JP7006256B2 - Manufacturing method of hot-stamped hot-dip galvanized steel sheet and hot-stamped hot-dip galvanized steel sheet - Google Patents
Manufacturing method of hot-stamped hot-dip galvanized steel sheet and hot-stamped hot-dip galvanized steel sheet Download PDFInfo
- Publication number
- JP7006256B2 JP7006256B2 JP2017250352A JP2017250352A JP7006256B2 JP 7006256 B2 JP7006256 B2 JP 7006256B2 JP 2017250352 A JP2017250352 A JP 2017250352A JP 2017250352 A JP2017250352 A JP 2017250352A JP 7006256 B2 JP7006256 B2 JP 7006256B2
- Authority
- JP
- Japan
- Prior art keywords
- hot
- steel sheet
- dip galvanized
- plating
- galvanized steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Articles (AREA)
Description
本発明は、加熱焼入れにより高強度部材を製造するホットスタンプ加熱後に溶接性に優れた高強度部材となる、ホットスタンプ用亜鉛めっき鋼板及びその製造方法に関する。 The present invention relates to a galvanized steel sheet for hot stamping, which is a high-strength member having excellent weldability after hot stamping, which manufactures a high-strength member by heat quenching, and a method for manufacturing the same.
自動車の車体を構成する各種の自動車部品は、静的強度や動的強度、衝突安全性さらには軽量化等の様々な観点から、多様な性能や特性の向上を要求されている。例えば、Aピラーレインフォース,Bピラーレインフォース,バンパーレインフォース,トンネルレインフォース,サイドシルレインフォース,ルーフレインフォース又はフロアークロスメンバー等の自動車部品には、それぞれの自動車部品における特定部位だけがこの特定部位を除く一般部位よりも高強度を有することが要求される。そこで、自動車部品における補強が必要な特定部位に相当する部分だけに焼入れ高強度鋼ホットスタンプ(文献によっては熱間プレスなどとも表現)成形してホットスタンプ部材を製造する工法が一部採用されている。 Various automobile parts constituting the vehicle body of an automobile are required to have various performances and characteristics improved from various viewpoints such as static strength, dynamic strength, collision safety, and weight reduction. For example, in automobile parts such as A-pillar reinforcement, B-pillar reinforcement, bumper reinforcement, tunnel reinforcement, side sill reinforcement, roof reinforcement or floor cross member, only a specific part in each automobile part is this specific part. It is required to have higher strength than general parts except for. Therefore, a method of manufacturing hot stamp members by quenching high-strength steel hot stamping (also referred to as hot stamping depending on the literature) is partially adopted only for the part corresponding to a specific part of an automobile part that needs reinforcement. There is.
この際、表面処理を施していない冷延鋼板を用いると、加熱中に鋼板表面に鉄の酸化スケールが発生する。この鉄酸化スケールは成形中に剥離して金型を損耗したり、鋼板自身の疵になるほか、成形後の鋼板表面に残れば、後の溶接工程で溶接不良の原因になったり、塗装工程で塗装の密着性不良の原因になることがある。そこで、この鉄酸化スケールを防止するために、特許文献1の様に亜鉛系などのめっき鋼板が用いられることがある。亜鉛系のめっき鋼板を用いることにより、鉄よりも先に亜鉛が少量酸化されることで、鉄の酸化を抑制し、溶接性や塗装性を大幅に改善することができる。
At this time, if a cold-rolled steel sheet that has not been surface-treated is used, iron oxide scale is generated on the surface of the steel sheet during heating. This iron oxide scale peels off during molding and wears the mold, causes defects in the steel sheet itself, and if it remains on the surface of the steel sheet after molding, it may cause welding defects in the subsequent welding process or the painting process. May cause poor adhesion of the paint. Therefore, in order to prevent this iron oxide scale, a zinc-based plated steel sheet may be used as in
しかし、鉄酸化スケールよりは溶接性は改善するものの、表面に酸化膜の無い非加熱の冷延鋼板やめっき鋼板に比べると、酸化亜鉛皮膜であっても電気伝導性は低いため、溶接性は低下する。よって、亜鉛系めっき鋼板を用いたホットスタンプ材でも、溶接性は十分ではなく、少しでも溶接性を改善することが求められている。 However, although the weldability is improved compared to the iron oxide scale, the weldability is lower than that of unheated cold-rolled steel sheet or plated steel sheet without an oxide film on the surface, even if it is a zinc oxide film. descend. Therefore, even a hot stamping material using a galvanized steel sheet does not have sufficient weldability, and it is required to improve the weldability as much as possible.
その改善策には幾つか提案されており、特許文献2では、溶接抵抗増加の原因となる酸化亜鉛皮膜を加熱後研掃により取り除く事で、溶接抵抗を下げ溶接性を改善することが提案されている。この方法で、溶接性は改善するが、加熱後に自動車メーカや部品メーカでの研掃工程が必要となり、コスト増となる。また、特許文献3では、鋼板成分や鋼板表面のMn濃度、めっき付着量、めっき皮膜中のAl量、めっき皮膜中のAl濃度、鋼板表面の金属組織などを規定することで、溶接性の改善を試みている。この方法でもある程度の改善は見込めるが、劇的な改善効果は難しい。
Several improvement measures have been proposed, and
このように、従来の技術においては、亜鉛系ホットスタンプ用鋼板の溶接性を劇的に改善する技術は存在しなかった。 As described above, in the conventional technique, there is no technique for dramatically improving the weldability of the zinc-based hot stamping steel sheet.
本発明は、このような背景でなされた発明であり、本発明の課題は、亜鉛系ホットスタンプ用鋼板において、ほとんどコスト増など無く、加熱後の溶接性を劇的に改善する技術を提供することである。 The present invention is an invention made in such a background, and an object of the present invention is to provide a technique for dramatically improving weldability after heating in a zinc-based hot stamping steel sheet with almost no cost increase. That is.
上記課題を解決するため、ホットスタンプ加熱前の溶融亜鉛めっき最表層をグロー放電発光分析装置(GDS)で表層からスパッタリングしながら測定したとき、当該めっき表層の0~5nm深さの平均Al重量濃度をA、5nm~10nm深さの平均Al濃度をBとすると、2.5≧A/B≧1.5であって、金属元素の原子分率でAl濃度が80%以上となる単独Al酸化物が、当該めっき表層から5nm~10nm深さの範囲よりも当該めっき表層の0~5nm深さの方が多いことを特徴とする溶接性に優れたホットスタンプ用溶融亜鉛めっき鋼板とする。 In order to solve the above problems, when the hot-dip galvanized outermost layer before hot stamp heating is measured by sputtering from the surface layer with a glow discharge emission analyzer (GDS), the average Al weight concentration at a depth of 0 to 5 nm of the plated surface layer is measured. A, where the average Al concentration at a depth of 5 nm to 10 nm is B, 2.5 ≧ A / B ≧ 1.5, and the Al concentration is 80% or more in terms of the atomic fraction of the metal element. A hot-dip galvanized steel sheet having excellent weldability, characterized in that the depth of the plating surface layer is 0 to 5 nm more than the range of the depth of 5 nm to 10 nm from the plating surface layer.
また、前記溶融亜鉛めっき鋼板は、合金化処理が施されている構成とすることが好ましい。 Further, the hot-dip galvanized steel sheet is preferably configured to be alloyed.
また、鋼板温度が少なくとも200℃~600℃の範囲にて、露点が-30℃~20℃の雰囲気ガスが焼鈍炉内に導入される焼鈍炉にて焼鈍した後、溶融亜鉛めっきを施し、調質圧延を施すことを特徴とする溶接性に優れたホットスタンプ用溶融亜鉛めっき鋼板の製造方法とする。 Further, after annealing in an annealing furnace in which an atmospheric gas having a dew point of −30 ° C. to 20 ° C. is introduced into the annealing furnace in a steel sheet temperature range of at least 200 ° C. to 600 ° C., hot dip galvanizing is performed to prepare the steel sheet. It is a method for manufacturing a hot-dip galvanized steel sheet for hot stamping, which is characterized by performing quality rolling and has excellent weldability.
また、前記製造方法において前記溶融亜鉛めっきを施した後に合金化処理を施すことが好ましい。 Further, in the production method, it is preferable to perform the alloying treatment after performing the hot-dip galvanizing.
本発明を用いると、亜鉛系ホットスタンプ用鋼板において、ほとんどコスト増など無く、加熱後の溶接性を劇的に改善する技術を提供することができる。 According to the present invention, it is possible to provide a technique for dramatically improving weldability after heating in a zinc-based hot stamping steel sheet with almost no cost increase.
本発明者らは、焼鈍めっき前の鋼板の状態、めっき前の焼鈍条件、めっき条件などと、ホットスタンプ後の溶接性(溶接抵抗)との関係を、詳細に調査した結果、図1に示すように、めっき前の鋼板の焼鈍工程前半における焼鈍の雰囲気、特に露点を微酸化条件とすることでホットスタンプ後の溶接抵抗が著しく低減し、溶接性が大きく改善することを見出した。 The present inventors have investigated in detail the relationship between the state of the steel sheet before annealing, the annealing conditions before plating, the plating conditions, and the weldability (welding resistance) after hot stamping, and the results are shown in FIG. As described above, it was found that the annealing atmosphere in the first half of the annealing process of the steel sheet before plating, particularly the dew point is set as a slight oxidation condition, the welding resistance after hot stamping is remarkably reduced and the weldability is greatly improved.
尚、このように露点を微酸化雰囲気とする焼鈍で、溶接性が改善する詳細なメカニズムは不明であるが、後述するように、めっき前の焼鈍雰囲気を制御すると、鋼板表面や内部のFeやSi、Mnなどの酸化物や金属元素の濃化状態が変化し、その影響でめっき初期に形成されるFe-Al濃化層の状態が変化すると考えられる。その影響を受けて、その後のホットスタンプ時に酸化されるAlが、通常条件では、SiやMnとの複合酸化物化するが、本発明の微酸化条件下では金属元素の原子分率でAl濃度が80%以上となるγ-Al2O3と呼ばれる単独Al酸化物になり、溶接性改善に寄与するものと推定される。 Although the detailed mechanism for improving weldability by annealing with the dew point as a slightly oxidized atmosphere is unknown, as will be described later, if the annealing atmosphere before plating is controlled, Fe on the surface and inside of the steel sheet can be used. It is considered that the concentrated state of oxides and metal elements such as Si and Mn changes, and the state of the Fe—Al concentrated layer formed at the initial stage of plating changes due to the change. Under the influence of this, Al that is oxidized during subsequent hot stamping becomes a composite oxide with Si and Mn under normal conditions, but under the slight oxidation conditions of the present invention, the Al concentration is the atomic fraction of the metal element. It is presumed that it becomes a single Al oxide called γ-Al 2 O 3 which becomes 80% or more and contributes to the improvement of weldability.
その詳細は以下のようである。Alを含有する酸化物には、金属元素の原子分率でAl濃度が80%以上となるγ-Al2O3や、Alの他にZnやMn、Feなどを含有する複合酸化物などがある。本発明では、以降、金属元素の原子分率でAl濃度が80%以上となる酸化物を単独Al酸化物(γ-Al2O3、γ-アルミナ:結晶構造はAl2O3ともいわれる)、AlだけでなくZnやMnなどを多く含み金属元素の原子分率でAl濃度が80%未満の酸化物を複合Al酸化物(結晶構造は例えばZnAl2O4やMnAl2O4、(Zn,Mn)Al2O4など)、単独Al酸化物と複合Al酸化物の総称をAl系酸化物と記載する。尚、分析精度として周囲の元素の影響もうけるため、酸素を除いた金属成分のうちAlが原子分率でAl濃度が80%以上であれば単独Al酸化物、80%未満であれば複合Al酸化物とみなすことができる。 The details are as follows. Oxides containing Al include γ-Al 2 O3 having an Al concentration of 80% or more in terms of the atomic fraction of the metal element , and composite oxides containing Zn, Mn, Fe, etc. in addition to Al. be. In the present invention, the oxide having an Al concentration of 80% or more in terms of the atomic fraction of the metal element is referred to as a single Al oxide (γ-Al 2 O 3 , γ-alumina: the crystal structure is also referred to as Al 2 O 3 ). , Not only Al, but also a composite Al oxide containing a large amount of Zn, Mn, etc. and an Al concentration of less than 80% in terms of the atomic fraction of the metal element (the crystal structure is, for example, ZnAl 2 O 4 or Mn Al 2 O 4 , (Zn). , Mn) Al 2 O 4 etc.), the generic term for single Al oxides and composite Al oxides is referred to as Al-based oxides. In addition, since the analysis accuracy is affected by the surrounding elements, if Al is an atomic fraction and the Al concentration is 80% or more among the metal components excluding oxygen, it is a single Al oxide, and if it is less than 80%, it is a composite Al oxidation. It can be regarded as a thing.
