JP4650128B2 - Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet - Google Patents
Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet Download PDFInfo
- Publication number
- JP4650128B2 JP4650128B2 JP2005197493A JP2005197493A JP4650128B2 JP 4650128 B2 JP4650128 B2 JP 4650128B2 JP 2005197493 A JP2005197493 A JP 2005197493A JP 2005197493 A JP2005197493 A JP 2005197493A JP 4650128 B2 JP4650128 B2 JP 4650128B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- dip galvanized
- galvanized steel
- alloyed hot
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims description 26
- 239000008397 galvanized steel Substances 0.000 title claims description 26
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 229910000831 Steel Inorganic materials 0.000 claims description 44
- 239000010959 steel Substances 0.000 claims description 44
- 239000010410 layer Substances 0.000 claims description 32
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- 239000007864 aqueous solution Substances 0.000 claims description 19
- 239000003929 acidic solution Substances 0.000 claims description 10
- 239000002344 surface layer Substances 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 6
- 238000005246 galvanizing Methods 0.000 claims description 4
- 238000005238 degreasing Methods 0.000 description 34
- 238000000034 method Methods 0.000 description 19
- 238000005406 washing Methods 0.000 description 18
- 239000007788 liquid Substances 0.000 description 16
- 238000007747 plating Methods 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000000126 substance Substances 0.000 description 13
- 239000011701 zinc Substances 0.000 description 13
- 239000011324 bead Substances 0.000 description 12
- 238000005096 rolling process Methods 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- 239000003921 oil Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 10
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000003513 alkali Substances 0.000 description 6
- 238000005275 alloying Methods 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000003825 pressing Methods 0.000 description 6
- 230000003449 preventive effect Effects 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 238000009736 wetting Methods 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 229910001297 Zn alloy Inorganic materials 0.000 description 3
- 239000010960 cold rolled steel Substances 0.000 description 3
- 239000010687 lubricating oil Substances 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 101000993059 Homo sapiens Hereditary hemochromatosis protein Proteins 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910020335 Na3 PO4.12H2 O Inorganic materials 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical compound [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000007591 painting process Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 235000011008 sodium phosphates Nutrition 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/48—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
- C23C22/53—Treatment of zinc or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/82—After-treatment
- C23C22/83—Chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/322—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
- C23C28/3225—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
Landscapes
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Thermal Sciences (AREA)
- Coating With Molten Metal (AREA)
Description
本発明は、優れたプレス成形性を有し、かつ化成処理前に実施するアルカリ系の脱脂処理において良好な脱脂性を示す合金化溶融亜鉛めっき鋼板を安定的に製造する方法及び合金化溶融亜鉛めっき鋼板に関するものである。 The present invention relates to a method for stably producing an alloyed hot-dip galvanized steel sheet having excellent press formability and exhibiting good degreasing properties in an alkaline degreasing treatment performed before chemical conversion treatment, and alloyed hot-dip zinc. The present invention relates to a plated steel sheet.
合金化溶融亜鉛めっき鋼板は亜鉛めっき鋼板と比較して溶接性および塗装性に優れることから、自動車車体用途を中心に広範な分野で広く利用されている。そのような用途での合金化溶融亜鉛めっき鋼板は、プレス成形を施されて使用に供される。しかし、合金化溶融亜鉛めっき鋼板は、冷延鋼板に比べてプレス成形性が劣るという欠点を有する。これはプレス金型での合金化溶融めっき鋼板の摺動抵抗が冷延鋼板に比べて大きいことが原因である。すなわち、金型とビードでの摺動抵抗が大きい部分で合金化溶融亜鉛めっき鋼板がプレス金型に流入しにくくなり、鋼板の破断が起こりやすい。 Alloyed hot-dip galvanized steel sheets are widely used in a wide range of fields, especially for automobile bodies, because they are superior in weldability and paintability compared to galvanized steel sheets. The alloyed hot-dip galvanized steel sheet for such applications is subjected to press forming and used. However, the alloyed hot-dip galvanized steel sheet has a disadvantage that its press formability is inferior to that of a cold-rolled steel sheet. This is because the sliding resistance of the alloyed hot-dip steel sheet in the press die is larger than that of the cold-rolled steel sheet. That is, the alloyed hot-dip galvanized steel sheet is less likely to flow into the press mold at the portion where the sliding resistance between the mold and the bead is large, and the steel sheet tends to break.
合金化溶融亜鉛めっき鋼板は、鋼板に亜鉛めっきを施した後、加熱処理を行い、鋼板中のFeとめっき層中のZnが拡散し合金化反応が生じることにより、Fe−Zn合金相を形成させたものである。このFe−Zn合金相は、通常、Γ相、δ1相、ζ相からなる皮膜であり、Fe濃度が低くなるに従い、すなわち、Γ相→δ1相→ζ相の順で、硬度ならびに融点が低下する傾向がある。このため、摺動性の観点からは、高硬度で、融点が高く凝着の起こりにくい高Fe濃度の皮膜が有効であり、プレス成形性を重視する合金化溶融亜鉛めっき鋼板は、皮膜中の平均Fe濃度を高めに製造されている。 An alloyed hot-dip galvanized steel sheet is formed by galvanizing the steel sheet and then heat-treating to form an Fe-Zn alloy phase by diffusion of Fe in the steel sheet and Zn in the plating layer to cause an alloying reaction. It has been made. This Fe-Zn alloy phase is usually a film composed of a Γ phase, a δ 1 phase, and a ζ phase, and as the Fe concentration decreases, that is, in the order of Γ phase → δ 1 phase → ζ phase, hardness and melting point Tends to decrease. For this reason, from the viewpoint of slidability, a coating with high hardness, high melting point and high Fe concentration is effective, and alloyed hot-dip galvanized steel sheet, which emphasizes press formability, Manufactured with high average Fe concentration.
しかしながら、高Fe濃度の皮膜では、めっき−鋼板界面に硬くて脆いΓ相が形成されやすく、加工時に、界面から剥離する現象、いわゆるパウダリングが生じ易い問題を有している。このため、特許文献1に示されているように、摺動性と耐パウダリング性を両立するために、上層に第二層として硬質のFe系合金を電気めっきなどの手法により付与する方法がとられている。 However, a high Fe concentration film tends to form a hard and brittle Γ phase at the plating-steel sheet interface, and has a problem that a phenomenon of peeling from the interface during processing, that is, so-called powdering is likely to occur. Therefore, as shown in Patent Document 1, in order to achieve both slidability and powdering resistance, there is a method of applying a hard Fe-based alloy as a second layer to the upper layer by a technique such as electroplating. It has been taken.
亜鉛系めっき鋼板使用時のプレス成形性を向上させる方法としては、この他に、高粘度の潤滑油を塗布する方法が広く用いられている。しかし、この方法では、潤滑油の高粘性のために塗装工程で脱脂不良による塗装欠陥が発生したり、また、プレス時の油切れにより、プレス性能が不安定になる等の問題がある。従って、合金化溶融亜鉛めっき鋼板自身のプレス成形性が改善されることが強く要請されている。 In addition to this, as a method for improving the press formability when using a zinc-based plated steel sheet, a method of applying a high-viscosity lubricating oil is widely used. However, this method has problems such as a coating defect due to poor degreasing in the painting process due to the high viscosity of the lubricating oil, and press performance becoming unstable due to oil shortage during pressing. Therefore, there is a strong demand for improving the press formability of the galvannealed steel sheet itself.
上記の問題を解決する方法として、特許文献2および特許文献3には、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布酸化処理、または加熱処理を施すことにより、ZnOを主体とする酸化膜を形成させて溶接性、または加工性を向上させる技術を開示している。 As a method for solving the above problems, Patent Document 2 and Patent Document 3 describe that the surface of a zinc-based plated steel sheet is subjected to electrolytic treatment, dipping treatment, coating oxidation treatment, or heat treatment to oxidize mainly ZnO. A technique for improving weldability or workability by forming a film is disclosed.
特許文献4は、亜鉛系めっき鋼板の表面に、リン酸ナトリウム5〜60 g/lを含みpH2〜6の水溶液にめっき鋼板を浸漬するか、電解処理を行う、または、上記水溶液を塗布することにより、P酸化物を主体とした酸化膜を形成して、プレス成形性及び化成処理性を向上させる技術を開示している。 Patent Document 4 discloses that a plated steel sheet is immersed in an aqueous solution containing 5 to 60 g / l of sodium phosphate and having a pH of 2 to 6, or subjected to electrolytic treatment, or the above aqueous solution is applied to the surface of a zinc-based plated steel sheet. Discloses a technique for improving the press formability and chemical conversion treatment by forming an oxide film mainly composed of P oxide.
特許文献5は、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布処理、塗布酸化処理、または加熱処理により、Ni酸化物を生成させることにより、プレス成形性および化成処理性を向上させる技術を開示している。 Patent Document 5 describes a technique for improving press formability and chemical conversion treatment by generating Ni oxide by electrolytic treatment, immersion treatment, coating treatment, coating oxidation treatment, or heat treatment on the surface of a galvanized steel sheet. Is disclosed.
しかしながら、上記の先行技術を合金化溶融亜鉛めっき鋼板に適用した場合、プレス成形性の改善効果を安定して得ることはできない。本発明者らは、その原因について詳細な検討を行った結果、合金化溶融めっき鋼板はAl酸化物が存在することにより、表面の反応性が劣ること、及び表面の凹凸が大きいことが原因であることを見出した。即ち、先行技術を合金化溶融めっき鋼板に適用した場合、表面の反応性が低いため、電解処理、浸漬処理、塗布酸化処理及び加熱処理等を行っても、所定の皮膜を表面に形成することは困難であり、反応性の低い部分、すなわち、Al酸化物量が多い部分では膜厚が薄くなってしまう。また、表面の凹凸が大きいため、プレス成型時にプレス金型と直接接触するのは表面の凸部となるが、凸部のうち膜厚の薄い部分と金型との接触部での摺動抵抗が大きくなり、プレス成形性の改善効果が十分には得られない。 However, when the above prior art is applied to an alloyed hot-dip galvanized steel sheet, the effect of improving press formability cannot be stably obtained. As a result of conducting detailed studies on the causes of the present invention, the alloyed hot-dip galvanized steel sheet is caused by the presence of Al oxide, the surface reactivity is inferior, and the surface unevenness is large. I found out. That is, when the prior art is applied to an alloyed hot-dip steel sheet, the surface reactivity is low, so that a predetermined film can be formed on the surface even when electrolytic treatment, immersion treatment, coating oxidation treatment, heat treatment, etc. are performed. Is difficult, and the film thickness becomes thin in a portion with low reactivity, that is, a portion with a large amount of Al oxide. Also, since the surface irregularities are large, it is the surface protrusions that come into direct contact with the press die during press molding, but the sliding resistance at the contact portion between the thin part of the protrusions and the mold As a result, the effect of improving press formability cannot be sufficiently obtained.
そこで、本発明者らが上記の問題点を改善すべく、研究した結果、下記の知見を得、特許出願した(特許文献6)。 Therefore, as a result of studies conducted by the present inventors to improve the above problems, the following knowledge was obtained and a patent application was filed (Patent Document 6).
一般的に,合金化溶融亜鉛めっき鋼板は,溶融亜鉛めっき→合金化処理後に調質圧延が施されるが,この調質圧延時にロールとの接触によりつぶされ平坦化された部分は,周囲と比較すると凸部として存在する。プレス成形時に実際にプレス金型と接触するのは、この平坦部が主体となるため、この平坦部における摺動抵抗を小さくすれば、プレス成形性を安定して改善することができる。この平坦部における摺動抵抗を小さくするには、めっき層と金型との凝着を防ぐのが有効であり、そのためには、めっき層の表面に、硬質かつ高融点の皮膜を形成することが有効であり、このような酸化物層の形成には、酸性溶液と接触させてめっき表層に酸化物層を形成する方法が有効なことが明らかになった。 In general, galvannealed steel sheets are subjected to temper rolling after hot dip galvanizing → alloying treatment. By comparison, it exists as a convex portion. Since the flat part is the main component that actually contacts the press mold during press molding, the press formability can be stably improved by reducing the sliding resistance at the flat part. In order to reduce the sliding resistance in this flat part, it is effective to prevent adhesion between the plating layer and the mold. To that end, a hard and high melting point film should be formed on the surface of the plating layer. It was found that the method of forming an oxide layer on the plating surface layer by contacting with an acidic solution is effective for forming such an oxide layer.
そして、以上の知見を基に、特許文献6に係る発明は、鋼板に溶融亜鉛めっき後、加熱処理により合金化し、さらに調質圧延を施し、鉄−亜鉛合金めっき表面に平坦部を形成した後に、酸性溶液と接触させ、1〜30秒保持し、水洗することで、めっき表層に酸化物層を形成することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法として完成した。
上記特許文献6において、プレス成形性以外の特性についてより詳細な検討を進めるうちに以下の事が判明した。プレス後に施される塗装ラインでは、アルカリ系の脱脂液を用いて脱脂処理が施され、その後、化成処理→電着塗装が行われる。ここで、車体外面部のスプレー脱脂が施される部分では完全に脱脂可能であるものの、車体内面部など脱脂液の流動がほとんどない部分では、脱脂不良が生じることがわかった。そこで、脱脂不良が生じるサンプルについて詳細に調査したところ、最表層に存在する水酸基(-OH)に起因していることを見出した。 In the above-mentioned Patent Document 6, the following has been found out while conducting a more detailed study on properties other than press formability. In the coating line applied after pressing, a degreasing treatment is performed using an alkaline degreasing liquid, and then a chemical conversion treatment → electrodeposition coating is performed. Here, it was found that although the degreasing portion on the outer surface of the vehicle body can be completely degreased, poor degreasing occurs in a portion where there is almost no flow of degreasing liquid such as the inner surface portion of the vehicle body. Therefore, a detailed investigation was made on the sample in which the degreasing failure occurred, and it was found that it was caused by the hydroxyl group (—OH) present in the outermost layer.
本発明は、かかる事情に鑑み、上記の問題点を改善し、プレス成形時の摺動性に優れるとともに、かつ化成処理前に実施するアルカリ系の脱脂処理において良好な脱脂性を示す合金化溶融亜鉛めっき鋼板を安定して製造する方法およびその合金化溶融亜鉛めっき鋼板を提供することを目的とする。 In view of such circumstances, the present invention improves the above-mentioned problems, has excellent slidability during press molding, and exhibits good degreasing properties in an alkaline degreasing treatment performed before chemical conversion treatment. It aims at providing the method of manufacturing a galvanized steel plate stably, and its alloying hot-dip galvanized steel plate.
本発明者らは、上記の課題を解決すべく、さらに鋭意研究を重ねた。その結果、めっき鋼板表面に、Zn系酸化物層を形成させた後に、Pを含有した水溶液に接触させることにより、酸化物表面にPが吸着し、良好な脱脂性が得られることを見出した。 The inventors of the present invention made further studies to solve the above problems. As a result, it was found that after forming a Zn-based oxide layer on the surface of the plated steel sheet, P was adsorbed on the oxide surface by contacting with an aqueous solution containing P, and good degreasing properties were obtained. .
本発明は、以上の知見に基いてなされたものであり、その要旨は以下の通りである。
[1]鋼板に溶融亜鉛めっきを施し、さらに加熱処理により合金化し、調質圧延を施した後、酸性溶液に接触させ、接触終了後1〜30秒放置した後、水洗を行うことにより、亜鉛めっき鋼板表面に10nm以上のZn系酸化物層を形成する合金化溶融亜鉛めっき鋼板の製造方法において、前記水洗を、P濃度が0.5〜5000ppmであるP含有水溶液により行うことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
[2]前記[1]に記載の合金化溶融亜鉛めっき鋼板の製造方法により生産されるめっき鋼板であり、該めっき鋼板の平坦部表層におけるZnおよびAlを必須成分として含む酸化物層が10nm以上であることを特徴とする合金化溶融亜鉛めっき鋼板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] Hot-dip galvanizing is applied to the steel sheet, further alloyed by heat treatment, temper rolling, contact with an acidic solution, left for 1 to 30 seconds after contact is completed, and then washed with water, In the method for producing an alloyed hot-dip galvanized steel sheet in which a Zn-based oxide layer of 10 nm or more is formed on the surface of the plated steel sheet, the water washing is performed using a P-containing aqueous solution having a P concentration of 0.5 to 5000 ppm. Manufacturing method of hot dip galvanized steel sheet.
[2] A plated steel sheet produced by the method for producing an alloyed hot-dip galvanized steel sheet according to [1] above, wherein the oxide layer containing Zn and Al as essential components in the flat surface layer of the plated steel sheet is 10 nm or more An alloyed hot-dip galvanized steel sheet characterized by
本発明によれば、プレス成形時の摺動抵抗が小さく、安定して優れたプレス成形性を示すとともに、化成処理前に実施するアルカリ系の脱脂処理において良好な脱脂性を示す合金化溶融亜鉛めっき鋼板を安定して製造できる。 According to the present invention, the alloyed molten zinc has low sliding resistance during press molding, exhibits stable and excellent press formability, and exhibits good degreasing properties in an alkaline degreasing treatment performed before chemical conversion treatment. A plated steel sheet can be manufactured stably.
合金化溶融亜鉛めっき鋼板の製造の際には、鋼板に溶融亜鉛めっきを施した後に、さらに加熱し合金化処理が施されるが、この合金化処理時の鋼板−めっき界面の反応性の差により、合金化溶融亜鉛めっき鋼板表面には凹凸が存在する。しかしながら、合金化処理後には、通常、材質確保のために調質圧延が施され、この調質圧延時のロールとの接触により、めっき表面は平滑化され凹凸が緩和される。従って、プレス成型時には、金型がめっき表面の凸部を押しつぶすのに必要な力が低下し、摺動特性を向上させることができる。 When producing an alloyed hot-dip galvanized steel sheet, the steel sheet is hot-dip galvanized and then further heated and alloyed. The difference in reactivity between the steel sheet and the plating interface during the alloying process. Thus, irregularities exist on the surface of the galvannealed steel sheet. However, after the alloying treatment, temper rolling is usually performed for securing the material, and the plating surface is smoothed and unevenness is alleviated by contact with the roll during temper rolling. Therefore, at the time of press molding, the force required for the mold to crush the convex portion on the plating surface is reduced, and the sliding characteristics can be improved.
このような合金化溶融亜鉛めっき鋼板表面が調質圧延などによりつぶされ平坦化された部分(以下、平坦部と称す)は、プレス成形時に金型が直接接触する部分であるため、金型との凝着を防止する硬質かつ高融点の物質が存在することが、摺動性の向上には重要である。この点では、表層に酸化物層を存在させることは、酸化物層が金型との凝着を防止するため、摺動特性の向上に有効である。 Such a galvannealed steel sheet surface is flattened and flattened by temper rolling or the like (hereinafter referred to as a flat part) because the mold is in direct contact with the mold during press molding. The presence of a hard and high-melting substance that prevents the adhesion of the resin is important for improving the slidability. In this respect, the presence of the oxide layer on the surface layer is effective in improving the sliding characteristics because the oxide layer prevents adhesion with the mold.
実際のプレス成形時には、表層の酸化物は摩耗し、削り取られるため、金型と被加工材の接触面積が大きい場合には、十分に厚い酸化物層の存在が必要である。めっき表面には合金化処理時の加熱により酸化物層が形成されているものの、調質圧延時のロールとの接触により大部分が破壊され、新生面が露出しているため、良好な摺動性を得るためには調質圧延以前に厚い酸化物層を形成しなければならない。また、このことを考慮に入れて、調質圧延前に厚い酸化物層を形成させたとしても、調質圧延時に生じる酸化物層の破壊を避けることはできないため、平坦部の酸化物層が不均一に存在し、良好な摺動性を安定して得ることはできない。 During actual press molding, the oxide on the surface layer is worn away and scraped off. Therefore, when the contact area between the mold and the workpiece is large, a sufficiently thick oxide layer must be present. Although an oxide layer is formed on the plating surface by heating during alloying treatment, most of it is destroyed by contact with the roll during temper rolling, and the new surface is exposed. In order to obtain this, a thick oxide layer must be formed before temper rolling. Taking this into consideration, even if a thick oxide layer is formed before temper rolling, it is impossible to avoid the destruction of the oxide layer that occurs during temper rolling. It exists unevenly and good slidability cannot be obtained stably.
このため、調質圧延が施された合金化溶融亜鉛めっき鋼板、特にめっき表面平坦部に、均一に酸化物層を形成する処理を施すと良好な摺動性を安定的に得ることができる。 For this reason, good slidability can be stably obtained by subjecting the alloyed hot-dip galvanized steel sheet that has been subjected to temper rolling, in particular to a flat surface of the plated surface, to a process that uniformly forms an oxide layer.
合金化溶融亜鉛めっき鋼板を酸性溶液と接触させ、その後、鋼板表面に酸性溶液の液膜が形成された状態で1〜30秒放置した後水洗、乾燥することによって、めっき表層に酸化物層を形成することができる。しかし、その後、防錆油が塗布されると、化成処理前のアルカリ脱脂工程において脱脂不良が生じることがある。 The alloyed hot-dip galvanized steel sheet is brought into contact with an acidic solution, and then left for 1 to 30 seconds in a state where a liquid film of the acidic solution is formed on the surface of the steel sheet, followed by washing with water and drying to form an oxide layer on the plating surface layer. Can be formed. However, when rust preventive oil is applied thereafter, a degreasing defect may occur in the alkaline degreasing step before the chemical conversion treatment.
このような脱脂不良の発生メカニズムについては明確ではないが、次のように考えることができる。前述しためっき表面への酸化物層の形成は、酸性溶液の液膜中へのZnの溶解に伴うpH上昇による水酸化物の沈殿反応を利用しており、形成された酸化物層の一部あるいは全ては、Znの水酸化物であると考えられる。そして、水酸基(‐OH)は、酸化物の最表層に存在し、防錆油中の添加剤との吸着性を増加させることで、鋼板表面の親油性が上昇すると考えられる。一方、アルカリ脱脂液は、主として、防錆油をけん化させ液中に乳化・分散させるアルカリビルダーと、脱脂液の浸透性を向上させる界面活性剤から構成されている。そのため、表面の親油性が高い場合には乳化・分散に長時間を有する。この場合でも、液の対流が充分であれば、物理的に分散させることが可能であるが、液の対流が充分ではない所謂静止状態に近い脱脂液では、防錆油成分がかなりの時間残存するため、以降の化成処理において化成ムラを生じることになる。 The occurrence mechanism of such degreasing failure is not clear, but can be considered as follows. The formation of the oxide layer on the plating surface described above utilizes a hydroxide precipitation reaction due to a pH increase accompanying the dissolution of Zn in the acid solution liquid film, and a part of the formed oxide layer. Or all are considered to be hydroxides of Zn. And it is thought that a hydroxyl group (-OH) exists in the outermost layer of an oxide, and the lipophilicity of the steel plate surface rises by increasing the adsorptivity with the additive in antirust oil. On the other hand, the alkaline degreasing liquid is mainly composed of an alkali builder that saponifies the rust preventive oil and emulsifies and disperses it in the liquid, and a surfactant that improves the permeability of the degreasing liquid. Therefore, when the surface is highly lipophilic, it takes a long time to emulsify and disperse. Even in this case, if the convection of the liquid is sufficient, it can be physically dispersed, but in the so-called defatted liquid near the stationary state where the convection of the liquid is not sufficient, the rust preventive oil component remains for a considerable time. For this reason, chemical conversion unevenness occurs in the subsequent chemical conversion treatment.
よって、良好な脱脂性を得るためには、防錆油を塗布される前のめっき鋼板表面の水酸基と防錆油の添加剤との吸着を遮断することが重要であり、この際に、P含有水溶液と鋼板を接触させると、酸化物表層にPが吸着し、鋼板表面の親油性を抑えることができ、脱脂不良を改善することができる。すなわち、酸化物表面が微量のPで覆われることで、水酸基と防錆油中の添加剤とが結合するのを防止していると考えられる。 Therefore, in order to obtain good degreasing properties, it is important to block the adsorption of the hydroxyl group on the surface of the plated steel sheet and the additive of the rust preventive oil before the application of the rust preventive oil. When the aqueous solution and the steel sheet are brought into contact with each other, P is adsorbed on the oxide surface layer, the lipophilicity of the steel sheet surface can be suppressed, and the degreasing failure can be improved. That is, it is considered that the oxide surface is covered with a small amount of P, thereby preventing the hydroxyl group and the additive in the rust preventive oil from being bonded.
P含有水溶液のP濃度は0.5〜5000ppmとする。0.5ppm未満の濃度では、鋼板表面にPを吸着させる効果が十分でないためであり、5000ppmを超えると、Pのエッチング作用により表面に形成した酸化物が減少し、満足したプレス成形性が得られない。また、前述した濃度範囲にあれば特に問題はないが、処理後、塗油までの時間が長い場合などは、洗浄ムラが目立つことがあるため、P含有水溶液での洗浄後に、通常の水洗を改めて行うことが望ましい。 The P concentration of the aqueous solution containing P is 0.5 to 5000 ppm. If the concentration is less than 0.5 ppm, the effect of adsorbing P on the surface of the steel sheet is not sufficient, and if it exceeds 5000 ppm, the oxide formed on the surface due to the etching action of P decreases, and satisfactory press formability is obtained. Absent. In addition, there is no particular problem as long as it is within the above-mentioned concentration range, but when the time until oiling after treatment is long, uneven cleaning may be noticeable, so normal washing with water after washing with a P-containing aqueous solution may occur. It is desirable to do it again.
P含有水溶液のpHは4.0〜12.0の範囲が望ましい。4.0未満であると、水溶液自体がめっき鋼板を溶解し、一方12.0を超えると、Zn系酸化物が溶解するpH領域になるため、いずれも摺動性向上のために付与した酸化物層が消滅する可能性がある。なお、pHがこの範囲にない場合の上記範囲内へのpH調整は、水酸化ナトリウムなどの強アルカリをわずかに添加するかもしくは水で希釈する等で行える。 The pH of the aqueous solution containing P is preferably in the range of 4.0 to 12.0. If it is less than 4.0, the aqueous solution itself dissolves the plated steel sheet. On the other hand, if it exceeds 12.0, it will be in the pH region where the Zn-based oxide dissolves. there's a possibility that. When the pH is not within this range, the pH can be adjusted to the above range by adding a slight alkali such as sodium hydroxide or diluting with water.
P含有水溶液の温度は20〜70℃の範囲が望ましい。20℃未満であると短時間でのP吸着を完了することが困難になり、一方、70℃を超えるとP吸着効果が飽和するだけでなく、洗浄ムラなどが発生しやすくなる場合がある。また、洗浄時間は、0.5〜10.0秒の範囲が好ましい。0.5秒未満であると、Pの吸着が十分に完了しない場合がある。一方、10秒を超える処理は製造ラインの長大化を招くだけでなく、P含有水溶液による酸化物層やめっき表面のエッチングが発生し、十分な摺動性を確保できなくなる場合がある。 The temperature of the aqueous solution containing P is preferably in the range of 20 to 70 ° C. If it is less than 20 ° C., it will be difficult to complete P adsorption in a short time. On the other hand, if it exceeds 70 ° C., not only the P adsorption effect is saturated, but also cleaning unevenness and the like are likely to occur. The washing time is preferably in the range of 0.5 to 10.0 seconds. If it is less than 0.5 seconds, the adsorption of P may not be completed sufficiently. On the other hand, the treatment exceeding 10 seconds not only lengthens the production line but also causes etching of the oxide layer and the plating surface by the P-containing aqueous solution, and may not be able to ensure sufficient slidability.
このようなP含有水溶液による処理方法には特に制限はなく、めっき鋼板を浸漬する方法、スプレーする方法、塗布ロールを介して塗布する方法などがある。中でも、鋼板表面にスプレーする方法は、必要な処理液が少量で済むと同時に、液の流動効果との相乗効果で比較的短時間で処理が完了するため、最も望ましい方法である。 There is no restriction | limiting in particular in the processing method by such P containing aqueous solution, The method of apply | coating through the method of immersing a plating steel plate, the method of spraying, an application | coating roll, etc. are mentioned. Among them, the method of spraying on the surface of the steel sheet is the most desirable method because it requires a small amount of processing liquid and at the same time completes processing in a relatively short time due to a synergistic effect with the fluid flow effect.
なお、本発明における酸化物層とは、ZnとFeを必須として含んだ酸化物及び/又は水酸化物などからなる層のことである。 The oxide layer in the present invention is a layer made of an oxide and / or hydroxide containing Zn and Fe as essential elements.
また、本発明に係る合金化溶融亜鉛めっき鋼板を製造するに関しては、めっき浴中にAlが添加されていることが必要であるが、Al以外の添加元素成分は特に限定されない。すなわち、Alの他に、Pb、Sb、Si、Sn、Mg、Mn、Ni、Ti、Li、Cuなどが含有または添加されていても、本発明の効果が損なわれるものではない。 Moreover, regarding the production of the galvannealed steel sheet according to the present invention, Al must be added to the plating bath, but the additive element components other than Al are not particularly limited. That is, the effect of the present invention is not impaired even if Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu or the like is contained or added in addition to Al.
次に、本発明を実施例により更に詳細に説明する。
板厚0.8mmの冷延鋼板上に、常法の合金化溶融亜鉛めっき皮膜を形成し、更に調質圧延を行った。引き続き、図1に示す構成の処理設備を用いて酸化物層を形成した。
Next, the present invention will be described in more detail with reference to examples.
A conventional alloyed hot-dip galvanized film was formed on a cold-rolled steel sheet having a thickness of 0.8 mm, and further subjected to temper rolling. Subsequently, an oxide layer was formed using a processing facility having the configuration shown in FIG.
まず、活性化処理槽1を空通しし、酸性溶液槽2で、酢酸ソーダ40g/l、硫酸第一鉄5g/lを含有するpH1.5の酸性溶液に、液温30℃で浸漬した後、絞りロール3で鋼板表面に液膜を形成した。この際、液膜量が約1g/m2となるように絞りロールの圧力の調整を行った。次いで、水洗槽5を空通しした後、洗浄槽6において、P含有水溶液のスプレー処理を行い、湯洗槽7で50℃の温水を鋼板にスプレーして洗浄し、ドライヤ8で乾燥し、めっき表面に酸化物層を形成した。なお、比較のために、図1に示す構成の処理設備を全て空通しした無処理のものも作製した。 First, after activating the activation treatment tank 1 and immersing in an acidic solution tank 2 in an acidic solution of pH 1.5 containing sodium acetate 40 g / l and ferrous sulfate 5 g / l at a liquid temperature of 30 ° C. Then, a liquid film was formed on the surface of the steel sheet with the squeezing roll 3. At this time, the pressure of the squeeze roll was adjusted so that the liquid film amount was about 1 g / m 2 . Next, after passing through the water washing tank 5, in the washing tank 6, spray treatment of the aqueous solution containing P, spraying and washing 50 ° C hot water on the steel plate in the hot water washing tank 7, drying in the dryer 8, plating An oxide layer was formed on the surface. For comparison, an untreated one in which all the treatment facilities having the configuration shown in FIG.
洗浄槽6でスプレー処理を行うP含有水溶液としては、二リン酸ナトリウム(Na4P2O7・10H2O)、リン酸水素二ナトリウム(Na2HPO4・12H2O)、リン酸三ナトリウム(Na3PO4・12H2O)、リン酸二水素ナトリウム(NaH2PO4・2H2O)の水溶液を使用し、一部、P濃度、pHを変化させた。また、比較の為にpH12.0の水酸化ナトリウム(NaOH)水溶液も使用した。処理液の温度は50℃とし、前述した液膜形成時間(絞りロール通過後、洗浄槽6侵入までの時間)および、洗浄槽6を通過する時間をそれぞれ5秒、2秒となるようにラインスピードを調整した。また、比較のために、水洗槽5で水洗を行った後、洗浄槽6を空通しし、その後は前述したものと同様の処理を実施したものも行った。 P-containing aqueous solutions that are sprayed in the washing tank 6 include sodium diphosphate (Na 4 P 2 O 7 · 10H 2 O), disodium hydrogen phosphate (Na 2 HPO 4 · 12H 2 O), and triphosphate Using an aqueous solution of sodium (Na 3 PO 4 .12H 2 O) and sodium dihydrogen phosphate (NaH 2 PO 4 .2H 2 O), the P concentration and pH were partially changed. For comparison, an aqueous solution of sodium hydroxide (NaOH) having a pH of 12.0 was also used. The temperature of the treatment liquid is 50 ° C, and the liquid film formation time (the time from passing through the squeeze roll to the entry of the cleaning tank 6) and the time of passing through the cleaning tank 6 are 5 seconds and 2 seconds, respectively. Adjusted the speed. For comparison, after washing in the washing tank 5, the washing tank 6 was evacuated, and thereafter, the same treatment as described above was performed.
次に、以上の様に作製した鋼板について、プレス成形性を簡易的に評価する手法として摩擦係数の測定、および化成処理前アルカリ脱脂性の評価を実施した。なお、摩擦係数の測定、化成処理前アルカリ脱脂性の評価は次のようにして行った。
(1)プレス成形性評価試験(摩擦係数測定試験)
プレス成形性を評価するために、各供試材の摩擦係数を以下のようにして測定した。
Next, the steel plate produced as described above was subjected to measurement of a friction coefficient and evaluation of alkali degreasing property before chemical conversion as a method for simply evaluating press formability. In addition, measurement of a friction coefficient and evaluation of alkali degreasing property before chemical conversion treatment were performed as follows.
(1) Press formability evaluation test (Friction coefficient measurement test)
In order to evaluate the press formability, the friction coefficient of each test material was measured as follows.
図2は、摩擦係数測定装置を示す概略正面図である。同図に示すように、供試材から採取した摩擦係数測定用試料11が試料台12に固定され、試料台12は、水平移動可能なスライドテーブル13の上面に固定されている。スライドテーブル13の下面には、これに接したローラ14を有する上下動可能なスライドテーブル支持台15が設けられ、これを押上げることにより、ビード16による摩擦係数測定用試料11への押付荷重Nを測定するための第1ロードセル17が、スライドテーブル支持台15に取付けられている。上記押付力を作用させた状態でスライドテーブル13を水平方向へ移動させるための摺動抵抗力Fを測定するための第2ロードセル18が、スライドテーブル13の一方の端部に取付けられている。なお、潤滑油として、スギムラ化学社製のプレス用洗浄油プレトンR352Lを試料11の表面に塗布して試験を行った。
FIG. 2 is a schematic front view showing the friction coefficient measuring apparatus. As shown in the figure, a friction
図3、4は使用したビードの形状・寸法を示す概略斜視図である。ビード16の下面が試料11の表面に押し付けられた状態で摺動する。図3に示すビード16の形状は幅10mm、試料の摺動方向長さ12mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。図4に示すビード16の形状は幅10mm、試料の摺動方向長さ69mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ60mmの平面を有する。
3 and 4 are schematic perspective views showing the shape and dimensions of the beads used. The
摩擦係数測定試験は下に示す2条件で行った。
[条件1]
図3に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル13の水平移動速度):100cm/minとした。
[条件2]
図4に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル13の水平移動速度):20cm/minとした。
The friction coefficient measurement test was conducted under the following two conditions.
[Condition 1]
The bead shown in FIG. 3 was used, the pressing load N was 400 kgf, and the sample drawing speed (horizontal moving speed of the slide table 13) was 100 cm / min.
[Condition 2]
The bead shown in FIG. 4 was used, the pressing load N was 400 kgf, and the sample drawing speed (horizontal moving speed of the slide table 13) was 20 cm / min.
供試材とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。
(2)化成処理前アルカリ脱脂性評価
各供試体に、防錆油を塗油し、垂直に24時間保持することで塗油量を約2g/m2と一定にした後、化成処理前のアルカリ脱脂液(日本パーカライジング製FC-L4460)に45℃で2分間浸漬した後、スプレー圧:1kg/cm2で30秒間水洗を実施した。その後、供試体を垂直に30秒間保持し、その際の水濡れ率(供試体全面積に対する水ハジキが発生していない面積の割合)を目視で判定した。ここで、完全に脱脂が完了した場合の水濡れ率は100%であり、脱脂不良が生じるに伴い水濡れ率は低下する。
The coefficient of friction μ between the test material and the bead was calculated by the formula: μ = F / N.
(2) Alkaline degreasing evaluation before chemical conversion treatment Rust prevention oil was applied to each specimen, and the oil coating amount was kept constant at about 2 g / m 2 by holding it vertically for 24 hours. After dipping in an alkaline degreasing solution (Nippon Parkerizing FC-L4460) at 45 ° C. for 2 minutes, it was washed with water at a spray pressure of 1 kg / cm 2 for 30 seconds. Thereafter, the specimen was held vertically for 30 seconds, and the water wetting rate at that time (the ratio of the area where water repelling did not occur relative to the total area of the specimen) was visually determined. Here, when the degreasing is completely completed, the water wetting rate is 100%, and the water wetting rate decreases as the degreasing failure occurs.
なお、アルカリ脱脂液は、経時による処理液の劣化を考慮して、炭酸ガスを吹き込みpHを11.0程度に調整したものを使用し、供試体を浸漬する際には、脱脂液の攪拌・流動は行わず完全静止状態で実施した。 Note that the alkaline degreasing solution is used by adjusting the pH to about 11.0 by blowing carbon dioxide in consideration of deterioration of the treatment solution over time. The test was carried out in a completely stationary state.
以上より得られた試験結果を表1に示す。 The test results obtained from the above are shown in Table 1.
表1に示す試験結果から下記事項が明らかとなった。
(1)No.1は酸性溶液による処理を行っていないため、平坦部に摺動性を向上させるのに十分な酸化膜が形成されず、摩擦係数が高い。
(2No.2は、酸化物形成処理を行ったが水洗槽5での洗浄は水洗のみを行った比較例であり、No1と比較すると摩擦係数が低くなっており摺動性は向上しているが、アルカリ脱脂後の水濡れ率が非常に低く、アルカリ脱脂性は劣る。
(3)No.3は、比較の為に水酸化ナトリウム水溶液の希釈液で洗浄を行った比較例である。水洗のみで洗浄を行ったNo.2と比較してアルカリ脱脂後の水濡れ率はわずかに向上しているが、完全脱脂ができておらず、希釈によりpHは弱アルカリ領域にあるにもかかわらず水濡れ性はよくない。これは,水酸化ナトリウムのような強アルカリを希釈した液の場合、わずかな酸との反応によりpHが急激に低下するためであり,鋼板表面を弱アルカリ状態に保ちにくいためであると考えられる。
(3)No.4〜10は、二リン酸ナトリウム水溶液で洗浄の処理を行った例である。P濃度が本発明で規定した範囲内にある本発明例(No.5〜9)は摺動性の向上が見られるとともに、アルカリ脱脂後の水濡れ率が全て100%であり、良好なアルカリ脱脂性を示している。一方、P濃度が低濃度側にはずれる比較例(No.4)は、水濡れ率はわずかに向上しているが不十分である。また、P濃度が高濃度側にはずれる比較例(No.10)は、水濡れ率は100%であるものの、酸化膜厚が減少しており、摺動性の向上が不十分である。
(4)No.11〜16は、二リン酸ナトリウム以外のP含有水溶液で洗浄処理を行った本発明例である。摺動性の向上と良好なアルカリ脱脂性を示している。
From the test results shown in Table 1, the following matters were clarified.
(1) No. Since 1 is not treated with an acidic solution, an oxide film sufficient to improve the slidability is not formed on the flat portion, and the coefficient of friction is high.
(2 No. 2 is a comparative example in which the oxide formation treatment was performed but the water washing tank 5 was washed only with water. Compared with No1, the friction coefficient was lower and the slidability was improved. However, the water wetting rate after alkaline degreasing is very low, and the alkaline degreasing property is poor.
(3) No. 3 is a comparative example in which washing was performed with a diluted solution of an aqueous sodium hydroxide solution for comparison. No. cleaned only with water. Compared with 2, the water wetting rate after alkaline degreasing is slightly improved, but complete degreasing has not been achieved, and the water wettability is not good even though the pH is in the weak alkaline region due to dilution. This is because in the case of a solution obtained by diluting a strong alkali such as sodium hydroxide, the pH is drastically lowered due to the reaction with a slight acid, and it is considered that it is difficult to keep the steel plate surface in a weak alkali state. .
(3) No. Examples 4 to 10 are examples in which washing treatment was performed with a sodium diphosphate aqueous solution. In the present invention examples (Nos. 5 to 9) in which the P concentration is within the range defined by the present invention, improvement in slidability is observed, and the water wetting rate after alkaline degreasing is 100%. Degreases. On the other hand, the comparative example (No. 4) in which the P concentration deviates to the low concentration side is insufficient, although the water wettability is slightly improved. Further, in the comparative example (No. 10) in which the P concentration deviates to the high concentration side, the water wettability is 100%, but the oxide film thickness is reduced and the slidability is not sufficiently improved.
(4) No. 11 to 16 are examples of the present invention in which a cleaning treatment was performed with a P-containing aqueous solution other than sodium diphosphate. It shows improved slidability and good alkaline degreasing properties.
本発明の合金化溶融亜鉛めっき鋼板は、溶接性および塗装性に優れることから、自動車車体用途を中心に広範な分野で適用できる。 Since the alloyed hot-dip galvanized steel sheet of the present invention is excellent in weldability and paintability, it can be applied in a wide range of fields mainly for automobile body applications.
1 活性化処理槽
2 酸性溶液槽
3 絞りロール
4 シャワー水洗装置
5 水洗槽
6 洗浄槽
7 湯洗槽
8 ドライヤ
S 鋼板
11 摩擦係数測定用試料
12 試料台
13 スライドテーブル
14 ローラ
15 スライドテーブル支持台
16 ビード
17 第1ロードセル
18 第2ロードセル
19 レール
N 押付荷重
F 摺動抵抗力
1 Activation treatment tank
2 Acidic solution tank
3 Drawing roll
4 Shower washing machine
5 Flush tank
6 Washing tank
7 Hot water bath
8 Dryer S Steel plate
11 Friction coefficient measurement sample
12 Sample stage
13 Slide table
14 Laura
15 Slide table support
16 beads
17 First load cell
18 Second load cell
19 Rail N Pressing load F Sliding resistance
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005197493A JP4650128B2 (en) | 2005-07-06 | 2005-07-06 | Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005197493A JP4650128B2 (en) | 2005-07-06 | 2005-07-06 | Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007016267A JP2007016267A (en) | 2007-01-25 |
JP4650128B2 true JP4650128B2 (en) | 2011-03-16 |
Family
ID=37753684
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005197493A Active JP4650128B2 (en) | 2005-07-06 | 2005-07-06 | Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4650128B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4655788B2 (en) * | 2005-07-06 | 2011-03-23 | Jfeスチール株式会社 | Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet |
JP4930182B2 (en) * | 2007-05-16 | 2012-05-16 | Jfeスチール株式会社 | Alloy hot-dip galvanized steel sheet |
JP5211642B2 (en) * | 2007-10-31 | 2013-06-12 | Jfeスチール株式会社 | Production equipment for hot dip galvanized steel sheet and method for producing hot dip galvanized steel sheet |
JP2009191317A (en) * | 2008-02-14 | 2009-08-27 | Sumitomo Metal Ind Ltd | Method for manufacturing hot dip galvanized steel sheet having excellent degreasing property |
JP2013007093A (en) * | 2011-06-24 | 2013-01-10 | Jfe Steel Corp | Method for producing steel sheet excellent in chemical treatment property and galling resistance |
JP2014136815A (en) | 2013-01-16 | 2014-07-28 | Jfe Steel Corp | Production method of galvanized steel sheet |
CN106062249B (en) | 2014-02-27 | 2019-07-02 | 杰富意钢铁株式会社 | Zinc-based metal plated steel sheet and its manufacturing method |
MX2016011086A (en) | 2014-02-27 | 2016-11-25 | Jfe Steel Corp | Galvanized steel sheet and method for manufacturing same. |
CN115216716B (en) * | 2022-05-30 | 2023-09-08 | 山东嘉隆新型材料有限公司 | High-strength compression-resistant galvanized plate |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0488196A (en) * | 1990-08-01 | 1992-03-23 | Nippon Steel Corp | Galvanized steel sheet excellent in press workability and chemical conversion treating property |
JPH07316769A (en) * | 1994-05-30 | 1995-12-05 | Nkk Corp | Galvannealed steel sheet excellent in adhesive property and its production |
JPH08325688A (en) * | 1995-05-26 | 1996-12-10 | Nippon Steel Corp | Equipment for manufacturing hot dip galvanized steel sheet by dipping having an excellent lubricity |
JP2002012958A (en) * | 1999-07-15 | 2002-01-15 | Nkk Corp | Alloyed hot-dip galvanized steel sheet and its manufacturing method |
JP2002256448A (en) * | 2001-03-05 | 2002-09-11 | Nkk Corp | Method for manufacturing galvannealed steel sheet |
JP2003231959A (en) * | 2002-02-13 | 2003-08-19 | Jfe Steel Kk | Hot-dip galvannealed steel plate manufacturing facility |
JP2003306781A (en) * | 2002-04-18 | 2003-10-31 | Jfe Steel Kk | Method of producing hot dip galvannealed steel sheet |
JP2005097741A (en) * | 2003-08-29 | 2005-04-14 | Jfe Steel Kk | Method for manufacturing galvannealed steel sheet and galvannealed steel sheet |
JP2005139557A (en) * | 1999-07-15 | 2005-06-02 | Jfe Steel Kk | Hot dip galvannealed steel sheet, and its production method |
-
2005
- 2005-07-06 JP JP2005197493A patent/JP4650128B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0488196A (en) * | 1990-08-01 | 1992-03-23 | Nippon Steel Corp | Galvanized steel sheet excellent in press workability and chemical conversion treating property |
JPH07316769A (en) * | 1994-05-30 | 1995-12-05 | Nkk Corp | Galvannealed steel sheet excellent in adhesive property and its production |
JPH08325688A (en) * | 1995-05-26 | 1996-12-10 | Nippon Steel Corp | Equipment for manufacturing hot dip galvanized steel sheet by dipping having an excellent lubricity |
JP2002012958A (en) * | 1999-07-15 | 2002-01-15 | Nkk Corp | Alloyed hot-dip galvanized steel sheet and its manufacturing method |
JP2005139557A (en) * | 1999-07-15 | 2005-06-02 | Jfe Steel Kk | Hot dip galvannealed steel sheet, and its production method |
JP2002256448A (en) * | 2001-03-05 | 2002-09-11 | Nkk Corp | Method for manufacturing galvannealed steel sheet |
JP2003231959A (en) * | 2002-02-13 | 2003-08-19 | Jfe Steel Kk | Hot-dip galvannealed steel plate manufacturing facility |
JP2003306781A (en) * | 2002-04-18 | 2003-10-31 | Jfe Steel Kk | Method of producing hot dip galvannealed steel sheet |
JP2005097741A (en) * | 2003-08-29 | 2005-04-14 | Jfe Steel Kk | Method for manufacturing galvannealed steel sheet and galvannealed steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP2007016267A (en) | 2007-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3807341B2 (en) | Method for producing galvannealed steel sheet | |
JP4650128B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet | |
JP5044976B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet | |
JP3608519B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet | |
KR101788950B1 (en) | Method for manufacturing galvanized steel sheet | |
KR100608556B1 (en) | Method for Production of Galvannealed Sheet Steel | |
JP4655788B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet | |
JP3675313B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet with excellent slidability | |
JP4848737B2 (en) | Alloyed hot-dip galvanized steel sheet with excellent degreasing properties | |
JP4529592B2 (en) | Process for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet. | |
JP6551270B2 (en) | Method of manufacturing galvanized steel sheet | |
JP4517887B2 (en) | Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet | |
JP4525252B2 (en) | Method for producing galvannealed steel sheet | |
TWI516638B (en) | Galvanized steel sheet and manufacturing method thereof | |
JP5044924B2 (en) | Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet | |
JP2007231375A (en) | Galvannealed steel sheet | |
JP5540459B2 (en) | Alloy hot-dip galvanized steel sheet | |
KR101360802B1 (en) | Method for manufacturing galvanized steel sheet | |
JP4826486B2 (en) | Method for producing galvannealed steel sheet | |
JP4998658B2 (en) | Method for producing galvannealed steel sheet | |
JP4604712B2 (en) | Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet | |
CA2470042A1 (en) | Method for manufacturing galvannealed steel sheet and galvannealed steel sheet | |
JP5124928B2 (en) | Alloyed hot-dip galvanized steel sheet and method for producing the same | |
JP5045120B2 (en) | Alloy hot-dip galvanized steel sheet | |
JP2006183147A (en) | Equipment for manufacturing hot-dip galvannealed steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080423 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101116 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101129 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4650128 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131224 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |