JP2002256448A - Method for manufacturing galvannealed steel sheet - Google Patents

Method for manufacturing galvannealed steel sheet

Info

Publication number
JP2002256448A
JP2002256448A JP2001059914A JP2001059914A JP2002256448A JP 2002256448 A JP2002256448 A JP 2002256448A JP 2001059914 A JP2001059914 A JP 2001059914A JP 2001059914 A JP2001059914 A JP 2001059914A JP 2002256448 A JP2002256448 A JP 2002256448A
Authority
JP
Japan
Prior art keywords
steel sheet
acidic solution
treatment
contact
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001059914A
Other languages
Japanese (ja)
Other versions
JP3608519B2 (en
JP2002256448A5 (en
Inventor
Akira Gama
昭 蒲
Yoichi Miyagawa
洋一 宮川
Shunsaku Noide
俊策 野出
Masahiro Iwabuchi
正洋 岩渕
Koji Omori
宏次 大森
Yasunori Osaki
恭紀 大崎
Shinichi Tomonaga
伸一 朝長
Shoichiro Taira
章一郎 平
Yoshiharu Sugimoto
芳春 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2001059914A priority Critical patent/JP3608519B2/en
Publication of JP2002256448A publication Critical patent/JP2002256448A/en
Publication of JP2002256448A5 publication Critical patent/JP2002256448A5/ja
Application granted granted Critical
Publication of JP3608519B2 publication Critical patent/JP3608519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a galvannealed steel sheet superior in a sliding property at press-forming. SOLUTION: The method for manufacturing the galvannealed steel sheet having a flat part with an area factor of 20-80% on the plated surface with an iron-zinc alloy, and an oxide layer of the thickness of 10 nm or thicker on the surface of the flat part, includes subjecting the steel sheet to hot-dip galvanizing, further alloying it with a heat treatment, temper rolling it, then contacting it with an acid solution, leaving it for 1.0-30.0 seconds after finishing contacting, washing with water, and drying it. The method also includes contacting the steel sheet with steam, before the washing and drying, and after leaving it for the 1.0-30.0 seconds. The method further includes activating the surface by contacting it with an alkaline solution, before contacting it with the acid solution and after the temper rolling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、プレス成形時に
おける摺動性に優れた合金化溶融亜鉛めっき鋼板の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a galvannealed steel sheet having excellent slidability during press forming.

【0002】[0002]

【従来の技術】合金化溶融亜鉛めっき鋼板は亜鉛めっき
鋼板と比較して溶接性および塗装性に優れることから、
自動車車体用途を中心に広範な分野で広く利用されてい
る。そのような用途での合金化溶融亜鉛めっき鋼板は、
プレス成形を施されて使用に供される。しかし、合金化
溶融亜鉛めっき鋼板は、冷延鋼板に比べてプレス成形性
が劣るという欠点を有する。これはプレス金型での合金
化溶融めっき鋼板の摺動抵抗が冷延鋼板に比べて大きい
ことが原因である。すなわち、金型とビードでの摺動抵
抗が大きい部分で合金化溶融亜鉛めっき鋼板がプレス金
型に流入しにくくなり、鋼板の破断が起こりやすい。
2. Description of the Related Art Alloyed hot-dip galvanized steel sheets have better weldability and paintability than galvanized steel sheets.
It is widely used in a wide range of fields, mainly for automotive body applications. Alloyed hot-dip galvanized steel sheet for such applications is
It is press-formed and used. However, the galvannealed steel sheet has a drawback that press formability is inferior to that of a cold-rolled steel sheet. This is because the sliding resistance of the alloyed hot-dip coated steel sheet in the press die is larger than that of the cold-rolled steel sheet. That is, the galvannealed steel sheet is less likely to flow into the press die in a portion where the sliding resistance between the die and the bead is large, and the steel sheet is easily broken.

【0003】合金化溶融亜鉛めっき鋼板は、鋼板に亜鉛
めっきを施した後、加熱処理を行い、鋼板中のFeとめっ
き層中のZnが拡散する合金化反応が生じることにより、
Fe-Zn合金相を形成させたものである。このFe-Zn合金相
は、通常、Γ相、δ1相、ζ相からなる皮膜であり、Fe
濃度が低くなるに従い、すなわち、Γ相→δ1相→ζ相
の順で、硬度ならびに融点が低下する傾向がある。この
ため、摺動性の観点からは、高硬度で、融点が高く凝着
の起こりにくい高Fe濃度の皮膜が有効であり、プレス成
形性を重視する合金化溶融亜鉛めっき鋼板は、皮膜中の
平均Fe濃度を高めに製造されている。
[0003] An alloyed hot-dip galvanized steel sheet is subjected to a heat treatment after galvanizing the steel sheet, thereby causing an alloying reaction in which Fe in the steel sheet and Zn in the plating layer diffuse.
This is the one in which an Fe-Zn alloy phase is formed. This Fe-Zn alloy phase is usually a film composed of a Γ phase, a δ 1 phase, and a ζ phase,
As the concentration decreases, that is, in the order of す な わ ち phase → δ 1 phase → Γ phase, the hardness and melting point tend to decrease. For this reason, from the viewpoint of slidability, a coating having a high hardness, a high melting point, and a high Fe concentration, in which adhesion is unlikely to occur, is effective. It is manufactured with a high average Fe concentration.

【0004】しかしながら、高Fe濃度の皮膜では、めっ
き−鋼板界面に硬くて脆いΓ相が形成されやすく加工時
に、界面から剥離 する現象、いわゆるパウダリングが
生じ易い問題を有している。このため、特開平1-319661
号公報に示されているように、摺動性と耐パウダリング
性を両立するために、上層に第二層として硬質のFe系合
金を電気めっきなどの手法により付与する方法がとられ
ている。
[0004] However, a film having a high Fe concentration has a problem that a hard and brittle や す く phase is easily formed at the interface between the plating and the steel sheet, and the phenomenon of peeling from the interface during processing, that is, so-called powdering is liable to occur. For this reason, JP-A-1-319661
As shown in the publication, in order to achieve both slidability and powdering resistance, a method of applying a hard Fe-based alloy as a second layer to the upper layer by a method such as electroplating has been taken. .

【0005】亜鉛系めっき鋼板使用時のプレス成形性を
向上させる方法としては、この他に、高粘度の潤滑油を
塗布する方法が広く用いられている。しかし、この方法
では、潤滑油の高粘性のために塗装工程で脱脂不良によ
る塗装欠陥が発生したり、また、プレス時の油切れによ
り、プレス性能が不安定になる等の問題がある。従っ
て、合金化溶融亜鉛めっき自身のプレス成形性が改善さ
れることが強く要請されている。
[0005] As a method for improving the press formability when using a galvanized steel sheet, a method of applying a high-viscosity lubricating oil is widely used. However, in this method, there are problems such as the occurrence of coating defects due to poor degreasing in the coating process due to the high viscosity of the lubricating oil, and the unstable press performance due to running out of oil during pressing. Therefore, there is a strong demand that the press formability of the galvannealed alloy itself be improved.

【0006】上記の問題を解決する方法として、特開昭
53-60332号公報および特開平2-190483号公報には、亜鉛
系めっき鋼板の表面に電解処理、浸漬処理、塗布酸化処
理、または加熱処理を施すことにより、ZnOを主体とす
る酸化膜を形成させて溶接性、または加工性を向上させ
る技術を開示している。
As a method for solving the above problem, Japanese Patent Application Laid-Open
In 53-60332 and JP-A-2-190483, an oxide film mainly composed of ZnO is formed by subjecting a surface of a galvanized steel sheet to electrolytic treatment, immersion treatment, coating oxidation treatment, or heat treatment. It discloses a technique for improving weldability or workability.

【0007】特開平4-88196号公報は、亜鉛系めっき鋼
板の表面に、リン酸ナトリウム5〜60g/lを含みpH2〜6の
水溶液にめっき鋼板を浸漬するか、電解処理を行うか、
または、上記水溶液を塗布することにより、P酸化物を
主体とした酸化膜を形成して、プレス成形性及び化成処
理性を向上させる技術を開示している。
Japanese Patent Application Laid-Open No. 4-88196 discloses that a galvanized steel sheet is immersed in an aqueous solution containing 5 to 60 g / l of sodium phosphate and having a pH of 2 to 6 on the surface of a galvanized steel sheet,
Alternatively, a technique is disclosed in which an oxide film mainly composed of a P oxide is formed by applying the aqueous solution to improve press moldability and chemical conversion treatment.

【0008】特開平3-191093号公報は、亜鉛系めっき鋼
板の表面に電解処理、浸漬処理、塗布処理、塗布酸化処
理、または加熱処理により、Ni酸化物を生成させること
により、プレス成形性および化成処理性を向上させる技
術を開示している。
[0008] Japanese Patent Application Laid-Open No. 3-91093 discloses that the surface of a galvanized steel sheet is subjected to electrolytic treatment, immersion treatment, coating treatment, coating oxidation treatment, or heat treatment to produce Ni oxide, thereby improving the press formability. A technique for improving chemical conversion treatment is disclosed.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、上記の
先行技術を合金化溶融亜鉛めっき鋼板に適用した場合、
プレス成形性の改善効果を安定して得ることはできな
い。本発明者らは、その原因について詳細な検討を行っ
た結果、合金化溶融めっき鋼板はAl酸化物が存在するこ
とにより表面の反応性が劣ること、及び表面の凹凸が大
きいことが原因であることを見出した。即ち、先行技術
を合金化溶融めっき鋼板に適用した場合、表面の反応性
が低いため、電解処理、浸漬処理、塗布酸化処理及び加
熱処理等を行っても、所定の皮膜を表面に形成すること
は困難であり、反応性の低い部分、すなわち、Al酸化物
量が多い部分では膜厚が薄くなってしまう。また、表面
の凹凸が大きいため、プレス成型時にプレス金型と直接
接触するのは表面の凸部となるが、凸部のうち膜厚の薄
い部分と金型との接触部での摺動抵抗が大きくなり、プ
レス成形性の改善効果が十分には得られない。
However, when the above prior art is applied to a galvannealed steel sheet,
The effect of improving press formability cannot be obtained stably. The present inventors have conducted a detailed study on the cause, and as a result, the alloyed hot-dip coated steel sheet is inferior in surface reactivity due to the presence of Al oxide, and due to large surface irregularities. I found that. That is, when the prior art is applied to an alloyed hot-dip coated steel sheet, the reactivity of the surface is low, so that a predetermined film is formed on the surface even when performing electrolytic treatment, dipping treatment, coating oxidation treatment, heat treatment, and the like. Is difficult, and the film thickness becomes thin in a portion having low reactivity, that is, a portion having a large amount of Al oxide. Also, due to the large irregularities on the surface, the direct contact with the press mold during press molding is the convex part of the surface, but the sliding resistance at the contact part between the thin part of the convex part and the mold is high. And the effect of improving press formability cannot be sufficiently obtained.

【0010】本発明は上記の問題点を改善し、プレス成
形時の摺動性に優れた合金化溶融めっき鋼板の製造方法
を提供することを目的とする。
An object of the present invention is to solve the above problems and to provide a method for producing an alloyed hot-dip coated steel sheet having excellent slidability during press forming.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく、鋭意研究を重ねた結果、合金化溶融め
っき鋼板表面に存在する平坦部表層の酸化物層厚さを10
nm以上に制御することで、安定して優れたプレス成形性
が得られることを知見した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies in order to solve the above-mentioned problems, and as a result, have found that the thickness of the oxide layer on the surface layer of the flat portion existing on the surface of the alloyed hot-dip coated steel sheet is reduced to 10
It was found that excellent press moldability can be obtained stably by controlling it to nm or more.

【0012】合金化溶融亜鉛めっき鋼板表面の上記平坦
部は、周囲と比較すると凸部として存在する。プレス成
形時に実際にプレス金型と接触するのは、この平坦部が
主体となるため、この平坦部における摺動抵抗を小さく
すれば、プレス成形性を安定して改善することができ
る。この平坦部における摺動抵抗を小さくするには、め
っき層と金型との凝着を防ぐのが有効であり、そのため
には、めっき層の表面に、硬質かつ高融点の皮膜を形成
することが有効である。この観点から検討を進めた結
果、平坦部表層の酸化物層厚さを制御することが有効で
あり、こうして平坦部表層の酸化膜厚を制御すると、め
っき層と金型の凝着が生じず、良好な摺動性を示すこと
を見出した。また、このような酸化膜厚の形成には、酸
性溶液と接触させてめっき表層に酸化物層を形成する方
法が有効なことが明らかになった。
The flat part on the surface of the galvannealed steel sheet exists as a convex part as compared with the surrounding area. The flat portion mainly contacts the press mold during the press forming, so that if the sliding resistance in the flat portion is reduced, the press formability can be stably improved. In order to reduce the sliding resistance in this flat part, it is effective to prevent adhesion between the plating layer and the mold. For this purpose, it is necessary to form a hard and high-melting coating on the surface of the plating layer. Is valid. As a result of study from this viewpoint, it is effective to control the thickness of the oxide layer on the surface layer of the flat portion, and by controlling the oxide film thickness of the surface layer of the flat portion, the adhesion between the plating layer and the mold does not occur. And good slidability. In addition, it has been found that a method of forming an oxide layer on a plating surface layer by contacting with an acidic solution is effective for forming such an oxide film thickness.

【0013】本発明者らは、前記の知見に基づいて、合
金化溶融亜鉛めっき鋼板およびその製造方法について特
許出願した(特願2000-212591)。この出願に係る発明
は、鉄−亜鉛合金めっき表面に面積率で20〜80%の平坦
部を有し、その平坦部の表層に厚さが10nm以上の酸化物
層を有することを特徴とする合金化溶融亜鉛めっき鋼板
であり、前記鋼板を製造するに際し、鋼板に溶融亜鉛め
っきを施し、さらに加熱処理により合金化し、調質圧延
を施した後に、酸性溶液と接触させてめっき表層に酸化
物層を形成することを特徴とする合金化溶融亜鉛めっき
鋼板の製造方法である。
The present inventors have applied for a patent on a galvannealed steel sheet and a method for producing the same based on the above findings (Japanese Patent Application No. 2000-212591). The invention according to this application is characterized in that it has a flat portion with an area ratio of 20 to 80% on the surface of the iron-zinc alloy plating, and has an oxide layer with a thickness of 10 nm or more on the surface layer of the flat portion. An alloyed hot-dip galvanized steel sheet.In producing the steel sheet, the steel sheet is subjected to hot-dip galvanizing, further alloyed by heat treatment, subjected to temper rolling, and then brought into contact with an acidic solution to form an oxide on the plating surface layer. A method for producing an alloyed hot-dip galvanized steel sheet, comprising forming a layer.

【0014】本発明者等は、プレス成形時の摺動性に優
れた合金化溶融めっき鋼板の製造方法についてさらに検
討した結果、前記製造方法において、酸性溶液に接触終
了後1.0〜30.0秒放置した後水洗、乾燥することによっ
て、摺動特性に優れた鋼板をより安定に製造できること
が明らかになった。
The present inventors have further studied a method for producing an alloyed hot-dip coated steel sheet having excellent slidability during press forming. As a result, in the above-mentioned production method, the steel sheet was left for 1.0 to 30.0 seconds after the end of the contact with the acidic solution. It has been clarified that a steel sheet having excellent sliding characteristics can be manufactured more stably by washing with water and drying.

【0015】本発明は、以上の知見に基いてなされたも
のであり、その要旨は以下の通りである。
The present invention has been made based on the above findings, and the gist is as follows.

【0016】(1)鉄−亜鉛合金めっき表面に面積率が20
〜80%の平坦部を有し、その平坦部の表層に厚さが10nm
以上の酸化物層を有する合金化溶融亜鉛めっき鋼板を製
造するに際し、鋼板に溶融亜鉛めっきを施し、さらに加
熱処理により合金化し、調質圧延を施した後、酸性溶液
と接触させ、接触終了後1.0〜30.0秒放置した後水洗、
乾燥することを特徴とする合金化溶融亜鉛めっき鋼板の
製造方法。
(1) The area ratio of the iron-zinc alloy plating surface is 20
It has a flat part of ~ 80%, and the surface layer of the flat part has a thickness of 10 nm.
In producing an alloyed hot-dip galvanized steel sheet having the above oxide layer, the steel sheet is subjected to hot-dip galvanizing, further alloyed by heat treatment, subjected to temper rolling, then brought into contact with an acidic solution, and after the contact is completed. After leaving for 1.0 to 30.0 seconds, wash with water,
A method for producing an alloyed hot-dip galvanized steel sheet, comprising drying.

【0017】(2)酸性溶液と接触終了後1.0〜30.0秒放置
した後水洗、乾燥する前に、水蒸気と接触させることを
特徴とする前記(1)に記載の合金化溶融亜鉛めっき鋼板
の製造方法。
(2) The method for producing a galvannealed steel sheet according to the above (1), wherein the steel sheet is allowed to stand for 1.0 to 30.0 seconds after the contact with the acidic solution, and then contacted with steam before washing with water and drying. Method.

【0018】(3)調質圧延を施した後酸性溶液と接触さ
せる前に、アルカリ性溶液に接触させて表面の活性化処
理を施すことを特徴とする前記(1)または(2)に記載の合
金化溶融亜鉛めっき鋼板の製造方法。
(3) The method according to the above (1) or (2), wherein after the temper rolling, before the contact with the acidic solution, the surface is activated by contacting with an alkaline solution. Manufacturing method of galvannealed steel sheet.

【0019】(4)酸性溶液と接触後該酸性溶液の付着量
を片面あたり3.0g/m2以下に調整した後1.0〜30.0秒放置
することを特徴とする前記(1)〜(3)のいずれかに記載の
合金化溶融亜鉛めっき鋼板の製造方法。
(4) The method according to (1) to (3), wherein after the contact with the acidic solution, the amount of the acidic solution is adjusted to 3.0 g / m 2 or less per one side and then left for 1.0 to 30.0 seconds. The method for producing the galvannealed steel sheet according to any one of the above.

【0020】(5)酸性溶液が、FeおよびZnイオンを含む
酸性溶液であることを特徴とする前記(1)〜(4)のいずれ
かに記載の合金化溶融亜鉛めっき鋼板の製造方法。
(5) The method for producing a galvannealed steel sheet according to any one of the above (1) to (4), wherein the acidic solution is an acidic solution containing Fe and Zn ions.

【0021】[0021]

【発明の実施の形態】合金化溶融亜鉛めっき鋼板の製造
の際には、鋼板に溶融亜鉛めっきを施した後に、さらに
加熱し合金化処理が施されるが、この合金化処理時の鋼
板−めっき界面の反応性の差により、合金化溶融亜鉛め
っき鋼板表面には凹凸が存在する。しかしながら、合金
化処理後には、通常、材質確保のために調質圧延が施さ
れ、この調質圧延時のロールとの接触により、めっき表
面は平滑化され凹凸が緩和される。従って、プレス成型
時には、金型がめっき表面の凸部を押しつぶすのに必要
な力が低下し、摺動特性を向上させることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the production of an alloyed hot-dip galvanized steel sheet, the steel sheet is subjected to hot-dip galvanizing and then further heated and alloyed. Irregularities exist on the surface of the galvannealed steel sheet due to the difference in reactivity at the plating interface. However, after the alloying treatment, temper rolling is usually performed to secure the material, and the contact with the roll at the time of the temper rolling causes the plating surface to be smoothed and unevenness is reduced. Therefore, at the time of press molding, the force required for the mold to crush the projections on the plating surface is reduced, and the sliding characteristics can be improved.

【0022】合金化溶融亜鉛めっき鋼板表面の平坦部
は、プレス成形時に金型が直接接触する部分であるた
め、金型との凝着を防止する硬質かつ高融点の物質が存
在することが、摺動性の向上には重要である。この点で
は、表層に酸化物層を存在させることは、酸化物層が金
型との凝着を防止するため、摺動特性の向上に有効であ
る。
Since the flat part of the surface of the galvannealed steel sheet is a part that the mold directly contacts during press forming, the presence of a hard and high-melting substance that prevents adhesion to the mold is present. It is important for improving the slidability. In this regard, the presence of the oxide layer on the surface layer is effective in improving the sliding characteristics because the oxide layer prevents adhesion to the mold.

【0023】実際のプレス成形時には、表層の酸化物は
摩耗し、削り取られるため、金型と被加工材の接触面積
が大きい場合には、十分に厚い酸化膜の存在が必要であ
る。めっき表面には合金化処理時の加熱により酸化物層
が形成されているものの、調質圧延時のロールとの接触
により大部分が破壊され、新生面が露出しているため、
良好な摺動性を得るためには調質圧延以前に厚い酸化物
層を形成しなければならない。また、このことを考慮に
入れて、調質圧延前に厚い酸化物層を形成させたとして
も、調質圧延時に生じる酸化物層の破壊を避けることは
できないため、平坦部の酸化物層が不均一に存在し、良
好な摺動性を安定して得ることはできない。
At the time of actual press forming, the oxide on the surface layer is worn out and scraped off. Therefore, when the contact area between the mold and the workpiece is large, it is necessary to have a sufficiently thick oxide film. Although an oxide layer is formed on the plating surface by heating during the alloying process, most of it is destroyed by contact with the roll during temper rolling, and the new surface is exposed,
In order to obtain good slidability, a thick oxide layer must be formed before temper rolling. Also, taking this into consideration, even if a thick oxide layer is formed before the temper rolling, the oxide layer at the flat portion cannot be prevented from being destroyed at the time of the temper rolling. It is not uniform, and good slidability cannot be obtained stably.

【0024】このため、調質圧延が施された合金化溶融
亜鉛めっき鋼板、特にめっき表面平坦部に、均一に酸化
物層を形成する処理を施すと良好な摺動性を安定的に得
ることができる。
[0024] Therefore, when a treatment for uniformly forming an oxide layer on a tempered rolled alloyed hot-dip galvanized steel sheet, particularly a flat surface of a plated surface, it is possible to stably obtain good slidability. Can be.

【0025】合金化溶融亜鉛めっき鋼板を酸性溶液と接
触させることによってめっき表層に酸化物層を形成する
ことができるが、酸性溶液に接触終了後1.0〜30.0秒放
置した後水洗、乾燥することにより、めっき表面平坦部
に摺動特性に優れる酸化物層を安定して形成することが
できる。
An oxide layer can be formed on the surface of the galvanized steel sheet by bringing the galvannealed steel sheet into contact with an acidic solution. After the contact with the acidic solution, the steel sheet is allowed to stand for 1.0 to 30.0 seconds, then washed with water and dried. In addition, an oxide layer having excellent sliding characteristics can be stably formed on the flat portion of the plating surface.

【0026】この酸化物層形成メカニズムについては明
確ではないが、酸性溶液に接触終了後1.0〜30.0秒放置
した後、水洗、乾燥することによって、酸性溶液との接
触によって生成する亜鉛の水酸化物の生成反応が一層促
進され、めっき表層に酸化物をより確実に形成できるも
のと考えられる。放置時間が30.0秒を超えると摺動特性
を向上する効果が飽和するので、放置時間は30.0秒以下
が好ましい。ここでの接触終了とは、浸漬・スプレーな
どの方法により酸性溶液をめっき鋼板に供給する処理が
終了した段階と定義する。
Although the mechanism of formation of the oxide layer is not clear, it is left for 1.0 to 30.0 seconds after the end of the contact with the acidic solution, washed with water and dried to form a hydroxide of zinc formed by the contact with the acidic solution. It is considered that the formation reaction of the oxide is further promoted, and the oxide can be more reliably formed on the plating surface layer. If the leaving time exceeds 30.0 seconds, the effect of improving the sliding characteristics is saturated. Therefore, the leaving time is preferably 30.0 seconds or less. Here, the term "contact end" is defined as a stage at which the process of supplying the acidic solution to the plated steel sheet by a method such as immersion or spraying is completed.

【0027】上記処理に使用する酸性溶液のpHが低すぎ
ると、亜鉛の溶解は促進されるが、酸化物が生成しにく
くなるため、pH1以上であることが望ましい。一方、pH
が高すぎると亜鉛溶解の反応速度が低くなるため、液の
pHは5以下であることが望ましい。
If the pH of the acidic solution used in the above treatment is too low, the dissolution of zinc is promoted, but the formation of oxides is difficult, so that the pH is preferably 1 or more. On the other hand, pH
Is too high, the reaction rate of zinc dissolution will decrease,
The pH is desirably 5 or less.

【0028】酸性溶液と接触させる方法には、めっき鋼
板を酸性溶液に浸漬する方法、めっき鋼板に酸性溶液を
スプレーする方法、塗布ロールを介して酸性溶液をめっ
き鋼板に塗布する方法等がある。
Examples of the method of contacting with the acidic solution include a method of dipping the plated steel sheet in the acidic solution, a method of spraying the acidic solution on the plated steel sheet, and a method of applying the acidic solution to the plated steel sheet via a coating roll.

【0029】前記処理に使用する酸性溶液としては、Fe
およびZnイオンを含む酸性溶液を使用できる。Feおよび
Znイオンを含む液を使用すると、酸化処理後の摩擦係数
のばらつきが減少する効果があり、またこれらはめっき
皮膜に含まれている成分であるため、これらの成分がめ
っき表面に残っても悪影響がない。
The acidic solution used in the above treatment is Fe
And an acidic solution containing Zn ions. Fe and
The use of a solution containing Zn ions has the effect of reducing the variation in the coefficient of friction after the oxidation treatment, and since these are components contained in the plating film, these components have an adverse effect even if they remain on the plating surface. There is no.

【0030】酸性溶液と接触後、酸性溶液の付着量を片
面あたり3.0g/m2以下に調整し、その後前記時間放置す
ることがより好ましい。付着量を前記範囲にすることに
よって、その後の放置工程における亜鉛の水酸化物の生
成反応を促進する作用を向上できるためと考えられる。
付着量調整は絞りロール、エアワイピング等で行うこと
ができる。
After the contact with the acidic solution, it is more preferable to adjust the amount of the acidic solution to be applied to 3.0 g / m 2 or less per one side, and then to stand for the above-mentioned time. It is considered that the effect of promoting the reaction of generating the hydroxide of zinc in the subsequent leaving step can be improved by setting the amount of the coating in the above range.
The adhesion amount can be adjusted by a squeezing roll, air wiping, or the like.

【0031】酸性溶液が水洗、乾燥後の鋼板表面に残存
すると、鋼板コイルが長期保管されたときに錆が発生し
やすくなる。係る錆発生を防止する観点から、アルカリ
性溶液に浸漬あるいはアルカリ性溶液をスプレーするな
どの方法でアルカリ性溶液と接触させて、鋼板表面に残
存している酸性溶液を中和する処理を施してもよい。ア
ルカリ性溶液は、表面に形成されたZn系酸化物の溶解を
防止するためpH12以下であることが望ましい。前記pHの
範囲内であれば、使用する溶液に制限はなく、水酸化ナ
トリウム、リン酸ナトリウムなど使用することができ
る。
If the acidic solution remains on the surface of the steel sheet after washing with water and drying, rust easily occurs when the steel sheet coil is stored for a long period of time. From the viewpoint of preventing the generation of rust, a treatment for neutralizing the acidic solution remaining on the surface of the steel sheet may be performed by bringing it into contact with the alkaline solution by a method such as immersion in an alkaline solution or spraying the alkaline solution. The alkaline solution preferably has a pH of 12 or less in order to prevent dissolution of the Zn-based oxide formed on the surface. The solution to be used is not limited as long as it is within the above pH range, and sodium hydroxide, sodium phosphate and the like can be used.

【0032】前記時間放置した後、またさらにアルカリ
性溶液に接触させて中和処理を施した場合は中和処理を
施した後、水洗、乾燥する前に、高温の水蒸気と接触さ
せることがより好ましい。亜鉛は、中性溶液との接触に
より亜鉛系酸化物を生成しやすく、高温状態では反応も
すばやく進行する。高温の水蒸気と接触させることによ
って、短時間で摺動性の向上に必要な酸化物層を確実に
形成させることができる。ここで高温の水蒸気と接触さ
せる方法としては、スプレー水に水蒸気を吹き込み、こ
れを鋼板に吹き付ける方法等を用いることができる。水
蒸気吹き付けの条件は特に規定しないが、温度100℃以
上、吹き付け圧1kg/mm2以上であると好ましい。
If the mixture is left for the above-mentioned period of time, or if it is further subjected to a neutralization treatment by contacting with an alkaline solution, it is more preferable that after the neutralization treatment, it is brought into contact with high-temperature steam before washing with water and drying. . Zinc easily forms a zinc-based oxide upon contact with a neutral solution, and the reaction proceeds rapidly in a high temperature state. By contacting with high-temperature steam, an oxide layer necessary for improving slidability can be surely formed in a short time. Here, as a method of contacting with high-temperature steam, a method of blowing steam into spray water and spraying the same onto a steel plate can be used. The conditions for spraying steam are not particularly defined, but it is preferable that the temperature is 100 ° C. or more and the spray pressure is 1 kg / mm 2 or more.

【0033】上記のように酸性溶液に接触させて酸化物
層を形成する前に、表層に残存した酸化物層を除去する
とより効果的である。これは、調質圧延時のロールとの
接触により表層酸化物は破壊されているものの一部残存
しており、表面の反応性が不均一なためである。表層に
残存した酸化物層を除去する手法としては、アルカリ性
溶液に浸漬あるいはスプレーなどで処理することによ
り、化学的に除去する手法が有効である。アルカリ性溶
液であれば、表層に残存した酸化物層を除去し活性化で
きるが、pHが低いと反応が遅く処理に長時間を有するた
め、pH10以上であることが望ましい。上記範囲内のpHで
あれば溶液の種類に制限はなく、水酸化ナトリウムなど
を用いることができる。
It is more effective to remove the oxide layer remaining on the surface layer before forming the oxide layer by contacting with the acidic solution as described above. This is because the surface oxide is destroyed by the contact with the roll at the time of temper rolling, but a part of the surface oxide remains but the reactivity of the surface is uneven. As a method for removing the oxide layer remaining on the surface layer, a method for chemically removing the oxide layer by immersion in an alkaline solution or treatment by spraying is effective. If the alkaline solution is used, the oxide layer remaining on the surface layer can be removed and activated. However, if the pH is low, the reaction is slow and the treatment takes a long time, so that the pH is preferably 10 or more. As long as the pH is within the above range, the type of the solution is not limited, and sodium hydroxide or the like can be used.

【0034】本発明における酸化物層とは、Zn,Fe,Al
及びその他の金属元素の1種以上の酸化物及び/又は水
酸化物などからなる層のことである。
The oxide layer according to the present invention includes Zn, Fe, Al
And one or more oxides and / or hydroxides of other metal elements.

【0035】めっき表層の平坦部における酸化物層の厚
さを10nm以上とすることにより、良好な摺動性を示す合
金化溶融亜鉛めっき鋼板が得られるが、酸化物層の厚さ
を20nm以上とするとより効果的である。これは、金型と
被加工物の接触面積が大きくなるプレス成形加工におい
て、表層の酸化物層が摩耗した場合でも残存し、摺動性
の低下を招くことがないためである。一方、酸化物層の
厚さの上限は特に設けないが、200nmを超えると表面の
反応性が極端に低下し、化成処理皮膜を形成するのが困
難になるため、200nm以下とするのが望ましい。
By setting the thickness of the oxide layer in the flat portion of the plating surface layer to 10 nm or more, an alloyed hot-dip galvanized steel sheet exhibiting good slidability is obtained, but the thickness of the oxide layer is set to 20 nm or more. Is more effective. This is because, in the press forming process in which the contact area between the mold and the workpiece increases, even if the surface oxide layer is worn, the oxide layer remains and does not cause a decrease in slidability. On the other hand, the upper limit of the thickness of the oxide layer is not particularly provided, but if it exceeds 200 nm, the reactivity of the surface is extremely reduced, and it becomes difficult to form a chemical conversion treatment film. .

【0036】なお、平坦部表面の酸化物層の厚さは、Ar
イオンスパッタリングと組み合わせたオージェ電子分光
(AES)により求めることができる。この方法において
は、所定厚さまでスパッタした後、測定対象の各元素の
スペクトル強度から相対感度因子補正により、その深さ
での組成を求めることができる。酸化物または水酸化物
に起因するOの含有率は、ある深さで最大値となった後
(これが最表層の場合もある)、減少し、一定となる。
Oの含有率が最大値より深い位置で、最大値と一定値と
の和の1/2となる深さを、酸化物の厚さとする。
The thickness of the oxide layer on the surface of the flat part is Ar
It can be determined by Auger electron spectroscopy (AES) in combination with ion sputtering. In this method, after sputtering to a predetermined thickness, the composition at the depth can be obtained by correcting the relative sensitivity factor from the spectral intensity of each element to be measured. The O content due to oxides or hydroxides reaches a maximum at a certain depth (which may be the outermost layer), and then decreases and becomes constant.
At a position where the O content is deeper than the maximum value, the depth at which the sum of the maximum value and the constant value is 1/2 is defined as the oxide thickness.

【0037】ここで、めっき表面における平坦部の面積
率は、20〜80%とするのが望ましい。20%未満では、平
坦部を除く部分(凹部)での金型との接触面積が大きく
なり、実際に金型に接触する面積のうち、酸化物厚さを
確実に制御できる平坦部の面積率が小さくなるため、プ
レス成形性の改善効果が小さくなる。また、平坦部を除
く部分は、プレス成型時にプレス油を保持する役割を持
つ。従って、平坦部を除く部分の面積率が20%未満にな
ると(平坦部の面積率が80%を超えると)プレス成形時
に油切れを起こしやすくなり、プレス成形性の改善効果
が小さくなる。
Here, it is desirable that the area ratio of the flat portion on the plating surface is 20 to 80%. If it is less than 20%, the contact area with the mold in the portion (concave portion) excluding the flat portion becomes large, and the area ratio of the flat portion in which the oxide thickness can be reliably controlled in the area actually in contact with the mold. , The effect of improving press formability is reduced. In addition, the portion excluding the flat portion has a role of holding press oil at the time of press molding. Therefore, when the area ratio of the portion excluding the flat portion is less than 20% (when the area ratio of the flat portion exceeds 80%), oil shortage tends to occur during press molding, and the effect of improving press moldability is reduced.