図2に本発明条件のホットスタンプ加熱前のめっき皮膜断面構造の模式図を、図3にその本発明条件のめっきをホットスタンプ加熱した後の皮膜断面構造の模式図を、図4に比較となる通常条件のホットスタンプ加熱前のめっき皮膜断面構造の模式図を、図5にその通常条件のめっきをホットスタンプ加熱した後の皮膜断面構造の模式図をそれぞれ示す。図中の数字はそれぞれ、1:母材鋼板、2:加熱前Zn系めっき皮膜、3:本発明によるめっき表面の厚く強固な単独Al酸化物皮膜、4:通常条件のめっき表面の薄く疎な複合Al酸化物皮膜、5:ホットスタンプ加熱後のFe-Zn固溶相、6:本発明条件のホットスタンプ加熱後の厚く強固な単独Al酸化物皮膜、7:本発明条件のホットスタンプ加熱後の薄いZn酸化皮膜、8:通常条件のホットスタンプ加熱後の薄くZn、Mnなどを含有した複合Al酸化物皮膜、9:通常条件のホットスタンプ加熱後の厚いZn酸化皮膜、である。 FIG. 2 is a schematic diagram of the cross-sectional structure of the plating film before hot stamping under the conditions of the present invention, and FIG. 3 is a schematic diagram of the cross-sectional structure of the plating film after hot stamping the plating under the conditions of the present invention. A schematic diagram of the cross-sectional structure of the plating film before hot stamping under normal conditions is shown, and FIG. 5 shows a schematic diagram of the cross-sectional structure of the plating film after hot stamping the plating under normal conditions. The numbers in the figure are 1: base steel sheet, 2: Zn-based plating film before heating, 3: thick and strong single Al oxide film on the plating surface according to the present invention, 4: thin and sparse plating surface under normal conditions. Composite Al oxide film, 5: Fe—Zn solid-soluble phase after hot stamp heating, 6: Thick and strong single Al oxide film after hot stamp heating under the conditions of the present invention, 7: After hot stamp heating under the present invention conditions 8: Thin Zn, composite Al oxide film containing Zn, Mn, etc. after hot stamp heating under normal conditions, 9: Thick Zn oxide film after hot stamp heating under normal conditions.
図2から図5に模式図で示すようにホットスタンプ後に最表面に形成し溶接抵抗となるZn系の酸化物(図3の7、図5の9)は、Znめっき層内部より前述のホットスタンプ時に形成されるこれらの単独Al酸化物皮膜(図2の3)もしくはAlとZnやMnなどからなる複合Al酸化物皮膜(図4の4)など、いずれもAl系酸化物を通ってめっきZn(図中2)がめっき表面に向かって拡散することにより形成するため、このAl系酸化物皮膜の形成状態の違いによりZnの酸化物の形成量が異なり、このZn酸化物の量が少ない方が溶接性が改善すると考えられる。すなわち、単独Al酸化物皮膜は他の元素を含有しないため、非常に緻密で高温での酸化雰囲気においてZn等の他の金属元素がその単独Al酸化物皮膜を拡散透過してZnの酸化物化するのを抑制するバリア層として非常に効果が大きいのに対して、ZnやMnなどを含有する複合Al酸化物では、自身の中にZnなどを含有するため、Znなどが透過しやすくZnの酸化を抑制するバリア層として十分機能しないものと考えられる。 As shown in the schematic diagram in FIGS. 2 to 5, the Zn-based oxides (7 in FIG. 3 and 9 in FIG. 5) formed on the outermost surface after hot stamping and serving as welding resistance are hot from the inside of the Zn plating layer. Both of these single Al oxide films (Fig. 2-3) formed at the time of stamping or composite Al oxide films composed of Al, Zn, Mn, etc. (Fig. 4-4) are plated through Al-based oxides. Since Zn (2 in the figure) is formed by diffusing toward the plating surface, the amount of Zn oxide formed differs depending on the difference in the formation state of this Al-based oxide film, and the amount of this Zn oxide is small. It is considered that the weldability is improved. That is, since the single Al oxide film does not contain other elements, other metal elements such as Zn diffuse and permeate the single Al oxide film to form Zn oxide in a very dense and high temperature oxidizing atmosphere. In contrast, the composite Al oxide containing Zn, Mn, etc. is very effective as a barrier layer that suppresses zinc, but since it contains Zn, etc., it is easy for Zn, etc. to permeate and oxidation of Zn. It is considered that it does not function sufficiently as a barrier layer that suppresses zinc.
実際に焼鈍中の露点を本発明の範囲に制御すると、溶融亜鉛めっきにおいてはホットスタンプ加熱前のめっき最表層では、皮膜中に少量含まれるAlが表層に非常に濃化する現象が観察された。グロー放電発光分析装置(GDS)で表層からスパッタリングしながら測定し、めっき表層の0~5nm深さの平均Al重量濃度をA、5nm~10nmの平均Al濃度をBとするとき、A/Bとホットスタンプ後の溶接抵抗との間には図6に示すような結果が得られた。また、A/Bと焼鈍露点との間には図7に示すような結果が得られた。つまり、めっき前の焼鈍時の露点によりA/Bは図7に示すように変化する。図6に示すように、A/Bが1.5以上2.5以下の場合に、ホットスタンプ後の溶接抵抗が50mΩ以下となり良好である。これはA/Bが1.5以下だと表層に十分な量の強固な単独Al酸化物皮膜が形成しないのに対し、A/Bが1.5以上だとめっき表面に十分強固な単独Al酸化物皮膜が形成し、その後のホットスタンプ加熱時にZnの酸化を抑制し溶接性が改善できるためと考えられる。 When the dew point during annealing was actually controlled within the range of the present invention, in hot-dip galvanizing, a phenomenon was observed in which Al contained in a small amount in the film was extremely concentrated on the surface layer of the plating surface layer before hot stamp heating. .. Measured while sputtering from the surface layer with a glow discharge emission analyzer (GDS), and when the average Al weight concentration at a depth of 0 to 5 nm on the plated surface layer is A and the average Al concentration at 5 nm to 10 nm is B, it is referred to as A / B. The results shown in FIG. 6 were obtained with the welding resistance after hot stamping. In addition, the results shown in FIG. 7 were obtained between the A / B and the annealing dew point. That is, the A / B changes as shown in FIG. 7 depending on the dew point at the time of annealing before plating. As shown in FIG. 6, when the A / B is 1.5 or more and 2.5 or less, the welding resistance after hot stamping is 50 mΩ or less, which is good. This is because when A / B is 1.5 or less, a sufficient amount of strong single Al oxide film is not formed on the surface layer, whereas when A / B is 1.5 or more, sufficiently strong single Al oxide film is formed on the plated surface. It is considered that the oxide film is formed and the oxidation of Zn can be suppressed during the subsequent hot stamp heating to improve the weldability.
