JP3575390B2 - Galvannealed steel sheet with excellent press formability - Google Patents
Galvannealed steel sheet with excellent press formability Download PDFInfo
- Publication number
- JP3575390B2 JP3575390B2 JP2000110002A JP2000110002A JP3575390B2 JP 3575390 B2 JP3575390 B2 JP 3575390B2 JP 2000110002 A JP2000110002 A JP 2000110002A JP 2000110002 A JP2000110002 A JP 2000110002A JP 3575390 B2 JP3575390 B2 JP 3575390B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- flat portion
- granular
- area ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
- C23C28/3225—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electroplating Methods And Accessories (AREA)
- Coating With Molten Metal (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
【0001】
【発明の属する技術分野】
この発明は、プレス成形における摺動性に優れた合金化溶融亜鉛めっき鋼板に関するものである。
【0002】
【従来の技術】
合金化溶融亜鉛めっき鋼板は、亜鉛めっき鋼板と比較して塗装性及び溶接性に優れることから、自動車や家電製品等に広く利用されている。
【0003】
このような合金化溶融亜鉛めっき鋼板は、プレス成形を施されて目的の用途に供される。しかし、合金化溶融亜鉛めっき鋼板は、冷延鋼板に比べてプレス成形性が劣るという欠点を有する。これは合金化溶融亜鉛めっき鋼板とプレス金型との摺動抵抗が、冷延鋼板の場合に比較して大きいことが原因である。即ち、ビードと亜鉛系めっき鋼板との摺動抵抗が著しく大きい部分で、合金化溶融亜鉛めっき鋼板がプレス金型に流入しにくくなり、鋼板の破断が起こりやすい。
【0004】
亜鉛系めっき鋼板のプレス成形性を向上させる方法としては、一般に高粘度の潤滑油を塗布する方法が広く用いられている。しかしこの方法では、潤滑油の高粘性のために、塗装工程で脱脂不良による塗装欠陥が発生したり、またプレス時の油切れにより、プレス性能が不安定になる等の問題がある。前記問題を解決するには、潤滑油の塗布量を極力低減できることが必要であり、そのためには、合金化溶融亜鉛めっき鋼板のプレス成形性を改善することが必要となる。
【0005】
上述した問題を解決する方法として、特開昭53−60332号公報および特開平2−190483号公報は、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布酸化処理、または加熱処理を施すことにより、ZnOを主体とする酸化膜を形成させて溶接性、または加工性を向上させる技術を開示している。
【0006】
特開平4−88196号公報は、亜鉛系めっき鋼板の表面に、リン酸ナトリウム5〜60g/lを含みpH2〜6の水溶液中にめっき鋼板を浸漬するか、電解処理、また、上記水溶液を散布することによりP酸化物を主体とした酸化膜を形成して、プレス成形性及び化成処理性を向上させる技術を開示している。
【0007】
特開平3−191093号公報は、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布処理、塗布酸化処理、または加熱処理により、Ni酸化物を生成させることによりプレス成形性および化成処理性を向上させる技術を開示している。
【0008】
特開平7−18402号公報は、合金化溶融亜鉛めっき鋼板の表面に凹部を形成させることで、潤滑油を鋼板表面に保持しやすくし、プレス成形性を向上させる技術を開示している。
【0009】
【発明が解決しようとする課題】
しかしながら、上述した先行技術を合金化溶融亜鉛めっき鋼板に適用した場合、プレス成形性の改善効果を安定して得ることはできない。発明者らは、この原因について詳細な検討を行った。その結果、合金化溶融めっき鋼板はAl酸化物が不均一に存在することにより表面の反応性が不均一であること、及び表面の凹凸が大きいことが原因であることを見出した。即ち、上述した先行技術を合金化溶融めっき鋼板に適用した場合、表面の反応性が不均一であるため、電解処理、浸漬処理、塗布酸化処理及び加熱処理等を行っても所定の皮膜を表面に均一に形成することは困難であり、反応性の低い(Al酸化物量が多い)部分では膜厚が薄くなってしまう。また、表面の凹凸が大きいため、プレス成型時にプレス金型と直接接触するのは表面の凸部となるが、凸部のうち膜厚の薄い部分と金型との接触部での摺動抵抗が大きくなり、プレス成形性の改善効果が十分には得られない。
【0010】
また、凹部を形成させる技術についても、これだけでは十分なプレス成形性が得られないことがわかった。これは、凹部には潤滑油が溜まり易いが、逆に、摺動性に与える影響が大きい凸部には潤滑油が溜まりにくいという問題があるためと考えられる。
【0011】
この発明は上記の問題点を解決するためになされたもので、プレス成形における摺動性に優れた合金化溶融めっき鋼板を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者らは、上述した目的を達成すべく、鋭意研究を重ねた結果、合金化溶融亜鉛めっき鋼板のめっき表面に平坦部を形成し、更に平坦部に、溝を形成し、更に溝を形成してない平坦部表層に微細な粒状突起物を形成することで、高度に安定して優れたプレス成形性が得られることを知見した。
【0013】
合金化溶融亜鉛めっき鋼板のめっき表面の上記平坦部は,周囲と比較すると凸部として存在する。めっき表面の電子顕微鏡写真を図1に示す。図1において、黒いコントラストで見える部分が平坦部である。プレス成形時に実際にプレス金型と接触するのは、この黒いコントラストで見える平坦部が主体となるため、この平坦部における摺動抵抗を小さくすれば、プレス成形性を安定して改善することができる。
【0014】
この平坦部における摺動抵抗を小さくするには、めっき層と金型との凝着を防ぐのが有効であり、そのためには、めっき層の表面のすべり性を改善することが有効である。この考えに基づき検討を進めた結果、平坦部に溝を形成し、更に溝を形成してない平坦部表層に微細な粒状突起物を形成させることで、摺動性を格段に向上できることを見出した。
【0015】
本発明は、以上の知見に基いてなされたもので、第1発明は、めっき表面に、調質圧延を施すことによりめっき表面の凹凸の凸部が平坦にされた平坦部と、前記凹凸の内の凹部を有し、めっき表面における前記平坦部の面積率は10%以上、90%以下であり、前記平坦部は、調質圧延の後に形成された溝と粒状突起物とを有し、前記溝は、深さが0.1μm以上、5.0μm以下の領域が前記平坦部に対する面積率で0.1%以上、30.0%以下であり、前記粒状突起物は、直径が5nm以上、500nm以下、且つ高さが5nm以上、500nm以下の領域が、前記溝以外の平坦部表層に、前記平坦部表層に対する面積率で30%以上、82%以下であることを特徴とする合金化溶融亜鉛めっき鋼板を提供する。
【0016】
第2発明は、第1発明において、粒状突起物が、ZnまたはZnとAlの酸化物及び/又は水酸化物からなることを特徴とする合金化溶融亜鉛めっき鋼板を提供する。
【0017】
第3発明は、第1又は第2発明において、平坦部表面に、Zn又はZnとAlの酸化物及び/又は水酸化物より構成される連続被覆層を有し、また前記連続被覆層上に高さが5nm以上、500nm以下の範囲に入る粒状突起物が形成されており、前記連続被覆層と前記粒状突起物を合わせた平均厚さが10nm以上、500nm以下であることを特徴とする合金化溶融亜鉛めっき鋼板を提供する。
【0019】
【発明の実施の形態】
合金化溶融亜鉛めっき鋼板は、合金化処理時の鋼板−めっき界面の反応性の差により、めっき表面に凹凸が存在する。本発明では、合金化溶融亜鉛めっき鋼板に調質圧延を施す。調質圧延を施すことによって、めっき表面の凹凸を緩和し表面を平滑にすると同時にめっき表面の凸部を平坦にする。前記で形成された合金化溶融亜鉛めっき鋼板表面の平坦部は、プレス成形時に金型が直接接触する部分であるため、この部分のすべり性を良くすることが摺動性の向上には重要である。
【0020】
この観点から検討した結果、平坦部に溝を形成し、更に溝を形成してない平坦部表層に微細な粒状突起物を形成させることが、摺動性の格段の向上に有効であることがわかった。
【0021】
これは、前記の突起物がベアリングのような役割を担うこと、すなわち突起物によってめっき表面の平坦部と金型の間に潤滑油が溜まること、また粒状突起物の一部がめっき表層から剥がれ、それ自体が転がることによってめっき鋼板が滑り易くなるなる。更に、平坦部に存在する溝に潤滑油が浸透して保持され、溝に保持された潤滑油がプレス成型時に金型が直接接触するめっき鋼板の平坦部に供給されるため、プレス成型時の摺動性を格段に向上できるものと考えられる。
【0022】
図2及び図3は、本発明の実施の形態に係る合金化溶融亜鉛めっき鋼板のめっき表面の平坦部の電子顕微鏡写真の例である。図2において、ジグザグの黒いコントラストで見える部分が平坦部に存在する溝、溝以外の中間色の領域にある白色部分が平坦部にある粒状突起物である。図3は、図2より高倍率の写真で、やや明るい灰白色の部分が平坦部に存在する粒状突起物であり、例えば矢印先端には20nm程度の大きさの粒状突起物が形成されている。
【0023】
溝については、0.1μm以上、5.0μm以下の深さの溝が平坦部のうち面積率にして0.1%以上、30%以下とすることにより、良好な摺動性を示す合金化溶融亜鉛めっき鋼板が得られる。溝の深さを0.1μm以上に限定した理由は、0.1μm未満では摺動性の向上効果が十分でなく、十分なプレス成形性が得られないためである。面積率を0.1%以上に限定した理由も同じである。また、溝の深さを5.0μm以下、面積率30.0%以下に限定した理由は、これを超えると皮膜が脆くなり耐パウダリング性が劣化するためである。
【0024】
なお、本発明において、平坦部の溝とは、表面から見た形状が細長い所謂溝状のくぼみだけでなく、表面から見た形状が多角形のくぼみ(図2参照)など、平坦部に存在するくぼみを広く指しており、溝の深さは、連続したくぼみ部分における平均深さを指している。
【0025】
なお、溝の深さや面積率は、原子間力顕微鏡や3次元観察用走査型電子顕微鏡などにより評価できる。
【0026】
また、微細な粒状突起物については、表面から見たときの直径が5nm以上、500nm以下、且つ高さを5nm以上、500nm以下の範囲とし、平坦部表層における粒状突起物の面積率を平坦部表層に対して30%以上、 82 %以下とすることにより、良好な摺動性を示す合金化溶融亜鉛めっき鋼板が得られる。粒状突起物が小さくなると前記したベアリングのような働きが弱くなり、また粒状突起物が大きくなると、突起物自身が脆くなり割れてめっき表面にキズが付きやすくなるが、表面から見たときの直径が5nm以上、500nm以下、且つ高さを5nm以上、500nm以下に限定したすることによって、キズ付防止効果と摺動性改善効果を両立できる。粒状突起物の高さは、5nm以上、200nm以下であることがより望ましく、さらに望ましくは5nm以上、50nm以下である。また、粒状突起物を表面から見たときの直径は、5nm以上、200nm以下であることがより望ましく、さらに望ましくは5nm以上、100nm以下である。
【0027】
また、平坦部表層に対する粒状突起物の面積率を30%以上に限定した理由は、30%未満ではプレス成形性の改善効果が得られないためである。面積率は50%以上とするのがより望ましい。上限は 82 %とする。
【0028】
粒状突起物としては、ZnあるいはZnとAlの酸化物及び/又は水酸化物とすることに、工業上の利点がある。その理由は、他の金属や金属化合物を形成させるためには、新たな工程を追加する必要があるが、上記酸化物であれば、めっき皮膜中に含まれる金属成分を利用できるため、簡便な処理により粒状突起物として平坦部表面に形成できるからである。
【0029】
ZnあるいはZnとAlの酸化物及び/又は水酸化物からなる粒状突起物の下層に、前記金属の酸化物及び/又は水酸化物からなる酸化膜で連続被覆することも、摺動性向上に効果的である。連続被覆層は、プレス成形に際して、めっき層と金型の凝着を抑制するものと考えられる。ただし、この場合、均一被覆層と粒状突起物の両者を合わせた酸化物層の平均の厚みは10nm以上、500nm以下とする必要がある。これは、平均厚みが10nm未満では十分なプレス成形性の改善効果が得られないためである。また、平均厚みが500nmを超えると、この酸化物及び/又は水酸化物が割れ易くなり、表面にキズが付き易くなること、また、化成処理性が劣化するためである。
【0030】
粒状突起物の大きさは、高分解能の走査型電子顕微鏡、透過型電子顕微鏡、原子間力顕微鏡などにより評価できる。粒径は、電子顕微鏡写真及び電子間力顕微鏡像を画像処理して粒毎の面積を求め、各粒を円と仮定したときの直径で規定する。高さは、後記するZnあるいはZnとAlの酸化物及び/又は水酸化物からなる連続被覆層が形成されているいる場合は、この層の表面からの高さであり、前記層が形成されていない場合はめっき表面からの高さである。
【0031】
また、酸化物層の厚さは、Ar+イオンスパッタリングと組み合わせたオージェ電子分光法(AES)や透過型電子顕微鏡による断面観察などにより求めることができる。AESによる方法においては、所定深さまでスパッタした後、測定対象の各元素のピーク強度から相対感度因子補正により、その深さでの組成を求めることができる。酸化物または水酸化物に起因するOの含有率は、ある深さで最大値となった後(これが最表層の場合もある)、減少し一定となる。酸化物層の厚さは、Oの含有率が、最大値より深い位置で、最大値と一定値との和の1/2となるスパッタリング時間を、膜厚既知のSiO2膜などのスパッタレートをもとに、換算して求めることができる。
【0032】
また、めっき表面における上記平坦部の面積率は、10%以上90%以下とする。10%未満では、実際に金型に接触する面積のうち、平坦部を除く部分(凹部)と金型との接触面積が大きくなり、粒状突起物による摺動性改善効果を発揮できる平坦部と金型との接触面積が小さくなるため、プレス成形性の改善効果が小さくなる。
【0033】
平坦部を除く部分は、プレス成型時に潤滑油を保持する役割を持つ。平坦部を除く部分の面積率が10%未満になる(平坦部の面積率が90%を超える)とプレス成形時に油切れを起こしやすくなり、プレス成形性の改善効果が小さくなる。このなかでも、平坦部の面積率は20%以上、80%以下の範囲がより望ましく、30%以上、70%以下の範囲が更に望ましい。
【0034】
なお、めっき表面の平坦部は、光学顕微鏡あるいは走査型電子顕微鏡等で表面を観察することで容易に識別可能である。めっき表面における平坦部の面積率は、上記顕微鏡写真を画像解析することにより求めることができる。
【0035】
本発明において、合金化溶融亜鉛めっき鋼板のめっき皮膜のFe濃度及びAl濃度については特に規定しないが、めっき層としては、主としてδ相からなり、更にζ相を含んでいる構造が理想的である。Fe濃度の低いζあるいはη相が主体となると、めっき皮膜が低融点で軟質となるため、プレス成型時にいわゆるフレーキングとなってめっき皮膜が金型に堆積し、押しキズによる製品歩留まりの低下や金型手入れの頻度増による生産能率の低下をもたらすことがある。また、Fe濃度の高いΓ相、Γ1相が主体となると、プレス加工時にめっき皮膜がはく離するパウダリングが生じやすくなり、はく離粉による押しキズが発生しやすい。従って、めっき皮膜としてはδ相主体が有利である。
【0036】
本発明に係る合金化溶融亜鉛めっき鋼板を製造するには、亜鉛めっき浴でめっきし、合金化処理を行い、更に調質圧延を行う。亜鉛めっき浴中にAlが添加されていることが必要であるが、Al以外の添加元素成分は特に限定されない。すなわち、Alの他にFe,Pb,Sb,Si,Sn,Mg,Mn,Ni,Ti,Li,Cuなどが含有または添加されていても、本発明の効果が損なわれるものではない。合金化処理では、合金化処理条件を調整してめっき皮膜を主としてδ相からなり、更にζ相を含んでいる構造にする。次いで調質圧延でめっき表面に平坦部を形成する。その際、圧延条件を調整し、平坦部の面積率を前記で説明した範囲にすることが望ましい。
【0037】
次いで、めっき表面の平坦部に前記した溝と、又はZnとAlの酸化物及び/又は水酸化物からなる粒状突起物や連続被覆層を形成する。
【0038】
溝の形成方法としては、特に限定されるものではなく、酸性溶液への浸漬や電解処理、表面研削などの方法を採用できる。
【0039】
Zn又はZnとAlの酸化物及び/又は水酸化物からなる粒状突起物や連続被覆層の形成方法は、特に限定されるものではなく、酸化剤含有の水溶液への浸漬や同水溶液の吹き付けによる方法、あるいは酸化剤含有の水溶液中での陰極電解処理及び陽極電解処理などの方法、温水浸漬や水蒸気吹き付けなどの方法を採用することができる。また、これらの処理を2つ以上組み合わせることもできる。
【0040】
なお、本発明において、Zn又はZnとAlの酸化物及び/又は水酸化物からなる粒状突起物や連続被覆層には、Zn,Al以外にめっき皮膜に含有または添加されているZn,Al以外の成分や前記粒状突起物や連続被覆層を形成する処理液などに含まれるC,S,N,P,B,Cl,Na,MnあるいはSiなどが不可避的に取り込まれていてもよい。このような場合でも、本発明のプレス成形性改善効果が損なわれることはない。
【0041】
【実施例】
次に、本発明を実施例により更に詳細に説明する。
板厚0.8mmの冷延鋼板上に、常法の合金化溶融亜鉛めっき法によりめっき付着量60g/m2、所定のFe濃度のめっき皮膜を形成し、更に調質圧延を行った。この際、調質圧延の圧下荷重を変化させることで、表面における平坦部の面積率を変化させた。次に、pH12.5の水酸化ナトリウム水溶液中に浸漬し、合金化処理時の加熱により生成した酸化物層を除去した(以下、アルカリ処理)。表層におけるAlの有無はこの処理時間により調整した。引き続き、平坦部に溝を形成するため、上記合金化溶融めっき鋼板をpH2.5、浴温70℃の塩酸溶液中に浸漬した。ここで、濃度および処理時間を種々の所定値に変化させて、平坦部における0.1μm以上、5.0μm以下の深さの溝の面積率を調整した。そして、平坦部の表層にZn又はZnとAlの連続被覆層とその上の粒状突起物を形成するために次の2種類の処理を行った。
【0042】
[形成方法A] 上記合金化溶融めっき鋼板をpH2.5、浴温60℃の硫酸酸性の過酸化水素水溶液中に浸漬し、連続被覆層と粒状突起物を形成した。ここで、濃度を種々の所定値に変化させて、粒状突起物の大きさと面積率、および酸化物層の厚さ(連続被覆層とその上の粒状突起物を合わせた厚さ)を調整した。
【0043】
[形成方法B] 上記合金化溶融めっき鋼板をpH2.5、浴温60℃の硫酸酸性の硝酸ナトリウム水溶液中に浸漬し、陰極電解することで、連続被覆層と粒状突起物を形成した。ここで、通電時間及び電流密度を変化させて、粒状突起物の大きさと面積率、および酸化物層の厚さを調整した。
【0044】
次いで、以上の様に作製した供試体(試験材NO.2〜12)について、溝の深さと面積率、粒状突起物の大きさ、酸化物層の平均厚さ、平坦部の面積率の測定及びプレス成形性試験を行なった。溝の深さと面積率、粒状突起物の大きさ、酸化物層の平均厚さの測定、プレス成形性試験および耐パウダリング性試験は以下のようにして行った。
【0045】
また、比較のために、調質圧延、アルカリ処理、突起物形成処理の何れも施してない合金化亜鉛めっき鋼板を作製(試験材No.1)し、同様の調査を行った。
【0046】
(1)溝の深さと面積率の測定
原子間力顕微鏡(Digital Instrument社製Nanoscope2)を用いて、溝の平均深さ、溝の平均深さが0.1〜5.0μmの範囲にある溝の面積率を測定した。溝の深さは、溝に隣接する平坦部の上面を基準面とし、この位置を基準として溝の平均深さ(n=5)を求めた。
【0047】
(2)粒状突起物の大きさ測定
走査型電子顕微鏡(日立製作所製S−4000)および原子間力顕微鏡(Digital Instrument社製Nanoscope2)を用いて、粒状突起物の大きさを測定した。なお、粒径は、粒面積を求め、面積が等価の円の直径から求めた。粒状突起物の高さについては、平坦部に形成された連続被覆層表面(粒状突起物のない場所)を基準としてその高さを求めた。