【0038】なお、めっき表面の平坦部は、光学顕微鏡
あるいは走査型電子顕微鏡等で表面を観察することで容
易に識別可能である。めっき表面における平坦部の面積
率は、上記顕微鏡写真を画像解析することにより求める
ことができる。
The flat portion of the plating surface can be easily identified by observing the surface with an optical microscope or a scanning electron microscope. The area ratio of the flat portion on the plating surface can be determined by image analysis of the micrograph.

【0039】本発明に係る合金化溶融亜鉛めっき鋼板を
製造するに関しては、めっき浴中にAlが添加されている
ことが必要であるが、Al以外の添加元素成分は特に限定
されない。すなわち、Alの他に、Pb,Sb,Si,Sn,Mg,
Mn,Ni,Ti,Li,Cuなどが含有または添加されていて
も、本発明の効果が損なわれるものではない。
For producing the alloyed hot-dip galvanized steel sheet according to the present invention, it is necessary that Al is added to the plating bath, but the additional element components other than Al are not particularly limited. That is, in addition to Al, Pb, Sb, Si, Sn, Mg,
Even if Mn, Ni, Ti, Li, Cu, etc. are contained or added, the effects of the present invention are not impaired.

【0040】また、酸化処理などに使用する処理液中に
不純物が含まれることにより、S,N,P,B,Cl,Na,M
n,Ca,Mg,Ba,Sr,Siなどが酸化物層中に取り込まれ
ても、本発明の効果が損なわれるものではない。
Further, since impurities are contained in the processing solution used for the oxidation treatment or the like, S, N, P, B, Cl, Na, M
Even if n, Ca, Mg, Ba, Sr, Si and the like are taken into the oxide layer, the effect of the present invention is not impaired.

【0041】[0041]

【実施例】次に、本発明を実施例により更に詳細に説明
する。 (実施例1)板厚0.8mmの冷延鋼板上に、常法の合金化溶
融亜鉛めっき皮膜を形成し、更に調質圧延を行った。こ
の際に、調質圧延の圧下荷重を変化させることで、表面
における平坦部面積率を20〜80%の範囲に調整した。引
き続き、図1に示す構成の処理設備を用いて酸化物層を
形成した。
Next, the present invention will be described in more detail with reference to examples. (Example 1) An alloyed hot-dip galvanized film was formed on a cold-rolled steel sheet having a thickness of 0.8 mm by a normal method, and further temper rolling was performed. At this time, the flat portion area ratio on the surface was adjusted to a range of 20 to 80% by changing the rolling load of the temper rolling. Subsequently, an oxide layer was formed using the processing equipment having the configuration shown in FIG.

【0042】すなわち、酸性溶液槽2で、50℃、pH1.5に
調整した硫酸酸性溶液中へ浸漬処理を行った後、絞りロ
ール3で鋼板面の酸性溶液の付着量を調整した。次い
で、#1洗浄槽5で50℃の温水を鋼板にスプレーし、中和
槽6を空通しし、#2洗浄槽7で50℃の温水を鋼板にスプレ
ーして洗浄し、ドライヤ8で乾燥し、めっき表面に酸化
物層を形成した。
That is, after the immersion treatment was performed in a sulfuric acid solution adjusted to 50 ° C. and pH 1.5 in the acid solution tank 2, the amount of the acid solution adhered to the steel sheet surface was adjusted by the squeezing roll 3. Next, the steel plate is sprayed with 50 ° C hot water in the # 1 washing tank 5, the neutralization tank 6 is passed through, the 50 ° C hot water is sprayed on the steel sheet in the # 2 washing tank 7, and washed, and the dryer 8 is dried. Then, an oxide layer was formed on the plating surface.

【0043】一部の鋼板については、前記処理中、絞り
ロール3出側のシャワー水洗装置4を用いて絞り直後に鋼
板を洗浄し、および/または、中和槽6でpH10のアルカ
リ性処理液(水酸化ナトリウム水溶液)をスプレーして
鋼板表面に残存している酸性溶液を中和処理した。
With respect to some steel sheets, the steel sheets are washed immediately after squeezing using the shower rinsing device 4 on the exit side of the squeezing roll 3 during the above-mentioned treatment, and / or an alkaline treatment liquid (pH 10) in the neutralization tank 6. An aqueous solution of sodium hydroxide was sprayed to neutralize the acidic solution remaining on the steel sheet surface.

【0044】処理条件を表1に示す。表1中、放置時間
は、絞りロール3で鋼板表面の酸性溶液付着量を調整し
てから#1洗浄槽5、あるいはシャワー装置4で洗浄開始す
るまでの時間である。
Table 1 shows the processing conditions. In Table 1, the standing time is the time from when the amount of the acidic solution adhered to the steel sheet surface is adjusted by the squeezing roll 3 to when the washing is started with the # 1 washing tank 5 or the shower device 4.

【0045】次に、以上の様に作製した鋼板について、
めっき皮膜中のFe濃度、平坦部の面積率、酸化物層厚さ
の測定及びプレス成形性試験を行なった。また、鋼板に
防錆油を塗布した後、ほこりなど外部の要因の影響がな
いように屋外に放置し約6ヵ月後の点錆の発生の有無を
調査し、点錆なしを「○」、点錆ありを「×」とした。
平坦部の酸化物層厚さの測定、プレス成形性試験は次の
ようにして行った。
Next, regarding the steel sheet manufactured as described above,
The measurement of the Fe concentration in the plating film, the area ratio of the flat portion, the thickness of the oxide layer, and the press formability test were performed. Also, after applying rust preventive oil to the steel sheet, leave it outdoors so that there is no influence of external factors such as dust, and investigate the occurrence of rust spots after about 6 months. The presence of spot rust was evaluated as “×”.
The measurement of the thickness of the oxide layer on the flat portion and the press formability test were performed as follows.

【0046】(1)酸化物層の厚さ測定 オージェ電子分光(AES)により、平坦部の各元素の含
有率(at%)を測定し、引き続いて所定の深さまでArス
パッタリングした後、AESによりめっき皮膜中の各元素
の含有率の測定を行い、これを繰り返すことにより、深
さ方向の各元素の組成分布を測定した。酸化物、水酸化
物に起因するOの含有率はある深さで最大となった後、
減少し一定となる。Oの含有率が、最大値より深い位置
で、最大値と一定値との和の1/2となる深さを、酸化物
の厚さとした。任意に選んだ複数箇所(n=3)の平坦部の
酸化物の厚さを測定し、その平均値を求めた。なお、予
備処理として30秒のArスパッタリングを行って、供試材
表面のコンタミネーションレイヤーを除去した。
(1) Oxide Layer Thickness Measurement The content (at%) of each element in the flat portion was measured by Auger electron spectroscopy (AES), followed by Ar sputtering to a predetermined depth, followed by AES The content of each element in the plating film was measured, and by repeating this, the composition distribution of each element in the depth direction was measured. After the content of O due to oxides and hydroxides reaches a maximum at a certain depth,
Decreases and becomes constant. The depth at which the O content was half of the sum of the maximum value and the constant value at a position deeper than the maximum value was defined as the oxide thickness. The thickness of the oxide on the flat portion at a plurality of arbitrarily selected portions (n = 3) was measured, and the average value was determined. Note that, as a preliminary treatment, Ar sputtering was performed for 30 seconds to remove the contamination layer on the surface of the test material.

【0047】(2)プレス成形性評価試験(摩擦係数測定
試験) プレス成形性を評価するために、各供試材の摩擦係数を
以下のようにして測定した。
(2) Evaluation Test of Press Formability (Test for Measuring Friction Coefficient) In order to evaluate the press formability, the friction coefficient of each test material was measured as follows.

【0048】図2は、摩擦係数測定装置を示す概略正面
図である。同図に示すように、供試材から採取した摩擦
係数測定用試料11が試料台12に固定され、試料台12は、
水平移動可能なスライドテーブル13の上面に固定されて
いる。スライドテーブル13の下面には、これに接したロ
ーラ14を有する上下動可能なスライドテーブル支持台15
が設けられ、これを押上げることにより、ビード16によ
る摩擦係数測定用試料11への押付荷重Nを測定するため
の第1ロードセル17が、スライドテーブル支持台15に取
付けられている。上記押付力を作用させた状態でスライ
ドテーブル13を水平方向へ移動させるための摺動抵抗力
Fを測定するための第2ロードセル18が、スライドテーブ
ル13の一方の端部に取付けられている。なお、潤滑油と
して、日本パーカライジング社製ノックスラスト550HN
を試料11の表面に塗布して試験を行った。
FIG. 2 is a schematic front view showing a friction coefficient measuring device. As shown in the figure, a friction coefficient measurement sample 11 collected from a test material is fixed to a sample table 12, and the sample table 12 is
It is fixed to the upper surface of a horizontally movable slide table 13. On the lower surface of the slide table 13, a vertically movable slide table support 15 having a roller 14 in contact therewith is provided.
A first load cell 17 for measuring a pressing load N of the bead 16 against the friction coefficient measurement sample 11 by being pushed up is attached to the slide table support 15. A sliding resistance force for moving the slide table 13 in the horizontal direction while the pressing force is applied.
A second load cell 18 for measuring F is attached to one end of the slide table 13. As a lubricating oil, Noxlast 550HN manufactured by Nippon Parkerizing Co., Ltd.
Was applied to the surface of Sample 11 to perform a test.

【0049】図3,4は使用したビードの形状・寸法を示
す概略斜視図である。ビード16の下面が試料11の表面に
押し付けられた状態で摺動する。図3に示すビード16の
形状は幅10mm、試料の摺動方向長さ12mm、摺動方向両端
の下部は曲率4.5mmRの曲面で構成され、試料が押し付け
られるビード下面は幅10mm、摺動方向長さ3mmの平面を
有する。図4に示すビード16の形状は幅10mm、試料の摺
動方向長さ69mm、摺動方向両端の下部は曲率4.5mmRの曲
面で構成され、試料が押し付けられるビード下面は幅10
mm、摺動方向長さ60mmの平面を有する。
FIGS. 3 and 4 are schematic perspective views showing the shapes and dimensions of the beads used. The bead 16 slides while being pressed against the surface of the sample 11. The shape of the bead 16 shown in FIG. 3 is 10 mm in width, the length in the sliding direction of the sample is 12 mm, the lower part of both ends in the sliding direction is a curved surface with a curvature of 4.5 mmR, the lower surface of the bead on which the sample is pressed is 10 mm in width, the sliding direction It has a plane with a length of 3 mm. The shape of the bead 16 shown in FIG. 4 is 10 mm in width, the length of the sample in the sliding direction is 69 mm, and the lower part at both ends in the sliding direction is a curved surface with a curvature of 4.5 mmR.
mm, and has a plane with a length of 60 mm in the sliding direction.

