JP4826486B2 (en) Method for producing galvannealed steel sheet
JP4930182B2 (en) Alloy hot-dip galvanized steel sheet
JP4696376B2 (en) Alloy hot-dip galvanized steel sheet
TWI447263B (en) Zinc-base plated steel sheet and method for manufacturing the same
JP4826017B2 (en) Alloy hot-dip galvanized steel sheet
JP4604712B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP3570409B2 (en) Galvannealed steel sheet
JP5045231B2 (en) Alloy hot-dip galvanized steel sheet
JP3575390B2 (en) Galvannealed steel sheet with excellent press formability
JP2002173751A (en) Galvannealed steel sheet
JP2001131772A (en) Galvannealed steel sheet excellent in press formability and its producing method
JP2001262304A (en) Alloyed galvannealed steel sheet excellent in press- formability and its producing method
JP2001131769A (en) Galvannealed steel sheet excellent in press formability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050124

R150 Certificate of patent or registration of utility model

Ref document number: 3644402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees