JP5045120B2 - Alloy hot-dip galvanized steel sheet - Google Patents

Alloy hot-dip galvanized steel sheet

Info

Publication number
JP5045120B2
JP5045120B2 JP2007016288A JP2007016288A JP5045120B2 JP 5045120 B2 JP5045120 B2 JP 5045120B2 JP 2007016288 A JP2007016288 A JP 2007016288A JP 2007016288 A JP2007016288 A JP 2007016288A JP 5045120 B2 JP5045120 B2 JP 5045120B2
Authority
JP
Japan
Prior art keywords
steel sheet
metal
dip galvanized
galvanized steel
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007016288A
Other languages
Japanese (ja)
Other versions
JP2008184619A (en
Inventor
正泰 名越
亘 谷本
弘之 増岡
章一郎 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007016288A priority Critical patent/JP5045120B2/en
Publication of JP2008184619A publication Critical patent/JP2008184619A/en
Application granted granted Critical
Publication of JP5045120B2 publication Critical patent/JP5045120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)

Description

本発明は、高強度合金化溶融亜鉛めっき鋼板などの成形荷重が高く型かじりを生じやすい材料においても、優れたプレス成形性を有する、合金化溶融亜鉛めっき鋼板に関するものである。   The present invention relates to an alloyed hot-dip galvanized steel sheet having excellent press formability even in a material having a high forming load, such as a high-strength alloyed hot-dip galvanized steel sheet, which tends to cause mold galling.

合金化溶融亜鉛めっき鋼板は合金化処理を施さない亜鉛めっき鋼板と比較して溶接性および塗装性に優れることから、自動車車体用途を中心に広範な分野で広く利用されている
。そのような用途での合金化溶融亜鉛めっき鋼板は、プレス成形を施されて使用に供される。しかし、合金化溶融亜鉛めっき鋼板は、冷延鋼板に比べてプレス成形性が劣るという欠点を有する。これはプレス金型での合金化溶融亜鉛めっき鋼板の摺動抵抗が冷延鋼板に比べて大きいことが原因である。すなわち、金型とビードでの摺動抵抗が大きい部分で合金化溶融亜鉛めっき鋼板がプレス金型に流入しにくくなり、鋼板の破断が起こりやすい。
An alloyed hot-dip galvanized steel sheet is widely used in a wide range of fields, mainly for automobile body applications, because it is superior in weldability and paintability compared to a galvanized steel sheet that is not subjected to alloying treatment. The alloyed hot-dip galvanized steel sheet for such applications is subjected to press forming and used. However, the alloyed hot-dip galvanized steel sheet has a disadvantage that its press formability is inferior to that of a cold-rolled steel sheet. This is because the sliding resistance of the alloyed hot-dip galvanized steel sheet in the press die is larger than that of the cold-rolled steel sheet. That is, the alloyed hot-dip galvanized steel sheet is less likely to flow into the press mold at the portion where the sliding resistance between the mold and the bead is large, and the steel sheet tends to break.

合金化溶融亜鉛めっき鋼板は、鋼板に亜鉛めっきを施した後、加熱処理を行い、鋼板中のFeとめっき層中のZnが拡散し合金化反応が生じることにより、Fe−Zn合金相を形成させたものである。このFe−Zn合金相は、通常、Γ相、δ相、ζ相からなる皮膜であり、Fe濃度が低くなるに従い、すなわち、Γ相→δ1相→ζ相の順で、硬度ならびに融点が低下する傾向がある。このため、摺動性の観点からは、高硬度で、融点が高く凝着の起こりにくい高Fe濃度の皮膜が有効であり、プレス成形性を重視する合金化溶融亜鉛めっき鋼板は、皮膜中の平均Fe濃度を高めに製造されている。 An alloyed hot-dip galvanized steel sheet is formed by galvanizing the steel sheet and then heat-treating to form an Fe-Zn alloy phase by diffusion of Fe in the steel sheet and Zn in the plating layer to cause an alloying reaction. It has been made. This Fe-Zn alloy phase is usually a film composed of a Γ phase, a δ 1 phase, and a ζ phase. As the Fe concentration decreases, that is, in the order of Γ phase → δ 1 phase → ζ phase, hardness and melting point Tends to decrease. For this reason, from the viewpoint of slidability, a coating with high hardness, high melting point and high Fe concentration is effective, and alloyed hot-dip galvanized steel sheet, which emphasizes press formability, Manufactured with high average Fe concentration.

しかしながら、高Fe濃度の皮膜では、めっき−鋼板界面に硬くて脆いΓ相が形成されやすく、加工時に界面から剥離する現象、いわゆるパウダリングが生じやすい問題を有している。このため特許文献1に示されているように、摺動性と耐パウダリング性を両立するために、上層に第二層として硬質のFe系合金を電気めっきなどの手法により付与する方法がとられている。   However, a coating film having a high Fe concentration has a problem that a hard and brittle Γ phase is easily formed at the plating-steel plate interface, and a phenomenon of peeling from the interface during processing, that is, so-called powdering is likely to occur. For this reason, as shown in Patent Document 1, in order to achieve both slidability and powdering resistance, there is a method of applying a hard Fe-based alloy as a second layer to the upper layer by a technique such as electroplating. It has been.

亜鉛系めっき鋼板使用時のプレス成形性を向上させる方法としては、この他に、高粘度の潤滑油を塗布する方法が広く用いられる。しかし、この方法では、潤滑油の高粘性のために塗装工程で脱脂不良による塗装欠陥が発生したり、また、プレス時の油切れにより、プレス性能が不安定になる等の問題がある。従って、合金化溶融亜鉛めっき鋼板自身のプレス成形性が改善されることが強く要請されている。   In addition to this, as a method for improving the press formability when using a galvanized steel sheet, a method of applying a high-viscosity lubricating oil is widely used. However, this method has problems such as a coating defect due to poor degreasing in the painting process due to the high viscosity of the lubricating oil, and press performance becoming unstable due to oil shortage during pressing. Therefore, there is a strong demand for improving the press formability of the galvannealed steel sheet itself.

上記の問題を解決する方法として、特許文献2および特許文献3には、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布酸化処理、または加熱処理を施すことにより、ZnOを主体とする酸化膜を形成させて溶接性、加工性を向上させる技術が開示されている。   As a method for solving the above problems, Patent Document 2 and Patent Document 3 describe that the surface of a zinc-based plated steel sheet is subjected to electrolytic treatment, dipping treatment, coating oxidation treatment, or heat treatment to oxidize mainly ZnO. A technique for improving weldability and workability by forming a film is disclosed.

特許文献4には亜鉛系めっき鋼板表面に、リン酸ナトリウム5〜60g/lを含みpH2〜6の水溶液にめっき鋼板を浸漬するか、電解処理を行う、または上記水溶液を塗布することにより、P酸化物を主体とした酸化膜を形成して、プレス成形性および化成処理性を向上させる技術が開示されている。   Patent Document 4 discloses that by immersing a plated steel sheet in an aqueous solution containing 5 to 60 g / l of sodium phosphate and having a pH of 2 to 6 on the surface of the zinc-based plated steel sheet, performing electrolytic treatment, or applying the above aqueous solution, P A technique for improving press moldability and chemical conversion treatment by forming an oxide film mainly composed of oxides is disclosed.

特許文献5には、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布処理、塗布酸化処理、または加熱処理により、Ni酸化物を生成させることにより、プレス成形性および化成処理性を向上させる技術が開示されている。   In Patent Document 5, the surface of a zinc-based plated steel sheet is improved in press formability and chemical conversion treatment by generating Ni oxide by electrolytic treatment, dipping treatment, coating treatment, coating oxidation treatment, or heat treatment. Technology is disclosed.

特許文献6には、合金化溶融亜鉛めっき鋼板を酸性溶液に接触させることで鋼板表面にZnを主体とする酸化物を形成させ、めっき層とプレス金型の凝着を抑制し、摺動性を向上させる技術が開示されている。   In Patent Document 6, an alloyed hot-dip galvanized steel sheet is brought into contact with an acidic solution to form an oxide mainly composed of Zn on the surface of the steel sheet, suppressing adhesion between the plating layer and the press mold, and slidability. A technique for improving the above is disclosed.

亜鉛系めっき層の上層に金属酸化物被膜を形成する技術として、特許文献7には、Mo,V,Cu,Snの金属酸化物皮膜、特許文献8には、Ni,Mn,Ti,Co,Ca,V,W,Sn,Feの金属酸化物被膜を形成する技術が開示されている。また、特許文献9には、亜鉛系めっき層の上に形成された金属酸化物被膜を、島状またはモザイク状に分布させる技術が開示されている。
特開平1−319661号公報 特開昭53-60332号公報 特開平2−190483号公報 特開平4−88196号公報 特開平3−191093号公報 特開2003-306781号公報 特開平5-214558号公報 特開平7-18400号公報 特開平6−116746号公報
As a technique for forming a metal oxide film on the upper layer of the zinc-based plating layer, Patent Document 7 discloses a metal oxide film of Mo, V, Cu, Sn, and Patent Document 8 describes Ni, Mn, Ti, Co, A technique for forming a metal oxide film of Ca, V, W, Sn, and Fe is disclosed. Patent Document 9 discloses a technique for distributing a metal oxide film formed on a zinc-based plating layer in an island shape or a mosaic shape.
JP-A-1-319661 JP-A-53-60332 Japanese Patent Laid-Open No. 2-190483 JP-A-4-88196 Japanese Patent Laid-Open No. 3-191093 JP2003-306781 JP-A-5-214558 Japanese Unexamined Patent Publication No. 7-18400 JP-A-6-116746

しかしながら、特許文献1〜9は、自動車外板に多く使用される比較的強度の低い合金化溶融亜鉛めっき鋼板に対しては有効であるが、プレス成形時の荷重が高いがゆえに金型との接触面圧が上昇する高強度合金化溶融亜鉛めっき鋼板においては、必ずしもプレス成形性の改善効果を安定して得ることはできない。   However, Patent Documents 1 to 9 are effective for a relatively low-strength alloyed hot-dip galvanized steel sheet that is often used for automobile outer plates, but because of the high load during press molding, In a high-strength galvannealed steel sheet with increased contact surface pressure, the effect of improving press formability cannot always be obtained stably.

また、特許文献7〜9に開示されている、亜鉛系めっき鋼板の表面層にSnの酸化物被膜を形成する技術は、Snの酸化物がめっき層と比べて硬質であることを利用するもので、Zn系酸化物のみの場合よりは改善効果は見られるものの、改善効果は不十分であった。   Moreover, the technique of forming the oxide film of Sn on the surface layer of the zinc-based plated steel sheet disclosed in Patent Documents 7 to 9 utilizes the fact that the Sn oxide is harder than the plated layer. Thus, although the improvement effect was observed as compared with the case of using only the Zn-based oxide, the improvement effect was insufficient.

本発明は、かかる事情に鑑み、高強度合金化溶融亜鉛めっき鋼板などの成形荷重が高く型かじりが生じやすい材料においても優れたプレス成形性を有する合金化溶融亜鉛めっき鋼板を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide an alloyed hot-dip galvanized steel sheet having excellent press formability even in a material having a high forming load such as a high-strength alloyed hot-dip galvanized steel sheet, which is likely to cause die galling. And

本発明者らは、上記の課題を解決すべく、さらに鋭意研究を重ねた。その結果、以下の知見を得た。   The inventors of the present invention made further studies to solve the above problems. As a result, the following knowledge was obtained.

特許文献6の方法により製造される合金化溶融亜鉛めっき鋼板表面には、Znを主体とする酸化物層が形成されており、このZnを主体とする酸化物層がプレス時に金型との凝着を抑制し摺動抵抗を低減している。しかし、めっきの下地鋼板として高強度鋼を使用する場合は、軟質鋼よりも成形荷重が高く型かじりや割れを生じやすく、特許文献6に記載されるZn系酸化物層では効果が不十分であることがわかった。また、特許文献7〜9に記載されているようにSn酸化物層を存在させると改善効果は見られるものの、不十分であることがわかった。   An oxide layer mainly composed of Zn is formed on the surface of the alloyed hot-dip galvanized steel sheet manufactured by the method of Patent Document 6, and this oxide layer mainly composed of Zn is condensed with the mold during pressing. Wear resistance is reduced and sliding resistance is reduced. However, when using high-strength steel as the base steel sheet for plating, the forming load is higher than that of soft steel, and galling and cracking are likely to occur, and the effect of the Zn-based oxide layer described in Patent Document 6 is insufficient. I found out. Moreover, when the Sn oxide layer was made to exist as described in Patent Documents 7 to 9, it was found that the improvement effect was seen but insufficient.

そして、さらに研究を進めた結果、本発明者らは、Zn系酸化物層のみでは成形荷重が高い場合でも高い潤滑性を発現するには限界があり、Zn系酸化物層に加えて金属状態を主体とするSnを必須成分とする粒子を混在させることで、格段に高い摺動性が得られることを知見した。この理由は、明らかではないが、めっき成分であるZn-Fe合金やZn系酸化物と比較してやわらかい金属(Sn)が表面に存在することにより、金型とのせん断抵抗が低下する効果が付与されたためだと考える。また、本発明では金属状態を主体とするSnを必須成分とする粒子とZn系酸化物とを混在させることにより、Zn系酸化物による凝着抑制効果との協奏効果もあると推定している。   As a result of further research, the present inventors have a limit to exhibit high lubricity even when the molding load is high only with the Zn-based oxide layer, and in addition to the Zn-based oxide layer, the metal state It has been found that remarkably high slidability can be obtained by mixing particles containing Sn as a main component. The reason for this is not clear, but the effect of reducing the shear resistance with the mold is due to the presence of a soft metal (Sn) on the surface compared to the Zn-Fe alloy and Zn-based oxide that are plating components. I think that it was because it was granted. Further, in the present invention, it is presumed that there is a concerted effect with the adhesion suppression effect by the Zn-based oxide by mixing the Zn-based oxide with particles containing Sn as a main component mainly in the metal state. .

本発明は、以上の知見に基づきなされたものであり、その要旨は以下の通りである。
[1]Fe-Zn合金めっき相を少なくとも鋼板の片面に有し、さらに、前記Fe-Zn合金めっき相の表面には、金属状態を主体とするSnを必須成分とする粒子と、Znを必須成分とする酸化物が存在することを特徴とする合金化溶融亜鉛めっき鋼板。
[2]前記[1]において、Snの付着量が0.05g/m以上であり、Znを必須成分とする酸化物の平均膜厚が10nm以上であることを特徴とする合金化溶融亜鉛めっき鋼板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] Fe-Zn alloy plating phase is provided on at least one surface of the steel plate, and particles having Sn as an essential component mainly in a metal state and Zn are essential on the surface of the Fe-Zn alloy plating phase An alloyed hot-dip galvanized steel sheet characterized by the presence of an oxide as a component.
[2] The alloyed molten zinc according to [1], wherein an adhesion amount of Sn is 0.05 g / m 2 or more, and an average film thickness of an oxide containing Zn as an essential component is 10 nm or more. Plated steel sheet.

本発明によれば、プレス成形時の摺動抵抗が小さく、優れたプレス成形性を有する合金化溶融亜鉛めっき鋼板が得られる。   According to the present invention, an alloyed hot-dip galvanized steel sheet having a low sliding resistance during press forming and excellent press formability can be obtained.

合金化溶融亜鉛めっき鋼板は、その表面がFe-Zn合金で構成されている。プレス成形性を安定して改善するためには、上記のようなFe-Zn合金で構成されている合金化溶融亜鉛めっき鋼板の表面における金型との摺動抵抗を小さくすることが重要である。
合金化溶融亜鉛めっき鋼板表面の摺動抵抗を小さくする方法として、めっき表面にZn系の酸化物を存在させることが挙げられる。このめっき表面のZn系の酸化物は金型との凝着を防止し、摺動特性の向上に有効である。しかし、プレス成形時の荷重が高い場合等、より厳しい条件になると、めっき表面と金型との高面圧で接触し、高面圧で摺動を受けるため、めっき表面にZn系酸化物が存在してもめっき表面と金型とが直接接触し凝着を起こす。その場合はめっき合金と金型とのせん断応力が大きな摺動抵抗となる。ここで、金属状態を主体とするSnを必須成分とする粒子を混在させると、この摺動抵抗が低減する。この理由は、軟らかい金属Snが存在することにより、それが摺動時に延ばされめっき表面と金型との間に広がり両者の直接接触を防止することによると考えている。金属Snは非常にせん断応力が小さいことから、金型とめっき表面の接触抵抗は小さいものとなる。ただし、金属SnはZn系酸化物と同時に存在することが必要である。例えば、合金化溶融亜鉛めっき表面に金属Snだけを付与しても接触抵抗を低減する効果はあるが、Sn層は変形しやすいためめっきの凹凸の頂点や金型の凹凸部で容易に寸断され、短時間でその効果は消失する。従って、その効果は不十分である。また、本発明では、金属SnをZn系酸化物と混在させることにより、比較的高融点で硬いZn系酸化物の凝着抑制も利用する。また、金属Snを層状ではなく粒子状にすることで潰れた場所でその効果を発揮できるようにしている。Zn系酸化物は、また、金属Sn粒子をめっき表面で保持する効果もあるとも推定している。
The surface of the alloyed hot-dip galvanized steel sheet is composed of an Fe—Zn alloy. In order to stably improve the press formability, it is important to reduce the sliding resistance with the mold on the surface of the galvannealed steel sheet composed of the Fe-Zn alloy as described above. .
As a method for reducing the sliding resistance on the surface of the alloyed hot-dip galvanized steel sheet, a Zn-based oxide is present on the plated surface. This Zn-based oxide on the plating surface prevents adhesion to the mold and is effective in improving the sliding characteristics. However, under more severe conditions, such as when the load during press molding is high, the plating surface comes into contact with the mold at a high surface pressure and slides at a high surface pressure. Even if it exists, the plating surface and the mold come into direct contact and cause adhesion. In that case, the shearing stress between the plating alloy and the mold becomes a large sliding resistance. Here, when particles containing Sn as an essential component in a metal state as a main component are mixed, this sliding resistance is reduced. The reason for this is thought to be due to the presence of soft metal Sn, which is extended during sliding and spreads between the plating surface and the mold to prevent direct contact between them. Since metal Sn has a very small shear stress, the contact resistance between the mold and the plating surface is small. However, the metal Sn needs to be present at the same time as the Zn-based oxide. For example, even if metal Sn alone is applied to the alloyed hot dip galvanized surface, it has the effect of reducing contact resistance, but the Sn layer is easily deformed, so it is easily cut off at the apex of the plating unevenness and the unevenness of the mold. The effect disappears in a short time. Therefore, the effect is insufficient. In the present invention, the suppression of adhesion of a hard Zn-based oxide having a relatively high melting point is also utilized by mixing metal Sn with the Zn-based oxide. Moreover, the effect can be exhibited in the place crushed by making metal Sn into a particle form instead of a layer form. It is also estimated that the Zn-based oxide has an effect of holding the metal Sn particles on the plating surface.

以上より、本発明の合金化溶融亜鉛めっき鋼板は、Fe-Zn合金めっき相を少なくとも鋼板の片面に有し、さらに、前記Fe-Zn合金めっき相の表面には、金属状態を主体とするSnを必須成分とする粒子と、Znを必須成分とする酸化物が存在することとする。これは本発明において、最も重要な要件である。   As described above, the galvannealed steel sheet of the present invention has an Fe-Zn alloy plating phase on at least one surface of the steel sheet, and the surface of the Fe-Zn alloy plating phase is Sn mainly composed of a metal state. It is assumed that there are particles having an essential component of Zn and an oxide having Zn as an essential component. This is the most important requirement in the present invention.

粒子中のSnは、金属状態を主体とするが、表面等、一部が酸化物となっていてもよい。Sn付着量もZnを必須成分とする酸化物の平均膜厚も増加するほど高い摺動性向上効果が得られるが、Sn付着量0.05g/m以上、Znを必須成分とする酸化物膜厚10nm以上とすることが好ましい。めっき表面に調質圧延などにより平坦な凸部を設けている場合は、少なくともその部分のZnを必須成分とする酸化物膜厚が10nm以上であることが好ましい。 Sn in the particles is mainly in a metal state, but a part of the surface or the like may be an oxide. As the Sn coating amount and the average film thickness of the oxide containing Zn as an essential component increase, a higher slidability improvement effect can be obtained, but the Sn coating amount is 0.05 g / m 2 or more and the oxide containing Zn as an essential component The film thickness is preferably 10 nm or more. When a flat convex portion is provided on the plating surface by temper rolling or the like, it is preferable that the oxide film thickness containing at least Zn in that portion as an essential component is 10 nm or more.

Sn付着量もZnを必須成分とする酸化物膜厚も特に上限は定めないが、Sn付着量5g/m超、Znを必須成分とする酸化物の平均膜厚80nm超では改善効果が小さくなり不経済である。 There is no particular upper limit on the Sn deposition amount and the oxide film thickness with Zn as an essential component, but the improvement effect is small when the Sn deposition amount exceeds 5 g / m 2 and the average film thickness of the oxide with Zn as an essential component exceeds 80 nm. It is uneconomical.

また、金属Sn粒子の形状は特に規定するものではなく、円形に限らず、いびつな形状でもよい。粒子の大きさも特に規定するものではなく、剥離に問題がなければよい。例えば、粒子の最も長い部分と短い部分の平均値を平均粒子径とすると、平均粒子径2μm以下のような微粒子で十分効果を発揮する。
また、金属Sn粒子の分布状態も特に規定するものではなく、偏析していてもよいが、金属Sn粒子の個数が20μm×20μmの面積あたり、1個以上存在することが好ましい。めっき表面に調質圧延などにより平坦な凸部を設けている場合、そこに優先的に金属Snを付与することは、平坦な凸部が金型と直接接触する確率が高いため、より効果的である。
In addition, the shape of the metal Sn particles is not particularly defined, and is not limited to a circle but may be an irregular shape. The size of the particles is not particularly specified, and it is sufficient that there is no problem in peeling. For example, assuming that the average value of the longest part and the shortest part of the particle is the average particle diameter, fine particles having an average particle diameter of 2 μm or less exhibit a sufficient effect.
Further, the distribution state of the metal Sn particles is not particularly defined and may be segregated, but it is preferable that the number of metal Sn particles is one or more per 20 μm × 20 μm area. When flat protrusions are provided on the plating surface by temper rolling, it is more effective to preferentially apply metal Sn to the plating surface because there is a high probability that the flat protrusions are in direct contact with the mold. It is.

図1は、本発明の合金化溶融亜鉛めっき鋼板の一実施形態を示す透過電子顕微鏡写真である。詳細には、図1は、本発明例の合金化溶融亜鉛めっき鋼板の表面から、アセチルセルロースフィルムを用いて付着物をはぎとった状態の、透過電子顕微鏡(TEM)像である。図1において、像のなかで暗く見える粒子状の物質は金属Sn粒子である。図1では、1μm程度以下の粒子径の金属Snが分散している様子がわかる。
TEMに付属するエネルギー分散型X線分光器(EDS)により図1中の粒子を分析した結果、主成分はSnであったが、ZnやOなども検出された。このように、金属Sn粒子は若干のZnを含有したり、表層等の一部が酸化している可能性があるものの、主体は金属Sn粒子である。
また、Znを必須成分とする酸化物層とは、少なくともZnとOを含んでいればよく、水酸化物など、その他の元素が結合している場合も含まれる。
FIG. 1 is a transmission electron micrograph showing one embodiment of the galvannealed steel sheet of the present invention. Specifically, FIG. 1 is a transmission electron microscope (TEM) image in a state where deposits are peeled off from the surface of the alloyed hot-dip galvanized steel sheet according to the present invention using an acetylcellulose film. In FIG. 1, the particulate matter that appears dark in the image is metallic Sn particles. FIG. 1 shows that metal Sn having a particle diameter of about 1 μm or less is dispersed.
As a result of analyzing the particles in FIG. 1 using an energy dispersive X-ray spectrometer (EDS) attached to the TEM, the main component was Sn, but Zn and O were also detected. Thus, although the metal Sn particles may contain some Zn or the surface layer or the like may be partially oxidized, the main component is the metal Sn particles.
The oxide layer containing Zn as an essential component only needs to contain at least Zn and O, and includes a case where other elements such as hydroxide are bonded.

なお、本発明では、金属状態を主体とするSnを必須成分とする粒子と、Znを必須成分とする酸化物が鋼板表面に存在していれば摺動性に優れるため、その他の金属イオンや無機化合物などを金属粒子中あるいは酸化物層中に不純物として、あるいは故意に含有していても本発明の効果が損なわれるものではない。   In the present invention, since particles having Sn as an essential component in a metal state and an oxide having Zn as an essential component are present on the surface of the steel sheet, the slidability is excellent. Even if an inorganic compound or the like is contained in the metal particles or oxide layer as impurities or intentionally, the effect of the present invention is not impaired.

鋼板表面に、金属状態を主体とするSnを必須成分とする粒子と、Znを必須成分とする酸化物が存在すればよく、形成方法は特に規定するものではないが、例えば、Snを含む酸性溶液に接触させる方法が挙げられる。製法の一例を以下に示す。具体的には、鋼板に溶融亜鉛めっきを施し、さらに加熱処理により合金化し、必要により調質圧延を施して平坦部を形成した後、Snイオンを含む酸性溶液に接触させ、接触終了後1〜120秒放置した後、水洗を行うことにより、めっき表面に金属状態を主体とするSnを必須成分とする粒子とZn系酸化物を同時に形成することができる。酸により、Znの溶解および水酸化Znの沈殿と、金属Snの置換析出を同時に起こさせることがポイントである。酸性溶液中のSn濃度やSn源は、表面に金属Sn粒子が存在するように適宜選択して調整すればよいが、例えば、Snの硫酸塩、硝酸塩、塩化物、リン酸塩等を、Snイオン濃度として0.1〜50g/lの範囲で含有することが好ましい。イオン濃度が0.1g/l未満では、金属Snの析出が不十分であり摺動性向上効果が不十分な場合がある。一方、50 g/lを超えると、Zn系酸化物の形成が不安定な場合がある。   The surface of the steel plate is only required to have particles containing Sn as an essential component in the metal state and oxides containing Zn as an essential component, and the formation method is not particularly specified. The method of making it contact with a solution is mentioned. An example of the production method is shown below. Specifically, hot dip galvanizing is applied to the steel sheet, further alloyed by heat treatment, and if necessary, subjected to temper rolling to form a flat part, and then contacted with an acidic solution containing Sn ions. After leaving for 120 seconds, washing with water can simultaneously form particles containing Sn as an essential component and a Zn-based oxide on the plating surface. The point is that the dissolution of Zn, precipitation of Zn hydroxide, and substitutional precipitation of metal Sn occur simultaneously with the acid. The Sn concentration and the Sn source in the acidic solution may be appropriately selected and adjusted so that metal Sn particles are present on the surface.For example, Sn sulfate, nitrate, chloride, phosphate, etc. The ion concentration is preferably in the range of 0.1 to 50 g / l. If the ion concentration is less than 0.1 g / l, the precipitation of metal Sn is insufficient and the effect of improving the slidability may be insufficient. On the other hand, if it exceeds 50 g / l, the formation of the Zn-based oxide may be unstable.

使用する酸性溶液は、pH2.0〜5.0の領域においてpH緩衝作用を有するものが好ましい。これは、pH2.0〜5.0の領域でpH緩衝作用を有する酸性溶液を使用すると、酸性溶液に接触後、所定時間保持することで、酸性溶液とめっき層の反応によるZnの溶解とZn系酸化物の形成反応が十分に生じ、鋼板表面に酸化物層を安定して得ることができるためである。Snはこの間に金属Snとして表面に析出する。このようなpH緩衝性を有する酸性溶液としては、酢酸ナトリウム(CH3COONa)などの酢酸塩やフタル酸水素カリウム((KOOC)2C6H4)などのフタル酸塩、クエン酸ナトリウム(Na3C6H5O7)やクエン酸二水素カリウム(KH2C6H5O7)などのクエン酸塩、コハク酸ナトリウム(Na2C4H4O4)などのコハク酸塩、乳酸ナトリウム(NaCH3CHOHCO2)などの乳酸塩、酒石酸ナトリウム(Na2C4H4O6)などの酒石酸塩、ホウ酸塩、リン酸塩等が挙げられ、これらのうち少なくとも1種類以上を、前記各成分含有量を5〜50g/lの範囲で含有する水溶液を使用することが好ましい。前記濃度が5g/l未満では、亜鉛の溶解とともに溶液のpH上昇が比較的すばやく生じるため、摺動性の向上に十分な酸化物層を形成することができない。一方、50g/lを超えると、亜鉛の溶解が促進され、酸化物層の形成に長時間を有するだけでなく、めっき層の損傷も激しく、本来の防錆鋼板としての役割も失うことが考えられるためである。
酸性溶液のpHとしては0.5〜2.0の範囲にあることが望ましい。酸性溶液のpHが0.5〜2.0の範囲より高い場合は硫酸等のpH緩衝性のない無機酸でpH調製することが好ましい。
The acidic solution used preferably has a pH buffering action in the pH range of 2.0 to 5.0. This is because when an acidic solution having a pH buffering action in the pH range of 2.0 to 5.0 is used, it is maintained for a predetermined time after contact with the acidic solution, so that the dissolution of Zn and the Zn-based oxidation are caused by the reaction between the acidic solution and the plating layer. This is because a product formation reaction occurs sufficiently, and an oxide layer can be stably obtained on the steel sheet surface. During this time, Sn is deposited on the surface as metallic Sn. Acidic solutions with such pH buffering properties include acetates such as sodium acetate (CH 3 COONa), phthalates such as potassium hydrogen phthalate ((KOOC) 2 C 6 H 4 ), sodium citrate (Na Citrates such as 3 C 6 H 5 O 7 ) and potassium dihydrogen citrate (KH 2 C 6 H 5 O 7 ), succinates such as sodium succinate (Na 2 C 4 H 4 O 4 ), and lactic acid Examples include lactate such as sodium (NaCH 3 CHOHCO 2 ), tartrate such as sodium tartrate (Na 2 C 4 H 4 O 6 ), borate, phosphate, etc., and at least one of these, It is preferable to use an aqueous solution containing each component content in the range of 5 to 50 g / l. When the concentration is less than 5 g / l, the pH of the solution rises relatively quickly with the dissolution of zinc, so that an oxide layer sufficient for improving the slidability cannot be formed. On the other hand, if it exceeds 50 g / l, dissolution of zinc is promoted, and not only does it take a long time to form an oxide layer, but the plating layer is also severely damaged, and it may lose its original role as a rust-proof steel sheet. Because it is.
The pH of the acidic solution is preferably in the range of 0.5 to 2.0. When the pH of the acidic solution is higher than 0.5 to 2.0, it is preferable to adjust the pH with an inorganic acid having no pH buffering property such as sulfuric acid.

酸性溶液の温度は、20〜70℃の範囲であることが好ましい。20℃未満では、酸化物層の生成反応に長時間を有し、生産性の低下を招く場合がある。一方、温度が高い場合には、反応は比較的すばやく進行するが、逆に鋼板表面に処理ムラを発生しやすくなるため、70℃以下の温度に制御することが望ましい。
合金化溶融亜鉛めっき鋼板を酸性溶液に接触させる方法としては、例えば、めっき鋼板を酸性溶液に浸漬する方法、めっき鋼板に酸性溶液をスプレーする方法、塗布ロールを介して酸性溶液をめっき鋼板に塗布する方法等があり、最終的に薄い液膜状で鋼板表面に存在することが望ましい。これは、鋼板表面に存在する酸性溶液の量が多いと、亜鉛の溶解が生じても溶液のpHが上昇せず、次々と亜鉛の溶解が生じるのみであり、酸化物層を形成するまでに長時間を有するだけでなく、めっき層の損傷も激しく、本来の防錆鋼板としての役割も失うことが考えられるためである。この観点から、鋼板表面に形成する溶液膜量は、100g/m2以下に調製することが好ましい。なお、溶液膜量の調整は、絞りロール、エアワイピング等で行うことができる。
The temperature of the acidic solution is preferably in the range of 20 to 70 ° C. If it is less than 20 ° C., the production reaction of the oxide layer takes a long time, and the productivity may be lowered. On the other hand, when the temperature is high, the reaction proceeds relatively quickly, but conversely, processing unevenness tends to occur on the surface of the steel sheet, so it is desirable to control the temperature to 70 ° C. or lower.
Examples of the method of bringing the alloyed hot-dip galvanized steel sheet into contact with the acidic solution include a method of immersing the plated steel sheet in an acidic solution, a method of spraying the acidic solution onto the plated steel sheet, and applying the acidic solution to the plated steel sheet via a coating roll It is desirable that the thin film is finally present on the surface of the steel sheet. This is because when the amount of acidic solution present on the steel sheet surface is large, the pH of the solution does not increase even if zinc dissolution occurs, and only zinc dissolution occurs one after another. This is because it not only has a long time but also severely damages the plating layer, and it is considered that the original role as a rust-proof steel sheet is lost. From this viewpoint, the amount of the solution film formed on the steel sheet surface is preferably adjusted to 100 g / m 2 or less. The amount of the solution film can be adjusted by a squeeze roll, air wiping or the like.

また、酸性溶液に接触後、水洗までの時間(水洗までの保持時間)は、1〜120秒間が好ましい。水洗までの時間が1秒未満であると、溶液のpHが上昇し金属Sn粒子とZn系酸化物層が形成される前に、酸性溶液が洗い流されるために、摺動性の向上効果が得られない。また120秒を超えても、鋼板表面に形成する溶液膜量が少ない場合は、金属Snの量およびZn系酸化物量に大きな変化が見られず、また、生産性を低下させることになるため120秒以上の処理時間は好ましくない。
また、これらの製品を製造するにあたっては、溶融金属と素地鋼板との界面に硬くて脆い合金層が成長するのを抑制しめっき密着性を向上させるために、主成分(ZnやAl等)である溶融金属中に主成分以外の成分が少量添加されることが多い。
Moreover, after contacting an acidic solution, the time to water washing (holding time to water washing) is preferably 1 to 120 seconds. If the time until washing with water is less than 1 second, the acidic solution is washed out before the pH of the solution rises and the metal Sn particles and the Zn-based oxide layer are formed, so that the effect of improving the slidability is obtained. I can't. If the amount of the solution film formed on the surface of the steel sheet is small even if it exceeds 120 seconds, there will be no significant change in the amount of metal Sn and the amount of Zn-based oxide, and productivity will be reduced. Processing times of seconds or longer are not preferred.
Moreover, when manufacturing these products, in order to suppress the growth of hard and brittle alloy layers at the interface between the molten metal and the base steel plate and to improve the plating adhesion, the main component (Zn, Al, etc.) In many cases, a small amount of a component other than the main component is added to a molten metal.

また本発明に係る合金化溶融亜鉛めっき鋼板への添加元素成分は特に限定されるものではなく、通常添加されるAl以外にも、例えば、Pb、Sb、Si、Sn、Mg、Mn、Ni、Ti、Li、Cuなどが含有または添加されていても、本発明の効果が損なわれるものではない。   Further, the additive element component to the galvannealed steel sheet according to the present invention is not particularly limited, and besides Al that is usually added, for example, Pb, Sb, Si, Sn, Mg, Mn, Ni, Even if Ti, Li, Cu or the like is contained or added, the effect of the present invention is not impaired.

さらに、酸化処理などに使用する処理液中に不純物が含まれることによりS、N、Pb、Cl、Na、Mn、Ca、Mg、Ba、Sr、Siなどが酸化物層中に取り込まれても、本発明の効果が損なわれるものではない。   Furthermore, even if impurities are included in the treatment liquid used for oxidation treatment, etc., S, N, Pb, Cl, Na, Mn, Ca, Mg, Ba, Sr, Si, etc. may be taken into the oxide layer. The effect of the present invention is not impaired.

次に、本発明を実施例により更に詳細に説明する。
板厚0.8mmの冷延鋼板上に、常法の合金化溶融亜鉛めっき皮膜を形成し、更に調質圧延を行った。引き続き、酸化物形成処理として、酢酸ナトリウム40g/lの酸性水溶液にSnイオン源としてSnSO4を用い、その添加量を適宜変えた酸性溶液に浸漬後、ロール絞りを行い、液量を調整した後、大気中、室温にて所定時間放置し、十分水洗を行った後、乾燥を実施した。比較材として、Snを添加しないで上記と同様の処理を行った材料、および酸性溶液処理そのものを行わない試料を作製した。
Next, the present invention will be described in more detail with reference to examples.
A conventional alloyed hot-dip galvanized film was formed on a cold-rolled steel sheet having a thickness of 0.8 mm, and further temper rolled. Subsequently, as an oxide formation treatment, after using SnSO 4 as an Sn ion source in an acidic aqueous solution of sodium acetate 40 g / l and immersing in an acidic solution in which the addition amount was appropriately changed, roll squeezing and adjusting the liquid amount Then, it was allowed to stand at room temperature in the atmosphere for a predetermined time, sufficiently washed with water, and then dried. As a comparative material, a material that was subjected to the same treatment as described above without adding Sn, and a sample that was not subjected to the acidic solution treatment itself were produced.

以上のように作製した鋼板について、めっき表面の酸化物層の厚さ、およびSnの存在形態を評価するとともに、プレス成形性を簡易的に評価する手法として摩擦係数の測定を行った。なお、測定方法は以下の通りである。   For the steel sheet produced as described above, the thickness of the oxide layer on the plating surface and the presence form of Sn were evaluated, and the friction coefficient was measured as a method for simply evaluating the press formability. The measuring method is as follows.

(1) 酸化物層厚さの測定
オージェ電子分光(AES)によりめっき表面について、Arイオンスパッタリングを用いて、構成元素の深さ方向分析を行い、深さ方向の各元素の組成分布を測定した。その組成分布において、O濃度が、最大値より深い位置で、最大値と一定値との和の1/2となる深さを酸化物層の厚さとした。調質圧延時の平坦部(凸部)および凹部の各2箇所について酸化物層の厚さを測定し、平均値を酸化物層の厚さとした。
(1) Measurement of oxide layer thickness The surface of the plating surface was analyzed by Auger electron spectroscopy (AES) using Ar ion sputtering, and the composition distribution of each element in the depth direction was measured. . In the composition distribution, at a position where the O concentration is deeper than the maximum value, the depth at which the O value is 1/2 of the sum of the maximum value and the constant value is defined as the thickness of the oxide layer. The thickness of the oxide layer was measured for each of two portions of the flat part (convex part) and the concave part during temper rolling, and the average value was defined as the thickness of the oxide layer.

(2) めっき表面における金属Snの存在形態
平坦部における金属Snの評価は、レプリカ法を用いた。処理を施した合金化溶融亜鉛めっき鋼板の表面に、アセチルセルロースフィルムを、アセトンを介して試料表面に30秒間圧着し、剥離した。剥離面にカーボンを蒸着したのちアセチルセルロースを溶解して透過電子顕微鏡(TEM)用の薄片試料とした。TEM(フィリップス社製 CM30)を用い加速電圧200kVで、薄片試料の明視野像観察を行い、金属Snの粒子径と個数を確認した。また、エネルギー分散型X線分光器(EDS)を用いて金属Snが主成分であることを確認した。なお、金属Snの分散状態は、加速電圧を低く、例えば1 kV以下にした走査電子顕微鏡でも行うことができる。
(2) Presence of metal Sn on the plating surface The metal Sn in the flat part of the form was evaluated by the replica method. The acetylcellulose film was pressure-bonded to the surface of the sample for 30 seconds via acetone on the surface of the alloyed hot-dip galvanized steel sheet subjected to the treatment, and peeled off. After vapor deposition of carbon on the peeled surface, acetylcellulose was dissolved to obtain a thin sample for a transmission electron microscope (TEM). A thin-field sample was observed with a TEM (Philips CM30) at an acceleration voltage of 200 kV, and the particle diameter and number of metallic Sn were confirmed. Moreover, it confirmed that metal Sn was a main component using the energy dispersive X-ray spectrometer (EDS). The dispersion state of the metal Sn can also be performed with a scanning electron microscope in which the acceleration voltage is low, for example, 1 kV or less.

(3)摺動性評価試験(摩擦係数測定試験)
プレス成形性を評価するために、各供試材の摩擦係数を以下のようにして測定した。
図2は、摩擦係数測定装置を示す概略正面図である。同図に示すように、供試材から採取した摩擦係数測定用試料1が試料台2に固定され、試料台2は、水平移動可能なスライドテーブル3の上面に固定されている。スライドテーブル3の下面には、これに接したローラ4を有する上下動可能なスライドテーブル支持台5が設けられ、これを押し上げることにより、ビード6による摩擦係数測定用試料1への押し付け荷重Nを測定するための第1ロードセル7が、スライドテーブル支持台5に取り付けられている。上記押し付け力を作用させた状態でスライドテーブル3を水平方向へ移動させるための摺動抵抗力Fを測定するための第2ロードセル8が、スライドテーブル3の一方の端部に取り付けられている。なお、潤滑油としてスギムラ化学社製のプレス用洗浄油プレトンR352Lを摩擦係数測定用試料1の表面に塗布して試験を行った。
図3は使用したビードの形状・寸法を示す概略斜視図である。ビード6の下面が摩擦係数測定用試料1の表面に押し付けられた状態で摺動する。図3に示すビード6の形状は幅10mm、試料の摺動方向長さ12mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。
摩擦係数の測定に対しては、成形荷重が高く型かじりが生じやすい高強度合金化溶融亜鉛めっき鋼板での過酷なプレス環境を想定して、室温(25℃)において、押し付け荷重Nを400kgfおよび1500kgfに変化させて行った。なお試料の引抜き速度(スライドテーブル3の水平移動速度)は100cm/min。これらの条件で、押し付け荷重Nと引抜き荷重Fを測定し、供試材とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。
(3) Slidability evaluation test (Friction coefficient measurement test)
In order to evaluate the press formability, the friction coefficient of each test material was measured as follows.
FIG. 2 is a schematic front view showing the friction coefficient measuring apparatus. As shown in the figure, a friction coefficient measuring sample 1 collected from a test material is fixed to a sample table 2, and the sample table 2 is fixed to the upper surface of a slide table 3 that can move horizontally. On the lower surface of the slide table 3, there is provided a slide table support base 5 having a roller 4 in contact with the slide table 3 and capable of moving up and down. A first load cell 7 for measurement is attached to the slide table support 5. A second load cell 8 for measuring a sliding resistance force F for moving the slide table 3 in the horizontal direction in a state where the pressing force is applied is attached to one end of the slide table 3. In addition, the cleaning oil Preton R352L for press made by Sugimura Chemical Co., Ltd. was applied to the surface of the friction coefficient measurement sample 1 as a lubricant, and the test was performed.
FIG. 3 is a schematic perspective view showing the shape and dimensions of the beads used. The bead 6 slides with its lower surface pressed against the surface of the friction coefficient measurement sample 1. The shape of the bead 6 shown in FIG. 3 is 10 mm wide, 12 mm long in the sliding direction of the sample, and the lower part of both ends of the sliding direction is a curved surface with a curvature of 4.5 mmR. It has a 3mm long plane.
For the measurement of the friction coefficient, assuming a severe press environment with high strength alloyed hot dip galvanized steel sheet with high forming load and high galling, press load N is 400kgf at room temperature (25 ° C). Changed to 1500 kgf. The sample drawing speed (the horizontal movement speed of the slide table 3) is 100 cm / min. Under these conditions, the pressing load N and the pulling load F were measured, and the coefficient of friction μ between the test material and the bead was calculated by the formula: μ = F / N.

以上より得られた試験結果を表1に示す。なお、表1において条件1は、押付荷重400kgf、試料温度25℃(室温)を、条件2は押付荷重1500kgf、試料温度25℃(室温)をそれぞれ指す。   The test results obtained from the above are shown in Table 1. In Table 1, condition 1 indicates a pressing load of 400 kgf and a sample temperature of 25 ° C. (room temperature), and condition 2 indicates a pressing load of 1500 kgf and a sample temperature of 25 ° C. (room temperature).

表1に示す試験結果から下記事項が明らかとなった。
No14の比較例1は、酸化処理を行っていないものである。平坦部の酸化物厚は8nm程度であり摩擦係数は条件1、2とも本発明例よりも高い。
No.15,16の比較例2、3は、酸性溶液での処理を行っているもののSnを添加しないで作製したものでめっき表面にSnを含有していない。この場合、めっき表面の平坦部にはZnを主体とする酸化物層が形成されている。そのため、酸性溶液処理を行わない合金化溶融亜鉛めっき鋼板の摩擦係数(比較例1)よりも低くなっているが、本発明例の摩擦係数に比べると高く、特に条件2では高い摩擦係数を示している。
No.1〜13は、金属SnとZn系酸化物層を含む本発明例である。本発明例の摩擦係数は比較例よりも低くなっている。特に、面圧の高い条件2においての摩擦係数が低位で安定している。
また、酸化物層の厚みが同程度で金属Snを含む本発明例と金属Snを含まない比較例(例えば、No.1の本発明例1とNo.15と比較例2や、No.2の本発明例2とNo.16の比較例3)で比較すると、金属Snを含む発明例は比較例に比べて、摩擦係数が低く、金属Snを付与した効果は明らかである。
From the test results shown in Table 1, the following matters were clarified.
In Comparative Example 1 of No14, the oxidation treatment was not performed. The oxide thickness of the flat portion is about 8 nm, and the friction coefficient is higher in both conditions 1 and 2 than in the present invention.
Comparative Examples 2 and 3 of Nos. 15 and 16 were treated with an acidic solution, but were prepared without adding Sn, and did not contain Sn on the plating surface. In this case, an oxide layer mainly composed of Zn is formed on the flat portion of the plating surface. Therefore, although it is lower than the friction coefficient of the galvannealed steel sheet not subjected to the acid solution treatment (Comparative Example 1), it is higher than the friction coefficient of the present invention example. ing.
Nos. 1 to 13 are examples of the present invention including metal Sn and a Zn-based oxide layer. The friction coefficient of the example of the present invention is lower than that of the comparative example. In particular, the coefficient of friction under condition 2 where the surface pressure is high is stable at a low level.
Further, the present invention examples containing metal Sn and the oxide layer having the same thickness and comparative examples not containing metal Sn (e.g., No. 1 invention example 1 and No. 15 and comparative example 2, No. 2 In comparison with Example 2 of the present invention and Comparative Example 3) of No. 16, the invention example containing metal Sn has a lower coefficient of friction than the comparative example, and the effect of adding metal Sn is clear.

本発明の合金化溶融亜鉛めっき鋼板は、成形荷重が高く型かじりや割れを生じやすい場合や厳しい成形加工が必要で割れ等を生じやすい場合の使用においても、従来製品より優れたプレス成形性を有するので、自動車車体用途を中心に広範な分野で適用が可能となる。   The alloyed hot-dip galvanized steel sheet of the present invention has superior press formability compared to conventional products even when it is used when the forming load is high and it tends to cause mold galling or cracking, or when severe forming is required and cracking is likely to occur. Therefore, it can be applied in a wide range of fields mainly for automobile body applications.

本発明の合金化溶融亜鉛めっき鋼板の一実施形態を示す透過電子顕微鏡写真。The transmission electron micrograph which shows one Embodiment of the galvannealed steel plate of this invention. 摩擦係数測定装置を示す概略正面図。The schematic front view which shows a friction coefficient measuring apparatus. 図1中のビード形状・寸法を示す概略斜視図。FIG. 2 is a schematic perspective view showing bead shapes and dimensions in FIG.

符号の説明Explanation of symbols

1摩擦係数測定用試料
2試料台
3スライドテーブル
4ローラ
5スライドテーブル支持台
6ビード
7第一ロードセル
8第二ロードセル
N 押付荷重
F 摺動抵抗力
1 Friction coefficient measurement sample
2 Sample stage
3 slide table
4 rollers
5 Slide table support
6 beads
7 First load cell
8 Second load cell
N Push load
F Sliding resistance force

Claims (1)

Fe-Zn合金めっき相を少なくとも鋼板の片面に有し、
さらに、前記Fe-Zn合金めっき相の表面には、金属状態を主体とするSnを必須成分とする粒子と、Znを必須成分とする酸化物が存在し、Snの付着量が0.05g/m 以上であり、前記Znを必須成分とする酸化物の平均膜厚が10nm以上であることを特徴とする合金化溶融亜鉛めっき鋼板。
Fe-Zn alloy plating phase at least on one side of the steel plate,
Furthermore, on the surface of the Fe—Zn alloy plating phase, there are particles containing Sn as an essential component mainly composed of a metal state and an oxide containing Zn as an essential component, and the amount of Sn deposited is 0.05 g / An alloyed hot-dip galvanized steel sheet having an average film thickness of m 2 or more and an oxide containing Zn as an essential component is 10 nm or more .
JP2007016288A 2007-01-26 2007-01-26 Alloy hot-dip galvanized steel sheet Active JP5045120B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016288A JP5045120B2 (en) 2007-01-26 2007-01-26 Alloy hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016288A JP5045120B2 (en) 2007-01-26 2007-01-26 Alloy hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2008184619A JP2008184619A (en) 2008-08-14
JP5045120B2 true JP5045120B2 (en) 2012-10-10

Family

ID=39727861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016288A Active JP5045120B2 (en) 2007-01-26 2007-01-26 Alloy hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP5045120B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176101A (en) * 2015-03-19 2016-10-06 株式会社神戸製鋼所 Surface treated steel sheet for press molding, and press molded article

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145797A (en) * 1979-05-01 1980-11-13 Seiko Epson Corp Self-lubricating part
JPH03104882A (en) * 1989-09-16 1991-05-01 Nippon Steel Corp Surface treated steel sheet for di can excellent in aptitude for printing substrate
JPH05214558A (en) * 1991-12-10 1993-08-24 Nkk Corp Galvanized steel sheet excellent in press formability and spot weldability
JP3807341B2 (en) * 2002-04-18 2006-08-09 Jfeスチール株式会社 Method for producing galvannealed steel sheet
JP2004190083A (en) * 2002-12-10 2004-07-08 Tokai Rubber Ind Ltd Surface treatment method for fitting
JP4446346B2 (en) * 2004-09-01 2010-04-07 財団法人鉄道総合技術研究所 Surface treatment material and surface treatment method

Also Published As

Publication number Publication date
JP2008184619A (en) 2008-08-14

Similar Documents

Publication Publication Date Title
JP5044976B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP5239570B2 (en) Galvanized steel sheet
EP2014783B1 (en) Process for producing alloyed hot-dip zinc-plated steel sheet and alloyed hot-dip zinc-plated steel sheet
JP4650128B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP3675313B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent slidability
JP5044924B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP4517887B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP4529592B2 (en) Process for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet.
JP2007231375A (en) Galvannealed steel sheet
JP5540459B2 (en) Alloy hot-dip galvanized steel sheet
JP4930182B2 (en) Alloy hot-dip galvanized steel sheet
JP4826486B2 (en) Method for producing galvannealed steel sheet
JP4525252B2 (en) Method for producing galvannealed steel sheet
JP5045120B2 (en) Alloy hot-dip galvanized steel sheet
JP3644402B2 (en) Alloy hot-dip galvanized steel sheet
JP2007119872A (en) Method for producing galvannealed steel sheet and galvannealed steel sheet
JP5045231B2 (en) Alloy hot-dip galvanized steel sheet
JP4696376B2 (en) Alloy hot-dip galvanized steel sheet
JP4539255B2 (en) Alloy hot-dip galvanized steel sheet
JP3097472B2 (en) Alloyed hot-dip galvanized steel sheet excellent in press formability and method for producing the same
JP3570409B2 (en) Galvannealed steel sheet
JP4826017B2 (en) Alloy hot-dip galvanized steel sheet
JP5119734B2 (en) Galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111014

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5045120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250