【0050】摩擦係数測定試験は以下に示す2条件で行
った。 (条件1)図3に示すビードを用い、押し付け荷重N:400
kgf、試料の引き抜き速度(スライドテーブル13の水平
移動速度):100cm/minとした。 (条件2)図4に示すビードを用い、押し付け荷重N:400
kgf、試料の引き抜き速度(スライドテーブル13の水平
移動速度):20cm/minとした。供試材とビードとの間の
摩擦係数μは、式:μ=F/Nで算出した。試験結果を表1
に示す。
The friction coefficient measurement test was performed under the following two conditions. (Condition 1) Using the bead shown in Fig. 3, pressing force N: 400
kgf, sample withdrawal speed (horizontal movement speed of slide table 13): 100 cm / min. (Condition 2) Using the bead shown in Fig. 4, pressing force N: 400
kgf, sample withdrawal speed (horizontal movement speed of slide table 13): 20 cm / min. The friction coefficient μ between the test material and the bead was calculated by the formula: μ = F / N. Table 1 shows test results
Shown in

【0051】[0051]

【表1】 【table 1】

【0052】表1の試験結果から、下記事項が明らかで
ある。 (1)No.1(比較例)は、調質圧延を施されていない合金
化溶融亜鉛めっき鋼板の例であり、摩擦係数が高い。 (2)No.2およびNo.3(比較例)は、調質圧延後に酸化物
の形成処理を施されていないため、酸化物の厚さが10nm
未満と薄く、摩擦係数が高い。 (3)No.4およびNo.5(比較例)は、調質圧延後に酸性溶
液での処理を施されているが、放置時間が本発明範囲内
より短く、平坦部における酸化物の厚さが10nm未満であ
るため、摩擦係数の改善効果がほとんど得られていな
い。
From the test results in Table 1, the following matters are clear. (1) No. 1 (Comparative Example) is an example of an alloyed hot-dip galvanized steel sheet that has not been subjected to temper rolling, and has a high coefficient of friction. (2) No. 2 and No. 3 (comparative examples) had no oxide forming treatment after temper rolling, so the oxide thickness was 10 nm.
Less and less, high coefficient of friction. (3) No. 4 and No. 5 (Comparative Examples) were treated with an acidic solution after temper rolling, but the standing time was shorter than within the range of the present invention, and the thickness of the oxide in the flat portion was smaller. Is less than 10 nm, the effect of improving the coefficient of friction is hardly obtained.

【0053】(4)No.6〜No.11は、調質圧延後に酸性溶液
へ浸漬し、さらに放置時間が本発明範囲内にあるため、
酸化物の厚さが10nm以上となっており、摩擦係数は改善
されている。さらに、酸性溶液へ浸漬し、絞りロールで
調整した付着量が3.0g/m2以下である場合(No.12〜No.2
3)は、同じ放置時間で比較すると、付着量が3.0g/m 2
超える場合よりも、酸化物の厚さが厚く、摩擦係数の改
善効果が大きい。
(4) No. 6 to No. 11 are acidic solutions after temper rolling.
Immersion, and further, because the leaving time is within the scope of the present invention,
Oxide thickness is more than 10nm, coefficient of friction is improved
Have been. Furthermore, immerse in an acidic solution and squeeze roll
The adjusted adhesion amount is 3.0g / mTwoIf it is below (No.12 ~ No.2
3) shows that the adhesion amount is 3.0g / m TwoTo
The oxide thickness is larger than the
Good effect is great.

【0054】(5)No.18〜No.23は処理後アルカリ性処理
液を鋼板にスプレーして中和処理を行った例である。こ
の場合、中和処理を行うことによって、長期間屋外放置
した後の点錆は全くなく、酸化物層を形成した鋼板コイ
ルが使用前に長期間保管されることがあっても錆発生を
防止する能力に優れる。
(5) No. 18 to No. 23 are examples in which a neutralization treatment was performed by spraying an alkaline treatment liquid on the steel sheet after the treatment. In this case, by performing the neutralization treatment, there is no rust at all after being left outdoors for a long time, and even if the steel sheet coil with the oxide layer is stored for a long time before use, rust generation is prevented. Excellent ability to do.

【0055】(実施例2)板厚0.8mmの冷延鋼板上に、常
法の合金化溶融亜鉛めっき皮膜を形成し、更に調質圧延
を行った。この際に、調質圧延の圧下荷重を変化させる
ことで、表面における平坦部面積率を20〜80%の範囲に
調整した。引き続き、図1に示す構成の処理設備を用い
て酸化物層を形成した。
(Example 2) An alloyed hot-dip galvanized film was formed on a cold-rolled steel sheet having a thickness of 0.8 mm by a conventional method, followed by temper rolling. At this time, the flat portion area ratio on the surface was adjusted to a range of 20 to 80% by changing the rolling load of the temper rolling. Subsequently, an oxide layer was formed using the processing equipment having the configuration shown in FIG.

【0056】すなわち、酸性溶液槽2で、50℃、pH1.5に
調整した硫酸酸性溶液中へ浸漬処理を行った後、絞りロ
ール3で鋼板面の酸性溶液の付着量を調整した。次い
で、#1洗浄槽5で50℃の温水を鋼板にスプレーし、中和
槽6を空通しし、#2洗浄槽7で予め温水に水蒸気が吹き込
まれた100℃の水蒸気を吹き付け圧1kg/mm2で鋼板に吹き
付けた後、ドライヤ8で乾燥し、めっき表面に酸化物層
を形成した。
That is, the immersion treatment was performed in a sulfuric acid solution adjusted to 50 ° C. and pH 1.5 in the acid solution tank 2, and the amount of the acid solution adhered to the steel sheet surface was adjusted by the squeezing roll 3. Then, hot water of 50 ° C. is sprayed on the steel sheet in # 1 washing tank 5, air is passed through neutralizing tank 6, and steam of 100 ° C. in which steam is previously blown into the hot water in # 2 washing tank 7 is sprayed at a pressure of 1 kg / kg. After spraying the steel sheet with mm 2, it was dried with a dryer 8 to form an oxide layer on the plating surface.

【0057】一部の鋼板については、前記処理中、絞り
ロール3出側のシャワー水洗装置4を用いて絞り直後に鋼
板を洗浄し、および/または、中和槽6でpH10のアルカ
リ性処理液(水酸化ナトリウム水溶液)をスプレーして
鋼板表面に残存している酸性溶液で中和処理を施し、お
よび/または、#2洗浄槽7での水蒸気吹き付けに代えて5
0℃の温水を鋼板にスプレーした。
For some steel sheets, the steel sheets are washed immediately after squeezing using the shower rinsing device 4 on the exit side of the squeezing roll 3 during the above treatment, and / or an alkaline treatment liquid (pH 10) in the neutralization tank 6. (Aqueous sodium hydroxide solution) to neutralize with the acidic solution remaining on the steel sheet surface, and / or 5
Hot water at 0 ° C. was sprayed on the steel sheet.

【0058】処理条件を表2に示す。表2中、放置時間
は、絞りロール3で鋼板表面の酸性溶液付着量を調整し
てから#1洗浄槽5、あるいはシャワー水洗装置4で洗浄開
始するまでの時間である。
Table 2 shows the processing conditions. In Table 2, the standing time is the time from the adjustment of the amount of the acidic solution adhered to the steel sheet surface by the squeezing roll 3 to the start of cleaning in the # 1 cleaning tank 5 or the shower water washing device 4.

【0059】次に、以上の様に作製した供試体につい
て、実施例1と同様にして、めっき皮膜中のFe濃度、平
坦部の面積率、酸化物層厚さの測定及びプレス成形性試
験を行い、また、鋼板に防錆油を塗布した後、ほこりな
ど外部の要因の影響がないように屋外に放置し約6ヵ月
後の点錆の発生の有無を調査した。試験結果を表2に示
す。
Next, the specimens prepared as described above were subjected to the measurement of the Fe concentration in the plating film, the area ratio of the flat portion, the thickness of the oxide layer, and the press formability test in the same manner as in Example 1. In addition, after applying rust-preventive oil to the steel sheet, it was left outdoors so as not to be affected by external factors such as dust, and the occurrence of rust spot after about 6 months was investigated. Table 2 shows the test results.

【0060】[0060]

【表2】 [Table 2]

【0061】表2の試験結果から、下記事項が明らかで
ある。 (1)No.1(比較例)は、調質圧延を施されていない合金
化溶融亜鉛めっき鋼板の例であり、摩擦係数が高い。 (2)No.2およびNo.3(比較例)は、調質圧延後に酸化物
の形成処理を施されていないため、酸化物の厚さが10nm
未満と薄く、摩擦係数が高い。
From the test results in Table 2, the following matters are clear. (1) No. 1 (Comparative Example) is an example of an alloyed hot-dip galvanized steel sheet that has not been subjected to temper rolling, and has a high coefficient of friction. (2) No. 2 and No. 3 (comparative examples) had no oxide forming treatment after temper rolling, so the oxide thickness was 10 nm.
Less and less, high coefficient of friction.

【0062】(3)No.12〜No.29は、酸性溶液に浸漬した
後の放置時間が本発明範囲内にあり、さらに水蒸気吹き
付け処理を行っているため、いずれも摩擦係数が改善さ
れている。さらに、酸性溶液へ浸漬し、絞りロールで調
整した付着量が3.0g/m2以下である場合(No.18〜No.2
9)は、同じ放置時間で比較すると、付着量が3.0g/m2
超える場合よりも、酸化物の厚さが厚く、摩擦係数の改
善効果が大きい。これに対して、酸性溶液に浸漬した後
の放置時間が本発明範囲内に含まれない場合(No.10,N
o.11)は、摩擦係数の改善効果は見られるものの、前記
No.12〜No.29と比較すると改善効果が小さい。
(3) For No. 12 to No. 29, the standing time after immersion in the acidic solution was within the range of the present invention, and furthermore, since the steam spraying treatment was performed, the friction coefficient was improved for all. I have. Furthermore, when immersed in an acidic solution and the adhesion amount adjusted with a squeeze roll is 3.0 g / m 2 or less (No. 18 to No. 2
In 9), when compared with the same standing time, the thickness of the oxide is larger and the effect of improving the coefficient of friction is greater than in the case where the adhesion amount exceeds 3.0 g / m 2 . On the other hand, when the standing time after immersion in the acidic solution is not included in the range of the present invention (No. 10, N
o.11) indicates that although the effect of improving the friction coefficient is
The improvement effect is small compared to No. 12 to No. 29.

【0063】またNo.12〜No.29は、酸性溶液に浸漬しさ
らに放置時間が本発明範囲内に含まれるものの、水蒸気
処理を施されていない場合(No.4〜No.9)に比べて、摩
擦係数の改善効果がより大きい。
Nos. 12 to 29 were immersed in an acidic solution and allowed to stand still within the scope of the present invention, but were not subjected to steam treatment (Nos. 4 to 9). Thus, the effect of improving the coefficient of friction is greater.

【0064】(4)No.24〜No.29は処理後アルカリ性処理
液を鋼板にスプレーして中和処理を行った例である。こ
の場合、中和処理を行うことによって、長期間屋外放置
した後の点錆は全くなく、酸化物層を形成した鋼板コイ
ルが使用前に長期間保管されることがあっても錆発生を
防止する能力に優れる。
(4) Nos. 24 to 29 are examples in which a neutralization treatment was performed by spraying an alkaline treatment liquid on the steel sheet after the treatment. In this case, by performing the neutralization treatment, there is no rust at all after being left outdoors for a long time, and even if the steel sheet coil with the oxide layer is stored for a long time before use, rust generation is prevented. Excellent ability to do.

【0065】(実施例3)板厚0.8mmの冷延鋼板上に、常
法の合金化溶融亜鉛めっき皮膜を形成し、更に調質圧延
を行った。この際に、調質圧延の圧下荷重を変化させる
ことで、表面における平坦部面積率を20〜80%の範囲に
調整した。引き続き、図5に示す構成の処理設備を用い
て酸化物層を形成した。
Example 3 An ordinary galvannealed film was formed on a cold-rolled steel sheet having a thickness of 0.8 mm, and temper rolling was further performed. At this time, the flat portion area ratio on the surface was adjusted to a range of 20 to 80% by changing the rolling load of the temper rolling. Subsequently, an oxide layer was formed using the processing equipment having the configuration shown in FIG.

【0066】すなわち、酸性溶液槽2で、50℃、pH1.5に
調整した硫酸酸性溶液中へ浸漬処理を行った後、絞りロ
ール3で鋼板面の酸性溶液の付着量を調整した。次い
で、#1洗浄槽5で50℃の温水を鋼板にスプレーし、中和
槽6を空通しし、#2洗浄槽7で50℃の温水を鋼板にスプレ
ーして洗浄し、ドライヤ8で乾燥し、めっき表面に酸化
物層を形成した。
That is, after the immersion treatment was performed in a sulfuric acid solution adjusted to 50 ° C. and pH 1.5 in the acid solution tank 2, the amount of the acid solution adhered to the steel sheet surface was adjusted by the squeezing roll 3. Next, the steel plate is sprayed with 50 ° C hot water in the # 1 washing tank 5, the neutralization tank 6 is passed through, the 50 ° C hot water is sprayed on the steel sheet in the # 2 washing tank 7, and washed, and the dryer 8 is dried. Then, an oxide layer was formed on the plating surface.

【0067】また一部の鋼板については、前記処理中、
絞りロール3出側のシャワー水洗装置4を用いて絞り直後
に鋼板を洗浄する処理、上記酸性溶液への浸漬処理前
に、活性化槽1でアルカリ性溶液を用いた処理、およ
び、中和槽6でpH10のアルカリ性処理液(水酸化ナトリ
ウム水溶液)をスプレーする中和処理の内のいずれか一
つ以上の処理を施した。
For some steel sheets, during the above treatment,
A treatment for washing the steel sheet immediately after squeezing using the shower rinsing device 4 on the exit side of the squeezing roll 3, a treatment using an alkaline solution in the activation tank 1 before the immersion treatment in the acidic solution, and a neutralization tank 6 At least one of neutralization treatments in which an alkaline treatment solution (aqueous sodium hydroxide solution) having a pH of 10 is sprayed.

【0068】処理条件を表3に示す。表3中、放置時間
は、絞りロール3で鋼板表面の酸性溶液付着量を調整し
てから#1洗浄槽6、あるいはシャワー水洗装置4で洗浄開
始するまでの時間である。
Table 3 shows the processing conditions. In Table 3, the standing time is the time from the adjustment of the amount of the acidic solution adhering to the steel sheet surface by the squeezing roll 3 to the start of washing in the # 1 washing tank 6 or the shower water washing device 4.

【0069】次に、以上の様に作製した供試体につい
て、実施例1と同様にして、めっき皮膜中のFe濃度、平
坦部の面積率、酸化物層厚さの測定及びプレス成形性試
験を行い、また、鋼板に防錆油を塗布した後、ほこりな
ど外部の要因の影響がないように屋外に放置し約6ヵ月
後の点錆の発生の有無を調査した。試験結果を表3に示
す。
Next, in the same manner as in Example 1, measurement of the Fe concentration in the plating film, the area ratio of the flat portion, the thickness of the oxide layer, and the press formability test were performed on the specimens prepared as described above. In addition, after applying rust-preventive oil to the steel sheet, it was left outdoors so as not to be affected by external factors such as dust, and the occurrence of rust spot after about 6 months was investigated. Table 3 shows the test results.

【0070】[0070]

【表3】 [Table 3]

【0071】表3の試験結果から、下記事項が明らかで
ある。 (1)No.1(比較例)は、調質圧延を施されていない合金
化溶融亜鉛めっき鋼板の例であり、摩擦係数が高い。 (2)No.2およびNo.3(比較例)は、調質圧延後に酸化物
の形成処理を施されていないため、酸化物の厚さが10nm
未満と薄く、摩擦係数が高い。
From the test results in Table 3, the following matters are clear. (1) No. 1 (Comparative Example) is an example of an alloyed hot-dip galvanized steel sheet that has not been subjected to temper rolling, and has a high coefficient of friction. (2) No. 2 and No. 3 (comparative examples) had no oxide forming treatment after temper rolling, so the oxide thickness was 10 nm.
Less and less, high coefficient of friction.

【0072】(3)No.12〜No.29は、調質圧延後に活性化
処理を施し、さらに酸性溶液に浸漬した後の放置時間が
本発明範囲内にあるため、いずれも摩擦係数が改善され
ている。さらに、酸性溶液へ浸漬し、絞りロールで調整
した付着量が3.0g/m2以下である場合(No.18〜No.29)
は、同じ放置時間で比較すると、付着量が3.0g/m2を超
える場合よりも、酸化物の厚さが厚く、摩擦係数の改善
効果が大きい。これに対して、酸性溶液に浸漬した後の
放置時間が本発明範囲内に含まれない場合(No.10,No.
11)は、摩擦係数の改善効果は見られるものの、前記N
o.12〜No.29と比較すると改善効果が小さい。
(3) For No. 12 to No. 29, the activation treatment was performed after temper rolling, and the standing time after immersion in an acidic solution was within the range of the present invention. Have been. Furthermore, when immersed in an acidic solution and the adhesion amount adjusted with a squeezing roll is 3.0 g / m 2 or less (No. 18 to No. 29)
When compared with the same standing time, the oxide thickness is larger and the effect of improving the friction coefficient is greater than when the adhesion amount exceeds 3.0 g / m 2 . On the other hand, when the standing time after immersion in the acidic solution is not included in the range of the present invention (No. 10, No.
11) shows that the above-mentioned N
The improvement effect is small compared to o.12 to No.29.

【0073】またNo.12〜No.29は、酸性溶液に浸漬しさ
らに放置時間が本発明範囲内に含まれるものの、活性化
処理を施されていない場合(No.4〜No.9)に比べて、摩
擦係数の改善効果がより大きい。
Nos. 12 to 29 were immersed in an acidic solution and allowed to stand still within the scope of the present invention, but were not activated (Nos. 4 to 9). In comparison, the effect of improving the coefficient of friction is greater.

【0074】(4)No.24〜No.29は処理後アルカリ性処理
液を鋼板にスプレーして中和処理を行った例である。こ
の場合、中和処理を行うことによって、長期間屋外放置
した後の点錆は全くなく、酸化物層を形成した鋼板コイ
ルが使用前に長期間保管されることがあっても錆発生を
防止する能力に優れる。
(4) Nos. 24 to 29 are examples in which a neutralization treatment was performed by spraying an alkaline treatment solution onto the steel sheet after the treatment. In this case, by performing the neutralization treatment, there is no rust at all after being left outdoors for a long time, and even if the steel sheet coil with the oxide layer is stored for a long time before use, rust generation is prevented. Excellent ability to do.

【0075】(実施例4)板厚0.8mmの冷延鋼板上に、常
法の合金化溶融亜鉛めっき皮膜を形成し、更に調質圧延
を行った。この際に、調質圧延の圧下荷重を変化させる
ことで、表面における平坦部面積率を20〜80%の範囲に
調整した。引き続き、図5に示す構成の処理設備を用い
て酸化物層を形成した。
(Example 4) An alloyed hot-dip galvanized film was formed on a cold-rolled steel sheet having a thickness of 0.8 mm by a conventional method, followed by temper rolling. At this time, the flat portion area ratio on the surface was adjusted to a range of 20 to 80% by changing the rolling load of the temper rolling. Subsequently, an oxide layer was formed using the processing equipment having the configuration shown in FIG.

【0076】すなわち、酸性溶液槽2で、50℃、pH1.5に
調整した硫酸酸性溶液中へ浸漬処理を行った後、絞りロ
ール3で鋼板面の酸性溶液の付着量を調整した。次い
で、#1洗浄槽5で50℃の温水を鋼板にスプレーし、中和
槽6を空通しし、#2洗浄槽7で50℃の温水を鋼板にスプレ
ーして洗浄し、ドライヤ8で乾燥し、めっき表面に酸化
物層を形成した。
That is, after immersion treatment was performed in a sulfuric acid solution adjusted to 50 ° C. and pH 1.5 in the acid solution tank 2, the amount of the acid solution adhered to the steel sheet surface was adjusted by the squeezing roll 3. Next, the steel plate is sprayed with 50 ° C hot water in the # 1 washing tank 5, the neutralization tank 6 is passed through, the 50 ° C hot water is sprayed on the steel sheet in the # 2 washing tank 7, and washed, and the dryer 8 is dried. Then, an oxide layer was formed on the plating surface.

【0077】一部の鋼板については、上記酸性溶液への
浸漬処理前に、活性化槽1でアルカリ性溶液を用いた処
理を行った。また一部の鋼板については、前記処理中、
絞りロール3出側のシャワー水洗装置4を用いて絞り直後
に鋼板を洗浄する処理、中和槽6でpH10のアルカリ性処
理液(水酸化ナトリウム水溶液)をスプレーして鋼板表
面に残存している酸性溶液の中和処理、#2洗浄槽で、温
水スプレーに代えて、予め温水に水蒸気が吹き込まれた
100℃の水蒸気を吹き付け圧1kg/mm2で鋼板に吹き付ける
処理の内のいずれか一つ以上を施した。
Some of the steel sheets were treated with an alkaline solution in the activation tank 1 before the immersion treatment in the acidic solution. For some steel sheets, during the above process,
A treatment for washing the steel sheet immediately after squeezing using the shower water washing device 4 on the exit side of the squeezing roll 3, and spraying an alkaline treatment liquid (aqueous sodium hydroxide solution) having a pH of 10 in the neutralization tank 6 to remove the acid remaining on the steel sheet surface. In the neutralization treatment of the solution, in the # 2 washing tank, steam was previously blown into hot water instead of hot water spray
At least one of the treatments of spraying steam at 100 ° C. on the steel sheet at a pressure of 1 kg / mm 2 was performed.

【0078】処理条件を表4および表5に示す。表4およ
び表5中、放置時間は、絞りロール3で鋼板表面の酸性溶
液付着量を調整してから#1洗浄槽6、あるいはシャワー
水洗装置4でで洗浄開始するまでの時間である。
Tables 4 and 5 show the processing conditions. In Tables 4 and 5, the leaving time is the time from when the amount of the acidic solution adhered to the steel sheet surface is adjusted by the squeezing roll 3 to when the washing is started in the # 1 washing tank 6 or the shower water washing device 4.

【0079】次に、以上の様に作製した供試体につい
て、実施例1と同様にして、めっき皮膜中のFe濃度、平
坦部の面積率、酸化物層厚さの測定及びプレス成形性試
験を行い、また、鋼板に防錆油を塗布した後、ほこりな
ど外部の要因の影響がないように屋外に放置し約6ヵ月
後の点錆の発生の有無を調査した。試験結果を表4およ
び表5に示す。
Next, the specimens prepared as described above were subjected to the measurement of the Fe concentration in the plating film, the area ratio of the flat portion, the thickness of the oxide layer, and the press formability test in the same manner as in Example 1. In addition, after applying rust-preventive oil to the steel sheet, it was left outdoors so as not to be affected by external factors such as dust, and the occurrence of rust spot after about 6 months was investigated. The test results are shown in Tables 4 and 5.

【0080】[0080]

【表4】 [Table 4]

【0081】[0081]

【表5】 [Table 5]

【0082】表4および表5の試験結果から、下記事項が
明らかである。 (1)No.1(比較例)は、調質圧延を施されていない合金
化溶融亜鉛めっき鋼板の例であり、摩擦係数が高い。 (2)No.2およびNo.3(比較例)は、調質圧延後に酸化物
の形成処理を施されていないため、酸化物の厚さが10nm
未満と薄く、摩擦係数が高い。
From the test results in Tables 4 and 5, the following matters are clear. (1) No. 1 (Comparative Example) is an example of an alloyed hot-dip galvanized steel sheet that has not been subjected to temper rolling, and has a high coefficient of friction. (2) No. 2 and No. 3 (comparative examples) had no oxide forming treatment after temper rolling, so the oxide thickness was 10 nm.
Less and less, high coefficient of friction.

【0083】(3)No.24〜No.41は、調質圧延後に活性化
処理を施し、さらに酸性溶液に浸漬した後の放置時間が
本発明範囲内にあり、その後、水蒸気吹き付け処理を施
されているため、いずれも摩擦係数が改善されている。
さらに、酸性溶液へ浸漬し、絞りロールで調整した付着
量が3.0g/m2以下である場合(No.30〜No.41)は、同じ
放置時間で比較すると、付着量が3.0g/m2を超える場合
よりも、酸化物の厚さが厚く、摩擦係数の改善効果が大
きい。これに対して、酸性溶液に浸漬した後の放置時間
が本発明範囲内に含まれない場合(No.22,No.23)は、
摩擦係数の改善効果は見られるものの、前記No.24〜No.
41と比較すると改善効果が小さい。
(3) No. 24 to No. 41 were subjected to an activation treatment after temper rolling, and a standing time after immersion in an acidic solution was within the range of the present invention. In each case, the coefficient of friction is improved.
Furthermore, when the adhesion amount adjusted by a squeezing roll after immersion in an acidic solution is 3.0 g / m 2 or less (No. 30 to No. 41), the adhesion amount is 3.0 g / m 2 when compared with the same standing time. The thickness of the oxide is larger and the effect of improving the coefficient of friction is larger than in the case of exceeding 2 . On the other hand, when the standing time after immersion in the acidic solution is not included in the range of the present invention (No. 22, No. 23),
Although the effect of improving the coefficient of friction is seen, the above No. 24 to No.
The improvement effect is small compared to 41.

【0084】またNo.24〜No.41は、酸性溶液に浸漬しさ
らに放置時間が本発明範囲内に含まれるものの、活性化
処理と水蒸気吹き付け処理のいずれも施されていない場
合(No.4〜No.9)およびいずれか一方のみが施されてい
る場合(No.10〜No.22)に比べて、摩擦係数の改善効果
がより大きい。
Nos. 24 to 41 were immersed in an acidic solution and allowed to stand still within the scope of the present invention, but neither the activation treatment nor the steam spraying treatment was performed (No. 4). To No. 9) and when only one of them is applied (No. 10 to No. 22), the effect of improving the friction coefficient is larger.

【0085】(4)No.36〜No.41は処理後アルカリ性処理
液を鋼板にスプレーして中和処理を行った例である。こ
の場合、中和処理を行うことによって、長期間屋外放置
した後の点錆は全くなく、酸化物層を形成した鋼板コイ
ルが使用前に長期間保管されることがあっても錆発生を
防止する能力に優れる。
(4) Nos. 36 to 41 are examples in which a neutralization treatment was performed by spraying an alkaline treatment liquid onto a steel sheet after treatment. In this case, by performing the neutralization treatment, there is no rust at all after being left outdoors for a long time, and even if the steel sheet coil with the oxide layer is stored for a long time before use, rust generation is prevented. Excellent ability to do.

【0086】[0086]

【発明の効果】本発明によれば、プレス成形時の摺動抵
抗が小さく、安定して優れたプレス成形性を示す合金化
溶融亜鉛めっき鋼板を製造できる。
According to the present invention, a galvannealed steel sheet having low sliding resistance during press forming and exhibiting excellent press formability stably can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1,2で使用した酸化物層形成処理設備の要
部を示す図。
FIG. 1 is a view showing a main part of an oxide layer forming treatment facility used in Examples 1 and 2.

【図2】摩擦係数測定装置を示す概略正面図。FIG. 2 is a schematic front view showing a friction coefficient measuring device.

【図3】図2中のビード形状・寸法を示す概略斜視図。FIG. 3 is a schematic perspective view showing a bead shape and dimensions in FIG. 2;

【図4】図2中の別のビード形状・寸法を示す概略斜視
図。
FIG. 4 is a schematic perspective view showing another bead shape and dimensions in FIG. 2;

【図5】実施例3,4で使用した酸化物層形成処理設備の要
部を示す図。
FIG. 5 is a diagram illustrating a main part of an oxide layer forming treatment facility used in Examples 3 and 4.

【符号の説明】[Explanation of symbols]

1 活性化槽 2 酸性溶液槽 3 絞りロール 4 シャワー水洗装置 5 #1洗浄槽 6 中和槽 7 #2洗浄槽 8 ドライヤ 11 摩擦係数測定用試料 12 試料台 13 スライドテーブル 14 ローラ 15 スライドテーブル支持台 16 ビード 17 第1ロードセル 18 第2ロードセル 19 レール S 鋼板 N 押付荷重 F 摺動抵抗力 P 引張荷重 1 Activation tank 2 Acid solution tank 3 Squeeze roll 4 Shower water washing device 5 # 1 Wash tank 6 Neutralization tank 7 # 2 Wash tank 8 Dryer 11 Sample for friction coefficient measurement 12 Sample table 13 Slide table 14 Roller 15 Slide table support 16 Bead 17 First load cell 18 Second load cell 19 Rail S Steel plate N Pressing load F Sliding resistance P Tensile load

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 22/83 C23C 22/83 28/00 28/00 C (72)発明者 野出 俊策 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 岩渕 正洋 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 大森 宏次 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 大崎 恭紀 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 朝長 伸一 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 平 章一郎 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 杉本 芳春 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K026 AA02 AA07 AA13 AA22 BA08 BB04 BB09 CA13 CA18 CA33 CA36 DA03 DA11 DA12 DA15 EA01 EA03 EA07 EA10 EB01 4K027 AA02 AA05 AA22 AB02 AB28 AB42 AC73 AC82 AC87 AE21 AE27 4K044 AA02 AB02 BA10 BA12 BB03 BC01 BC05 CA07 CA11 CA16 CA53 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C23C 22/83 C23C 22/83 28/00 28/00 C (72) Inventor Toshisaku Node Chiyoda-ku, Tokyo 1-2-1 Marunouchi Nihon Kokan Co., Ltd. (72) Inventor Masahiro Iwabuchi 1-1-2 Marunouchi Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. 1-2-1, Nihon Kokan Co., Ltd. (72) Inventor, Yukiki Osaki 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor, Shinichi Asanaga 1-2-1 Nihon Kokan Co., Ltd. (72) Inventor Shoichiro Hira 1-1-2 Marunouchi Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Yoshiharu Sugimoto Tokyo 1-1-2 Marunouchi, Chiyoda-ku Nihon Kokan Co., Ltd. F-term (reference) 4K026 AA02 AA07 AA13 AA22 BA08 BB04 BB09 CA13 CA18 CA33 CA36 DA03 DA11 DA12 DA15 EA01 EA03 EA07 EA10 EB01 4K027 AA02 AC02 AB42 AC AC87 AE21 AE27 4K044 AA02 AB02 BA10 BA12 BB03 BC01 BC05 CA07 CA11 CA16 CA53

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 鉄−亜鉛合金めっき表面に面積率が20〜8
0%の平坦部を有し、その平坦部の表層に厚さが10nm以
上の酸化物層を有する合金化溶融亜鉛めっき鋼板を製造
するに際し、鋼板に溶融亜鉛めっきを施し、さらに加熱
処理により合金化し、調質圧延を施した後、酸性溶液と
接触させ、接触終了後1.0〜30.0秒放置した後水洗、乾
燥することを特徴とする合金化溶融亜鉛めっき鋼板の製
造方法。
Claims 1. An iron-zinc alloy plating surface has an area ratio of 20 to 8
When manufacturing an alloyed hot-dip galvanized steel sheet having a flat portion of 0% and an oxide layer having a thickness of 10 nm or more on the surface layer of the flat portion, the steel sheet is subjected to hot-dip galvanizing, and further subjected to heat treatment. A method for producing an alloyed hot-dip galvanized steel sheet, comprising subjecting the steel to contact with an acidic solution, subjecting to temper rolling, leaving the contact for 1.0 to 30.0 seconds after completion of the contact, washing with water, and drying.
【請求項2】 酸性溶液と接触終了後1.0〜30.0秒放置し
た後水洗、乾燥する前に、水蒸気と接触させることを特
徴とする請求項1に記載の合金化溶融亜鉛めっき鋼板の
製造方法。
2. The method for producing an alloyed hot-dip galvanized steel sheet according to claim 1, wherein the steel sheet is allowed to stand for 1.0 to 30.0 seconds after contact with the acidic solution, and then contacted with steam before being washed with water and dried.
【請求項3】 調質圧延を施した後酸性溶液と接触させ
る前に、アルカリ性溶液に接触させて表面の活性化処理
を施すことを特徴とする請求項1または2に記載の合金化
溶融亜鉛めっき鋼板の製造方法。
3. The alloyed molten zinc according to claim 1 or 2, wherein the surface activation treatment is performed by contacting with an alkaline solution before the contact with the acidic solution after the temper rolling. Manufacturing method of plated steel sheet.
【請求項4】 酸性溶液と接触後該酸性溶液の付着量を
片面あたり3.0g/m2以下に調整した後1.0〜30.0秒放置す
ることを特徴とする請求項1〜3のいずれかに記載の合
金化溶融亜鉛めっき鋼板の製造方法。
4. The method according to claim 1, wherein after the contact with the acidic solution, the adhesion amount of the acidic solution is adjusted to 3.0 g / m 2 or less per one side, and then left for 1.0 to 30.0 seconds. Of manufacturing galvannealed steel sheet.
【請求項5】 酸性溶液が、FeおよびZnイオンを含む酸
性溶液であることを特徴とする請求項1〜4のいずれかに
記載の合金化溶融亜鉛めっき鋼板の製造方法。
5. The method for producing a galvannealed steel sheet according to claim 1, wherein the acidic solution is an acidic solution containing Fe and Zn ions.
JP2001059914A 2001-03-05 2001-03-05 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet Expired - Lifetime JP3608519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001059914A JP3608519B2 (en) 2001-03-05 2001-03-05 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001059914A JP3608519B2 (en) 2001-03-05 2001-03-05 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet

Publications (3)

Publication Number Publication Date
JP2002256448A true JP2002256448A (en) 2002-09-11
JP2002256448A5 JP2002256448A5 (en) 2004-10-28
JP3608519B2 JP3608519B2 (en) 2005-01-12

Family

ID=18919412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001059914A Expired - Lifetime JP3608519B2 (en) 2001-03-05 2001-03-05 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP3608519B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005021823A1 (en) * 2003-08-29 2005-03-10 Jfe Steel Corporation Hot dip zinc plated steel sheet and method for production thereof
JP2005097741A (en) * 2003-08-29 2005-04-14 Jfe Steel Kk Method for manufacturing galvannealed steel sheet and galvannealed steel sheet
JP2005097742A (en) * 2003-08-29 2005-04-14 Jfe Steel Kk Method for manufacturing galvannealed steel sheet and galvannealed steel sheet
JP2005120447A (en) * 2003-10-17 2005-05-12 Jfe Steel Kk Galvanized steel sheet having excellent press formability, and its production method
JP2006124726A (en) * 2004-10-26 2006-05-18 Toppan Printing Co Ltd Blackening device
JP2006183073A (en) * 2004-12-27 2006-07-13 Jfe Steel Kk Method of manufacturing hot-dip galvannealed steel sheet, and hot-dip galvannealed steel sheet
JP2006199985A (en) * 2005-01-19 2006-08-03 Jfe Steel Kk Device for manufacturing hot-dip galvannealed steel sheet having oxide layer on plating surface
JP2007016266A (en) * 2005-07-06 2007-01-25 Jfe Steel Kk Method for manufacturing galvannealed steel sheet, and galvannealed steel sheet
JP2007016267A (en) * 2005-07-06 2007-01-25 Jfe Steel Kk Method for manufacturing galvannealed steel sheet, and galvannealed steel sheet
JP2007023347A (en) * 2005-07-19 2007-02-01 Jfe Steel Kk Galvannealed steel sheet manufacturing method
JP2007138231A (en) * 2005-11-17 2007-06-07 Jfe Steel Kk Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet
WO2007086533A1 (en) * 2006-01-26 2007-08-02 Jfe Steel Corporation Method and apparatus for cleaning hot-dip galvanized steel sheet
JP2007297686A (en) * 2006-05-02 2007-11-15 Jfe Steel Kk Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet
US7338718B2 (en) * 2003-04-18 2008-03-04 Jfe Steel Corporation Zinc hot dip galvanized steel plate excellent in press formability and method for production thereof
JP2009079262A (en) * 2007-09-26 2009-04-16 Sumitomo Metal Ind Ltd Manufacturing method for hot-dip galvannealed steel sheet having excellent press forming property
JP2009127077A (en) * 2007-11-22 2009-06-11 Jfe Steel Corp Method for production of hot-dip galvannealed steel sheet, and hot-dip galvannealed steel sheet
US7673485B2 (en) 2001-10-23 2010-03-09 Sumitomo Metal Industries, Ltd. Hot press forming method
JP2010209475A (en) * 2010-06-11 2010-09-24 Jfe Steel Corp Apparatus for manufacturing galvannealed steel sheet having oxide layer on plating surface
US8025980B2 (en) 2003-08-29 2011-09-27 Jfe Steel Corporation Hot dip galvanized steel sheet and method for manufacturing same
WO2011121910A1 (en) 2010-03-31 2011-10-06 Jfeスチール株式会社 Method of manufacture for molten zinc-plated sheet steel
WO2014112347A1 (en) 2013-01-16 2014-07-24 Jfeスチール株式会社 Manufacturing method for zinc-plated steel sheet
TWI449805B (en) * 2007-10-31 2014-08-21 Jfe Steel Corp Apparatus for manufacturing molten zinc coated steel sheet
KR20160122265A (en) 2014-02-27 2016-10-21 제이에프이 스틸 가부시키가이샤 Galvanized steel sheet and method for manufacturing the same
KR20160126046A (en) 2014-02-27 2016-11-01 제이에프이 스틸 가부시키가이샤 Galvanized steel sheet and method for manufacturing same
KR20180110073A (en) 2016-03-11 2018-10-08 제이에프이 스틸 가부시키가이샤 Manufacturing method of galvanized steel sheet

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7673485B2 (en) 2001-10-23 2010-03-09 Sumitomo Metal Industries, Ltd. Hot press forming method
US7338718B2 (en) * 2003-04-18 2008-03-04 Jfe Steel Corporation Zinc hot dip galvanized steel plate excellent in press formability and method for production thereof
EP1666624A1 (en) * 2003-08-29 2006-06-07 JFE Steel Corporation Hot dip zinc plated steel sheet and method for production thereof
EP1666624A4 (en) * 2003-08-29 2009-07-22 Jfe Steel Corp Hot dip zinc plated steel sheet and method for production thereof
JP4529592B2 (en) * 2003-08-29 2010-08-25 Jfeスチール株式会社 Process for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet.
JP4525252B2 (en) * 2003-08-29 2010-08-18 Jfeスチール株式会社 Method for producing galvannealed steel sheet
JP2005097741A (en) * 2003-08-29 2005-04-14 Jfe Steel Kk Method for manufacturing galvannealed steel sheet and galvannealed steel sheet
JP2005097742A (en) * 2003-08-29 2005-04-14 Jfe Steel Kk Method for manufacturing galvannealed steel sheet and galvannealed steel sheet
US8025980B2 (en) 2003-08-29 2011-09-27 Jfe Steel Corporation Hot dip galvanized steel sheet and method for manufacturing same
US8815349B2 (en) 2003-08-29 2014-08-26 Jfe Steel Corporation Hot dip galvanized steel sheet and method for manufacturing same
WO2005021823A1 (en) * 2003-08-29 2005-03-10 Jfe Steel Corporation Hot dip zinc plated steel sheet and method for production thereof
JP2005120447A (en) * 2003-10-17 2005-05-12 Jfe Steel Kk Galvanized steel sheet having excellent press formability, and its production method
JP2006124726A (en) * 2004-10-26 2006-05-18 Toppan Printing Co Ltd Blackening device
JP4617826B2 (en) * 2004-10-26 2011-01-26 凸版印刷株式会社 Blackening device
JP2006183073A (en) * 2004-12-27 2006-07-13 Jfe Steel Kk Method of manufacturing hot-dip galvannealed steel sheet, and hot-dip galvannealed steel sheet
JP2006199985A (en) * 2005-01-19 2006-08-03 Jfe Steel Kk Device for manufacturing hot-dip galvannealed steel sheet having oxide layer on plating surface
JP4561375B2 (en) * 2005-01-19 2010-10-13 Jfeスチール株式会社 Apparatus for producing alloyed hot-dip galvanized steel sheet having an oxide layer on the plating surface
JP2007016267A (en) * 2005-07-06 2007-01-25 Jfe Steel Kk Method for manufacturing galvannealed steel sheet, and galvannealed steel sheet
JP2007016266A (en) * 2005-07-06 2007-01-25 Jfe Steel Kk Method for manufacturing galvannealed steel sheet, and galvannealed steel sheet
JP4655788B2 (en) * 2005-07-06 2011-03-23 Jfeスチール株式会社 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP4650128B2 (en) * 2005-07-06 2011-03-16 Jfeスチール株式会社 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP2007023347A (en) * 2005-07-19 2007-02-01 Jfe Steel Kk Galvannealed steel sheet manufacturing method
JP4692120B2 (en) * 2005-07-19 2011-06-01 Jfeスチール株式会社 Method for producing galvannealed steel sheet
JP2007138231A (en) * 2005-11-17 2007-06-07 Jfe Steel Kk Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet
US8940100B2 (en) 2006-01-26 2015-01-27 Jfe Steel Corporation Method for cleaning hot dip galvanized steel sheet and cleaning apparatus therefor
JP2007197768A (en) * 2006-01-26 2007-08-09 Jfe Steel Kk Method and apparatus for cleaning hot dip galvanized steel sheet
WO2007086533A1 (en) * 2006-01-26 2007-08-02 Jfe Steel Corporation Method and apparatus for cleaning hot-dip galvanized steel sheet
KR100989265B1 (en) * 2006-01-26 2010-10-20 제이에프이 스틸 가부시키가이샤 Method for cleaning hot dip galvanized steel sheet and cleaning apparatus therefor
JP2007297686A (en) * 2006-05-02 2007-11-15 Jfe Steel Kk Hot dip galvannealed steel sheet manufacturing method, and hot dip galvannealed steel sheet
JP2009079262A (en) * 2007-09-26 2009-04-16 Sumitomo Metal Ind Ltd Manufacturing method for hot-dip galvannealed steel sheet having excellent press forming property
TWI449805B (en) * 2007-10-31 2014-08-21 Jfe Steel Corp Apparatus for manufacturing molten zinc coated steel sheet
US9222146B2 (en) * 2007-10-31 2015-12-29 Jfe Steel Corporation Apparatus for manufacturing molten zinc coated steel sheet
JP2009127077A (en) * 2007-11-22 2009-06-11 Jfe Steel Corp Method for production of hot-dip galvannealed steel sheet, and hot-dip galvannealed steel sheet
WO2011121910A1 (en) 2010-03-31 2011-10-06 Jfeスチール株式会社 Method of manufacture for molten zinc-plated sheet steel
US9260774B2 (en) 2010-03-31 2016-02-16 Jfe Steel Corporation Method for manufacturing hot dip galvanized steel sheet
JP2010209475A (en) * 2010-06-11 2010-09-24 Jfe Steel Corp Apparatus for manufacturing galvannealed steel sheet having oxide layer on plating surface
US9809884B2 (en) 2013-01-16 2017-11-07 Jfe Steel Corporation Method for manufacturing galvanized steel sheet
WO2014112347A1 (en) 2013-01-16 2014-07-24 Jfeスチール株式会社 Manufacturing method for zinc-plated steel sheet
US10351960B2 (en) 2014-02-27 2019-07-16 Jfe Steel Corporation Galvanized steel sheet and method for producing the same
KR20160126046A (en) 2014-02-27 2016-11-01 제이에프이 스틸 가부시키가이샤 Galvanized steel sheet and method for manufacturing same
KR20160122265A (en) 2014-02-27 2016-10-21 제이에프이 스틸 가부시키가이샤 Galvanized steel sheet and method for manufacturing the same
US10392706B2 (en) 2014-02-27 2019-08-27 Jfe Steel Corporation Galvanized steel sheet and method for producing the same
KR20180110073A (en) 2016-03-11 2018-10-08 제이에프이 스틸 가부시키가이샤 Manufacturing method of galvanized steel sheet
US10443116B2 (en) 2016-03-11 2019-10-15 Jfe Steel Corporation Method for manufacturing zinc-based coated steel sheet

Also Published As

Publication number Publication date
JP3608519B2 (en) 2005-01-12

Similar Documents

Publication Publication Date Title
JP3807341B2 (en) Method for producing galvannealed steel sheet
JP3608519B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
KR100608556B1 (en) Method for Production of Galvannealed Sheet Steel
JP5071065B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP3675313B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent slidability
JP2007016267A (en) Method for manufacturing galvannealed steel sheet, and galvannealed steel sheet
JP4655788B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JPH08325689A (en) Equipment for manufacturing hot dip galvanized hot rolled steel sheet excellent in lubricity and chemical conversion
JP4529592B2 (en) Process for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet.
EP2366812B1 (en) Method for manufacturing a galvanized steel sheet
JP4525252B2 (en) Method for producing galvannealed steel sheet
JP2006233280A (en) Hot dip galvanized steel sheet-manufacturing method, and hot dip galvanized steel sheet
JP4848737B2 (en) Alloyed hot-dip galvanized steel sheet with excellent degreasing properties
CA2745332C (en) Galvanized steel sheet and method for producing the same
JP4826486B2 (en) Method for producing galvannealed steel sheet
JP3644402B2 (en) Alloy hot-dip galvanized steel sheet
JP4998658B2 (en) Method for producing galvannealed steel sheet
JP4604712B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP4696376B2 (en) Alloy hot-dip galvanized steel sheet
KR20050022264A (en) Method for manufacturing galvannealed steel sheet and galvannealed steel sheet
US20110236677A1 (en) Galvanized steel sheet and method for producing the same
JP2003306756A (en) Hot dip galvanized steel sheet and method of producing the same
JP3048388B2 (en) Manufacturing method and cooling equipment for galvannealed steel sheet
TWI239357B (en) Galvannealed steel sheet and method for manufacturing the same
JP2002173751A (en) Galvannealed steel sheet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040326

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040525

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20040811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3608519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091022

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111022

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term