【0048】
(3)酸化物層の厚さ測定
走査型オージェ電子顕微鏡(Perkin−Elmer社製SAM−660)を用い、Ar+イオンスパッタリングを併用して平坦部の深さ方向分析を行なうことで、酸化物層の厚さを測定した。酸化物または水酸化物に起因するOの含有率は、ある深さで最大値となった後、減少し一定となる。このとき、Oの含有率が、最大値より長いスパッタ時間で、最大値と一定値との和の1/2となるスパッタ時間を、厚さに換算して酸化物層の厚さとした。スパッタ時間から酸化物層の厚さへの換算は、膜厚既知のSiO2膜を測定して求めたスパッタレートにより行なった。
【0049】
(4)プレス成形性評価試験
「摩擦係数測定試験」
プレス成形性を評価するために、各供試体の摩擦係数を、以下のようにして測定した。
【0050】
図4は、摩擦係数測定装置を示す概略正面図である。同図に示すように、供試体から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押上げることにより、ビード6による摩擦係数測定用試料1への押付荷重Nを測定するための第1ロードセル7が、スライドテーブル支持台5に取付けられている。上記押付力を作用させた状態でスライドテーブル3を水平方向へ移動させるための摺動抵抗力Fを測定するための第2ロードセル8が、スライドテーブル3の一方の端部に取付けられている。なお、潤滑油として、日本パーカライジング社製ノックスラスト550HNを試料1の表面に塗布して試験を行った。
【0051】
図5および図6は、使用したビードの形状・寸法を示す概略斜視図である。ビード6の下面が試料1の表面に押しつけられた状態で摺動する。図5に示すビード6の形状は、幅10mm、試料の摺動方向長さ12mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。図6に示すビード6の形状は、幅10mm、試料の摺動方向長さ69mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押付けられるビード下面は幅10mm、摺動方向長さ60mmの平面を有する。
【0052】
摩擦係数測定試験は,以下に示す2条件で行い、摩擦係数μは、式:μ=F/Nで算出した。
【0053】
[条件1]図5に示すビードを用い、押付荷重N:400kgf、試料の引き抜き速度(スライドテーブル3の水平移動速度):100cm/minとした。この時、評価は、摩擦係数により行ない、◎:0.11未満、○:0.11以上、0.13未満、△:0.13以上、0.15未満、×:0.15以上、とした。
【0054】
[条件2]図6に示すビードを用い,押付荷重N:400kgf、試料の引き抜き速度:20cm/minとした。この時、評価は、摩擦係数により行ない、
◎:0.16未満、○:0.16以上、0.18未満、△:0.18以上、0.21未満、×:0.21以上、とした。
供試体とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。
【0055】
(5)耐パウダリング性試験
耐パウダリング性については、ドロービード試験を行ない、単位面積当たりの皮膜の剥離量を測定した。皮膜剥離量10g/m2未満を合格とした。ここで、ドロービード試験とは、潤滑油を塗布した鋼板を、ビードとダイスで挟んだ状態で引き抜き、その後テープ剥離試験を行ない、試験前後の重量差から、めっき皮膜の剥離量を評価する試験方法である。ビードは先端角度90°の三角ビードを用い、成形高さは4mm、ビードとダイスの押し付け荷重は500kgfとした。
【0056】
更に、前記で得た摩擦係数測定試験結果及び耐パウダリング性試験に基づいて、以下のように総合評価した。
×:条件1,2の摩擦係数の劣る方の評点が×のもの、又はドロービード試験の皮膜剥離量が10g/m2以上のもの
△:ドロービード試験の皮膜剥離量が10g/m2未満で、条件1,2の摩擦係数の劣る方の評点が△のもの
○:ドロービード試験の皮膜剥離量が10g/m2未満で、条件1,2の摩擦係数の劣る方の評点が○のもの
◎:ドロービード試験の皮膜剥離量が10g/m2未満で、条件1,2の摩擦係数の劣る方の評点が◎のもの
試験結果を表1に示す。
【0057】
【表1】
【0058】
この試験結果から、下記事項が明らかである。
(1)比較例1は、調質圧延が施されていないため平坦部がなく、摩擦係数が高い。
(2)比較例2〜4は、溝の面積率あるいは粒状突起物の面積率の少なくとも一方が本発明範囲外であるため、摩擦係数が高く、耐パウダリング性に劣る。
(3)比較例 5 、 6 は、平坦部の面積率が本発明範囲外にあるため、本発明例 1 〜 6 に比べて摩擦係数が高く、摺動性が劣る。本発明例1〜6は、平坦部の面積率が 10 〜 90 %の範囲内にあり、且つ溝の面積率および粒状突起物の面積率が本発明範囲内にあり、比較例に比べて摩擦係数が低く、摺動性が改善されており、また耐パウダリング性も優れている。特に、本発明例3 〜 6は、平坦部の酸化膜厚が10nm以上あるため、摩擦係数がより低く、摺動性の改善効果が更に大きい。
【0059】
【発明の効果】
本発明の合金化溶融亜鉛めっき鋼板はプレス成形時の摺動抵抗が小さく、また耐パウダリング性も優れているので、安定して優れたプレス成形性が得られる。
【図面の簡単な説明】
【図1】合金化溶融亜鉛めっき鋼板のめっき表面の走査型二次電子顕微鏡写真である。
【図2】本発明の実施の形態に係る合金化溶融亜鉛めっき鋼板において、めっき表面の平坦部に存在する溝と粒状突起物を示す走査型二次電子顕微鏡写真である。
【図3】本発明の実施の形態に係る合金化溶融亜鉛めっき鋼板において、めっき表面の平坦部に存在する溝と粒状突起物を示す別の走査型二次電子顕微鏡写真である。
【図4】摩擦係数測定装置を示す概略正面図である。
【図5】図4中のビード形状・寸法を示す概略斜視図である。
【図6】図4中の別のビード形状・寸法を示す概略斜視図である。
【符号の説明】
1 摩擦係数測定用試料
2 試料台
3 スライドテーブル
4 ローラ
5 スライドテーブル支持台
6 ビード
7 第1ロードセル
8 第2ロードセル
9 レール
N 押付荷重
F 摺動抵抗力
P 引張荷重[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a galvannealed steel sheet having excellent slidability in press forming.
[0002]
[Prior art]
Alloyed hot-dip galvanized steel sheets are widely used in automobiles, home appliances, and the like because of their superior paintability and weldability compared to galvanized steel sheets.
[0003]
Such an alloyed hot-dip galvanized steel sheet is subjected to press forming and is provided for the intended use. However, the galvannealed steel sheet has a drawback that press formability is inferior to that of a cold-rolled steel sheet. This is because the sliding resistance between the alloyed hot-dip galvanized steel sheet and the press die is larger than that of the cold-rolled steel sheet. That is, in a portion where the sliding resistance between the bead and the galvanized steel sheet is extremely large, the galvannealed steel sheet hardly flows into the press die, and the steel sheet is easily broken.
[0004]
As a method for improving the press formability of a galvanized steel sheet, a method of applying a high-viscosity lubricating oil is generally widely used. However, in this method, there are problems such as the occurrence of coating defects due to poor degreasing in the coating process due to the high viscosity of the lubricating oil, and the unstable press performance due to running out of oil during pressing. In order to solve the above problem, it is necessary to minimize the amount of lubricating oil applied, and for that purpose, it is necessary to improve the press formability of the alloyed hot-dip galvanized steel sheet.
[0005]
As a method for solving the above-mentioned problem, JP-A-53-60332 and JP-A-2-190483 disclose electrolytic treatment, immersion treatment, coating oxidation treatment, or heat treatment on the surface of a galvanized steel sheet. Discloses a technique for forming an oxide film mainly composed of ZnO to improve weldability or workability.
[0006]
JP-A-4-88196 discloses that a galvanized steel sheet is immersed in an aqueous solution containing 5 to 60 g / l of sodium phosphate and having a pH of 2 to 6 or subjected to electrolytic treatment or spraying the aqueous solution on the surface of a galvanized steel sheet. This discloses a technique for forming an oxide film mainly composed of a P oxide to improve press formability and chemical conversion treatment properties.
[0007]
Japanese Unexamined Patent Publication (Kokai) No. 3-191093 discloses that a nickel oxide is formed on a surface of a galvanized steel sheet by an electrolytic treatment, a dipping treatment, a coating treatment, a coating oxidation treatment, or a heating treatment to thereby improve press formability and chemical conversion treatment properties. It discloses techniques to improve.
[0008]
Japanese Patent Application Laid-Open No. 7-18402 discloses a technique for forming a concave portion on the surface of an alloyed hot-dip galvanized steel sheet so that lubricating oil can be easily held on the steel sheet surface and press formability is improved.
[0009]
[Problems to be solved by the invention]
However, when the above-described prior art is applied to an alloyed hot-dip galvanized steel sheet, the effect of improving press formability cannot be stably obtained. The inventors have studied in detail the cause. As a result, it has been found that the alloyed hot-dip coated steel sheet is caused by non-uniform surface reactivity due to non-uniform Al oxides and large surface irregularities. That is, when the above-described prior art is applied to an alloyed hot-dip coated steel sheet, the reactivity of the surface is non-uniform. Therefore, even if an electrolytic treatment, an immersion treatment, a coating oxidation treatment, a heat treatment, or the like is performed, a predetermined film is formed on the surface. However, it is difficult to form the film uniformly, and the film thickness becomes thin in a portion having low reactivity (a large amount of Al oxide). In addition, because of the large irregularities on the surface, the direct contact with the press mold during press molding is the convex part of the surface, but the sliding resistance at the contact part between the thin part of the convex part and the mold is high. And the effect of improving press formability cannot be sufficiently obtained.
[0010]
Also, it was found that sufficient press moldability could not be obtained with this technology alone for forming the concave portions. This is considered to be because lubricating oil easily accumulates in the concave portion, but conversely, lubricating oil hardly accumulates in the convex portion, which has a large effect on slidability.
[0011]
The present invention has been made to solve the above problems, and has as its object to provide an alloyed hot-dip coated steel sheet having excellent slidability in press forming.
[0012]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above-mentioned object, and as a result, formed a flat portion on the plating surface of the alloyed hot-dip galvanized steel sheet, further formed a groove on the flat portion, and further formed a groove. It has been found that by forming fine granular projections on the surface layer of the flat portion that has not been formed, it is possible to obtain a highly stable and excellent press moldability.
[0013]
The flat part on the plating surface of the galvannealed steel sheet exists as a convex part as compared with the surroundings. An electron micrograph of the plating surface is shown in FIG. In FIG. 1, a portion seen with black contrast is a flat portion. The actual contact with the press mold during press molding mainly consists of the flat part that can be seen with this black contrast, so if the sliding resistance in this flat part is reduced, the press formability can be stably improved. it can.
[0014]
In order to reduce the sliding resistance in the flat portion, it is effective to prevent adhesion between the plating layer and the mold, and for that purpose, it is effective to improve the slipperiness of the surface of the plating layer. As a result of studying based on this idea, it was found that slidability can be significantly improved by forming grooves in the flat part and forming fine granular projections on the flat part surface layer where no grooves are formed. Was.
[0015]
The present invention has been made based on the above findings, the first invention, a flat portion in which the bumps of the unevenness of the plating surface are flattened by subjecting the plating surface to temper rolling, Inside, the area ratio of the flat portion on the plating surface is 10% or more, 90% or less, the flat portion has a groove and granular projections formed after temper rolling , In the groove, a region having a depth of 0.1 μm or more and 5.0 μm or less has an area ratio with respect to the flat portion of 0.1% or more and 30.0% or less, and the granular protrusion has a diameter of 5 nm or more and 500 nm or less and has a high diameter. The area of 5 nm or more and 500 nm or less is provided on the flat surface layer other than the groove, and the area ratio with respect to the flat surface layer is 30% or more and 82% or less. I do.
[0016]
The second invention provides the galvannealed steel sheet according to the first invention, wherein the granular projections are made of Zn or an oxide and / or hydroxide of Zn and Al.
[0017]
According to a third aspect, in the first or second aspect, the flat portion has a continuous coating layer composed of Zn or an oxide and / or hydroxide of Zn and Al on the surface of the flat portion. An alloy, wherein granular projections having a height in a range of 5 nm or more and 500 nm or less are formed, and an average thickness of the continuous coating layer and the granular projections is 10 nm or more and 500 nm or less. Provide galvanized galvanized steel sheet.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The alloyed hot-dip galvanized steel sheet has irregularities on the plating surface due to the difference in reactivity between the steel sheet and the plating interface during the alloying treatment. In the present invention, temper rolling is performed on the galvannealed steel sheet. By performing the temper rolling, the unevenness of the plating surface is alleviated and the surface is smoothed, and at the same time, the projections on the plating surface are flattened. Since the flat portion of the surface of the alloyed hot-dip galvanized steel sheet formed as described above is a portion to which a mold directly contacts at the time of press forming, it is important to improve the slipperiness of this portion to improve the slidability. is there.
[0020]
As a result of an examination from this viewpoint, it is found that forming grooves in the flat portion and forming fine granular projections on the surface layer of the flat portion where no grooves are formed is effective for remarkably improving slidability. all right.
[0021]
This is because the protrusions serve as a bearing, that is, lubricating oil is collected between the flat portion of the plating surface and the mold by the protrusions, and a part of the granular protrusions are peeled off from the plating surface layer. The rolling itself makes the plated steel sheet slippery. Further, the lubricating oil permeates and is held in the grooves existing in the flat portion, and the lubricating oil held in the grooves is supplied to the flat portion of the plated steel plate with which the mold is in direct contact at the time of press forming, so It is considered that the slidability can be significantly improved.
[0022]
2 and 3 are examples of electron micrographs of a flat portion of a galvannealed steel sheet according to an embodiment of the present invention. In FIG. 2, a portion that is seen in a zigzag black contrast is a groove existing in a flat portion, and a white portion in an intermediate color region other than the groove is a granular protrusion in the flat portion. FIG. 3 is a photograph at a higher magnification than that of FIG. 2, in which a slightly bright gray-white portion is a granular protrusion present on a flat portion. For example, a granular protrusion having a size of about 20 nm is formed at the tip of an arrow.
[0023]
With respect to the grooves, the grooves having a depth of 0.1 μm or more and 5.0 μm or less have an area ratio of 0.1% or more and 30% or less in the flat portion, so that alloying exhibiting good slidability is obtained. A hot-dip galvanized steel sheet is obtained. The reason why the depth of the groove is limited to 0.1 μm or more is that if the depth is less than 0.1 μm, the effect of improving the slidability is not sufficient, and sufficient press formability cannot be obtained. The reason for limiting the area ratio to 0.1% or more is the same. The reason for limiting the depth of the groove to 5.0 μm or less and the area ratio to 30.0% or less is that if it exceeds this, the coating becomes brittle and the powdering resistance deteriorates.
[0024]
In the present invention, the groove of the flat portion refers to not only a so-called groove-shaped depression whose shape as viewed from the surface is elongated, but also a groove that has a polygonal shape as viewed from the surface (see FIG. 2). The depth of the groove refers to the average depth in a continuous depression.
[0025]
The depth and area ratio of the groove can be evaluated by an atomic force microscope, a scanning electron microscope for three-dimensional observation, or the like.
[0026]
In addition, for the fine granular projections, the diameter when viewed from the surface is 5 nm or more, 500 nm or less, and the height is 5 nm or more, 500 nm or less, and the area ratio of the granular projections in the surface layer of the flat part is flat part. When the content is 30% or more and 82 % or less with respect to the surface layer, an alloyed hot-dip galvanized steel sheet exhibiting good sliding properties can be obtained. When the granular projections become smaller, the function of the above-described bearing becomes weaker, and when the granular projections become larger, the projections themselves become brittle and crack, so that the plating surface is easily scratched, but the diameter when viewed from the surface is reduced. By limiting the height to 5 nm or more and 500 nm or less and the height to 5 nm or more and 500 nm or less, both the effect of preventing scratches and the effect of improving slidability can be achieved. The height of the granular projections is more preferably 5 nm or more and 200 nm or less, and even more preferably 5 nm or more and 50 nm or less. Further, the diameter of the granular projection as viewed from the surface is more preferably 5 nm or more and 200 nm or less, and further preferably 5 nm or more and 100 nm or less.
[0027]
The reason why the area ratio of the granular projections to the flat surface layer is limited to 30% or more is that if less than 30%, the effect of improving press formability cannot be obtained. Surface factor is more desirable from 50% or more. The upper limit is 82 %.
[0028]
The use of Zn or Zn and Al oxides and / or hydroxides as the granular projections has an industrial advantage. The reason is that, in order to form another metal or a metal compound, it is necessary to add a new step, but if the above-mentioned oxide is used, the metal component contained in the plating film can be used, so that a simple process can be used. This is because a granular protrusion can be formed on the surface of the flat portion by the treatment.
[0029]
Continuous coating of the lower layer of the granular projections made of Zn or Zn and Al oxides and / or hydroxides with an oxide film made of the metal oxides and / or hydroxides is also effective in improving slidability. It is effective. It is considered that the continuous coating layer suppresses adhesion between the plating layer and the mold during press forming. However, in this case, the average thickness of the oxide layer including both the uniform coating layer and the granular projections needs to be 10 nm or more and 500 nm or less. This is because if the average thickness is less than 10 nm, a sufficient effect of improving press formability cannot be obtained. Further, when the average thickness exceeds 500 nm, the oxide and / or hydroxide is easily broken, the surface is easily scratched, and the chemical conversion property is deteriorated.
[0030]
The size of the granular projection can be evaluated by a high-resolution scanning electron microscope, transmission electron microscope, atomic force microscope, or the like. The particle size is determined by image processing of an electron micrograph and an electron force microscope image to determine the area of each particle, and is defined by the diameter when each particle is assumed to be a circle. The height is the height from the surface of a continuous coating layer made of Zn or Zn and Al oxides and / or hydroxides described later, if the layer is formed. If not, it is the height from the plating surface.
[0031]
The thickness of the oxide layer can be determined by Auger electron spectroscopy (AES) in combination with Ar + ion sputtering, cross-sectional observation with a transmission electron microscope, or the like. In the method using AES, after sputtering to a predetermined depth, the composition at that depth can be obtained by correcting the relative sensitivity factor from the peak intensity of each element to be measured. The content of O due to oxides or hydroxides reaches a maximum at a certain depth (this may be the outermost layer), and then decreases and becomes constant. The thickness of the oxide layer is set such that a sputtering time at which the O content is half of the sum of the maximum value and the constant value at a position deeper than the maximum value is set to a sputtering rate of a known thickness of a SiO 2 film or the like. Can be obtained by conversion based on
[0032]
The area ratio of the flat portion on the plating surface is 10% or more and 90% or less . If it is less than 10%, of the area that actually contacts the mold, the contact area between the mold and the part other than the flat part (concave part) increases, and the flat part that can exhibit the sliding property improving effect of the granular projections Since the area of contact with the mold is reduced, the effect of improving press formability is reduced.
[0033]
The portion excluding the flat portion has a role of retaining lubricating oil during press molding. When the area ratio of the portion excluding the flat portion is less than 10% (the area ratio of the flat portion exceeds 90%), oil shortage tends to occur during press molding, and the effect of improving press formability is reduced. Among these, the area ratio of the flat portion is more preferably in a range of 20% or more and 80% or less, and further preferably in a range of 30% or more and 70% or less.
[0034]
The flat portion of the plating surface can be easily identified by observing the surface with an optical microscope or a scanning electron microscope. The area ratio of the flat part on the plating surface can be determined by image analysis of the above micrograph.
[0035]
In the present invention, the Fe concentration and the Al concentration of the plating film of the alloyed hot-dip galvanized steel sheet are not particularly limited, but the structure of the plating layer is mainly composed of a δ phase and further contains a ζ phase is ideal. . When the 濃度 or η phase with a low Fe concentration is mainly used, the plating film becomes soft with a low melting point, so-called flaking during press molding, the plating film is deposited on the mold, and the product yield is reduced due to press flaws. The frequency of mold care may increase the production efficiency. Further, when the Γ phase and the Γ1 phase having a high Fe concentration are mainly used, powdering in which the plating film peels off during press working is liable to occur, and pressing scratches due to flaking are likely to occur. Therefore, the δ phase is mainly used as the plating film.
[0036]
In order to produce the galvannealed steel sheet according to the present invention, plating is performed in a galvanizing bath, alloying is performed, and temper rolling is performed. It is necessary that Al is added to the galvanizing bath, but additional element components other than Al are not particularly limited. That is, even if Fe, Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu, or the like is contained or added in addition to Al, the effect of the present invention is not impaired. In the alloying treatment, the alloying treatment conditions are adjusted so that the plating film has a structure mainly composed of a δ phase and further including a ζ phase. Next, a flat portion is formed on the plating surface by temper rolling. At this time, it is desirable that the rolling conditions be adjusted so that the area ratio of the flat portion is in the range described above.
[0037]
Next, on the flat portion of the plating surface, the above-mentioned grooves, or granular projections or continuous coating layers made of oxides and / or hydroxides of Zn and Al are formed.
[0038]
The method for forming the grooves is not particularly limited, and methods such as immersion in an acidic solution, electrolytic treatment, and surface grinding can be employed.
[0039]
The method of forming the granular projections and the continuous coating layer made of Zn or oxides and / or hydroxides of Zn or Zn and Al is not particularly limited, and may be formed by immersion in an oxidizing agent-containing aqueous solution or spraying the aqueous solution. Methods, methods such as cathodic electrolytic treatment and anodic electrolytic treatment in an aqueous solution containing an oxidizing agent, and methods such as hot water immersion and steam spraying can be employed. Further, two or more of these processes can be combined.
[0040]
In the present invention, the granular projections and the continuous coating layer made of Zn or oxides and / or hydroxides of Zn or Zn and Al are other than Zn and Al other than Zn and Al contained or added to the plating film. C, S, N, P, B, Cl, Na, Mn, Si, or the like contained in the above-mentioned components or the processing liquid for forming the granular projections or the continuous coating layer may be inevitably incorporated. Even in such a case, the effect of improving the press formability of the present invention is not impaired.
[0041]
【Example】
Next, the present invention will be described in more detail with reference to examples.
A coating film having a coating weight of 60 g / m 2 and a predetermined Fe concentration was formed on a cold-rolled steel sheet having a thickness of 0.8 mm by a conventional galvannealing method, and further temper rolling was performed. At this time, the area ratio of the flat portion on the surface was changed by changing the rolling load of the temper rolling. Next, it was immersed in an aqueous solution of sodium hydroxide having a pH of 12.5 to remove an oxide layer generated by heating during the alloying treatment (hereinafter, alkali treatment). The presence or absence of Al in the surface layer was adjusted by this processing time. Subsequently, in order to form a groove in the flat portion, the alloyed hot-dip coated steel sheet was immersed in a hydrochloric acid solution having a pH of 2.5 and a bath temperature of 70 ° C. Here, the density and the processing time were changed to various predetermined values to adjust the area ratio of the groove having a depth of 0.1 μm or more and 5.0 μm or less in the flat portion. Then, the following two types of processing were performed to form a continuous coating layer of Zn or Zn and Al and a granular projection thereon on the surface layer of the flat portion.
[0042]
[Forming Method A] The alloyed hot-dip coated steel sheet was immersed in a sulfuric acid acidic hydrogen peroxide aqueous solution at a pH of 2.5 and a bath temperature of 60 ° C. to form a continuous coating layer and granular projections. Here, the concentration was changed to various predetermined values, and the size and area ratio of the granular projections and the thickness of the oxide layer (the thickness of the continuous coating layer and the granular projections thereon) were adjusted. .
[0043]
[Forming Method B] The above-mentioned alloyed hot-dip coated steel sheet was immersed in a sulfuric acid acidic sodium nitrate aqueous solution at a pH of 2.5 and a bath temperature of 60 ° C, and was subjected to cathodic electrolysis to form a continuous coating layer and granular projections. Here, the size and area ratio of the granular protrusions and the thickness of the oxide layer were adjusted by changing the current supply time and the current density.
[0044]
Next, for the specimens (test materials Nos. 2 to 12) prepared as described above, measurement of the depth and area ratio of the groove, the size of the granular projections, the average thickness of the oxide layer, and the area ratio of the flat portion And a press formability test. The measurement of the depth and area ratio of the groove, the size of the granular projections, the average thickness of the oxide layer, the press formability test and the powdering resistance test were performed as follows.
[0045]
For comparison, an alloyed galvanized steel sheet which was not subjected to any of the temper rolling, the alkali treatment, and the projection forming treatment was prepared (test material No. 1), and the same investigation was performed.
[0046]
(1) Measurement of groove depth and area ratio Using an atomic force microscope (Nanoscope 2 manufactured by Digital Instrument), a groove having an average groove depth and an average groove depth in the range of 0.1 to 5.0 μm. Was measured. The average depth (n = 5) of the groove was determined based on the upper surface of the flat portion adjacent to the groove as a reference surface and using this position as a reference.
[0047]
(2) Measurement of Size of Granular Projection The size of the granular projection was measured using a scanning electron microscope (S-4000 manufactured by Hitachi, Ltd.) and an atomic force microscope (Nanoscope 2 manufactured by Digital Instrument). In addition, the particle size was determined from the particle area, and the diameter of a circle having an equivalent area. Regarding the height of the granular projection, the height was determined based on the surface of the continuous coating layer formed on the flat portion (the place where there is no granular projection).
[0048]
(3) Thickness Measurement of Oxide Layer Using a scanning Auger electron microscope (SAM-660 manufactured by Perkin-Elmer), the oxide in the depth direction of the flat portion is analyzed in combination with Ar + ion sputtering. The thickness of the layer was measured. The O content due to oxides or hydroxides reaches a maximum at a certain depth and then decreases and becomes constant. At this time, the sputtering time at which the O content became 1/2 of the sum of the maximum value and the constant value in the sputtering time longer than the maximum value was converted to the thickness, which was defined as the thickness of the oxide layer. The conversion from the sputtering time to the thickness of the oxide layer was performed based on the sputtering rate obtained by measuring a SiO 2 film having a known thickness.
[0049]
(4) Press formability evaluation test "Friction coefficient measurement test"
In order to evaluate press formability, the friction coefficient of each specimen was measured as follows.
[0050]
FIG. 4 is a schematic front view showing the friction coefficient measuring device. As shown in FIG. 1, a sample 1 for measuring a friction coefficient collected from a specimen is fixed to a sample table 2, and the sample table 2 is fixed to an upper surface of a horizontally movable slide table 3. On the lower surface of the slide table 3, a vertically movable
[0051]
5 and 6 are schematic perspective views showing the shapes and dimensions of the beads used. The
[0052]
The friction coefficient measurement test was performed under the following two conditions, and the friction coefficient μ was calculated by the equation: μ = F / N.
[0053]
[Condition 1] Using the bead shown in FIG. 5, the pressing load N: 400 kgf, the sample withdrawing speed (horizontal moving speed of the slide table 3): 100 cm / min. At this time, the evaluation was performed based on the coefficient of friction, ◎: less than 0.11, :: 0.11 or more, less than 0.13, Δ: 0.13 or more, less than 0.15, ×: 0.15 or more. did.
[0054]
[Condition 2] The bead shown in FIG. 6 was used, the pressing load N: 400 kgf, and the sample withdrawing speed: 20 cm / min. At this time, the evaluation is performed based on the coefficient of friction.
: Less than 0.16, :: 0.16 or more, less than 0.18, Δ: 0.18 or more, less than 0.21, x: 0.21 or more.
The coefficient of friction μ between the specimen and the bead was calculated by the formula: μ = F / N.
[0055]
(5) Powdering resistance test Regarding powdering resistance, a draw bead test was performed to measure the amount of peeling of the film per unit area. A film peeling amount of less than 10 g / m 2 was determined to be acceptable. Here, the draw bead test is a test method in which a steel sheet coated with a lubricating oil is pulled out while being sandwiched between a bead and a die, and then a tape peeling test is performed, and a peeling amount of a plating film is evaluated from a weight difference before and after the test. It is. The bead used was a triangular bead having a tip angle of 90 °, the molding height was 4 mm, and the pressing load between the bead and the die was 500 kgf.
[0056]
Furthermore, based on the friction coefficient measurement test results and the powdering resistance test obtained above, a comprehensive evaluation was made as follows.
X: The evaluation of the inferior coefficient of friction under the conditions 1 and 2 was x or the peeling amount of the film in the draw bead test was 10 g / m 2 or more. Δ: The peel amount of the film in the draw bead test was less than 10 g / m 2 . The one with a poor coefficient of friction under the conditions 1 and 2 was evaluated as ○: The film peeled off in the draw bead test was less than 10 g / m 2 , and the one with a poor friction coefficient under the conditions 1 and 2 was evaluated as ○: Table 1 shows the test results in which the peeling amount of the film in the draw bead test was less than 10 g / m 2 and the coefficient of friction under conditions 1 and 2 was poor.
[0057]
[Table 1]
[0058]
From the test results, the following matters are clear.
(1) Comparative Example 1 has no flat portion because it has not been subjected to temper rolling, and has a high friction coefficient.
(2) In Comparative Examples 2 to 4, since at least one of the area ratio of the groove and the area ratio of the granular projection is out of the range of the present invention, the friction coefficient is high and the powdering resistance is poor.
(3) In Comparative Examples 5 and 6 , since the area ratio of the flat portion is out of the range of the present invention, the coefficient of friction is high and the slidability is inferior to those of Examples 1 to 6 of the present invention . In Examples 1 to 6 of the present invention, the area ratio of the flat portion was in the range of 10 to 90 %, and the area ratio of the grooves and the area ratio of the granular projections were in the range of the present invention. The coefficient is low, the slidability is improved, and the powdering resistance is excellent. In particular, the present invention Examples 3-6, the oxide film thickness is 10nm or more wear because of the flat portion, the friction coefficient is lower, the greater the effect of improving the sliding properties.
[0059]
【The invention's effect】
The alloyed hot-dip galvanized steel sheet of the present invention has low sliding resistance during press forming and excellent powdering resistance, so that excellent press formability can be obtained stably.
[Brief description of the drawings]
FIG. 1 is a scanning secondary electron microscope photograph of a galvannealed steel sheet.
FIG. 2 is a scanning secondary electron micrograph showing grooves and granular protrusions existing in a flat portion of a galvanized surface in a galvannealed steel sheet according to an embodiment of the present invention.
FIG. 3 is another scanning secondary electron micrograph showing grooves and granular protrusions existing in a flat portion of a galvanized steel sheet in the galvannealed steel sheet according to the embodiment of the present invention.
FIG. 4 is a schematic front view showing a friction coefficient measuring device.
FIG. 5 is a schematic perspective view showing a bead shape and dimensions in FIG.
FIG. 6 is a schematic perspective view showing another bead shape and size in FIG. 4;
[Explanation of symbols]
REFERENCE SIGNS LIST 1 Sample for friction coefficient measurement 2 Sample table 3 Slide table 4
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000110002A JP3575390B2 (en) | 2000-03-07 | 2000-03-07 | Galvannealed steel sheet with excellent press formability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000110002A JP3575390B2 (en) | 2000-03-07 | 2000-03-07 | Galvannealed steel sheet with excellent press formability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001247948A JP2001247948A (en) | 2001-09-14 |
JP3575390B2 true JP3575390B2 (en) | 2004-10-13 |
Family
ID=18622593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000110002A Expired - Fee Related JP3575390B2 (en) | 2000-03-07 | 2000-03-07 | Galvannealed steel sheet with excellent press formability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3575390B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4930182B2 (en) * | 2007-05-16 | 2012-05-16 | Jfeスチール株式会社 | Alloy hot-dip galvanized steel sheet |
JP5801034B2 (en) | 2010-02-01 | 2015-10-28 | 日本航空電子工業株式会社 | Sliding parts, sliding part surface processing method and production method |
-
2000
- 2000-03-07 JP JP2000110002A patent/JP3575390B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001247948A (en) | 2001-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5522185B2 (en) | Galvanized steel sheet | |
JP2007297686A (en) | Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet | |
JP4329387B2 (en) | Hot-dip galvanized steel sheet with excellent press formability and manufacturing method thereof | |
JP3675313B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet with excellent slidability | |
JP3613195B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP5540459B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP2007231375A (en) | Galvannealed steel sheet | |
JP3575390B2 (en) | Galvannealed steel sheet with excellent press formability | |
JP2005139557A (en) | Hot dip galvannealed steel sheet, and its production method | |
JP3644402B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP4930182B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP4849501B2 (en) | Hot-dip galvanized steel sheet excellent in press formability and manufacturing method thereof | |
JP3570409B2 (en) | Galvannealed steel sheet | |
JP4826486B2 (en) | Method for producing galvannealed steel sheet | |
JP3575391B2 (en) | Galvannealed steel sheet with excellent press formability | |
JP4696376B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP4826078B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP4539255B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP4826017B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP3368847B2 (en) | Galvanized steel sheet with excellent press formability and adhesion | |
JP2004256838A (en) | Hot-dip galvannealed steel sheet of excellent press formability | |
JP2005002477A (en) | Galvannealed steel sheet | |
JP2003171751A (en) | Galvannealed steel sheet | |
JP5045231B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP2001131772A (en) | Galvannealed steel sheet excellent in press formability and its producing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20031202 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040130 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040302 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040427 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040511 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040615 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040628 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3575390 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |