JP2007016266A - Method for manufacturing galvannealed steel sheet, and galvannealed steel sheet - Google Patents

Method for manufacturing galvannealed steel sheet, and galvannealed steel sheet Download PDF

Info

Publication number
JP2007016266A
JP2007016266A JP2005197492A JP2005197492A JP2007016266A JP 2007016266 A JP2007016266 A JP 2007016266A JP 2005197492 A JP2005197492 A JP 2005197492A JP 2005197492 A JP2005197492 A JP 2005197492A JP 2007016266 A JP2007016266 A JP 2007016266A
Authority
JP
Japan
Prior art keywords
steel sheet
acid
galvannealed steel
treatment
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005197492A
Other languages
Japanese (ja)
Other versions
JP4655788B2 (en
Inventor
Shoichiro Taira
章一郎 平
Yoshiharu Sugimoto
芳春 杉本
Hiroyuki Masuoka
弘之 増岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005197492A priority Critical patent/JP4655788B2/en
Publication of JP2007016266A publication Critical patent/JP2007016266A/en
Application granted granted Critical
Publication of JP4655788B2 publication Critical patent/JP4655788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/53Treatment of zinc or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Coating With Molten Metal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably manufacturing a galvannealed steel sheet which shows superior slidability in a press molding step, and is satisfactorily degreased in an alkaline degreasing treatment that is conducted before chemical conversion treatment, and to provide the galvannealed steel sheet. <P>SOLUTION: The method for manufacturing the galvannealed steel sheet includes the steps of: hot-dip galvanizing a steel sheet; further alloying the galvanizing layer by heat treatment; temper-rolling it; and forming a Zn oxide layer with a thickness of 10 nm or more, on the surface of the galvannealed steel sheet, through making the galvannealed sheet contact with an acid solution, leaving it for 1 to 30 seconds after the contact has been finished, and rinsing it. The method also includes using an aqueous solution containing sodium salts or potassium salts of one or more acids selected from acetic acid, citric acid, boric acid, carbonic acid, phthalic acid, tartaric acid and lactic acid. The aqueous solution contains the sodium salt or the potassium salt preferably in an amount of 0.001 to 1.0 mol/l, and has a pH preferably in a range of 7.0 to 12.0. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、優れたプレス成形性を有し、かつ化成処理前に実施するアルカリ系の脱脂処理において良好な脱脂性を示す合金化溶融亜鉛めっき鋼板を安定的に製造する方法及び合金化溶融亜鉛めっき鋼板に関するものである。   The present invention relates to a method for stably producing an alloyed hot-dip galvanized steel sheet having excellent press formability and exhibiting good degreasing properties in an alkaline degreasing treatment performed before chemical conversion treatment, and alloyed hot-dip zinc. The present invention relates to a plated steel sheet.

合金化溶融亜鉛めっき鋼板は亜鉛めっき鋼板と比較して溶接性および塗装性に優れることから、自動車車体用途を中心に広範な分野で広く利用されている。そのような用途での合金化溶融亜鉛めっき鋼板は、プレス成形を施されて使用に供される。しかし、合金化溶融亜鉛めっき鋼板は、冷延鋼板に比べてプレス成形性が劣るという欠点を有する。これはプレス金型での合金化溶融めっき鋼板の摺動抵抗が冷延鋼板に比べて大きいことが原因である。すなわち、金型とビードでの摺動抵抗が大きい部分で合金化溶融亜鉛めっき鋼板がプレス金型に流入しにくくなり、鋼板の破断が起こりやすい。   Alloyed hot-dip galvanized steel sheets are widely used in a wide range of fields, especially for automobile bodies, because they are superior in weldability and paintability compared to galvanized steel sheets. The alloyed hot-dip galvanized steel sheet for such applications is subjected to press forming and used. However, the alloyed hot-dip galvanized steel sheet has a disadvantage that its press formability is inferior to that of a cold-rolled steel sheet. This is because the sliding resistance of the alloyed hot-dip steel sheet in the press die is larger than that of the cold-rolled steel sheet. That is, the alloyed hot-dip galvanized steel sheet is less likely to flow into the press mold at the portion where the sliding resistance between the mold and the bead is large, and the steel sheet tends to break.

合金化溶融亜鉛めっき鋼板は、鋼板に亜鉛めっきを施した後、加熱処理を行い、鋼板中のFeとめっき層中のZnが拡散し合金化反応が生じることにより、Fe−Zn合金相を形成させたものである。このFe−Zn合金相は、通常、Γ相、δ1相、ζ相からなる皮膜であり、Fe濃度が低くなるに従い、すなわち、Γ相→δ1相→ζ相の順で、硬度ならびに融点が低下する傾向がある。このため、摺動性の観点からは、高硬度で、融点が高く凝着の起こりにくい高Fe濃度の皮膜が有効であり、プレス成形性を重視する合金化溶融亜鉛めっき鋼板は、皮膜中の平均Fe濃度を高めに製造されている。 An alloyed hot-dip galvanized steel sheet is formed by galvanizing the steel sheet and then heat-treating to form an Fe-Zn alloy phase by diffusion of Fe in the steel sheet and Zn in the plating layer to cause an alloying reaction. It has been made. This Fe-Zn alloy phase is usually a film composed of a Γ phase, a δ 1 phase, and a ζ phase, and as the Fe concentration decreases, that is, in the order of Γ phase → δ 1 phase → ζ phase, hardness and melting point Tends to decrease. For this reason, from the viewpoint of slidability, a coating with high hardness, high melting point and high Fe concentration is effective, and alloyed hot-dip galvanized steel sheet, which emphasizes press formability, Manufactured with high average Fe concentration.

しかしながら、高Fe濃度の皮膜では、めっき−鋼板界面に硬くて脆いΓ相が形成されやすく、加工時に、界面から剥離する現象、いわゆるパウダリングが生じ易い問題を有している。このため、特許文献1に示されているように、摺動性と耐パウダリング性を両立するために、上層に第二層として硬質のFe系合金を電気めっきなどの手法により付与する方法がとられている。   However, a high Fe concentration film tends to form a hard and brittle Γ phase at the plating-steel sheet interface, and has a problem that a phenomenon of peeling from the interface during processing, that is, so-called powdering is likely to occur. Therefore, as shown in Patent Document 1, in order to achieve both slidability and powdering resistance, there is a method of applying a hard Fe-based alloy as a second layer to the upper layer by a technique such as electroplating. It has been taken.

亜鉛系めっき鋼板使用時のプレス成形性を向上させる方法としては、この他に、高粘度の潤滑油を塗布する方法が広く用いられている。しかし、この方法では、潤滑油の高粘性のために塗装工程で脱脂不良による塗装欠陥が発生したり、また、プレス時の油切れにより、プレス性能が不安定になる等の問題がある。従って、合金化溶融亜鉛めっき鋼板自身のプレス成形性が改善されることが強く要請されている。   In addition to this, as a method for improving the press formability when using a zinc-based plated steel sheet, a method of applying a high-viscosity lubricating oil is widely used. However, this method has problems such as a coating defect due to poor degreasing in the painting process due to the high viscosity of the lubricating oil, and press performance becoming unstable due to oil shortage during pressing. Therefore, there is a strong demand for improving the press formability of the galvannealed steel sheet itself.

上記の問題を解決する方法として、特許文献2および特許文献3には、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布酸化処理、または加熱処理を施すことにより、ZnOを主体とする酸化膜を形成させて溶接性、または加工性を向上させる技術を開示している。   As a method for solving the above problems, Patent Document 2 and Patent Document 3 describe that the surface of a zinc-based plated steel sheet is subjected to electrolytic treatment, dipping treatment, coating oxidation treatment, or heat treatment to oxidize mainly ZnO. A technique for improving weldability or workability by forming a film is disclosed.

特許文献4は、亜鉛系めっき鋼板の表面に、リン酸ナトリウム5〜60 g/lを含みpH2〜6の水溶液にめっき鋼板を浸漬するか、電解処理を行う、または、上記水溶液を塗布することにより、P酸化物を主体とした酸化膜を形成して、プレス成形性及び化成処理性を向上させる技術を開示している。   Patent Document 4 discloses that a plated steel sheet is immersed in an aqueous solution containing 5 to 60 g / l of sodium phosphate and having a pH of 2 to 6, or subjected to electrolytic treatment, or the above aqueous solution is applied to the surface of a zinc-based plated steel sheet. Discloses a technique for improving the press formability and chemical conversion treatment by forming an oxide film mainly composed of P oxide.

特許文献5は、亜鉛系めっき鋼板の表面に電解処理、浸漬処理、塗布処理、塗布酸化処理、または加熱処理により、Ni酸化物を生成させることにより、プレス成形性および化成処理性を向上させる技術を開示している。   Patent Document 5 describes a technique for improving press formability and chemical conversion treatment by generating Ni oxide by electrolytic treatment, immersion treatment, coating treatment, coating oxidation treatment, or heat treatment on the surface of a galvanized steel sheet. Is disclosed.

しかしながら、上記の先行技術を合金化溶融亜鉛めっき鋼板に適用した場合、プレス成形性の改善効果を安定して得ることはできない。本発明者らは、その原因について詳細な検討を行った結果、合金化溶融めっき鋼板はAl酸化物が存在することにより、表面の反応性が劣ること、及び表面の凹凸が大きいことが原因であることを見出した。即ち、先行技術を合金化溶融めっき鋼板に適用した場合、表面の反応性が低いため、電解処理、浸漬処理、塗布酸化処理及び加熱処理等を行っても、所定の皮膜を表面に形成することは困難であり、反応性の低い部分、すなわち、Al酸化物量が多い部分では膜厚が薄くなってしまう。また、表面の凹凸が大きいため、プレス成型時にプレス金型と直接接触するのは表面の凸部となるが、凸部のうち膜厚の薄い部分と金型との接触部での摺動抵抗が大きくなり、プレス成形性の改善効果が十分には得られない。   However, when the above prior art is applied to an alloyed hot-dip galvanized steel sheet, the effect of improving press formability cannot be stably obtained. As a result of conducting detailed studies on the causes of the present invention, the alloyed hot-dip galvanized steel sheet is caused by the presence of Al oxide, the surface reactivity is inferior, and the surface unevenness is large. I found out. That is, when the prior art is applied to an alloyed hot-dip steel sheet, the surface reactivity is low, so that a predetermined film is formed on the surface even when electrolytic treatment, immersion treatment, coating oxidation treatment, heat treatment, etc. are performed. Is difficult, and the film thickness becomes thin in a portion with low reactivity, that is, a portion with a large amount of Al oxide. In addition, since the surface irregularities are large, it is the surface protrusions that come into direct contact with the press die during press molding, but the sliding resistance at the contact portion between the thin part of the protrusions and the mold As a result, the effect of improving press formability cannot be sufficiently obtained.

そこで、本発明者らが上記の問題点を改善すべく、研究した結果、下記の知見を得、特許出願した(特許文献6)。   Therefore, as a result of studies conducted by the present inventors to improve the above problems, the following knowledge was obtained and a patent application was filed (Patent Document 6).

一般的に,合金化溶融亜鉛めっき鋼板は,溶融亜鉛めっき→合金化処理後に調質圧延が施されるが,この調質圧延時にロールとの接触によりつぶされ平坦化された部分は,周囲と比較すると凸部として存在する。プレス成形時に実際にプレス金型と接触するのは、この平坦部が主体となるため、この平坦部における摺動抵抗を小さくすれば、プレス成形性を安定して改善することができる。この平坦部における摺動抵抗を小さくするには、めっき層と金型との凝着を防ぐのが有効であり、そのためには、めっき層の表面に、硬質かつ高融点の皮膜を形成することが有効であり、このような酸化物層の形成には、酸性溶液と接触させてめっき表層に酸化物層を形成する方法が有効なことが明らかになった。   In general, galvannealed steel sheets are subjected to temper rolling after hot dip galvanizing → alloying treatment. By comparison, it exists as a convex portion. Since the flat part is the main component that actually contacts the press mold during press molding, the press formability can be stably improved by reducing the sliding resistance at the flat part. In order to reduce the sliding resistance in this flat part, it is effective to prevent adhesion between the plating layer and the mold. To that end, a hard and high melting point film should be formed on the surface of the plating layer. It was found that the method of forming an oxide layer on the plating surface layer by contacting with an acidic solution is effective for forming such an oxide layer.

そして、以上の知見を基に、特許文献6に係る発明は、鋼板に溶融亜鉛めっき後、加熱処理により合金化し、さらに調質圧延を施し、鉄−亜鉛合金めっき表面に平坦部を形成した後に、酸性溶液と接触させ、1〜30秒保持し、水洗することで、めっき表層に酸化物層を形成することを特徴とする合金化溶融亜鉛めっき鋼板の製造方法として完成した。
特開平1−319661号公報 特開昭53−60332号公報 特開平2−190483号公報 特開平4−88196号公報 特開平3−191093号公報 特願2002−116026公報
And based on the above knowledge, after the invention which concerns on patent document 6 is hot-dip galvanized to a steel plate, it alloyed by heat processing, and also gave temper rolling, and formed the flat part on the iron-zinc alloy plating surface. Then, it was brought into contact with an acidic solution, held for 1 to 30 seconds, and washed with water to complete an oxide hot-dip galvanized steel sheet manufacturing method characterized by forming an oxide layer on the plating surface layer.
Japanese Patent Laid-Open No. 1-319661 Japanese Unexamined Patent Publication No. 53-60332 Japanese Patent Laid-Open No. 2-190483 Japanese Patent Laid-Open No. 4-88196 Japanese Patent Laid-Open No. 3-19093 Japanese Patent Application No. 2002-116026

上記特許文献6において、プレス成形性以外の特性についてより詳細な検討を進めるうちに、以下の事が判明した。プレス後に施される塗装ラインでは、アルカリ系の脱脂液を用いて脱脂処理が施され、その後、化成処理→電着塗装が行われる。この時、車体内面部など脱脂液の流動がほとんどない部分では、脱脂不良が生じる場合があることがわかった。さらに、このような脱脂不良は、酸化物の形成処理を行う最終工程での水洗が不十分である場合に発生し、めっき表面にZn系酸化物の形成処理に使用した酸性溶液中の成分がわずかに残存することが原因であることも明らかになった。   In the above-mentioned Patent Document 6, the following matters have been found out while proceeding with a more detailed study on properties other than press formability. In the coating line applied after pressing, a degreasing treatment is performed using an alkaline degreasing liquid, and then a chemical conversion treatment → electrodeposition coating is performed. At this time, it was found that a degreasing defect may occur in a portion where there is almost no flow of the degreasing liquid such as the inner surface of the vehicle body. Furthermore, such a degreasing defect occurs when the final step of forming the oxide is not sufficiently washed with water, and the components in the acidic solution used for the formation of the Zn-based oxide on the plating surface It became clear that it was caused by slight remaining.

本発明は、かかる事情に鑑み、上記の問題点を改善し、プレス成形時の摺動性に優れるとともに、かつ化成処理前に実施するアルカリ系の脱脂処理において良好な脱脂性を示す合金化溶融亜鉛めっき鋼板を安定して製造する方法およびその合金化溶融亜鉛めっき鋼板を提供することを目的とする。   In view of such circumstances, the present invention improves the above-mentioned problems, has excellent slidability during press molding, and exhibits good degreasing properties in an alkaline degreasing treatment performed before chemical conversion treatment. It aims at providing the method of manufacturing a galvanized steel plate stably, and its alloying hot-dip galvanized steel plate.

本発明者らは、上記の課題を解決すべく、さらに鋭意研究を重ねた。その結果、酸化物の形成処理を行う最終工程での水洗を、弱アルカリ水溶液により行うと、めっき表面に残存した酸性溶液が中和されることで酸性溶液中の成分が容易に洗い流され、その結果、良好な脱脂性が得られることを見出した。   The inventors of the present invention made further studies to solve the above problems. As a result, when the water washing in the final step of forming the oxide is performed with a weak alkaline aqueous solution, the acidic solution remaining on the plating surface is neutralized, so that the components in the acidic solution are easily washed away. As a result, it was found that good degreasing properties were obtained.

本発明は、以上の知見に基づいてなされたものであり、その要旨は以下の通りである。
[1]鋼板に溶融亜鉛めっきを施し、さらに加熱処理により合金化し、調質圧延を施した後、酸性溶液に接触させ、接触終了後1〜30秒放置した後、水洗を行うことにより、亜鉛めっき鋼板表面に10nm以上のZn系酸化物層を形成する合金化溶融亜鉛めっき鋼板の製造方法において、前記水洗を、酢酸、クエン酸、ホウ酸、炭酸、フタル酸、酒石酸、乳酸から選ばれる1種以上のナトリウム塩またはカリウム塩を含有する水溶液により行うことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
[2]前記[1]において、前記ナトリウム塩または前記カリウム塩の濃度が0.001〜1.0mol/lであることを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
[3]前記[1]または[2]において、前記水洗時の水溶液のpHが7.0〜12.0の範囲であることを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。
[4]前記[1]〜[3]のいずれかに記載の合金化溶融亜鉛めっき鋼板の製造方法により生産されるめっき鋼板であり、該めっき鋼板の平坦部表層におけるZnおよびAlを必須成分として含む酸化物層が10nm以上であることを特徴とする合金化溶融亜鉛めっき鋼板。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] Hot-dip galvanizing is applied to the steel sheet, further alloyed by heat treatment, temper rolling, contact with an acidic solution, left for 1 to 30 seconds after contact is completed, and then washed with water, In the method for producing an alloyed hot-dip galvanized steel sheet in which a Zn-based oxide layer of 10 nm or more is formed on the surface of the plated steel sheet, the water washing is selected from acetic acid, citric acid, boric acid, carbonic acid, phthalic acid, tartaric acid, and lactic acid 1 The manufacturing method of the galvannealed steel plate characterized by performing by the aqueous solution containing a sodium salt or potassium salt of a seed | species or more.
[2] The method for producing an galvannealed steel sheet according to [1], wherein the concentration of the sodium salt or the potassium salt is 0.001 to 1.0 mol / l.
[3] The method for producing an galvannealed steel sheet according to [1] or [2], wherein the pH of the aqueous solution at the time of washing is in a range of 7.0 to 12.0.
[4] A plated steel sheet produced by the method for producing an alloyed hot-dip galvanized steel sheet according to any one of [1] to [3], wherein Zn and Al in the flat surface layer of the plated steel sheet are essential components. An alloyed hot-dip galvanized steel sheet characterized by comprising an oxide layer of 10 nm or more.

本発明によれば、プレス成形時の摺動抵抗が小さく、安定して優れたプレス成形性を示すとともに、化成処理前に実施するアルカリ系の脱脂処理において良好な脱脂性を示す合金化溶融亜鉛めっき鋼板を安定して製造できる。   According to the present invention, the alloyed molten zinc has low sliding resistance during press molding, exhibits stable and excellent press formability, and exhibits good degreasing properties in an alkaline degreasing treatment performed before chemical conversion treatment. A plated steel sheet can be manufactured stably.

合金化溶融亜鉛めっき鋼板の製造の際には、鋼板に溶融亜鉛めっきを施した後に、さらに加熱し合金化処理が施されるが、この合金化処理時の鋼板−めっき界面の反応性の差により、合金化溶融亜鉛めっき鋼板表面には凹凸が存在する。しかしながら、合金化処理後には、通常、材質確保のために調質圧延が施され、この調質圧延時のロールとの接触により、めっき表面は平滑化され凹凸が緩和される。従って、プレス成型時には、金型がめっき表面の凸部を押しつぶすのに必要な力が低下し、摺動特性を向上させることができる。   When producing an alloyed hot-dip galvanized steel sheet, the steel sheet is hot-dip galvanized and then further heated and alloyed. The difference in reactivity between the steel sheet and the plating interface during this alloying process Thus, irregularities exist on the surface of the galvannealed steel sheet. However, after the alloying treatment, temper rolling is usually performed for securing the material, and the plating surface is smoothed and unevenness is alleviated by contact with the roll during temper rolling. Therefore, at the time of press molding, the force required for the mold to crush the convex portion on the plating surface is reduced, and the sliding characteristics can be improved.

このような合金化溶融亜鉛めっき鋼板表面が調質圧延などによりつぶされ平坦化された部分(以下、平坦部と称す)は、プレス成形時に金型が直接接触する部分であるため、金型との凝着を防止する硬質かつ高融点の物質が存在することが、摺動性の向上には重要である。この点では、表層に酸化物層を存在させることは、酸化物層が金型との凝着を防止するため、摺動特性の向上に有効である。   Such a galvannealed steel sheet surface is flattened and flattened by temper rolling or the like (hereinafter referred to as a flat part) because the mold is in direct contact with the mold during press molding. The presence of a hard and high-melting substance that prevents the adhesion of the resin is important for improving the slidability. In this respect, the presence of the oxide layer on the surface layer is effective in improving the sliding characteristics because the oxide layer prevents adhesion with the mold.

実際のプレス成形時には、表層の酸化物は摩耗し、削り取られるため、金型と被加工材の接触面積が大きい場合には、十分に厚い酸化物層の存在が必要である。めっき表面には合金化処理時の加熱により酸化物層が形成されているものの、調質圧延時のロールとの接触により大部分が破壊され、新生面が露出しているため、良好な摺動性を得るためには調質圧延以前に厚い酸化物層を形成しなければならない。また、このことを考慮に入れて、調質圧延前に厚い酸化物層を形成させたとしても、調質圧延時に生じる酸化物層の破壊を避けることはできないため、平坦部の酸化物層が不均一に存在し、良好な摺動性を安定して得ることはできない。   During actual press molding, the oxide on the surface layer is worn away and scraped off. Therefore, when the contact area between the mold and the workpiece is large, a sufficiently thick oxide layer must be present. Although an oxide layer is formed on the plating surface by heating during alloying treatment, most of it is destroyed by contact with the roll during temper rolling, and the new surface is exposed. In order to obtain this, a thick oxide layer must be formed before temper rolling. Taking this into consideration, even if a thick oxide layer is formed before temper rolling, it is impossible to avoid the destruction of the oxide layer that occurs during temper rolling. It exists unevenly and good slidability cannot be obtained stably.

このため、調質圧延が施された合金化溶融亜鉛めっき鋼板、特にめっき表面平坦部に、均一に酸化物層を形成する処理を施すと良好な摺動性を安定的に得ることができる。   For this reason, good slidability can be stably obtained by subjecting the alloyed hot-dip galvanized steel sheet that has been subjected to temper rolling, in particular to a flat surface of the plated surface, to a process that uniformly forms an oxide layer.

合金化溶融亜鉛めっき鋼板を酸性溶液と接触させ、その後、鋼板表面に酸性溶液の液膜が形成された状態で1〜30秒放置した後水洗、乾燥することによって、めっき表層に酸化物層を形成することができる。しかし、鋼板表面に酸性溶液の液膜が形成された状態で放置している際に、めっき表面の微細な凹凸に微量の酸性溶液が閉じ込められ、最終の水洗工程で完全に酸性溶液を除去できない場合がある。そして、その後の乾燥により、水分は除去されるものの、酸性溶液中の成分がめっき表面に残存したままとなり、次工程で防錆油が塗布されると、化成処理前のアルカリ脱脂工程において脱脂不良が生じることがある。   The alloyed hot-dip galvanized steel sheet is brought into contact with an acidic solution, and then left for 1 to 30 seconds in a state where a liquid film of the acidic solution is formed on the surface of the steel sheet, followed by washing with water and drying to form an oxide layer on the plating surface layer. Can be formed. However, when the acid solution liquid film is formed on the steel plate surface, a small amount of acidic solution is trapped in the fine irregularities on the plating surface, and the acid solution cannot be completely removed in the final washing step. There is a case. Then, although the water is removed by subsequent drying, the components in the acidic solution remain on the plating surface, and if rust preventive oil is applied in the next step, the degreasing failure in the alkaline degreasing step before chemical conversion treatment May occur.

このような脱脂不良の発生メカニズムについては明確ではないが、次のように考えることができる。無機系の酸性溶液の場合には、硫酸イオン(SO4 2-)や、塩素イオン(Cl-)や硝酸イオン(NO3 -)が、有機系の酸性溶液の場合には有機酸成分が酸性溶液の中に含有されており、これらがめっき表面に残存すると、防錆油中の添加剤との吸着性を増加させることで、表面の親油性が上昇すると考えられる。一方、アルカリ脱脂液は、主として、防錆油をけん化させ液中に乳化・分散させるアルカリビルダーと、脱脂液の浸透性を向上させる界面活性剤から構成されている。そのため、表面の親油性が高い場合には乳化・分散に長時間を有する。この場合、液の対流が充分であれば、物理的に分散させることが可能であるが、液の対流が充分ではない所謂静止状態に近い脱脂液では、防錆油成分がかなりの時間残存するため、以降の化成処理において化成ムラを生じることになる。 The occurrence mechanism of such degreasing failure is not clear, but can be considered as follows. In the case of inorganic acidic solutions, sulfate ions (SO 4 2- ), chlorine ions (Cl ) and nitrate ions (NO 3 ) are used. In the case of organic acidic solutions, the organic acid components are acidic. If they are contained in the solution and remain on the plating surface, it is considered that the lipophilicity of the surface is increased by increasing the adsorptivity with the additive in the rust preventive oil. On the other hand, the alkaline degreasing liquid is mainly composed of an alkali builder that saponifies the rust preventive oil and emulsifies and disperses it in the liquid, and a surfactant that improves the permeability of the degreasing liquid. Therefore, when the surface is highly lipophilic, it takes a long time to emulsify and disperse. In this case, if the convection of the liquid is sufficient, it can be physically dispersed. However, in a degreasing liquid close to a so-called stationary state where the convection of the liquid is not sufficient, the rust preventive oil component remains for a considerable time. Therefore, chemical conversion unevenness occurs in the subsequent chemical conversion treatment.

よって、良好な脱脂性を得るためには、防錆油を塗布される前のめっき鋼板表面から前述した酸性溶液成分を完全に除去する必要がある。この際に、弱アルカリ系の水溶液での洗浄を行うと酸性溶液成分の除去に対して効果的である。これは、通常の水洗(水)では、酸性溶液成分の希釈による洗浄のみであるのに対して、弱アルカリ系の水溶液を使用すると、酸性溶液と弱アルカリ水溶液の中和反応と成分希釈が同時に進行するため、酸性溶液成分を効率よく除去できるためであると考えられる。   Therefore, in order to obtain good degreasing properties, it is necessary to completely remove the above-described acidic solution component from the surface of the plated steel plate before the rust preventive oil is applied. At this time, washing with a weak alkaline aqueous solution is effective for removing acidic solution components. In ordinary water washing (water), only washing by diluting an acidic solution component is used, whereas when a weak alkaline aqueous solution is used, neutralization reaction and component dilution of an acidic solution and a weak alkaline aqueous solution are performed simultaneously. This is considered to be because the acidic solution component can be efficiently removed because of the progress.

この弱アルカリ系の水溶液としては、酢酸(CH3COO)、クエン酸(C6H5O7)、ホウ酸(B2O3)、炭酸(CO3)、フタル酸(C6H4)、酒石酸(C4H4O6)、乳酸(CH3CHOHCO2)から選ばれる1種以上のナトリウム塩またはカリウム塩を含有する水溶液とする。これらの水溶液は、水酸化ナトリウム(NaOH)などの一般的なアルカリ水溶液と比較すると、pHの変動が小さく、実際の操業での管理が容易であるばかりでなく、鋼板表面を弱アルカリ状態に保ちやすいため、前述した洗浄時の中和効果が十分に得られる特徴がある。 As this weak alkaline aqueous solution, acetic acid (CH 3 COO), citric acid (C 6 H 5 O 7 ), boric acid (B 2 O 3 ), carbonic acid (CO 3 ), phthalic acid (C 6 H 4 ) An aqueous solution containing at least one sodium salt or potassium salt selected from tartaric acid (C 4 H 4 O 6 ) and lactic acid (CH 3 CHOHCO 2 ). These aqueous solutions have less pH fluctuations compared to common alkaline aqueous solutions such as sodium hydroxide (NaOH), and are easy to manage in actual operation, while keeping the steel sheet surface in a weakly alkaline state. Since it is easy, the neutralization effect at the time of washing | cleaning mentioned above is fully acquired.

また、上記ナトリウム塩またはカリウム塩の濃度は0.001〜1.0mol/lの範囲で含有するのが好ましい。0.001mol/l未満の濃度では、鋼板表面に残存した処理液の洗浄効果が十分でない場合があり、1.0mol/lを超えると、逆にこれらの弱アルカリ水溶液の塩が鋼板表面に残存しやすくなり、表面ムラを引き起こすだけでなく、点錆などの原因となる場合がある。   The sodium salt or potassium salt concentration is preferably in the range of 0.001 to 1.0 mol / l. When the concentration is less than 0.001 mol / l, the cleaning effect of the treatment liquid remaining on the steel sheet surface may not be sufficient. When the concentration exceeds 1.0 mol / l, the salt of these weak alkaline aqueous solutions tends to remain on the steel sheet surface. In addition to causing surface unevenness, it may cause spot rust and the like.

また、弱アルカリ水溶液のpHは7.0〜12.0の範囲が好ましい。7.0未満であると、水洗液が弱酸性領域になるため、処理液の中和効果がなくなる場合がある。一方、12.0を超えると、Zn系酸化物が溶解するpH領域になるため、摺動性向上のために付与した酸化物層が消滅する場合がある。なお、上記範囲内へのpHの調整は、前述したナトリウム塩およびカリウム塩を加えるもしくは水で希釈する等で行える。また、場合により水酸化ナトリウムなどの強アルカリをわずかに添加することで調製してもよい。   The pH of the weak alkaline aqueous solution is preferably in the range of 7.0 to 12.0. If it is less than 7.0, the washing solution is in a weakly acidic region, so the neutralizing effect of the treatment solution may be lost. On the other hand, if it exceeds 12.0, it becomes a pH region in which the Zn-based oxide dissolves, so that the oxide layer imparted for improving the slidability may disappear. The pH can be adjusted to the above range by adding the above-mentioned sodium salt and potassium salt or diluting with water. Moreover, you may prepare by adding slightly strong alkalis, such as sodium hydroxide, depending on the case.

また、弱アルカリ水溶液の温度は20〜70℃の範囲が好ましい。20℃未満であると短時間での洗浄を完了することが困難になる場合がある。一方、70℃を超えると洗浄効果が飽和するだけでなく、洗浄ムラなどが発生しやすくなる。また、洗浄時間は、0.5〜10.0秒の範囲が好ましい。0.5秒未満であると、鋼板表面に残存した処理液の洗浄が十分に完了しない場合がある。一方、10秒を超える処理は製造ラインの長大化を招くだけでなく、弱アルカリ水溶液による酸化物層やめっき表面のエッチングが発生し、十分な摺動性を確保できなくなる場合がある。   The temperature of the weak alkaline aqueous solution is preferably in the range of 20 to 70 ° C. If it is less than 20 ° C., it may be difficult to complete the cleaning in a short time. On the other hand, when the temperature exceeds 70 ° C., not only the cleaning effect is saturated, but also cleaning unevenness is likely to occur. The washing time is preferably in the range of 0.5 to 10.0 seconds. If it is less than 0.5 seconds, cleaning of the treatment liquid remaining on the steel sheet surface may not be completed sufficiently. On the other hand, treatment exceeding 10 seconds not only lengthens the production line but also causes etching of the oxide layer and the plating surface with a weakly alkaline aqueous solution, which may make it impossible to ensure sufficient slidability.

また、処理後、塗油までの時間が長い場合などは、洗浄ムラが目立つことがあるため、弱アルカリ水溶液での洗浄後に、通常の水洗を改めて行うことが望ましい。   Further, when the time until oiling after the treatment is long, cleaning unevenness may be conspicuous. Therefore, it is desirable to perform normal water washing again after washing with a weak alkaline aqueous solution.

このような弱アルカリ水溶液による洗浄方法には特に制限はなく、めっき鋼板を浸漬する方法、スプレーする方法、塗布ロールを介して塗布する方法などがある。しかし、中でも鋼板表面にスプレーする方法は、必要な処理液が少量で済むと同時に、液の流動効果との相乗効果で比較的短時間で洗浄が完了するため、最も望ましい方法である。   There is no restriction | limiting in particular in the washing | cleaning method by such weak alkali aqueous solution, There exist the method of apply | coating through the method of immersing a plated steel plate, the method of spraying, an application | coating roll, etc. However, the spraying method on the surface of the steel sheet is the most desirable method because it requires a small amount of processing liquid and at the same time, the cleaning is completed in a relatively short time due to a synergistic effect with the fluid flow effect.

なお、本発明における酸化物層とは、ZnとFeを必須として含んだ酸化物及び/又は水酸化物などからなる層のことである。   The oxide layer in the present invention is a layer made of an oxide and / or hydroxide containing Zn and Fe as essential elements.

また、本発明に係る合金化溶融亜鉛めっき鋼板を製造するに関しては、めっき浴中にAlが添加されていることが必要であるが、Al以外の添加元素成分は特に限定されない。すなわち、Alの他に、Pb、Sb、Si、Sn、Mg、Mn、Ni、Ti、Li、Cuなどが含有または添加されていても、本発明の効果が損なわれるものではない。   Moreover, regarding the production of the galvannealed steel sheet according to the present invention, Al must be added to the plating bath, but the additive element components other than Al are not particularly limited. That is, the effect of the present invention is not impaired even if Pb, Sb, Si, Sn, Mg, Mn, Ni, Ti, Li, Cu or the like is contained or added in addition to Al.

次に、本発明を実施例により更に詳細に説明する。
板厚0.8mmの冷延鋼板上に、常法の合金化溶融亜鉛めっき皮膜を形成し、更に調質圧延を行った。引き続き、図1に示す構成の処理設備を用いて酸化物層を形成した。
Next, the present invention will be described in more detail with reference to examples.
A conventional alloyed hot-dip galvanized film was formed on a cold-rolled steel sheet having a thickness of 0.8 mm, and further subjected to temper rolling. Subsequently, an oxide layer was formed using a processing facility having the configuration shown in FIG.

まず、活性化処理槽1を空通しし、酸性溶液槽2で、酢酸ソーダ40g/l、硫酸第一鉄5g/lを含有するpH1.5の酸性溶液に、液温30℃で浸漬した後、絞りロール3で鋼板表面に液膜を形成した。この際、液膜量が約1g/m2となるように絞りロールの圧力の調整を行った。次いで、水洗槽5を空通しした後、洗浄槽6において、弱アルカリ水溶液のスプレー処理を行い、湯洗槽7で50℃の温水を鋼板にスプレーして洗浄し、ドライヤ8で乾燥し、めっき表面に酸化物層を形成した。なお、比較のために、図1に示す構成の処理設備を全て空通しした無処理のものも作製した。 First, after activating the activation treatment tank 1 and immersing in an acidic solution tank 2 in an acidic solution of pH 1.5 containing sodium acetate 40 g / l and ferrous sulfate 5 g / l at a liquid temperature of 30 ° C. Then, a liquid film was formed on the surface of the steel sheet with the squeezing roll 3. At this time, the pressure of the squeeze roll was adjusted so that the liquid film amount was about 1 g / m 2 . Next, after passing through the water washing tank 5, in the washing tank 6, spray treatment with a weak alkaline aqueous solution, spraying and washing hot water of 50 ° C on the steel plate in the hot water washing tank 7, drying in the dryer 8, and plating An oxide layer was formed on the surface. For comparison, an unprocessed one in which all the processing facilities having the configuration shown in FIG.

洗浄槽6でスプレー処理を行う弱アルカリ水溶液は、酢酸ナトリウム(CH3COONa・3H2O)、クエン酸ナトリウム(Na3C6H5O7・2H2O)、ホウ酸ナトリウム(Na2B4O7)、炭酸水素ナトリウム(NaHCO3)の水溶液を使用し、一部、水溶液の濃度、pHを変化させた。処理液の温度は50℃とし、前述した液膜形成時間(絞りロール通過後、洗浄槽6侵入までの時間)および、洗浄槽6を通過する時間をそれぞれ5秒、2秒となるようにラインスピードを調整した。また、比較のために、水洗槽5で水洗を行った後、洗浄槽6を空通しし、その後は前述したものと同様の処理を実施したものも行った。 Weak alkaline aqueous solutions that are sprayed in the washing tank 6 are sodium acetate (CH 3 COONa · 3H 2 O), sodium citrate (Na 3 C 6 H 5 O 7 · 2H 2 O), sodium borate (Na 2 B 4 O 7 ) and an aqueous solution of sodium bicarbonate (NaHCO 3 ) were used, and the concentration and pH of the aqueous solution were partially changed. The temperature of the treatment liquid is 50 ° C, and the liquid film formation time (the time from passing through the squeeze roll to the entry of the cleaning tank 6) and the time of passing through the cleaning tank 6 are 5 seconds and 2 seconds, respectively. Adjusted the speed. For comparison, after washing in the washing tank 5, the washing tank 6 was evacuated, and thereafter, the same treatment as described above was performed.

次に、以上の様に作製した鋼板について、プレス成形性を簡易的に評価する手法として摩擦係数の測定、および化成処理前アルカリ脱脂性の評価を実施した。なお、摩擦係数の測定、化成処理前アルカリ脱脂性の評価は次のようにして行った。
(1)プレス成形性評価試験(摩擦係数測定試験)
プレス成形性を評価するために、各供試材の摩擦係数を以下のようにして測定した。
Next, the steel plate produced as described above was subjected to measurement of a friction coefficient and evaluation of alkali degreasing property before chemical conversion as a method for simply evaluating press formability. In addition, the measurement of a friction coefficient and evaluation of alkali degreasing property before chemical conversion treatment were performed as follows.
(1) Press formability evaluation test (Friction coefficient measurement test)
In order to evaluate the press formability, the friction coefficient of each test material was measured as follows.

図2は、摩擦係数測定装置を示す概略正面図である。同図に示すように、供試材から採取した摩擦係数測定用試料11が試料台12に固定され、試料台12は、水平移動可能なスライドテーブル13の上面に固定されている。スライドテーブル13の下面には、これに接したローラ14を有する上下動可能なスライドテーブル支持台15が設けられ、これを押上げることにより、ビード16による摩擦係数測定用試料11への押付荷重Nを測定するための第1ロードセル17が、スライドテーブル支持台15に取付けられている。上記押付力を作用させた状態でスライドテーブル13を水平方向へ移動させるための摺動抵抗力Fを測定するための第2ロードセル18が、スライドテーブル13の一方の端部に取付けられている。なお、潤滑油として、スギムラ化学社製のプレス用洗浄油プレトンR352Lを試料11の表面に塗布して試験を行った。   FIG. 2 is a schematic front view showing the friction coefficient measuring apparatus. As shown in the figure, a friction coefficient measurement sample 11 collected from a test material is fixed to a sample table 12, and the sample table 12 is fixed to the upper surface of a slide table 13 that can move horizontally. On the lower surface of the slide table 13, there is provided a slide table support base 15 having a roller 14 in contact therewith and capable of moving up and down, and by pushing it up, a pressing load N on the friction coefficient measurement sample 11 by the bead 16 is applied. A first load cell 17 is attached to the slide table support base 15. A second load cell 18 for measuring a sliding resistance force F for moving the slide table 13 in the horizontal direction with the pressing force applied is attached to one end of the slide table 13. In addition, the cleaning oil Preton R352L for press made by Sugimura Chemical Co., Ltd. was applied to the surface of the sample 11 as a lubricating oil, and the test was performed.

図3、4は使用したビードの形状・寸法を示す概略斜視図である。ビード16の下面が試料11の表面に押し付けられた状態で摺動する。図3に示すビード16の形状は幅10mm、試料の摺動方向長さ12mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ3mmの平面を有する。図4に示すビード16の形状は幅10mm、試料の摺動方向長さ69mm、摺動方向両端の下部は曲率4.5mmRの曲面で構成され、試料が押し付けられるビード下面は幅10mm、摺動方向長さ60mmの平面を有する。   3 and 4 are schematic perspective views showing the shape and dimensions of the beads used. The bead 16 slides with its lower surface pressed against the surface of the sample 11. The bead 16 shown in FIG. 3 has a width of 10 mm, a length of 12 mm in the sliding direction of the sample, and a lower portion at both ends of the sliding direction is configured with a curved surface having a curvature of 4.5 mmR. It has a plane with a direction length of 3 mm. The shape of the bead 16 shown in FIG. 4 is 10 mm wide, 6.9 mm long in the sliding direction of the sample, the lower part at both ends of the sliding direction is a curved surface with a curvature of 4.5 mmR, and the bottom surface of the bead to which the sample is pressed is 10 mm wide and sliding. It has a plane with a direction length of 60 mm.

摩擦係数測定試験は下に示す2条件で行った。
[条件1]
図3に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル13の水平移動速度):100cm/minとした。
[条件2]
図4に示すビードを用い、押し付け荷重N:400kgf、試料の引き抜き速度(スライドテーブル13の水平移動速度):20cm/minとした。
供試材とビードとの間の摩擦係数μは、式:μ=F/Nで算出した。
(2)化成処理前アルカリ脱脂性評価
各供試体に、防錆油を塗油し、垂直に24時間保持することで塗油量を約2g/m2と一定にした後、化成処理前のアルカリ脱脂液(日本パーカライジング製FC-L4460)に45℃で2分間浸漬した後、スプレー圧:1kg/cm2で30秒間水洗を実施した。その後、供試体を垂直に30秒間保持し、その際の水濡れ率(供試体全面積に対する水ハジキが発生していない面積の割合)を目視で判定した。ここで、完全に脱脂が完了した場合の水濡れ率は100%であり、脱脂不良が生じるに伴い水濡れ率は低下する。
The friction coefficient measurement test was conducted under the following two conditions.
[Condition 1]
The bead shown in FIG. 3 was used, the pressing load N was 400 kgf, and the sample drawing speed (horizontal moving speed of the slide table 13) was 100 cm / min.
[Condition 2]
The bead shown in FIG. 4 was used, the pressing load N was 400 kgf, and the sample drawing speed (horizontal moving speed of the slide table 13) was 20 cm / min.
The coefficient of friction μ between the specimen and the bead was calculated by the formula: μ = F / N.
(2) Alkaline degreasing evaluation before chemical conversion treatment Rust prevention oil was applied to each specimen, and the oil coating amount was kept constant at about 2 g / m 2 by holding it vertically for 24 hours. After dipping in an alkaline degreasing solution (Nippon Parkerizing FC-L4460) at 45 ° C. for 2 minutes, it was washed with water at a spray pressure of 1 kg / cm 2 for 30 seconds. Thereafter, the specimen was held vertically for 30 seconds, and the water wetting rate at that time (the ratio of the area where water repelling did not occur relative to the total area of the specimen) was visually determined. Here, when the degreasing is completely completed, the water wetting rate is 100%, and the water wetting rate decreases as the degreasing failure occurs.

なお、アルカリ脱脂液は、経時による処理液の劣化を考慮して、炭酸ガスを吹き込みpHを11.0程度に調整したものを使用し、供試体を浸漬する際には、脱脂液の攪拌・流動は行わず完全静止状態で実施した。   Note that the alkaline degreasing solution is used by adjusting the pH to about 11.0 by blowing carbon dioxide in consideration of deterioration of the treatment solution over time. The test was carried out in a completely stationary state.

以上より得られた試験結果を表1に示す。   The test results obtained from the above are shown in Table 1.

Figure 2007016266
Figure 2007016266

表1に示す試験結果から下記事項が明らかとなった。
(1)No.1は酸性溶液による処理を行っていないため、平坦部に摺動性を向上させるのに十分な酸化膜が形成されず、摩擦係数が高い。
(2)No.2は、酸化物形成処理を行ったが水洗槽5での洗浄は水洗のみを行った比較例であり、No1と比較すると摩擦係数が低くなっており摺動性は向上しているが、アルカリ脱脂後の水濡れ率が非常に低く、アルカリ脱脂性は劣る。
(3) No.3〜5は強アルカリ性の水酸化ナトリウムの希釈液であるが、希釈によりpHは弱アルカリ領域にあるにもかかわらず水濡れ性はよくない。これは,水酸化ナトリウムのような強アルカリを希釈した液の場合、わずかな酸との反応によりpHが急激に低下するためであり,鋼板表面を弱アルカリ状態に保ちにくいためであると考えられる。
(4)No.6〜14は、弱アルカリ水溶液である酢酸ナトリウム水溶液での洗浄を行った例であり、溶液の濃度、pHが本発明で規定した範囲内にある場合(No7〜11、14)は摺動性の向上が見られるとともに、アルカリ脱脂後の水濡れ率が全て100%であり、特に良好なアルカリ脱脂性を示している。一方、溶液の濃度が低濃度側にはずれる場合(No.6)、および溶液のpHが低pH側にはずれる場合(No.13)は、水濡れ率は100%までは改善されていないものの比較材よりも良好であり、アルカリ脱脂液が劣化していない状態では、実用的には充分な水濡れ性を示すと考えられる。また、溶液のpHが高pH側にはずれる場合(No.12)は、水濡れ率は100%であるものの、酸化膜厚が減少しており、摺動性の向上が不十分である。
From the test results shown in Table 1, the following matters were clarified.
(1) No. Since 1 is not treated with an acidic solution, an oxide film sufficient to improve the slidability is not formed on the flat portion, and the coefficient of friction is high.
(2) No. 2 is a comparative example in which the oxide formation treatment was performed, but the washing in the water washing tank 5 was performed only with water washing. Compared with No1, the friction coefficient was lower and the slidability was improved. The water wetting rate after degreasing is very low and the alkaline degreasing property is poor.
(3) No. 3-5 are dilute solutions of strong alkaline sodium hydroxide, but the water wettability is not good even though the pH is in the weak alkaline region by dilution. This is because in the case of a solution obtained by diluting a strong alkali such as sodium hydroxide, the pH is drastically lowered due to the reaction with a slight acid, and it is considered that it is difficult to keep the steel plate surface in a weak alkali state. .
(4) No. Examples 6 to 14 are examples of washing with an aqueous solution of sodium acetate, which is a weakly alkaline aqueous solution. When the concentration and pH of the solution are within the ranges specified in the present invention (Nos. 7 to 11 and 14), slidability The water wetting rate after alkaline degreasing is 100%, indicating particularly good alkaline degreasing properties. On the other hand, when the concentration of the solution deviates to the low concentration side (No. 6) and when the pH of the solution deviates to the low pH side (No. 13), the water wetting rate is not improved up to 100%. It is better than the material, and in the state where the alkaline degreasing liquid is not deteriorated, it is considered that the water wettability is practically sufficient. Further, when the pH of the solution deviates to the high pH side (No. 12), the water wettability is 100%, but the oxide film thickness is reduced, and the improvement of the slidability is insufficient.

(5)No.15〜20は、酢酸ナトリウム以外の弱アルカリ水溶液で洗浄を行った本発明例である。摺動性の向上と良好なアルカリ脱脂性を示している。  (5) No. 15 to 20 are examples of the present invention which were washed with a weak alkaline aqueous solution other than sodium acetate. It shows improved slidability and good alkaline degreasing properties.

本発明の合金化溶融亜鉛めっき鋼板は、溶接性および塗装性に優れることから、自動車車体用途を中心に広範な分野で適用できる。   Since the alloyed hot-dip galvanized steel sheet of the present invention is excellent in weldability and paintability, it can be applied in a wide range of fields mainly for automobile body applications.

実施例で使用した酸化物層形成処理設備の要部を示す図。The figure which shows the principal part of the oxide layer formation processing equipment used in the Example. 摩擦係数測定装置を示す概略正面図。The schematic front view which shows a friction coefficient measuring apparatus. 図2中のビード形状・寸法を示す概略斜視図。FIG. 3 is a schematic perspective view showing bead shapes and dimensions in FIG. 図2中のビード形状・寸法を示す概略斜視図Schematic perspective view showing bead shape and dimensions in FIG.

符号の説明Explanation of symbols

1 活性化処理槽
2 酸性溶液槽
3 絞りロール
4 シャワー水洗装置
5 水洗槽
6 洗浄槽
7 湯洗槽
8 ドライヤ
S 鋼板
11 摩擦係数測定用試料
12 試料台
13 スライドテーブル
14 ローラ
15 スライドテーブル支持台
16 ビード
17 第1ロードセル
18 第2ロードセル
19 レール
N 押付荷重
F 摺動抵抗力
1 Activation treatment tank
2 Acidic solution tank
3 Drawing roll
4 Shower washing machine
5 Flush tank
6 Washing tank
7 Hot water bath
8 Dryer S Steel plate
11 Friction coefficient measurement sample
12 Sample stage
13 Slide table
14 Laura
15 Slide table support
16 beads
17 First load cell
18 Second load cell
19 Rail N Pressing load F Sliding resistance

Claims (4)

鋼板に溶融亜鉛めっきを施し、さらに加熱処理により合金化し、調質圧延を施した後、酸性溶液に接触させ、接触終了後1〜30秒放置した後、水洗を行うことにより、亜鉛めっき鋼板表面に10nm以上のZn系酸化物層を形成する合金化溶融亜鉛めっき鋼板の製造方法において、前記水洗を、酢酸、クエン酸、ホウ酸、炭酸、フタル酸、酒石酸、乳酸から選ばれる1種以上のナトリウム塩またはカリウム塩を含有する水溶液により行うことを特徴とする合金化溶融亜鉛めっき鋼板の製造方法。   The surface of the galvanized steel sheet is subjected to hot dip galvanizing on the steel sheet, alloyed by heat treatment, temper rolled, contacted with an acidic solution, left for 1 to 30 seconds after contact is completed, and then washed with water. In the method for producing a galvannealed steel sheet in which a Zn-based oxide layer having a thickness of 10 nm or more is formed, the water washing is performed by using at least one selected from acetic acid, citric acid, boric acid, carbonic acid, phthalic acid, tartaric acid, and lactic acid. The manufacturing method of the galvannealed steel plate characterized by performing by the aqueous solution containing a sodium salt or potassium salt. 前記ナトリウム塩または前記カリウム塩の濃度が0.001〜1.0mol/lであることを特徴とする請求項1に記載の合金化溶融亜鉛めっき鋼板の製造方法。   2. The method for producing an galvannealed steel sheet according to claim 1, wherein the concentration of the sodium salt or the potassium salt is 0.001 to 1.0 mol / l. 前記水洗時の水溶液のpHが7.0〜12.0の範囲であることを特徴とする請求項1または2に記載の合金化溶融亜鉛めっき鋼板の製造方法。   3. The method for producing an alloyed hot-dip galvanized steel sheet according to claim 1, wherein the pH of the aqueous solution at the time of washing is in the range of 7.0 to 12.0. 請求項1〜3のいずれかに記載の合金化溶融亜鉛めっき鋼板の製造方法により生産されるめっき鋼板であり、該めっき鋼板の平坦部表層におけるZnおよびAlを必須成分として含む酸化物層が10nm以上であることを特徴とする合金化溶融亜鉛めっき鋼板。   A plated steel sheet produced by the method for producing a galvannealed steel sheet according to any one of claims 1 to 3, wherein the oxide layer containing Zn and Al as essential components in a flat surface layer of the plated steel sheet is 10 nm. An alloyed hot-dip galvanized steel sheet characterized by the above.
JP2005197492A 2005-07-06 2005-07-06 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet Active JP4655788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005197492A JP4655788B2 (en) 2005-07-06 2005-07-06 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005197492A JP4655788B2 (en) 2005-07-06 2005-07-06 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JP2007016266A true JP2007016266A (en) 2007-01-25
JP4655788B2 JP4655788B2 (en) 2011-03-23

Family

ID=37753683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005197492A Active JP4655788B2 (en) 2005-07-06 2005-07-06 Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP4655788B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092093A (en) * 2005-09-27 2007-04-12 Jfe Steel Kk Galvannealed steel sheet, and its manufacturing method
JP2009191319A (en) * 2008-02-14 2009-08-27 Sumitomo Metal Ind Ltd Manufacturing method of hot-dip galvanized steel sheet having excellent degreasing power
WO2014112347A1 (en) 2013-01-16 2014-07-24 Jfeスチール株式会社 Manufacturing method for zinc-plated steel sheet
WO2015129283A1 (en) * 2014-02-27 2015-09-03 Jfeスチール株式会社 Galvanized steel sheet and method for manufacturing same
WO2015129282A1 (en) * 2014-02-27 2015-09-03 Jfeスチール株式会社 Galvanized steel sheet and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102154484B1 (en) 2019-11-21 2020-09-21 한국조폐공사 Woven security article, its counterfeiting system and its counterfeit determination method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256448A (en) * 2001-03-05 2002-09-11 Nkk Corp Method for manufacturing galvannealed steel sheet
JP2005097742A (en) * 2003-08-29 2005-04-14 Jfe Steel Kk Method for manufacturing galvannealed steel sheet and galvannealed steel sheet
JP2007016267A (en) * 2005-07-06 2007-01-25 Jfe Steel Kk Method for manufacturing galvannealed steel sheet, and galvannealed steel sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256448A (en) * 2001-03-05 2002-09-11 Nkk Corp Method for manufacturing galvannealed steel sheet
JP2005097742A (en) * 2003-08-29 2005-04-14 Jfe Steel Kk Method for manufacturing galvannealed steel sheet and galvannealed steel sheet
JP2007016267A (en) * 2005-07-06 2007-01-25 Jfe Steel Kk Method for manufacturing galvannealed steel sheet, and galvannealed steel sheet

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092093A (en) * 2005-09-27 2007-04-12 Jfe Steel Kk Galvannealed steel sheet, and its manufacturing method
JP2009191319A (en) * 2008-02-14 2009-08-27 Sumitomo Metal Ind Ltd Manufacturing method of hot-dip galvanized steel sheet having excellent degreasing power
WO2014112347A1 (en) 2013-01-16 2014-07-24 Jfeスチール株式会社 Manufacturing method for zinc-plated steel sheet
US9809884B2 (en) 2013-01-16 2017-11-07 Jfe Steel Corporation Method for manufacturing galvanized steel sheet
JP5884207B2 (en) * 2014-02-27 2016-03-15 Jfeスチール株式会社 Zinc-based plated steel sheet and method for producing the same
JP5884206B2 (en) * 2014-02-27 2016-03-15 Jfeスチール株式会社 Zinc-based plated steel sheet and method for producing the same
WO2015129282A1 (en) * 2014-02-27 2015-09-03 Jfeスチール株式会社 Galvanized steel sheet and method for manufacturing the same
KR20160122265A (en) 2014-02-27 2016-10-21 제이에프이 스틸 가부시키가이샤 Galvanized steel sheet and method for manufacturing the same
CN106062250A (en) * 2014-02-27 2016-10-26 杰富意钢铁株式会社 Galvanized steel sheet and method for manufacturing same
KR20160126046A (en) 2014-02-27 2016-11-01 제이에프이 스틸 가부시키가이샤 Galvanized steel sheet and method for manufacturing same
WO2015129283A1 (en) * 2014-02-27 2015-09-03 Jfeスチール株式会社 Galvanized steel sheet and method for manufacturing same
KR101878222B1 (en) * 2014-02-27 2018-07-13 제이에프이 스틸 가부시키가이샤 Galvanized steel sheet and method for producing the same
KR101878220B1 (en) * 2014-02-27 2018-07-13 제이에프이 스틸 가부시키가이샤 Galvanized steel sheet and method for producing the same
US10351960B2 (en) 2014-02-27 2019-07-16 Jfe Steel Corporation Galvanized steel sheet and method for producing the same
US10392706B2 (en) 2014-02-27 2019-08-27 Jfe Steel Corporation Galvanized steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP4655788B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP3807341B2 (en) Method for producing galvannealed steel sheet
JP3608519B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP5044976B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP4650128B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
KR100603427B1 (en) Galvannealed Sheet Steel
JP5354165B2 (en) Method for producing galvanized steel sheet
JP4655788B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP3675313B2 (en) Method for producing alloyed hot-dip galvanized steel sheet with excellent slidability
JP4529592B2 (en) Process for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet.
JP4517887B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP6551270B2 (en) Method of manufacturing galvanized steel sheet
JP4848737B2 (en) Alloyed hot-dip galvanized steel sheet with excellent degreasing properties
TWI516638B (en) Galvanized steel sheet and manufacturing method thereof
JP4525252B2 (en) Method for producing galvannealed steel sheet
JP5044924B2 (en) Method for producing alloyed hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP4998658B2 (en) Method for producing galvannealed steel sheet
JP4826486B2 (en) Method for producing galvannealed steel sheet
KR101360802B1 (en) Method for manufacturing galvanized steel sheet
JP2009235430A (en) Galvanized steel sheet and manufacturing method therefor
JP5386842B2 (en) Zinc-based plated steel sheet and method for producing the same
JP4604712B2 (en) Method for producing hot dip galvanized steel sheet and hot dip galvanized steel sheet
JP5354166B2 (en) Method for producing galvanized steel sheet
JP6992831B2 (en) Manufacturing method of hot-dip galvanized steel sheet
JP2009235433A (en) Hot-dip galvanized steel sheet and its manufacturing process
JP2006183147A (en) Equipment for manufacturing hot-dip galvannealed steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4655788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250