このようなA/Bの範囲を得るためには、例えば、焼鈍における雰囲気条件の調整が有効である。図7に示すように、A/Bを1.5以上とするには焼鈍露点を-30℃以上とし、A/Bを2.5以下とするには焼鈍露点を20℃以下とする。通常の焼鈍条件である露点が-30℃より低い条件下では、めっき表面に顕著なAlの表面濃化は見られず、A/B<1.5となるが、本発明条件である露点-30℃~20℃の場合にはAlがめっき表面に濃化しA/B≧1.5となることが判明した。尚、露点が+20℃以上の場合には、めっき時に不めっきなどの問題も発生するため、好ましくない。 In order to obtain such an A / B range, for example, adjustment of atmospheric conditions in annealing is effective. As shown in FIG. 7, the annealing dew point is −30 ° C. or higher to set the A / B to 1.5 or higher, and the annealing dew point is set to 20 ° C. or lower to set the A / B to 2.5 or lower. Under the condition that the dew point is lower than -30 ° C, which is the normal annealing condition, no remarkable surface thickening of Al is observed on the plated surface, and A / B <1.5, but the dew point which is the condition of the present invention- It was found that when the temperature was between 30 ° C and 20 ° C, Al was concentrated on the plating surface and A / B ≧ 1.5. If the dew point is + 20 ° C. or higher, problems such as non-plating may occur during plating, which is not preferable.
なお、GDS測定方法を限定するものではないが、実施形態では、リガク製GDA750で、分析電流を900V,20mAで測定径4mmφ、分析時間2000s、データレート5%とし、分析元素としては、Fe、C、O、Al、Si、P、Cr、Mn、Znを分析し、そのうちのAlの重量%濃度で測定した。 Although the GDS measurement method is not limited, in the embodiment, the analysis current is 900 V, 20 mA, the measurement diameter is 4 mmφ, the analysis time is 2000 s, the data rate is 5%, and the analysis element is Fe. C, O, Al, Si, P, Cr, Mn and Zn were analyzed, and the weight% concentration of Al was measured.
ホットスタンプ前の合金化溶融亜鉛めっきのままの鋼板でもAl系酸化物が形成していると考えられるが、非常に薄いため、TEM(透過型電子顕微鏡)で分析しても詳細な組成や結晶構造は特定できなかった。しかしながら、先に述べたように本発明の焼鈍雰囲気に規定することによって、ホットスタンプ前の時点で既にAlの表面濃化を多くすることができ、その後のホットスタンプ中にAl系酸化物がめっき皮膜中のAlを吸収しながら、厚く強固な単独Al酸化物に成長することにより、Znの酸化を抑制することができると考えられる。Alの表面濃化が促進されたりAl単独の酸化物になったりするメカニズムは、次のように推定される。つまり、露点が特定域の微酸化条件では、易酸化元素であるSiやMnが鋼板表層で酸化物として消費されるため、後のめっき以降ではAl系酸化物に取り込まれて複合Al酸化物になりにくくなり、単独Al酸化物になるためと推定される。 It is considered that Al-based oxides are formed even in the alloyed hot-dip galvanized steel sheet before hot stamping, but since it is very thin, detailed composition and crystals can be analyzed by TEM (transmission electron microscope). The structure could not be identified. However, as described above, by defining the annealing atmosphere of the present invention, it is possible to increase the surface concentration of Al already before the hot stamping, and the Al-based oxide is plated during the subsequent hot stamping. It is considered that the oxidation of Zn can be suppressed by growing into a thick and strong single Al oxide while absorbing Al in the film. The mechanism by which the surface concentration of Al is promoted or becomes an oxide of Al alone is presumed as follows. That is, under the slight oxidation condition where the dew point is in a specific range, Si and Mn, which are easily oxidizing elements, are consumed as oxides on the surface layer of the steel plate. It is presumed that it becomes difficult to become and becomes a single Al oxide.
一方、-30℃未満のような通常の焼鈍時の露点では、先述したように、ZnやMnなどを含有したZnAl2O4や、MnAl2O4などの複合Al酸化物になり、Znの酸化を十分抑制できないと推定される。 On the other hand, at the dew point at the time of normal annealing such as less than -30 ° C, as described above, ZnAl 2 O 4 containing Zn, Mn and the like, and composite Al oxide such as MnAl 2 O 4 are formed, and Zn becomes It is presumed that oxidation cannot be sufficiently suppressed.
また、合金化溶融亜鉛めっき鋼板をホットスタンプした後の皮膜の構造は、前述の図3、図5に示すように、通常、表面側から概略的に、Zn酸化皮膜(7や9)、フェライトFe中にZnが固溶したFe-Zn固溶相(5)、鋼板母材(1)の順で形成する。本発明者らは、この皮膜構造をTEMによる成分分析や回折像による結晶構造解析などを用いて更に詳細に調査した結果、Zn酸化皮膜(7や9)と、Fe-Zn固溶相(5)の界面に非常に薄いが単独Al酸化物や複合Al酸化物のAl系酸化物皮膜(6や8)が形成しており、その単独Al酸化物や複合Al酸化物からなるAl系酸化物皮膜の結晶構造は、製造条件で変化し、当該構造がホットスタンプ材の溶接性に大きく影響することの知見を得た。 Further, as shown in FIGS. 3 and 5 above, the structure of the film after hot-stamping the alloyed hot-dip galvanized steel sheet is usually generally a Zn oxide film (7 or 9) and ferrite from the surface side. The Fe—Zn solid-dissolved phase (5) in which Zn is solid-dissolved in Fe and the steel plate base material (1) are formed in this order. As a result of investigating this film structure in more detail using component analysis by TEM and crystal structure analysis by diffraction image, the present inventors have found a Zn oxide film (7 or 9) and a Fe—Zn solid-soluble phase (5). ) Is very thin, but an Al-based oxide film (6 or 8) of a single Al oxide or a composite Al oxide is formed, and an Al-based oxide composed of the single Al oxide or the composite Al oxide is formed. It was found that the crystal structure of the film changes depending on the manufacturing conditions, and that the structure greatly affects the weldability of the hot stamping material.
すなわち通常の溶融亜鉛めっき前の焼鈍条件により製造されたホットスタンプ成形体の場合では、図3の8に示すように、Alだけでなく、MnやZnなども含有する複合酸化物が多く形成するのに対し、本発明によるホットスタンプ成形体では、図5で6に示すように、MnやZnなどを含有しない、γ-Al2O3などの厚く強固な単独Al酸化物皮膜が形成されていることが判明した。よって、この単独Al酸化物皮膜がホットスタンプ中のZn酸化を抑制していると考えられる。 That is, in the case of a hot stamp molded product manufactured under normal hot-dip galvanizing conditions, as shown in FIG. 8, a large amount of composite oxide containing not only Al but also Mn, Zn, etc. is formed. On the other hand, in the hot stamp molded product according to the present invention, as shown in FIG. 6, a thick and strong single Al oxide film such as γ-Al 2 O 3 containing no Mn or Zn is formed. It turned out to be. Therefore, it is considered that this single Al oxide film suppresses Zn oxidation in hot stamping.
本発明の焼鈍中の露点条件で鋼板を焼鈍した場合にAl系の酸化物が複合酸化物化しない原因については、本発明の露点範囲では、易酸化元素である鋼中のMnやSiが先に酸化されることで、めっき初期にめっきと鋼板界面に形成されるFe-Al合金層中にMnやSiなどが固溶しなくなり、後の酸化時にMnやSiなどを含まない単独Al酸化物が形成されると推定される。 Regarding the reason why the Al-based oxide does not form a composite oxide when the steel plate is annealed under the dew point condition during annealing of the present invention, in the dew point range of the present invention, Mn and Si in the steel, which are easily oxidizing elements, are first. By being oxidized, Mn, Si, etc. do not dissolve in the Fe—Al alloy layer formed at the interface between the plating and the steel plate at the initial stage of plating, and a single Al oxide containing no Mn, Si, etc. is formed during subsequent oxidation. Presumed to be formed.
また、MnやSiを含有した複合Al酸化物に比べ単独Al酸化物の方が表層Znの酸化を抑制できる原因としては、MnやZnの複合Al酸化物の場合は構造が粗く、Znなども多く含有するため、内部のZnの拡散が早く、Znが下層から表層に拡散しやすく酸化が促進されるのに対し、単独Al酸化物の場合は、結晶構造が緻密でZnなども含まないため、内部でZnが拡散しにくく、Znが下層から表層に出て酸化される際の障壁になっていると推定される。 Further, the reason why the single Al oxide can suppress the oxidation of the surface layer Zn as compared with the composite Al oxide containing Mn and Si is that the composite Al oxide of Mn and Zn has a coarse structure, and Zn and the like are also included. Since it contains a large amount of Zn, it diffuses quickly inside, and Zn easily diffuses from the lower layer to the surface layer to promote oxidation. On the other hand, in the case of a single Al oxide, the crystal structure is dense and it does not contain Zn. It is presumed that Zn is difficult to diffuse inside, and it is a barrier when Zn comes out from the lower layer to the surface layer and is oxidized.
尚、本発明の露点範囲に関してであるが、一般的な焼鈍条件である露点が-30℃より低い条件では、Mn、Siは鋼板表面で鋼中表面近傍の少量のMn、Siのみが外部酸化されるのみで、鋼中には多量のMn、Siが残ってしまい、めっき時にFe-Al層に含有してしまうと考えられる。一方、本発明に係る内部酸化状態となる露点条件では、酸素が十分多く供給され鋼中内部まで侵入し、鋼中のかなり深くまでのMn、Siを酸化物化し、金属状態ではなくなるので、めっき時のFe-Al層には固溶しなくなると考えられる。 Regarding the dew point range of the present invention, under the condition that the dew point is lower than −30 ° C., which is a general annealing condition, only a small amount of Mn and Si near the surface of the steel sheet is externally oxidized on the surface of the steel sheet. It is considered that a large amount of Mn and Si remain in the steel and are contained in the Fe—Al layer at the time of plating. On the other hand, under the dew point condition in which the internal oxidation state is obtained according to the present invention, a sufficiently large amount of oxygen is supplied and penetrates into the inside of the steel to oxide Mn and Si to a considerable depth in the steel, and the steel is no longer in a metallic state. It is considered that the Fe-Al layer at that time does not dissolve in solid solution.
このような皮膜構造であることから、特にホットスタンプ前の加熱が電気ヒーターや燃焼ガスなどによる炉加熱の場合、即ち加熱に時間がかかり、Znが拡散しやすい条件であっても、前述の障壁効果から、Znの拡散が抑えられ、その結果、溶接性の悪化回避に貢献できる。前記炉加熱であっても、溶接性悪化を回避している本発明の皮膜構造の概略は前述の図2及び図3に示しているとおりである。 Due to such a film structure, especially when the heating before hot stamping is furnace heating with an electric heater or combustion gas, that is, even under conditions where heating takes time and Zn is easily diffused, the above-mentioned barrier is used. From the effect, the diffusion of Zn is suppressed, and as a result, it is possible to contribute to avoiding deterioration of weldability. The outline of the film structure of the present invention that avoids deterioration of weldability even in the case of heating in the furnace is as shown in FIGS. 2 and 3 described above.
通常条件では、図4で通常条件の表面の複合Al酸化皮膜4が薄く疎であるため、図5のその後のホットスタンプ加熱時に拡散バリアとしての機能が弱く、下層からのZnの拡散が多くなり、その上に厚いZn酸化膜9を形成してしまう。一方、本発明では図2の加熱前で表面の単独Al酸化皮膜3が厚く強固なため、図3のホットスタンプ加熱後に拡散バリアとして機能して下層から上方へのZnの拡散を抑制することにより、表層のZn酸化膜7の形成量を抑制することができ、溶接性を改善することができると考えられる。
Under normal conditions, the composite
尚、TEM観察方法は、特に規定しないが、実施形態においては、日本電子製 JEM-200CXやJEM-2100で、加速電圧200kVで観察し、組織観察、元素分析、電子線回折などで相や結晶構造を特定した。 The TEM observation method is not particularly specified, but in the embodiment, the JEOL-200CX or JEM-2100 manufactured by JEOL is used for observation at an acceleration voltage of 200 kV, and the phase or crystal is observed by structure observation, elemental analysis, electron diffraction, or the like. The structure was identified.
また、雰囲気については、H2以外は大半がN2ガスであり、それ以外は不可避的不純物である。H2濃度は1%以下だと鋼板の還元が不十分となり、不めっきなどの原因となる。一方、15%以上では焼鈍中のH2の消費が多くなりコスト的に問題がある。よって、H2濃度は1~15%が好ましく、更に好ましくは2~12%である。焼鈍時の露点としては、-30℃未満では、鋼中のSi、Mnを十分酸化することができずSiやMnの欠乏層を形成することができない。また、+20℃超では、鋼板中のFeの酸化が発生し不めっきなどの原因となるため好ましくない。よって焼鈍露点は、-30℃~20℃が好ましく、更に好ましくは-20℃~10℃、更に好ましくは-15~0℃である。 As for the atmosphere, most of them are N 2 gas except H 2 , and other than that, they are unavoidable impurities. If the H2 concentration is 1 % or less, the reduction of the steel sheet becomes insufficient, which causes non-plating and the like. On the other hand, if it is 15% or more , the consumption of H2 during annealing increases, which causes a problem in terms of cost. Therefore, the H 2 concentration is preferably 1 to 15%, more preferably 2 to 12%. As the dew point at the time of annealing, if it is less than −30 ° C., Si and Mn in the steel cannot be sufficiently oxidized and a depletion layer of Si and Mn cannot be formed. Further, if the temperature exceeds + 20 ° C., oxidation of Fe in the steel sheet occurs, which causes non-plating and the like, which is not preferable. Therefore, the annealing dew point is preferably −30 ° C. to 20 ° C., more preferably −20 ° C. to 10 ° C., and even more preferably −15 to 0 ° C.
この露点の調整には、N2もしくはN2に1~15%のH2を含んだガスを水蒸気によって加湿し、そのガスを焼鈍炉内に導入して制御する。その導入には鋼板温度が少なくとも200℃~600℃の間のセクションで導入することが必要である。鋼板温度を上記のように設定した理由は、鋼板の温度が200℃より低い場合では、温度が低すぎて鋼中でのSiやMnがほとんど拡散しないため、鋼板表面にSiやMnの欠乏層を形成することができず、600℃以上では拡散は十分に起こるが、その後の保持時間を含めた焼鈍時間が短くなってしまい、SiやMnの欠乏層が十分形成するだけの時間が得られないためである。このように鋼板温度は200℃~600℃の範囲がSiやMnの拡散速度や焼鈍時間の観点から最も望ましいが、更に望ましくは300℃~500℃の範囲である。 The dew point is adjusted by humidifying N2 or a gas containing 1 to 15% H2 in N2 with steam, and introducing the gas into the annealing furnace to control the dew point. For its introduction, it is necessary to introduce in the section where the steel plate temperature is at least between 200 ° C and 600 ° C. The reason why the steel sheet temperature is set as described above is that when the temperature of the steel sheet is lower than 200 ° C., the temperature is too low and Si and Mn hardly diffuse in the steel, so that the Si and Mn-deficient layer is formed on the surface of the steel sheet. However, diffusion occurs sufficiently at 600 ° C. or higher, but the annealing time including the subsequent holding time is shortened, and sufficient time is obtained to form a Si or Mn-deficient layer. Because there is no such thing. As described above, the steel sheet temperature in the range of 200 ° C. to 600 ° C. is most desirable from the viewpoint of the diffusion rate of Si and Mn and the annealing time, but more preferably in the range of 300 ° C. to 500 ° C.
ホットスタンプの条件は特に規定しないが、前記溶融亜鉛めっき鋼板もしくは前記合金化溶融亜鉛めっき鋼板を必要なサイズにブランキングした後、輻射加熱、誘導加熱、通電加熱などを用い、700℃~1200℃の範囲に加熱した後、プレス成形し、焼入れ冷却することが好ましい。 The conditions for hot stamping are not particularly specified, but after the hot-dip galvanized steel sheet or the alloyed hot-dip galvanized steel sheet is blanked to a required size, radiant heating, induction heating, energization heating, etc. are used at 700 ° C to 1200 ° C. After heating to the above range, it is preferable to press-mold and quench-cool.
本発明で使用可能な亜鉛系めっき鋼板の種類としては、亜鉛を主成分とするめっき鋼板であれば特に限定しないが、亜鉛めっき鋼板(略称GI)、合金化亜鉛めっき鋼板(略称GA)、溶融亜鉛-アルミニウム合金めっき、溶融亜鉛-アルミニウム-シリコン合金めっき、溶融亜鉛-アルミニウム-マグネシウム合金めっきなどを含み、またそれぞれの詳細な元素組成も特に限定はしない。めっきの目付量についても特に限定しないが、一般的なホットスタンプ用めっきの付着量である、30g/m2~120g/m2程度まで使用可能である。鋼板の材質は特に限定はしないが、ホットスタンプ用途として用いられる焼入れ高強度鋼が一般的である。 The type of zinc-based plated steel sheet that can be used in the present invention is not particularly limited as long as it is a plated steel sheet containing zinc as a main component, but is a zinc-plated steel sheet (abbreviated as GI), an alloyed zinc-plated steel sheet (abbreviated as GA), or molten. It includes zinc-aluminum alloy plating, hot-dip zinc-aluminum-silicon alloy plating, hot-dip zinc-aluminum-magnesium alloy plating, and the detailed element composition of each is not particularly limited. The basis weight of the plating is not particularly limited, but it can be used up to about 30 g / m2 to 120 g / m2, which is the amount of adhesion of general hot stamping plating. The material of the steel sheet is not particularly limited, but hardened high-strength steel used for hot stamping is generally used.
厚さ1.0mmで、鋼組成がC:0.21%(質量%、以下同じ)、Si:0.033%、Mn:1.2%、P:0.01%、S:0.007%、Cr:0.2%、Ti:0.02%、B:0.003%、残部Fe及び不純物からなるホットスタンプ用溶融亜鉛めっき鋼板と合金化溶融亜鉛めっき鋼板に、焼鈍とめっきを施した。その際、焼鈍時の雰囲気を種々に変更した後、めっきを施した。めっきの目付量は表/裏で50/50g/m2とした。めっき後の鋼板は焼鈍条件が例えば露点が+20℃超の場合は、不めっきが観察されるものがあった。不めっきとは、めっき前の母材表面の酸化が進行しすぎた場合、めっきの濡れ性が悪くなり、めっきがはじいてめっきが付いていない場所であり、発生したものは不良とした。 The thickness is 1.0 mm, and the steel composition is C: 0.21% (mass%, the same applies hereinafter), Si: 0.033%, Mn: 1.2%, P: 0.01%, S: 0.007. %, Cr: 0.2%, Ti: 0.02%, B: 0.003%, hot-dip galvanized steel sheet for hot stamping and alloyed hot-dip galvanized steel sheet consisting of balance Fe and impurities are annealed and plated. did. At that time, after various changes in the atmosphere at the time of annealing, plating was performed. The basis weight of the plating was 50/50 g / m 2 on the front / back. In some steel sheets after plating, non-plating was observed when the annealing conditions were, for example, a dew point of more than + 20 ° C. Non-plating is a place where the wettability of the plating deteriorates when the surface of the base metal before plating progresses too much, and the plating is repelled and the plating is not attached.
めっき後の鋼板は、100mm角のサイズに切り出した後、大気雰囲気の電気炉を900℃に加熱しその中で4分間加熱後取り出し、速やかに水冷配管を内蔵した平板プレスに挟んで急冷してホットスタンプ高強度材を得た。溶接性の指標として溶接抵抗を測定した。溶接抵抗測定条件は、電極:CF型φ6R40、荷重:250kgf、電流値:2Aで通電し、その際の抵抗値を測定した。溶接抵抗は小さいほど良いが、50mΩ以下になれば、溶接時のちり発生がほとんど無くなり、溶接強度も安定するため、50mΩ以下で良好、更に好ましくは25mΩ以下とした。結果を表1に示す。 The plated steel sheet is cut into a size of 100 mm square, then heated to 900 ° C in an electric furnace with an atmospheric atmosphere, heated in it for 4 minutes, then taken out, and immediately sandwiched between flat plate presses with built-in water cooling pipes and rapidly cooled. A high-strength material for hot stamping was obtained. Welding resistance was measured as an index of weldability. The welding resistance measurement conditions were: electrode: CF type φ6R40, load: 250 kgf, current value: 2 A, and the resistance value at that time was measured. The smaller the welding resistance, the better, but if it is 50 mΩ or less, dust generation during welding is almost eliminated and the welding strength is stable. Therefore, 50 mΩ or less is good, and more preferably 25 mΩ or less. The results are shown in Table 1.
表1に示すように、焼鈍雰囲気の範囲は、焼鈍露点が-30℃よりも低くなると、溶接性改善効果が得られない。一方、焼鈍露点が20℃を超えると、めっき前母材が酸化され過ぎて不めっきが発生するため、外観不良などが発生し好ましくない。 As shown in Table 1, in the range of the annealing atmosphere, when the annealing dew point is lower than −30 ° C., the effect of improving weldability cannot be obtained. On the other hand, if the annealing dew point exceeds 20 ° C., the pre-plating base material is overoxidized and non-plating occurs, which is not preferable because poor appearance or the like occurs.
以上、実施形態を中心として本発明を説明してきたが、本発明は上記実施形態に限定されることはなく、各種の態様とすることが可能である。 Although the present invention has been described above with a focus on the embodiments, the present invention is not limited to the above embodiments and can be in various embodiments.
1 母材鋼板
2 加熱前Zn系めっき皮膜
3 本発明によるめっき表面の厚く強固な単独Al酸化物皮膜
4 通常条件のめっき表面の薄く疎な複合Al酸化物皮膜
5 ホットスタンプ加熱後のFe-Zn固溶相
6 本発明条件のホットスタンプ加熱後の厚く強固な単独Al酸化物皮膜
7 本発明条件のホットスタンプ加熱後の薄いZn酸化皮膜
8 通常条件のホットスタンプ加熱後の薄くZn、Mnなどを含有した複合Al酸化物皮膜
9 通常条件のホットスタンプ加熱後の厚いZn酸化皮膜
1
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017250352A JP7006256B2 (en) | 2017-12-27 | 2017-12-27 | Manufacturing method of hot-stamped hot-dip galvanized steel sheet and hot-stamped hot-dip galvanized steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017250352A JP7006256B2 (en) | 2017-12-27 | 2017-12-27 | Manufacturing method of hot-stamped hot-dip galvanized steel sheet and hot-stamped hot-dip galvanized steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019116654A JP2019116654A (en) | 2019-07-18 |
JP7006256B2 true JP7006256B2 (en) | 2022-02-10 |
Family
ID=67304089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017250352A Active JP7006256B2 (en) | 2017-12-27 | 2017-12-27 | Manufacturing method of hot-stamped hot-dip galvanized steel sheet and hot-stamped hot-dip galvanized steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7006256B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116137870A (en) * | 2020-10-12 | 2023-05-19 | 日本制铁株式会社 | Hot dip galvanized steel sheet |
JP7498412B2 (en) | 2021-02-17 | 2024-06-12 | 日本製鉄株式会社 | Method for producing hot stamped plated steel sheet and hot stamped product, and hot stamped product |
JP7498413B2 (en) | 2021-02-17 | 2024-06-12 | 日本製鉄株式会社 | Method for producing hot stamped plated steel sheet and hot stamped product, and hot stamped product |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000087202A (en) | 1998-09-04 | 2000-03-28 | Sumitomo Metal Ind Ltd | Hot dip galvannealed steel sheet excellent in spot weldability and its production |
JP2005120447A (en) | 2003-10-17 | 2005-05-12 | Jfe Steel Kk | Galvanized steel sheet having excellent press formability, and its production method |
JP2011117041A (en) | 2009-12-03 | 2011-06-16 | Sumitomo Metal Ind Ltd | HIGH-Si-CONTAINING HOT-DIP GALVANNEALED STEEL SHEET SUPERIOR IN WELDABILITY AND MANUFACTURING METHOD THEREFOR |
JP2013087314A (en) | 2011-10-14 | 2013-05-13 | Nippon Steel & Sumitomo Metal Corp | High-strength galvannealed steel sheet excellent in plating adhesion and method for manufacturing the same |
WO2014024825A1 (en) | 2012-08-07 | 2014-02-13 | 新日鐵住金株式会社 | Zinc-plated steel sheet for hot press molding |
JP2014159624A (en) | 2012-04-23 | 2014-09-04 | Kobe Steel Ltd | Alloyed hot-dipped galvanized steel sheet for hot stamping and method of manufacturing the same, and hot stamped component |
JP2014224311A (en) | 2013-04-26 | 2014-12-04 | 株式会社神戸製鋼所 | Hot-dip galvannealed steel sheet for hot stamp |
JP2017186663A (en) | 2016-03-30 | 2017-10-12 | 株式会社神戸製鋼所 | Alloyed hot-dip galvanized steel sheet for hot stamp |
WO2017195269A1 (en) | 2016-05-10 | 2017-11-16 | 新日鐵住金株式会社 | Hot stamp molded body |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3106635B2 (en) * | 1991-11-28 | 2000-11-06 | 日本鋼管株式会社 | Method for producing galvannealed steel sheet with excellent press formability and spot weldability |
-
2017
- 2017-12-27 JP JP2017250352A patent/JP7006256B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000087202A (en) | 1998-09-04 | 2000-03-28 | Sumitomo Metal Ind Ltd | Hot dip galvannealed steel sheet excellent in spot weldability and its production |
JP2005120447A (en) | 2003-10-17 | 2005-05-12 | Jfe Steel Kk | Galvanized steel sheet having excellent press formability, and its production method |
JP2011117041A (en) | 2009-12-03 | 2011-06-16 | Sumitomo Metal Ind Ltd | HIGH-Si-CONTAINING HOT-DIP GALVANNEALED STEEL SHEET SUPERIOR IN WELDABILITY AND MANUFACTURING METHOD THEREFOR |
JP2013087314A (en) | 2011-10-14 | 2013-05-13 | Nippon Steel & Sumitomo Metal Corp | High-strength galvannealed steel sheet excellent in plating adhesion and method for manufacturing the same |
JP2014159624A (en) | 2012-04-23 | 2014-09-04 | Kobe Steel Ltd | Alloyed hot-dipped galvanized steel sheet for hot stamping and method of manufacturing the same, and hot stamped component |
WO2014024825A1 (en) | 2012-08-07 | 2014-02-13 | 新日鐵住金株式会社 | Zinc-plated steel sheet for hot press molding |
JP2014224311A (en) | 2013-04-26 | 2014-12-04 | 株式会社神戸製鋼所 | Hot-dip galvannealed steel sheet for hot stamp |
JP2017186663A (en) | 2016-03-30 | 2017-10-12 | 株式会社神戸製鋼所 | Alloyed hot-dip galvanized steel sheet for hot stamp |
WO2017195269A1 (en) | 2016-05-10 | 2017-11-16 | 新日鐵住金株式会社 | Hot stamp molded body |
Also Published As
Publication number | Publication date |
---|---|
JP2019116654A (en) | 2019-07-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2563421C2 (en) | Hot-stamped high strength steel with superior anticorrosion property after painting, and method of its manufacturing | |
EP3647445B1 (en) | Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same | |
KR102301116B1 (en) | Method for producing a steel component having a metal coating protecting it against corrosion, and steel component | |
EP2798094B1 (en) | High-strength hot-dip galvanized steel sheet having excellent plating surface quality and adhesion, and method of manufacturing the same | |
US9932659B2 (en) | Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same (as amended) | |
US9873934B2 (en) | Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same | |
KR101719947B1 (en) | Method for manufacturing high-strength galvannealed steel sheet | |
KR101721483B1 (en) | Galvanized steel sheet for press-forming | |
TW201319271A (en) | Steel sheet having hot-dip galvanized layer and exhibiting superior plating wettability and plating adhesion, and production method therefor | |
JP7248930B2 (en) | hot stamped body | |
JP7006256B2 (en) | Manufacturing method of hot-stamped hot-dip galvanized steel sheet and hot-stamped hot-dip galvanized steel sheet | |
KR101752077B1 (en) | High-strength galvanized steel sheet and production method therefor | |
JP2017075394A (en) | High strength hot-dip galvanized steel sheet and method of producing high strength hot-dip galvanized steel sheet | |
JP2017186663A (en) | Alloyed hot-dip galvanized steel sheet for hot stamp | |
KR102280093B1 (en) | STEEL SHEET PLATED WITH Al-Fe FOR HOT PRESS FORMING HAVING EXCELLENT CORROSION RESISTANCE AND SPOT WELDABILITY, AND MANUFACTURING METHOD THEREOF | |
JP6779862B2 (en) | Surface-finished steel sheets and their manufacturing methods | |
JP5789208B2 (en) | High-strength galvannealed steel sheet with excellent chemical conversion and ductility and its manufacturing method | |
EP3396005B1 (en) | Mn-containing hot-dip galvannealed steel sheet and manufacturing method therefor | |
JP5098190B2 (en) | Manufacturing method of high strength hot dip galvanized steel sheet | |
JP6150022B1 (en) | Cold-rolled steel sheet, plated steel sheet, and production method thereof | |
JP7006257B2 (en) | A method for manufacturing a hot stamped body and a hot stamped body | |
JP2978096B2 (en) | High strength hot-dip galvanized steel sheet with excellent plating properties | |
JP6136672B2 (en) | High strength galvannealed steel sheet and method for producing the same | |
JP5640661B2 (en) | Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet | |
KR101490564B1 (en) | Hot press formed products having excellent corrosion resistance and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210719 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211220 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7006256 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |