JP2009127077A - Method for production of hot-dip galvannealed steel sheet, and hot-dip galvannealed steel sheet - Google Patents

Method for production of hot-dip galvannealed steel sheet, and hot-dip galvannealed steel sheet Download PDF

Info

Publication number
JP2009127077A
JP2009127077A JP2007302356A JP2007302356A JP2009127077A JP 2009127077 A JP2009127077 A JP 2009127077A JP 2007302356 A JP2007302356 A JP 2007302356A JP 2007302356 A JP2007302356 A JP 2007302356A JP 2009127077 A JP2009127077 A JP 2009127077A
Authority
JP
Japan
Prior art keywords
solution
steel sheet
oxide layer
hot
plated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007302356A
Other languages
Japanese (ja)
Other versions
JP5071065B2 (en
Inventor
Shinji Otsuka
真司 大塚
Yoichi Makisui
洋一 牧水
Hiroshi Kajiyama
浩志 梶山
Hiroyuki Masuoka
弘之 増岡
Katsuya Hoshino
克弥 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007302356A priority Critical patent/JP5071065B2/en
Publication of JP2009127077A publication Critical patent/JP2009127077A/en
Application granted granted Critical
Publication of JP5071065B2 publication Critical patent/JP5071065B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemically Coating (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing a hot-dip galvannealed steel sheet excellent in press moldability by forming an oxide layer with sufficient thickness on a plated surface in a short period of time even under a high-speed production condition, and to provide the hot-dip galvannealed steel sheet produced thereby. <P>SOLUTION: The method of producing the hot-dip galvannealed steel sheet having the oxide layer on the plated surface includes: performing the alloying and temper rolling treatments on the plated steel sheet after hot dip galvanization; mixing, on the plated steel sheet, a first solution comprising the alkaline colloidal solution containing zinc hydroxide of ≥10 g/l in terms of Zn with a second solution comprising the acidic solution containing a sulfate ion of ≥5 g/l; and rinsing and drying the steel sheet after the lapse of a prescribed time to form a Zn- and S-containing oxide layer on the surface of the plated steel sheet. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、プレス成形性に優れる合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板に関するものである。   The present invention relates to a method for producing an galvannealed steel sheet excellent in press formability and an galvannealed steel sheet.

溶融亜鉛めっき後合金化処理を施した合金化溶融亜鉛めっき鋼板は、溶融亜鉛めっき後合金化処理を施さない亜鉛めっき鋼板と比較して溶接性および塗装性に優れることから、自動車車体用途を中心に広範な分野で広く利用されている。そのような用途での合金化溶融亜鉛めっき鋼板は、プレス成形を施して使用に供される。しかし、合金化溶融亜鉛めっき鋼板は、冷延鋼板に比べてプレス成形性が劣るという欠点を有する。これはプレス金型での合金化溶融めっき鋼板の摺動抵抗が冷延鋼板に比べて大きいことが原因である。すなわち、金型とビードでの摺動抵抗が大きい部分で合金化溶融亜鉛めっき鋼板がプレス金型に流入しにくくなり、鋼板の破断が起こりやすい。   Alloyed hot-dip galvanized steel sheets that have been alloyed after hot dip galvanization have superior weldability and paintability compared to galvanized steel sheets that have not been hot-dip galvanized and alloyed. Widely used in a wide range of fields. The alloyed hot-dip galvanized steel sheet for such use is subjected to press forming and used. However, the alloyed hot-dip galvanized steel sheet has a disadvantage that its press formability is inferior to that of a cold-rolled steel sheet. This is because the sliding resistance of the alloyed hot-dip steel sheet in the press die is larger than that of the cold-rolled steel sheet. That is, the alloyed hot-dip galvanized steel sheet is less likely to flow into the press mold at the portion where the sliding resistance between the mold and the bead is large, and the steel sheet tends to break.

合金化溶融亜鉛めっき鋼板は、鋼板に亜鉛めっきを施した後、加熱処理を行い、鋼板中のFeとめっき層中のZnが拡散し合金化反応が生じることにより、Fe−Zn合金相を形成させたものである。このFe−Zn合金相は、通常、Γ相、δ相、ζ相からなる皮膜であり、Fe濃度が低くなるに従い、すなわち、Γ相→δ相→ζ相の順で、硬度ならびに融点が低下する傾向がある。このため、摺動性の観点からは、高硬度で、融点が高く凝着の起こりにくい高Fe濃度の皮膜が有効であり、プレス成形性を重視する合金化溶融亜鉛めっき鋼板は、皮膜中の平均Fe濃度を高めに製造されている。 An alloyed hot-dip galvanized steel sheet is formed by galvanizing the steel sheet and then heat-treating to form an Fe-Zn alloy phase by causing Fe in the steel sheet and Zn in the plating layer to diffuse and cause an alloying reaction. It has been made. This Fe—Zn alloy phase is usually a film composed of a Γ phase, a δ 1 phase, and a ζ phase, and as the Fe concentration decreases, that is, in the order of Γ phase → δ 1 phase → ζ phase, hardness and melting point Tends to decrease. For this reason, from the viewpoint of slidability, a coating with a high hardness, a high melting point and a high Fe concentration that is difficult to cause adhesion is effective, and an alloyed hot-dip galvanized steel sheet that places importance on press formability Manufactured with high average Fe concentration.

しかしながら、高Fe濃度の皮膜では、めっき−鋼板界面に硬くて脆いΓ相が形成されやすく、加工時に、界面から剥離する現象、いわゆるパウダリングが生じ易い問題を有している。このため、特許文献1に示されているように、摺動性と耐パウダリング性を両立するために、上層に第二層として硬質のFe系合金を電気めっきなどの手法により付与する方法がとられている。この方法は製造コストが高くなる。   However, a coating with a high Fe concentration has a problem that a hard and brittle Γ phase is easily formed at the plating-steel plate interface, and a phenomenon of peeling from the interface during processing, that is, so-called powdering is likely to occur. For this reason, as shown in Patent Document 1, in order to achieve both slidability and powdering resistance, there is a method of applying a hard Fe-based alloy as a second layer to the upper layer by a technique such as electroplating. It has been taken. This method is expensive to manufacture.

亜鉛系めっき鋼板使用時のプレス成形性を向上させる方法には、この他に、高粘度の潤滑油を塗布する方法が広く用いられている。しかし、この方法では、潤滑油の高粘性のために塗装工程で脱脂不良による塗装欠陥が発生したり、また、プレス時の油切れにより、プレス性能が不安定になる等の問題がある。従って、合金化溶融亜鉛めっき鋼板自身のプレス成形性を改善することが強く要請されている。   In addition to this, a method of applying a high-viscosity lubricating oil is widely used as a method for improving the press formability when using a galvanized steel sheet. However, this method has problems such as a coating defect due to poor degreasing in the painting process due to the high viscosity of the lubricating oil, and press performance becoming unstable due to oil shortage during pressing. Therefore, there is a strong demand to improve the press formability of the galvannealed steel sheet itself.

上記の問題を解決する方法として、特許文献2および特許文献3は、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布酸化処理、または加熱処理を施すことにより、ZnOを主体とする酸化膜を形成させて溶接性、または加工性を向上させる技術を開示している。   As a method for solving the above problems, Patent Document 2 and Patent Document 3 disclose that an oxide film mainly composed of ZnO is obtained by subjecting the surface of a zinc-based plated steel sheet to electrolytic treatment, immersion treatment, coating oxidation treatment, or heat treatment. Discloses a technique for improving weldability or workability by forming a film.

特許文献4は、リン酸ナトリウム5〜60g/lを含みpH2〜6の水溶液にめっき鋼板を浸漬するか、電解処理を行うか、または、上記水溶液を塗布することにより、亜鉛系めっき鋼板の表面にP酸化物を主体とした酸化膜を形成して、プレス成形性及び化成処理性を向上させる技術を開示している。   Patent Document 4 discloses that the surface of a zinc-based plated steel sheet is obtained by immersing a plated steel sheet in an aqueous solution containing 5 to 60 g / l of sodium phosphate, performing an electrolytic treatment, or applying the aqueous solution. Discloses a technique for improving the press formability and chemical conversion processability by forming an oxide film mainly composed of P oxide.

特許文献5は、電解処理により、亜鉛系めっき鋼板の表面にNi酸化物を生成させることにより、プレス成形性および化成処理性を向上させる技術を開示している。   Patent document 5 is disclosing the technique which improves press-formability and chemical conversion treatment property by producing | generating Ni oxide on the surface of a zinc-plated steel plate by electrolytic treatment.

しかしながら、上記の先行技術を合金化溶融亜鉛めっき鋼板に適用した場合、プレス成形性の改善効果を安定して得ることはできない。本発明者らは、その原因について詳細な検討を行った結果、合金化溶融めっき鋼板はAl酸化物が存在することにより、表面の反応性が劣ること、及び表面の凹凸が大きいことが原因であることを見出した。即ち、先行技術を合金化溶融めっき鋼板に適用した場合、表面の反応性が低いため、電解処理、浸漬処理、塗布酸化処理及び加熱処理等を行っても、所定の皮膜を表面に形成することは困難であり、反応性の低い部分、すなわち、Al酸化物量が多い部分では膜厚が薄くなってしまう。また、表面の凹凸が大きいため、プレス成型時にプレス金型と直接接触するのは表面の凸部であるが、凸部のうち膜厚の薄い部分と金型との接触部での摺動抵抗が大きくなり、プレス成形性の改善効果が十分には得られない。すなわち、電解処理、浸漬処理、塗布酸化処理及び加熱処理等を行った場合には凸部に潤滑効果を有する皮膜を効率的に形成することが困難であることが明らかとなった。   However, when the above prior art is applied to an alloyed hot-dip galvanized steel sheet, the effect of improving press formability cannot be stably obtained. As a result of detailed investigations about the causes of the present invention, the alloyed hot-dip steel sheet is caused by the presence of Al oxide, resulting in poor surface reactivity and large surface irregularities. I found out. That is, when the prior art is applied to an alloyed hot-dip steel sheet, the surface reactivity is low, so that a predetermined film is formed on the surface even when electrolytic treatment, immersion treatment, coating oxidation treatment, heat treatment, etc. are performed. Is difficult, and the film thickness becomes thin in a portion with low reactivity, that is, a portion with a large amount of Al oxide. In addition, since the surface irregularities are large, it is the convex portions on the surface that directly contact the press mold during press molding, but the sliding resistance at the contact portion between the thin portion of the convex portions and the mold As a result, the effect of improving press formability cannot be sufficiently obtained. That is, it has been found that it is difficult to efficiently form a film having a lubricating effect on the convex portions when electrolytic treatment, immersion treatment, coating oxidation treatment, heat treatment, and the like are performed.

一般的に、合金化溶融亜鉛めっき鋼板は、溶融亜鉛めっき後合金化処理を施した後に調質圧延が施されるが、この調質圧延時にロールとの接触によりつぶされ平坦化された部分は、周囲と比較すると凸部として存在する。プレス成形時に実際にプレス金型と接触するのは、この平坦部が主体となるため、この平坦部における摺動抵抗を小さくすれば、プレス成形性を安定して改善することができる。この平坦部における摺動抵抗を小さくするには、めっき層と金型との凝着を防ぐのが有効であり、そのためには、めっき層の表面に、硬質かつ高融点の皮膜を形成することが有効であり、このような酸化物層の形成には、酸性溶液と接触させてめっき表層に酸化物層を形成する方法が有効なことが知られている。   In general, alloyed hot-dip galvanized steel sheets are subjected to temper rolling after being subjected to alloying treatment after hot dip galvanization. In comparison with the surroundings, it exists as a convex part. Since the flat part is the main component that actually contacts the press mold during press molding, the press formability can be stably improved by reducing the sliding resistance at the flat part. In order to reduce the sliding resistance in this flat part, it is effective to prevent adhesion between the plating layer and the mold. To that end, a hard and high melting point film should be formed on the surface of the plating layer. It is known that a method of forming an oxide layer on the plating surface layer by contacting with an acidic solution is effective for forming such an oxide layer.

例えば特許文献6には、鋼板に溶融亜鉛めっき後、加熱処理により合金化し、さらに調質圧延を施し、鉄−亜鉛合金めっき表面に平坦部を形成した後に、酸性溶液と接触させ、1〜30秒保持し、その後水洗することで、凸部に潤滑効果を有する皮膜を効率的に形成する合金化溶融亜鉛めっき鋼板の製造方法が提案されている。
特開平1−319661号公報 特開昭53−60332号公報 特開平2−190483号公報 特開平4−88196号公報 特開平3−191093号公報 特開2002−256448号公報
For example, in Patent Document 6, after hot-dip galvanizing on a steel sheet, alloying is performed by heat treatment, temper rolling is further performed, a flat portion is formed on the surface of the iron-zinc alloy plating, and then contacted with an acidic solution. There has been proposed a method for producing an alloyed hot-dip galvanized steel sheet in which a film having a lubricating effect is efficiently formed on the convex portions by holding for 2 seconds and then washing with water.
Japanese Unexamined Patent Publication No. 1-319661 JP-A-53-60332 Japanese Patent Laid-Open No. 2-190483 JP-A-4-88196 Japanese Patent Laid-Open No. 3-191093 JP 2002-256448 A

上記特許文献6に開示されている技術を適用した場合、従来の製造条件においては良好なプレス成形性を得ることができるが、近年のさらなる高速での製造条件においては、酸性溶液と接触させた後1〜30秒保持する工程では、鋼板が走行する雰囲気の鋼板に対する相対風速の増加により、鋼板表面に存在する酸性溶液が瞬時に乾燥してしまうため、形成される酸化物層が薄くなり、良好なプレス成形性が得られない場合があることが明らかになった。このような問題点を解決するには、鋼板表面の酸性溶液の液膜量を増加させることが有効であるが、特許文献6に記載されている溶液組成では、液膜量を増加させても短時間で所要厚さの酸化物層を形成させることが出来ない。   When the technique disclosed in Patent Document 6 is applied, good press formability can be obtained under the conventional production conditions. However, in recent high-speed production conditions, contact is made with an acidic solution. In the process of holding for 1 to 30 seconds later, the acid solution present on the surface of the steel sheet is dried instantaneously due to the increase in relative wind speed with respect to the steel sheet in the atmosphere in which the steel sheet travels. It became clear that good press formability could not be obtained. In order to solve such a problem, it is effective to increase the amount of the liquid film of the acidic solution on the surface of the steel sheet. However, in the solution composition described in Patent Document 6, even if the amount of the liquid film is increased. An oxide layer with a required thickness cannot be formed in a short time.

本発明は、かかる事情に鑑み、高速での製造条件下においても、めっき表面に十分な厚さの酸化物層を短期間で形成してプレス成形性に優れる合金化溶融亜鉛めっき鋼板の製造方法および合金化溶融亜鉛めっき鋼板を提供することを目的とする。   In view of such circumstances, the present invention is a method for producing an alloyed hot-dip galvanized steel sheet that is excellent in press formability by forming an oxide layer having a sufficient thickness on a plating surface in a short period even under high-speed production conditions. And it aims at providing a galvannealed steel plate.

本発明者らは、上記の課題を解決すべく、さらに鋭意研究を重ねた。その結果、特許文献6の技術で使用する酸性溶液では、Znの溶解を促進する目的でpH緩衝作用を有しているために溶液膜の増加によってpHの上昇が遅らされ、酸化物層の形成が遅れることを突き止めた。さらに、Zn水酸化物を含有するアルカリ性のコロイド溶液と硫酸イオンを含有する酸性溶液をめっき鋼板上で混合させることで、めっき表面に酸化物層を短時間で形成できることを見出した。   The inventors of the present invention made further studies to solve the above problems. As a result, the acidic solution used in the technique of Patent Document 6 has a pH buffering action for the purpose of accelerating the dissolution of Zn. I found out that the formation was delayed. Furthermore, it discovered that an oxide layer could be formed in the plating surface in a short time by mixing the alkaline colloid solution containing Zn hydroxide, and the acidic solution containing a sulfate ion on a plated steel plate.

本発明は、以上の知見に基づいてなされたものであり、その要旨は以下の通りである。   The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)めっき表面に酸化物層を有する合金化溶融亜鉛めっき鋼板の製造方法であって、溶融亜鉛めっき後合金化処理および調質圧延を施しためっき鋼板に対して、めっき鋼板上で、Zn水酸化物をZn換算で10g/l以上含有するアルカリ性のコロイド溶液からなる第一溶液と、硫酸イオンを5g/l以上含有する酸性溶液からなる第二溶液を混合させた後、所定時間経過後に水洗し乾燥してめっき表面にZnおよびSを含有する酸化物層を形成することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。   (1) A method for producing an alloyed hot-dip galvanized steel sheet having an oxide layer on the plated surface, wherein the zinc alloy is plated on the plated steel sheet after alloying and temper rolling after hot-dip galvanization. After mixing a first solution consisting of an alkaline colloidal solution containing 10 g / l or more of hydroxide in terms of Zn and a second solution consisting of an acidic solution containing 5 g / l or more of sulfate ions, after a lapse of a predetermined time A method for producing an galvannealed steel sheet, characterized by forming an oxide layer containing Zn and S on a plating surface by washing with water and drying.

(2)前記第一溶液は液温が20〜70℃であり、前記第二溶液はpHが2.5〜6.0、液温が20〜70℃であることを特徴とする(1)に記載の合金化溶融亜鉛めっき鋼板の製造方法。   (2) The first solution has a liquid temperature of 20 to 70 ° C, and the second solution has a pH of 2.5 to 6.0 and a liquid temperature of 20 to 70 ° C (1) The manufacturing method of the galvannealed steel plate as described in 2.

(3)めっき鋼板上の第一溶液と第二溶液の混合溶液の液膜量は30g/m以下であり、所定時間は1〜60秒であることを特徴とする(1)または(2)に記載の合金化溶融亜鉛めっき鋼板の製造方法。 (3) The liquid film amount of the mixed solution of the first solution and the second solution on the plated steel sheet is 30 g / m 2 or less, and the predetermined time is 1 to 60 seconds (1) or (2) ). The manufacturing method of the galvannealed steel plate described in 1).

(4)調質圧延を施した後、めっき鋼板上で第一溶液と第二溶液を混合する工程の前に、アルカリ性水溶液に接触させてめっき表面を活性化する工程を行うことを特徴とする(1)〜(3)のいずれかに記載の合金化溶融亜鉛めっき鋼板の製造方法。   (4) After temper rolling, before the step of mixing the first solution and the second solution on the plated steel sheet, a step of activating the plating surface by contacting with an alkaline aqueous solution is performed. (1) The manufacturing method of the galvannealed steel plate in any one of (3).

(5)所定時間経過後水洗する工程の前に、アルカリ性水溶液に接触させてめっき表面に残存した第一溶液と第二溶液の混合液を中和処理する工程を行うことを特徴とする(1)〜(4)のいずれかに記載の合金化溶融亜鉛めっき鋼板の製造方法。   (5) A step of neutralizing the mixed solution of the first solution and the second solution remaining on the plating surface by contacting with an alkaline aqueous solution before the step of washing with water after a predetermined time has elapsed (1) )-(4) The manufacturing method of the galvannealed steel plate in any one of.

(6) (1)〜(5)のいずれかに記載の製造方法で製造された合金化溶融亜鉛めっき鋼板であって、めっき表面の平坦部に形成されたZnとSを含む酸化物層の厚さは20nm以上であることを特徴とする合金化溶融亜鉛めっき鋼板。   (6) An alloyed hot-dip galvanized steel sheet manufactured by the manufacturing method according to any one of (1) to (5), wherein an oxide layer containing Zn and S formed on a flat portion of a plating surface An alloyed hot-dip galvanized steel sheet having a thickness of 20 nm or more.

本発明によれば、鋼板表面に所要厚さの酸化物層を短時間で形成できる。本発明によれば鋼板通板速度を上昇させた場合においても、プレス成形時の摺動抵抗が小さく、プレス成形性に優れた合金化溶融亜鉛めっき鋼板を安定製造できる。   According to the present invention, an oxide layer having a required thickness can be formed on a steel sheet surface in a short time. According to the present invention, even when the steel sheet passing speed is increased, an alloyed hot-dip galvanized steel sheet with low sliding resistance during press forming and excellent press formability can be stably produced.

合金化溶融亜鉛めっき鋼板を製造する際は、鋼板に溶融亜鉛めっきを施した後に、さらに加熱して合金化処理を施すが、この合金化処理時に鋼板−めっき界面の反応性の差により、合金化溶融亜鉛めっき鋼板のめっき表面に凹凸が存在するようになる。しかしながら、合金化処理後には、通常、材質確保のために調質圧延が施され、この調質圧延時のロールとの接触により、めっき表面は平滑化され凹凸が緩和される。従って、プレス成型時には、金型がめっき表面の凸部を押しつぶすのに必要な力が低下し、摺動特性を向上させることができる。   When producing an alloyed hot dip galvanized steel sheet, the steel sheet is hot dip galvanized and then further heated and subjected to an alloying treatment. Due to the difference in reactivity at the steel sheet-plating interface during the alloying treatment, Irregularities are present on the plated surface of the galvannealed steel sheet. However, after the alloying treatment, temper rolling is usually performed for securing the material, and the plating surface is smoothed and unevenness is alleviated by contact with the roll during temper rolling. Therefore, at the time of press molding, the force required for the mold to crush the convex portion on the plating surface is reduced, and the sliding characteristics can be improved.

このような合金化溶融亜鉛めっき鋼板のめっき表面が調質圧延などによりつぶされて平坦化された部分(以下、平坦部と称す)は、プレス成形時に金型が直接接触する部分であるため、この平坦部に金型との凝着を防止する硬質かつ高融点の物質が存在することが、摺動性の向上には重要である。この点では、表層に酸化物層を存在させることは、酸化物層が金型との凝着を防止するため、摺動特性の向上に有効である。   Since the plated surface of such an alloyed hot-dip galvanized steel sheet is crushed and flattened by temper rolling or the like (hereinafter referred to as a flat part), the mold is in direct contact with it during press molding. It is important for improving the slidability that a hard and high melting point substance that prevents adhesion to the mold exists in the flat portion. In this respect, the presence of the oxide layer on the surface layer is effective in improving the sliding characteristics because the oxide layer prevents adhesion with the mold.

実際のプレス成形時には、表層の酸化物は摩耗し、削り取られるため、金型と被加工材の接触面積が大きい場合には、十分に厚い酸化物層の存在が必要である。めっき表面には合金化処理時の加熱により酸化物層が形成されているものの、調質圧延時のロールとの接触により大部分が破壊され、新生面が露出しているため、良好な摺動性を得るためには調質圧延以前に厚い酸化物層を形成しなければならない。しかし、このことを考慮に入れて、調質圧延前に厚い酸化物層を形成させたとしても、調質圧延時に生じる酸化物層の破壊を避けることはできないため、平坦部は酸化物層が不均一に存在し、良好な摺動性を安定して得ることはできない。しかし、調質圧延が施された合金化溶融亜鉛めっき鋼板に酸化物層を形成する処理を施すと、めっき表面、特にめっき表面平坦部に、均一に酸化物層を形成することができ、良好な摺動性を安定して得ることができる。   During actual press molding, the oxide on the surface layer is worn away and scraped off. Therefore, when the contact area between the mold and the workpiece is large, a sufficiently thick oxide layer must be present. Although an oxide layer is formed on the plating surface by heating during alloying treatment, most of it is destroyed by contact with the roll during temper rolling, and the new surface is exposed. In order to obtain this, a thick oxide layer must be formed before temper rolling. However, taking this into account, even if a thick oxide layer is formed before temper rolling, it is impossible to avoid the destruction of the oxide layer that occurs during temper rolling. It exists unevenly and good slidability cannot be obtained stably. However, when the alloyed hot-dip galvanized steel sheet that has been temper-rolled is treated to form an oxide layer, it is possible to form an oxide layer uniformly on the plated surface, particularly on the flat surface of the plated surface. Slidability can be obtained stably.

本発明では、Zn水酸化物を含有するアルカリ性のコロイド溶液からなる第一溶液と、硫酸イオンを含有する酸性溶液からなる第二溶液を使用し、合金化処理後調質圧延を施した合金化溶融亜鉛めっき鋼板上でこの2種類の溶液を混合し、めっき鋼板表面にこの混合液の液膜が形成された状態で所定時間経過した後水洗、乾燥する。本発明では、混合溶液中に含有されるZn水酸化物が、酸化物層形成のためのZn源であるため、めっき表面に十分な厚さの酸化物層を短時間で形成することができる。この酸化物層は、ZnおよびSを含有する酸化物層である。   In the present invention, a first solution composed of an alkaline colloidal solution containing Zn hydroxide and a second solution composed of an acidic solution containing sulfate ions are used, and alloying is performed after temper rolling after alloying treatment. These two types of solutions are mixed on a hot-dip galvanized steel sheet, and after a predetermined time has passed in a state where a liquid film of the mixed liquid is formed on the surface of the plated steel sheet, the plate is washed with water and dried. In the present invention, since the Zn hydroxide contained in the mixed solution is a Zn source for forming the oxide layer, an oxide layer having a sufficient thickness can be formed on the plating surface in a short time. . This oxide layer is an oxide layer containing Zn and S.

めっき表面にプレス成形性に優れる酸化物層を短時間で十分な厚さに形成するには、Zn水酸化物を含有するアルカリ性のコロイド溶液と、硫酸イオンを含有する酸性溶液をめっき鋼板上で混合することが重要である。第一溶液のアルカリ性溶液に含有されるZnがコロイド状態のZn水酸化物でない場合、または第二溶液の酸性溶液が硫酸イオンを含有しない場合は、めっき表面にZnおよびSを含む酸化物層を短時間で十分な厚さに形成することができない。   In order to form an oxide layer with excellent press formability on the plating surface with a sufficient thickness in a short time, an alkaline colloidal solution containing Zn hydroxide and an acidic solution containing sulfate ions are applied on the plated steel sheet. It is important to mix. When Zn contained in the alkaline solution of the first solution is not a colloidal Zn hydroxide, or when the acidic solution of the second solution does not contain sulfate ions, an oxide layer containing Zn and S is formed on the plating surface. It cannot be formed to a sufficient thickness in a short time.

めっき表面への酸化物層の形成メカニズムについては明確ではないが、次のように考えることができる。   The formation mechanism of the oxide layer on the plating surface is not clear, but can be considered as follows.

硫酸イオンはZn水酸化物を凝集させる作用を有する。めっき鋼板上で、第一溶液と第二溶液を混合すると中和反応が起こり、その際にコロイド状態のZn水酸化物が凝集してめっき表面にZnとSを含む酸化物層が析出する。この作用によってめっき表面に十分な厚さの酸化物層を短時間で形成することができる。   Sulfate ions have the effect of aggregating Zn hydroxide. When the first solution and the second solution are mixed on the plated steel sheet, a neutralization reaction occurs. At that time, colloidal Zn hydroxide aggregates and an oxide layer containing Zn and S is deposited on the plated surface. By this action, an oxide layer having a sufficient thickness can be formed on the plating surface in a short time.

第一溶液と第二溶液を予め混合し、この混合溶液を鋼板表面に接触させると、第一溶液と第二溶液を混合したときにZn水酸化物が混合溶液中で凝集してしまう。めっき鋼板上にZn水酸化物が凝集している溶液の液膜を形成してもめっき表面にZn水酸化物を析出させることが出来ない。   When the first solution and the second solution are mixed in advance and this mixed solution is brought into contact with the steel plate surface, the Zn hydroxide aggregates in the mixed solution when the first solution and the second solution are mixed. Even if a liquid film of a solution in which Zn hydroxide is aggregated is formed on the plated steel sheet, Zn hydroxide cannot be deposited on the plating surface.

第一溶液中のZn水酸化物量はめっき表面に形成する酸化物量に影響する。溶液中のZn濃度として10g/l以上の範囲で含有することが必要である。10g/lより少ない場合、めっき表面に形成される酸化物量が少ないため、十分なプレス成形性が得られない。300g/lより多く含有させても構わないが、酸化物形成によるプレス成形性向上効果が飽和し経済的には好ましくない。溶液温度は20〜70℃の範囲であることが好ましい。20℃以上の場合、反応性が向上し製膜速度が向上するため、生産性が高くなる。また、70℃以下とすると、水分蒸発を考慮する必要がなく溶液濃度管理が容易になるだけではなく、鋼板上での乾燥が適度な範囲となるため、液中でZn水酸化物が凝集することなくめっき面へ析出し、十分な厚さの酸化物層を形成できる。   The amount of Zn hydroxide in the first solution affects the amount of oxide formed on the plating surface. It is necessary to contain in the range of 10 g / l or more as Zn density | concentration in a solution. When the amount is less than 10 g / l, sufficient press formability cannot be obtained because the amount of oxide formed on the plating surface is small. Although more than 300 g / l may be contained, the effect of improving the press formability due to oxide formation is saturated, which is not economically preferable. The solution temperature is preferably in the range of 20 to 70 ° C. When the temperature is 20 ° C. or higher, the reactivity is improved and the film forming speed is improved, so that the productivity is increased. Further, when the temperature is 70 ° C. or lower, it is not necessary to consider moisture evaporation, and not only the solution concentration management becomes easy, but also the drying on the steel plate is in an appropriate range, so that Zn hydroxide aggregates in the liquid. Without being deposited on the plated surface, an oxide layer having a sufficient thickness can be formed.

またコロイド状態のZn水酸化物を含有するコロイド溶液とするためには第一溶液はアルカリ性とする必要がある。Zn水酸化物を含有するアルカリ性のコロイド溶液を作製するには、亜鉛の塩として硝酸亜鉛を用いることが好ましい。具体的には、硝酸亜鉛水溶液と水酸化ナトリウム溶液を常温で混合することで作製できる。それぞれの濃度は硝酸亜鉛6水和物として100g/l、水酸化ナトリウムとして30〜50g/lを混合することにより作製できる。硝酸亜鉛以外の亜鉛塩では、例えば塩化亜鉛では塩基性塩化亜鉛として沈澱してしまうので、コロイド状態のZn水酸化物を得ることができない。   In order to obtain a colloidal solution containing colloidal Zn hydroxide, the first solution needs to be alkaline. In order to prepare an alkaline colloidal solution containing Zn hydroxide, it is preferable to use zinc nitrate as a zinc salt. Specifically, it can be produced by mixing an aqueous zinc nitrate solution and a sodium hydroxide solution at room temperature. Each concentration can be prepared by mixing 100 g / l as zinc nitrate hexahydrate and 30-50 g / l as sodium hydroxide. With zinc salts other than zinc nitrate, for example, zinc chloride precipitates as basic zinc chloride, so colloidal Zn hydroxide cannot be obtained.

第二溶液中の硫酸イオン濃度は5g/l以上であることが必要である。5g/lより少ない場合、前述した硫酸イオンによる凝集効果が小さく、効率的に酸化物を鋼板上に形成できない。50g/lより含有量が多くなると、酸化物形成によるプレス成形性向上効果が飽和し、経済的に好ましくなく、めっき表面に硫酸イオンが残存しやすくなり、長期間放置した場合に点錆びが発生しやすくなるので、50g/l以下とすることが好ましい。   The sulfate ion concentration in the second solution needs to be 5 g / l or more. When the amount is less than 5 g / l, the above-described aggregation effect due to sulfate ions is small, and an oxide cannot be efficiently formed on the steel sheet. If the content exceeds 50 g / l, the effect of improving press formability due to oxide formation is saturated, which is economically undesirable, and sulfate ions tend to remain on the plating surface, causing spot rust when left for a long period of time. Therefore, it is preferably 50 g / l or less.

硫酸イオンに対するカチオンの制限は無く、公知の硫酸塩を用いることができる。例えば、硫酸亜鉛、硫酸アルミニウム、硫酸チタン、硫酸ニッケル、硫酸鉄、硫酸インジウム、硫酸錫などが挙げられる。   There is no restriction | limiting of the cation with respect to a sulfate ion, A well-known sulfate can be used. Examples thereof include zinc sulfate, aluminum sulfate, titanium sulfate, nickel sulfate, iron sulfate, indium sulfate, and tin sulfate.

第二溶液のpHは2.5〜6.0の範囲であることが好ましい。pHが2.5以上であると酸化物の沈殿pHに到達するまでに過度の時間を要しないため、生産性を阻害することがない。また、溶液のpHが6.0以下であると、混合溶液中で沈殿反応が生じ、めっき表面に密着力の劣る酸化物層が形成されることがなく、十分な量の酸化物層が短時間で形成できる。溶液温度は20〜70℃であることが好ましい。20℃以上の場合、反応性が向上し、生産性を阻害することがない。また、70℃以下とすると、水分蒸発を考慮する必要がなく溶液濃度管理が容易となるだけではなく、鋼板上での乾燥が適度な範囲となるため、十分な厚さの酸化物層が形成される。   The pH of the second solution is preferably in the range of 2.5 to 6.0. When the pH is 2.5 or more, it does not take excessive time to reach the oxide precipitation pH, and thus productivity is not hindered. Further, when the pH of the solution is 6.0 or less, a precipitation reaction occurs in the mixed solution, so that an oxide layer having poor adhesion is not formed on the plating surface, and a sufficient amount of the oxide layer is short. Can be formed in time. The solution temperature is preferably 20 to 70 ° C. When it is 20 ° C. or higher, the reactivity is improved and productivity is not hindered. Further, when the temperature is 70 ° C. or lower, it is not necessary to consider the evaporation of water, and not only the solution concentration management becomes easy, but also the drying on the steel plate is in an appropriate range, so that an oxide layer having a sufficient thickness is formed. Is done.

また、製造時の鋼板走行において部分的に乾きやすい部位、乾きにくい部位が発生した場合、目視で認められる外観ムラが発生する場合がある。外観ムラ発生は、第一溶液および第二溶液の温度の影響を受ける傾向がある。特に、鋼板に後から塗布する溶液の液温が70℃を超えて高くなると外観ムラが発生しやすくなる。外観ムラは、性能上大きな問題がない場合でも、ユーザーで使用する際には欠陥とみなされる場合があり好ましくない。   In addition, when a part that is easily dried or a part that is difficult to dry is generated during running of the steel sheet during production, appearance unevenness that is visually recognized may occur. Appearance unevenness tends to be affected by the temperature of the first solution and the second solution. In particular, when the liquid temperature of the solution applied later to the steel plate is higher than 70 ° C., appearance unevenness is likely to occur. Even if there is no significant problem in performance, uneven appearance is not preferable because it may be regarded as a defect when used by a user.

めっき鋼板上で第一溶液と第二溶液を混合し、めっき表面に混合溶液の液膜が形成された状態で所定時間経過した後水洗し乾燥する。所定時間経過しないで即座に水洗すると、酸化物が形成されず、プレス成形性が向上しないためである。好ましい経過時間は1秒〜60秒である。1秒以上60秒以下とすると、十分なプレス成形性が得られる。   The first solution and the second solution are mixed on the plated steel sheet, and after a predetermined time has passed in a state where a liquid film of the mixed solution is formed on the plating surface, the plate is washed with water and dried. This is because if the water is washed immediately without elapse of a predetermined time, oxides are not formed and press formability is not improved. A preferable elapsed time is 1 second to 60 seconds. When it is 1 second or more and 60 seconds or less, sufficient press formability can be obtained.

めっき鋼板上に存在させる第一溶液と第二溶液の混合液の液膜量は30g/m以下が好ましい。混合液の液膜量が30g/m以下になると、Zn水酸化物が鋼板上に析出する割合が高くなり、効率的である。液膜量の下限は特に限定されないが、プレス成形性を向上させるために必要な酸化物量を確保するためには3g/m以上が好ましい。また、第一溶液と第二溶液の混合割合は、液量比として第一溶液:第2溶液=2〜4:1にすると酸化物層を効率的に形成できる。しかし、一方の溶液がこの比より多くても、後続の水洗工程で洗浄され、経済的に不利となるものの、酸化物層析出への影響はない。 The liquid film amount of the mixed solution of the first solution and the second solution present on the plated steel sheet is preferably 30 g / m 2 or less. When the liquid film amount of the mixed liquid is 30 g / m 2 or less, the proportion of Zn hydroxide precipitated on the steel sheet increases, which is efficient. The lower limit of the amount of the liquid film is not particularly limited, but is preferably 3 g / m 2 or more in order to ensure the amount of oxide necessary for improving the press formability. Further, when the mixing ratio of the first solution and the second solution is set to the first solution: second solution = 2-4: 1 as the liquid volume ratio, the oxide layer can be efficiently formed. However, even if one of the solutions exceeds this ratio, it is washed in the subsequent water washing step, which is economically disadvantageous, but does not affect the oxide layer deposition.

第一溶液と第二溶液をめっき鋼板上で混合させる方法は、特に限定されない。第一溶液の液膜をめっき鋼板上に形成した後に第二溶液をめっき鋼板上に塗布して第一溶液と第二溶液を混合しても良いし、前記とは逆に、第二溶液の液膜をめっき鋼板上に形成した後に第一溶液をめっき鋼板上に塗布して第一溶液と第二溶液を混合しても良い。また、第一溶液と第二溶液を同時に鋼板上へ吐出することにより、鋼板上で混合させても構わない。   The method for mixing the first solution and the second solution on the plated steel sheet is not particularly limited. After the liquid film of the first solution is formed on the plated steel plate, the second solution may be applied on the plated steel plate and the first solution and the second solution may be mixed. After forming the liquid film on the plated steel plate, the first solution may be applied onto the plated steel plate and the first solution and the second solution may be mixed. Moreover, you may mix on a steel plate by discharging a 1st solution and a 2nd solution simultaneously on a steel plate.

また、調質圧延を施した後、めっき鋼板上で第一溶液と第二溶液を混合する工程の前に、アルカリ性水溶液に接触させてめっき表面を活性化する処理(前処理)を行うことが酸化物形成に有効である。調質圧延後のめっき表面に形成されている亜鉛酸化物及びAl酸化物を溶解させることにより、表面を活性化させることが出来、その結果としてその後に続く酸化物形成が容易になる。   In addition, after temper rolling, before the step of mixing the first solution and the second solution on the plated steel sheet, a treatment (pretreatment) for bringing the plating surface into contact with an alkaline aqueous solution is performed. Effective for oxide formation. By dissolving zinc oxide and Al oxide formed on the plated surface after temper rolling, the surface can be activated, and as a result, subsequent oxide formation is facilitated.

上述の方法で製造された合金化溶融亜鉛めっき鋼板は、客先で使用されるまでに長期間保管されることがある。保管中に点錆が発生するのを防止する観点から、所定時間経過後、水洗する工程の前に、アルカリ性水溶液に接触させ表面に残存した第一溶液と第二溶液の混合溶液を中和する処理を行うことが好ましい。この処理の方法は特に限定されず、公知の方法である浸漬、スプレーなどの方法で行うことが可能である。   The alloyed hot-dip galvanized steel sheet produced by the above-described method may be stored for a long period of time before being used at a customer site. From the viewpoint of preventing spot rusting during storage, after a predetermined time has elapsed, before the step of washing with water, the mixed solution of the first solution and the second solution remaining on the surface is brought into contact with an alkaline aqueous solution and neutralized. It is preferable to carry out the treatment. The method of this treatment is not particularly limited, and can be performed by a known method such as dipping or spraying.

前記処理に使用するアルカリ性水溶液は、水酸化ナトリウム、水酸化カルシウム、水酸化カリウム、炭酸ナトリウム、ピロリン酸ナトリウム等の水溶液やこれらを用いた市販の脱脂剤等を使用できる。接触方法は特に限定されず、浸漬、スプレーなどの公知の方法を採用できる。   The alkaline aqueous solution used for the treatment can be an aqueous solution of sodium hydroxide, calcium hydroxide, potassium hydroxide, sodium carbonate, sodium pyrophosphate, or a commercially available degreasing agent using these. The contact method is not particularly limited, and a known method such as dipping or spraying can be employed.

以上の方法によって、めっき表面にZnとSを含む酸化物層が形成される。   By the above method, an oxide layer containing Zn and S is formed on the plating surface.

このZnとSを含む酸化物層を、亜鉛めっき鋼板表面の平坦部に厚さ20nm以上となるように形成することにより、プレス成形性が著しく向上する。20nmより低い場合、近年の厳しいプレス成形能を満足することが出来ないためである。   By forming the oxide layer containing Zn and S so as to have a thickness of 20 nm or more on the flat portion of the surface of the galvanized steel sheet, the press formability is remarkably improved. This is because if it is lower than 20 nm, it is impossible to satisfy the recent severe press forming ability.

なお、ここで、酸化物層の量は以下のようにして求めることができる。まず、Arイオンスパッタリングと組み合わせたオージェ電子分光(AES)により酸化物層の平均厚さを求める。この方法においては、所定厚さまでスパッタした後、測定対象の各元素のスペクトル強度から相対感度因子補正により、その深さでの組成を求めることができる。このうち、酸化物に起因する0の含有率は、ある深さで最大値となった後(これが最表層の場合もある)、減少し、一定となる。0の含有率が最大値より深い位置で、最大値と一定値との和の1/2となる深さを、酸化物の厚さとした。なお、本発明における酸化物層とは、ZnとSを必須として含んだ酸化物及び/又は水酸化物などからなる層のことである。   Here, the amount of the oxide layer can be determined as follows. First, the average thickness of the oxide layer is determined by Auger electron spectroscopy (AES) combined with Ar ion sputtering. In this method, after sputtering to a predetermined thickness, the composition at that depth can be obtained by correcting the relative sensitivity factor from the spectral intensity of each element to be measured. Among these, the content of 0 attributed to the oxide decreases and becomes constant after reaching a maximum value at a certain depth (this may be the outermost layer). At a position where the content of 0 is deeper than the maximum value, the depth that is ½ of the sum of the maximum value and the constant value is defined as the oxide thickness. The oxide layer in the present invention is a layer made of an oxide and / or hydroxide containing Zn and S as essential components.

また、本発明に係る合金化溶融亜鉛めっき鋼板を製造する際、めっき浴中にAlが添加されていることが必要であるが、Al以外の添加元素成分は特に限定されない。すなわち、Alの他に、Pb、Sb、Si、Sn、Mg、Mn、Ni、Ti、Li、Cuなどが含有または添加されていても、本発明の効果が損なわれるものではない。   Moreover, when manufacturing the alloyed hot-dip galvanized steel sheet according to the present invention, it is necessary that Al be added to the plating bath, but the additive element components other than Al are not particularly limited. That is, even if Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu or the like is contained or added in addition to Al, the effect of the present invention is not impaired.

次に、本発明を実施例により更に詳細に説明する。
板厚0.8mmの冷延鋼板上に、常法の合金化溶融亜鉛めっき層を形成し、更に調質圧延を行った鋼板を供試材とした。供試材は全て溶剤を用いた超音波脱脂を施した後、下記の方法でMnおよびSを含有する酸化物形成処理を実施した。
Next, the present invention will be described in more detail with reference to examples.
A conventional alloyed hot-dip galvanized layer was formed on a cold-rolled steel plate having a thickness of 0.8 mm, and a temper-rolled steel plate was used as a test material. All the test materials were subjected to ultrasonic degreasing using a solvent, and then subjected to oxide forming treatment containing Mn and S by the following method.

第一溶液として、硝酸亜鉛水溶液と水酸化ナトリウム水溶液を常温で混合してZn水酸化物を含有するアルカリ性のコロイド溶液を作成した。Zn濃度は、硝酸亜鉛濃度で調整した。第二溶液は、硫酸亜鉛水溶液を使用した。pHは硫酸で調整した。   As the first solution, an aqueous zinc nitrate solution and an aqueous sodium hydroxide solution were mixed at room temperature to prepare an alkaline colloidal solution containing Zn hydroxide. The Zn concentration was adjusted with the zinc nitrate concentration. The second solution was an aqueous zinc sulfate solution. The pH was adjusted with sulfuric acid.

第一溶液を満たしたビーカーに鋼板を浸漬させ、3秒間放置した後、取り出し、直ちに図1(a)の装置の絞りロール2aと2b間を通過させて、鋼板1表面上の第一溶液量を制御した。鋼板1上の液膜量は、絞りロール2a、2b間の圧下力を調整することで調整した。引き続き図1(b)のロールコータを用いて、コータパン5内の第二溶液をピックアップロール4を介して絞りロール3aに転写し、また絞りロール3bでコータパン6内の第二溶液を汲み上げ、鋼板1を絞りロール3aと3b間を通過させて鋼板1上に溶液量を制御した第二溶液を付与し、鋼板上で第一溶液と第二溶液を混合させた。鋼板1上の第二溶液の液膜量は、絞りロール3a、3b間の圧下力を調整することで調整した。第一溶液と第二溶液の液膜量は、第一溶液:第二溶液=3:1になるようにした。   The steel plate is immersed in a beaker filled with the first solution, left for 3 seconds, then taken out and immediately passed between the squeeze rolls 2a and 2b of the apparatus of FIG. Controlled. The amount of liquid film on the steel plate 1 was adjusted by adjusting the rolling force between the squeeze rolls 2a and 2b. 1B, the second solution in the coater pan 5 is transferred to the squeeze roll 3a through the pickup roll 4, and the second solution in the coater pan 6 is pumped up by the squeeze roll 3b. 1 was passed between the squeezing rolls 3a and 3b to give a second solution having a controlled amount of solution on the steel plate 1, and the first solution and the second solution were mixed on the steel plate. The liquid film amount of the second solution on the steel plate 1 was adjusted by adjusting the rolling force between the squeeze rolls 3a and 3b. The liquid film amounts of the first solution and the second solution were set so that the first solution: the second solution = 3: 1.

第一溶液と第二溶液を鋼板上で混合させた後、所定時間経過後に、水道水により水洗して鋼板上に残存する第一溶液と第二溶液の混合溶液を除去し、温風乾燥機による乾燥を行うことにより試験片を作製した。水道水による水洗は、水道水が入った水槽への浸漬、一部は水道水スプレーによって行った。一部のサンプルは、アルカリ性水溶液に接触させて表面を活性化する前処理を行い、その後で上記酸化物形成処理を行い、また一部のサンプルは、水洗前にアルカリ性溶液に浸漬させる中和処理を行った。   After the first solution and the second solution are mixed on the steel plate, after a predetermined time has passed, the mixture is washed with tap water to remove the mixed solution of the first solution and the second solution remaining on the steel plate, and a hot air dryer The test piece was produced by performing drying by. Washing with tap water was performed by immersing in a water tank containing tap water, and partly with tap water spray. Some samples are pre-treated to activate the surface by contact with an alkaline aqueous solution, and then the oxide formation treatment is performed, and some samples are neutralized by immersion in an alkaline solution before washing with water. Went.

第一溶液及び第二溶液の溶液組成は、表1に示した。液膜量は、絞りロール通過前後の鋼板重量を測定して重量差を求め、この重量差を溶液付着面積で割って算出した。経過時間は、鋼板が第二溶液(第二溶液→第一溶液の順で塗布した場合、第一溶液のみを塗布した場合は第一溶液)を塗布した絞りロールを離れた時点を0秒とし、水洗開始までの時間(中和処理を行った場合は、中和処理開始までの時間)である。   The solution compositions of the first solution and the second solution are shown in Table 1. The amount of the liquid film was calculated by measuring the weight of the steel sheet before and after passing through the squeeze roll to determine the weight difference, and dividing this weight difference by the solution adhesion area. Elapsed time is 0 seconds when the steel plate leaves the squeeze roll applied with the second solution (in the order of the second solution → first solution, or the first solution when only the first solution is applied). The time until the start of water washing (when neutralization is performed, the time until the start of neutralization).

前処理方法、中和処理方法を以下に記載する。
前処理:10g/lの水酸化ナトリウム水溶液を用い、50℃に保持した水酸化ナトリウム水溶液中に10秒間浸漬処理を実施した。
中和処理:1g/lのピロリン酸ナトリウム水溶液を用い、50℃に保持したピロリン酸ナトリウム水溶液中に3秒間浸漬処理を実施した。
The pretreatment method and neutralization treatment method are described below.
Pretreatment: A 10 g / l aqueous sodium hydroxide solution was used, and an immersion treatment was carried out for 10 seconds in an aqueous sodium hydroxide solution maintained at 50 ° C.
Neutralization treatment: A 1 g / l sodium pyrophosphate aqueous solution was used, and an immersion treatment was carried out for 3 seconds in a sodium pyrophosphate aqueous solution maintained at 50 ° C.

次に、以上の様に作製した鋼板について、プレス成形性を簡易的に評価する手法として摩擦係数の測定を実施した。なお、摩擦係数の測定は次のようにして行い評価を行った。
(1)プレス成形性評価試験(摩擦係数測定試験)
プレス成形性を評価するために、各供試材の摩擦係数を以下のようにして測定した。
Next, the friction coefficient was measured as a method for simply evaluating the press formability of the steel sheet produced as described above. The friction coefficient was measured and evaluated as follows.
(1) Press formability evaluation test (Friction coefficient measurement test)
In order to evaluate the press formability, the friction coefficient of each test material was measured as follows.

図2は、摩擦係数測定装置を示す概略正面図である。同図に示すように、供試材から採取した摩擦係数測定用試料11が試料台12に固定され、試料台12は、水平移動可能なスライドテーブル13の上面に固定されている。スライドテーブル13の下面には、これに接したローラ14を有する上下動可能なスライドテーブル支持台15が設けられ、これを押上げることにより、ビード16による摩擦係数測定用試料11への押付荷重Nを測定するための第1ロードセル17が、スライドテーブル支持台15に取付けられている。上記押付力を作用させた状態でスライドテーブル13を水平方向へ移動させるための摺動抵抗力Fを測定するための第2ロードセル18が、スライドテーブル13の一方の端部に取付けられている。なお、潤滑油として、スギムラ化学社製のプレス用洗浄油プレトン(登録商標)R352Lを試料11の表面に塗布して試験を行った。   FIG. 2 is a schematic front view showing the friction coefficient measuring apparatus. As shown in the figure, a friction coefficient measurement sample 11 collected from a test material is fixed to a sample table 12, and the sample table 12 is fixed to the upper surface of a slide table 13 that can move horizontally. On the lower surface of the slide table 13 is provided a slide table support base 15 having a roller 14 in contact with the slide table 13 and capable of moving up and down, and by pushing it up, a pressing load N applied to the friction coefficient measurement sample 11 by the bead 16. A first load cell 17 is attached to the slide table support 15. A second load cell 18 for measuring a sliding resistance force F for moving the slide table 13 in the horizontal direction in a state where the pressing force is applied is attached to one end of the slide table 13. In addition, the cleaning oil Preton (registered trademark) R352L for press manufactured by Sugimura Chemical Co., Ltd. was applied to the surface of the sample 11 as a lubricant, and the test was performed.

図3、図4は使用したビードの形状・寸法を示す概略斜視図である。ビード16の下面が試料11の表面に押し付けられた状態で摺動する。図3に示すビード16の形状は幅10mm、試料の摺動方向長さ12mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。図4に示すビード16の形状は幅10mm、試料の摺動方向長さ69mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ60mmの平面を有する。   3 and 4 are schematic perspective views showing the shape and dimensions of the beads used. The bead 16 slides with its lower surface pressed against the surface of the sample 11. The bead 16 shown in FIG. 3 has a width of 10 mm, a length of 12 mm in the sliding direction of the sample, and a lower portion at both ends in the sliding direction is formed by a curved surface having a curvature of 4.5 mmR. It has a plane with a direction length of 3 mm. The bead 16 shown in FIG. 4 is 10 mm wide, 69 mm long in the sliding direction of the sample, the lower part at both ends of the sliding direction is a curved surface having a curvature of 4.5 mmR, and the bottom surface of the bead against which the sample is pressed is 10 mm wide and sliding. It has a plane with a direction length of 60 mm.

摩擦係数測定試験は以下に示す2条件で行った。
[条件1]
図3に示すビードを用い、押し付け荷重N:3923N(400kgf)、試料の引き抜き速度(スライドテーブル13の水平移動速度):100cm/minとした。
[条件2]
図4に示すビードを用い、押し付け荷重N:3923N(400kgf)、試料の引き抜き速度(スライドテーブル13の水平移動速度):20cm/minとした。
供試材とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。
The friction coefficient measurement test was performed under the following two conditions.
[Condition 1]
The bead shown in FIG. 3 was used, the pressing load N was 3923N (400 kgf), and the sample drawing speed (horizontal movement speed of the slide table 13) was 100 cm / min.
[Condition 2]
The bead shown in FIG. 4 was used, the pressing load N was 3923N (400 kgf), and the sample drawing speed (horizontal moving speed of the slide table 13) was 20 cm / min.
The friction coefficient μ between the test material and the bead was calculated by the formula: μ = F / N.

以上より得られた試験結果を表1に示す。   The test results obtained above are shown in Table 1.

Figure 2009127077
Figure 2009127077

表1に示す試験結果から下記事項が明らかとなった。
(1)No.1は、本発明による処理を行っていないため、平坦部に摺動性を向上させるのに十分な酸化膜が形成されず、摩擦係数が高くプレス成形性が低いことが分かる。
(2)No.2〜6は、第一溶液のZnイオン濃度を変化させた例であるが、No.3〜6は酸化膜が20nm以上であり、摩擦係数がNo.1およびNo.2に比べ大幅に低下していることから、高いプレス成形性が得られていることが分かる。また、酸化膜厚を比較すると、Znイオン濃度が増加することにより酸化膜厚が増加しているが、200〜350g/lの間でほぼ飽和していることが分かる。
From the test results shown in Table 1, the following matters became clear.
(1) No. No. 1 is not subjected to the treatment according to the present invention, so that an oxide film sufficient to improve the slidability is not formed on the flat portion, and the friction coefficient is high and the press formability is low.
(2) No. Nos. 2 to 6 are examples in which the Zn ion concentration of the first solution was changed. Nos. 3 to 6 have an oxide film of 20 nm or more and a friction coefficient of No. 3-6. 1 and no. Since it is significantly lower than 2, it can be seen that high press formability is obtained. Further, when comparing the oxide film thickness, it can be seen that the oxide film thickness increases as the Zn ion concentration increases, but is almost saturated between 200 and 350 g / l.

(3)No.4及びNo.7〜12は経過時間を変化させた例であるが、第一溶液と第二溶液が混合されることなく水洗されて経過時間が無いNo.7は、酸化膜が形成されず、摩擦係数が高くなることが分かる。一方、経過時間を設けることによりいずれの場合においても酸化膜が厚く形成しており、低い摩擦係数を示すことがわかる。経過時間と酸化膜厚に着目すると、60秒以上経過しても酸化膜厚の増加効果が飽和しほとんど変化していないことがわかる。
(4)No.13は、第一溶液のみで処理を行った例、No.14は第二溶液のみで処理を行った例であるが、いずれの場合も酸化膜が薄く、プレス成形性が低いことが分かる。
(5)No.4及びNo.15〜18は第二溶液の硫酸イオン濃度を変化させた例であるが、No.16〜18は酸化膜が20nm以上であり、低い摩擦係数であることが分かる。濃度と摩擦係数、特に条件2の摩擦係数に着目すると、第二溶液の硫酸イオン濃度を5g/l以上にすることによりより低い摩擦係数が得られることが分かる。
(3) No. 4 and no. Nos. 7 to 12 are examples in which the elapsed time was changed. 7 shows that no oxide film is formed and the friction coefficient is increased. On the other hand, it can be seen that by providing the elapsed time, the oxide film is formed thick in any case and exhibits a low coefficient of friction. Focusing on the elapsed time and the oxide film thickness, it can be seen that the effect of increasing the oxide film thickness is saturated and hardly changed even after 60 seconds or more.
(4) No. No. 13 is an example of treatment with only the first solution, No. 13 No. 14 is an example in which the treatment was performed only with the second solution. In any case, it can be seen that the oxide film is thin and the press moldability is low.
(5) No. 4 and no. Nos. 15 to 18 are examples in which the sulfate ion concentration of the second solution was changed. It can be seen that 16 to 18 have an oxide film of 20 nm or more and a low coefficient of friction. Focusing on the concentration and the friction coefficient, particularly the friction coefficient in Condition 2, it can be seen that a lower friction coefficient can be obtained by setting the sulfate ion concentration of the second solution to 5 g / l or more.

(6)No.4及びNo.19〜21は第二溶液のpHを変化させた例であるが、いずれの場合においても、厚さ20nm以上の酸化膜が形成し、低い摩擦係数が得られていることが分かる。pHと酸化膜厚に着目すると、pHが2.0の場合にはpH3.0に比べて大幅に薄くなっていることがわかる。
(7)No.4及びNo.22〜24は処理液の温度を変化させた例であるが、いずれの場合においても低い摩擦係数であることが分かる。ただし、温度が高い80℃の場合には酸化膜厚が薄くなっており、鋼板上に目視で確認できる処理ムラが確認された。
(8)No.25は前処理を実施した例であるが、No.4に比べて、前処理を行うことにより、酸化膜が大幅に厚く形成していることが分かる。
(9)No.4及びNo.26〜28は液膜量を変化させた例であるが、いずれの液膜量においても低い摩擦係数が得られていることが分かる。液膜量が多いNo.28の場合は、酸化膜厚が薄くなっていることがわかる。
(6) No. 4 and no. 19 to 21 are examples in which the pH of the second solution was changed. In any case, it can be seen that an oxide film having a thickness of 20 nm or more was formed, and a low friction coefficient was obtained. Focusing on the pH and the oxide film thickness, it can be seen that when the pH is 2.0, it is significantly thinner than the pH 3.0.
(7) No. 4 and no. Although 22-24 are the examples which changed the temperature of the process liquid, it turns out that it is a low friction coefficient in any case. However, when the temperature was high at 80 ° C., the oxide film thickness was thin, and processing unevenness that could be visually confirmed on the steel sheet was confirmed.
(8) No. No. 25 is an example in which pre-processing is performed. It can be seen that the oxide film is formed to be significantly thicker by performing the pretreatment than 4.
(9) No. 4 and no. Nos. 26 to 28 are examples in which the liquid film amount is changed, but it is understood that a low friction coefficient is obtained at any liquid film amount. No. with a large amount of liquid film In the case of 28, it turns out that the oxide film thickness is thin.

(10)No.29は酸化物形成処理後に中和処理を行った例である。サンプル作成後、市販防錆油を1.5g/m塗布し、6ヶ月間工場内に放置したが、6ヶ月放置後も点錆びが発生していなかった。
(11)No.4、No.30及びNo.31は第二溶液のカチオン種を変化させた例であるが、いずれのカチオン種においても酸化膜が形成しており、低い摩擦係数が得られていることが分かる。
(12)No.4とNo.32は処理順序による影響を調査した例であるが、処理順序を変化させても、同等の酸化膜が形成しており、いずれの場合においても低い摩擦係数が得られることが分かる。
(10) No. 29 is an example in which neutralization treatment was performed after oxide formation treatment. After the sample was prepared, 1.5 g / m 2 of commercially available rust preventive oil was applied and left in the factory for 6 months, but no spot rust occurred even after 6 months.
(11) No. 4, no. 30 and no. No. 31 is an example in which the cation species of the second solution is changed, but it can be seen that an oxide film is formed in any cation species, and a low friction coefficient is obtained.
(12) No. 4 and no. No. 32 is an example in which the influence of the processing order is investigated, but it can be seen that even if the processing order is changed, an equivalent oxide film is formed, and a low friction coefficient can be obtained in any case.

本発明の合金化溶融亜鉛めっき鋼板の製造方法は、プレス成形性に優れる合金化溶融亜鉛めっき鋼板の製造方法として利用することができる。本発明の合金化溶融亜鉛めっき鋼板はプレス成形性に優れるので、自動車車体用途を中心に広範な分野で適用できる。   The manufacturing method of the galvannealed steel sheet of this invention can be utilized as a manufacturing method of the galvannealed steel sheet which is excellent in press formability. Since the alloyed hot-dip galvanized steel sheet of the present invention is excellent in press formability, it can be applied in a wide range of fields mainly for automobile body applications.

実施例の酸化物形成処理の第一溶液、第二溶液の塗布量の制御に使用した装置を示し、(a)は第一溶液の塗布量の制御に使用した絞り装置、(b)は第二溶液の塗布量の制御に使用したロールコータの概念図である。The apparatus used for control of the coating amount of the 1st solution of an oxide formation process of an Example and a 2nd solution is shown, (a) is the aperture device used for control of the coating amount of a 1st solution, (b) is the 1st. It is a conceptual diagram of the roll coater used for control of the coating amount of two solutions. 摩擦係数測定装置を示す概略正面図である。It is a schematic front view which shows a friction coefficient measuring apparatus. 図2中のビード形状・寸法を示す概略斜視図である。It is a schematic perspective view which shows the bead shape and dimension in FIG. 図2中のビード形状・寸法を示す概略斜視図である。It is a schematic perspective view which shows the bead shape and dimension in FIG.

符号の説明Explanation of symbols

1 鋼板
2a、2b、3a、3b 絞りロール
4 ピックアップロール
5、6 コータパン
11 摩擦係数測定用試料
12 試料台
13 スライドテーブル
14 ローラ
15 スライドテーブル支持台
16 ビード
17 第1ロードセル
18 第2ロードセル
19 レール
N 押付荷重
F 摺動抵抗力
DESCRIPTION OF SYMBOLS 1 Steel plate 2a, 2b, 3a, 3b Drawing roll 4 Pickup roll 5, 6 Coater pan 11 Friction coefficient measurement sample 12 Sample stand 13 Slide table 14 Roller 15 Slide table support stand 16 Bead 17 First load cell 18 Second load cell 19 Rail N Pressing load F Sliding resistance force

Claims (6)

めっき表面に酸化物層を有する合金化溶融亜鉛めっき鋼板の製造方法であって、溶融亜鉛めっき後合金化処理および調質圧延を施しためっき鋼板に対して、めっき鋼板上で、Zn水酸化物をZn換算で10g/l以上含有するアルカリ性のコロイド溶液からなる第一溶液と、硫酸イオンを5g/l以上含有する酸性溶液からなる第二溶液を混合させた後、所定時間経過後に水洗し乾燥してめっき表面にZnおよびSを含有する酸化物層を形成することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。   A method for producing an alloyed hot dip galvanized steel sheet having an oxide layer on a plated surface, wherein the zinc hydroxide is applied to the plated steel sheet subjected to alloying treatment and temper rolling after hot dip galvanization. After mixing a first solution composed of an alkaline colloidal solution containing 10 g / l or more in terms of Zn and a second solution consisting of an acidic solution containing 5 g / l or more of sulfate ions, the mixture is washed with water and dried after a predetermined time. And forming an oxide layer containing Zn and S on the plating surface. 前記第一溶液は液温が20〜70℃であり、前記第二溶液はpHが2.5〜6.0、液温が20〜70℃であることを特徴とする請求項1に記載の合金化溶融亜鉛めっき鋼板の製造方法。 The liquid temperature of the first solution is 20 to 70 ° C, the pH of the second solution is 2.5 to 6.0, and the liquid temperature is 20 to 70 ° C. A method for producing a galvannealed steel sheet. めっき鋼板上の第一溶液と第二溶液の混合溶液の液膜量は30g/m以下であり、所定時間は1〜60秒であることを特徴とする請求項1または2に記載の合金化溶融亜鉛めっき鋼板の製造方法。 3. The alloy according to claim 1, wherein a liquid film amount of a mixed solution of the first solution and the second solution on the plated steel sheet is 30 g / m 2 or less, and the predetermined time is 1 to 60 seconds. Method for producing a galvannealed steel sheet. 調質圧延を施した後、めっき鋼板上で第一溶液と第二溶液を混合する工程の前に、アルカリ性水溶液に接触させてめっき表面を活性化する工程を行うことを特徴とする請求項1〜3のいずれか一項に記載の合金化溶融亜鉛めっき鋼板の製造方法。 2. A step of activating the plating surface by contacting with an alkaline aqueous solution after the temper rolling and before the step of mixing the first solution and the second solution on the plated steel sheet. The manufacturing method of the galvannealed steel plate as described in any one of -3. 所定時間経過後前記水洗する工程の前に、アルカリ性水溶液に接触させてめっき表面に残存した第一溶液と第二溶液の混合液を中和処理する工程を行うことを特徴とする請求項1〜4のいずれか一項に記載の合金化溶融亜鉛めっき鋼板の製造方法。 The step of neutralizing the mixed solution of the first solution and the second solution remaining on the plating surface by contacting with an alkaline aqueous solution before the step of washing with water after a predetermined time has passed is performed. 5. The method for producing an alloyed hot-dip galvanized steel sheet according to any one of 4 above. 請求項1〜5のいずれか一項に記載の製造方法で製造された合金化溶融亜鉛めっき鋼板であって、めっき表面の平坦部に形成されたZnとSを含む酸化物層の厚さは20nm以上であることを特徴とする合金化溶融亜鉛めっき鋼板。 The alloyed hot-dip galvanized steel sheet produced by the production method according to any one of claims 1 to 5, wherein the thickness of the oxide layer containing Zn and S formed on the flat part of the plating surface is An alloyed hot-dip galvanized steel sheet characterized by being 20 nm or more.
JP2007302356A 2007-11-22 2007-11-22 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet Active JP5071065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007302356A JP5071065B2 (en) 2007-11-22 2007-11-22 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007302356A JP5071065B2 (en) 2007-11-22 2007-11-22 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2009127077A true JP2009127077A (en) 2009-06-11
JP5071065B2 JP5071065B2 (en) 2012-11-14

Family

ID=40818311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007302356A Active JP5071065B2 (en) 2007-11-22 2007-11-22 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5071065B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014058714A (en) * 2012-09-18 2014-04-03 Jfe Steel Corp Cold rolled steel sheet and manufacturing method for the same
WO2015129283A1 (en) * 2014-02-27 2015-09-03 Jfeスチール株式会社 Galvanized steel sheet and method for manufacturing same
WO2015129282A1 (en) * 2014-02-27 2015-09-03 Jfeスチール株式会社 Galvanized steel sheet and method for manufacturing the same
US10092938B2 (en) 2012-02-14 2018-10-09 Nippon Steel & Sumitomo Metal Corporation Plated steel plate for hot pressing and hot pressing method of plated steel plate
JP7386341B2 (en) 2019-10-16 2023-11-24 アルセロールミタル Metal plate processing method and metal plate processed by this method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256448A (en) * 2001-03-05 2002-09-11 Nkk Corp Method for manufacturing galvannealed steel sheet
JP2002256406A (en) * 2001-03-06 2002-09-11 Nkk Corp Galvannealed steel sheet
JP2006183147A (en) * 2005-12-14 2006-07-13 Jfe Steel Kk Equipment for manufacturing hot-dip galvannealed steel sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256448A (en) * 2001-03-05 2002-09-11 Nkk Corp Method for manufacturing galvannealed steel sheet
JP2002256406A (en) * 2001-03-06 2002-09-11 Nkk Corp Galvannealed steel sheet
JP2006183147A (en) * 2005-12-14 2006-07-13 Jfe Steel Kk Equipment for manufacturing hot-dip galvannealed steel sheet

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10092938B2 (en) 2012-02-14 2018-10-09 Nippon Steel & Sumitomo Metal Corporation Plated steel plate for hot pressing and hot pressing method of plated steel plate
JP2014058714A (en) * 2012-09-18 2014-04-03 Jfe Steel Corp Cold rolled steel sheet and manufacturing method for the same
JP5884207B2 (en) * 2014-02-27 2016-03-15 Jfeスチール株式会社 Zinc-based plated steel sheet and method for producing the same
WO2015129282A1 (en) * 2014-02-27 2015-09-03 Jfeスチール株式会社 Galvanized steel sheet and method for manufacturing the same
JP5884206B2 (en) * 2014-02-27 2016-03-15 Jfeスチール株式会社 Zinc-based plated steel sheet and method for producing the same
CN106062250A (en) * 2014-02-27 2016-10-26 杰富意钢铁株式会社 Galvanized steel sheet and method for manufacturing same
CN106062249A (en) * 2014-02-27 2016-10-26 杰富意钢铁株式会社 Galvanized steel sheet and method for manufacturing the same
KR101878220B1 (en) * 2014-02-27 2018-07-13 제이에프이 스틸 가부시키가이샤 Galvanized steel sheet and method for producing the same
KR101878222B1 (en) * 2014-02-27 2018-07-13 제이에프이 스틸 가부시키가이샤 Galvanized steel sheet and method for producing the same
WO2015129283A1 (en) * 2014-02-27 2015-09-03 Jfeスチール株式会社 Galvanized steel sheet and method for manufacturing same
US10351960B2 (en) 2014-02-27 2019-07-16 Jfe Steel Corporation Galvanized steel sheet and method for producing the same
US10392706B2 (en) 2014-02-27 2019-08-27 Jfe Steel Corporation Galvanized steel sheet and method for producing the same
JP7386341B2 (en) 2019-10-16 2023-11-24 アルセロールミタル Metal plate processing method and metal plate processed by this method

Also Published As

Publication number Publication date
JP5071065B2 (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP3807341B2 (en) Method for producing galvannealed steel sheet
JP3608519B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP5044976B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
KR100603427B1 (en) Galvannealed Sheet Steel
JP5071065B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP5354165B2 (en) Method for producing galvanized steel sheet
JP3675313B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent slidability
JP4655788B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
CA2742354C (en) Galvanized steel sheet and method for manufacturing the same
JP4529592B2 (en) Process for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet.
JP4848737B2 (en) Alloyed hot-dip galvanized steel sheet with excellent degreasing properties
JP5044924B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP4654346B2 (en) Method for producing hot dip galvanized steel sheet having zinc phosphate coating
JP4525252B2 (en) Method for producing galvannealed steel sheet
JP4826486B2 (en) Method for producing galvannealed steel sheet
CA2745332C (en) Galvanized steel sheet and method for producing the same
JP4998658B2 (en) Method for producing galvannealed steel sheet
JP3644402B2 (en) Alloy hot-dip galvanized steel sheet
JP5354166B2 (en) Method for producing galvanized steel sheet
JP4696376B2 (en) Alloy hot-dip galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110202

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Ref document number: 5071065

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250