JP2019116655A - Hot stamp molding and method for manufacturing the same - Google Patents
Hot stamp molding and method for manufacturing the same Download PDFInfo
- Publication number
- JP2019116655A JP2019116655A JP2017250353A JP2017250353A JP2019116655A JP 2019116655 A JP2019116655 A JP 2019116655A JP 2017250353 A JP2017250353 A JP 2017250353A JP 2017250353 A JP2017250353 A JP 2017250353A JP 2019116655 A JP2019116655 A JP 2019116655A
- Authority
- JP
- Japan
- Prior art keywords
- hot
- oxide film
- steel sheet
- weldability
- points
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、ホットスタンプ成形体及びホットスタンプ成形体の製造方法に関する。 The present invention relates to a hot stamped molded body and a method of manufacturing the hot stamped molded body.
自動車の車体を構成する各種の自動車部品は、静的強度や動的強度、衝突安全性さらには軽量化等の様々な観点から、多様な性能や特性の向上を要求されている。例えば、Aピラーレインフォース,Bピラーレインフォース,バンパーレインフォース,トンネルレインフォース,サイドシルレインフォース,ルーフレインフォース又はフロアークロスメンバー等の自動車部品には、それぞれの自動車部品における特定部位だけがこの特定部位を除く一般部位よりも高強度を有することが要求される。そこで、自動車部品における補強が必要な特定部位に相当する部分だけに焼入れ高強度鋼ホットスタンプ(文献によっては熱間プレスなどとも表現)成形してホットスタンプ部材を製造する工法が一部採用されている。 Various kinds of automobile parts constituting the car body of the automobile are required to improve various performances and characteristics from various viewpoints such as static strength, dynamic strength, collision safety and weight reduction. For example, in automobile parts such as A-pillar reinforcement, B-pillar reinforcement, bumper reinforcement, tunnel reinforcement, side sill reinforcement, roof reinforcement or floor cross member, only a specific part in each automobile part is this specific part It is required to have higher strength than general sites except for. Therefore, a method of manufacturing a hot stamp member by forming a hardened high strength steel hot stamp (represented also as a hot press in some documents) only on a portion corresponding to a specific portion in the automobile part requiring reinforcement is partially adopted. There is.
この際、表面処理を施していない冷延鋼板を用いると、加熱中に鋼板表面に鉄の酸化スケールが発生する。この鉄酸化スケールは成形中に剥離して金型を損耗したり、鋼板自身の疵になるほか、成形後の鋼板表面に残れば、後の溶接工程で溶接不良の原因になったり、塗装工程で塗装の密着性不良の原因になることがある。そこで、この鉄酸化スケールを防止するために、特許文献1の様に亜鉛系などのめっき鋼板が用いられることがある。亜鉛系のめっき鋼板を用いることにより、鉄よりも先に亜鉛が少量酸化されることで、鉄の酸化を抑制し、溶接性や塗装性を大幅に改善することができる。 Under the present circumstances, if the cold-rolled steel plate which is not surface-treated is used, the oxidation scale of iron will generate | occur | produce on a steel plate surface during heating. This iron oxide scale peels off during molding and wears the mold, or becomes a habit of the steel plate itself, and if it remains on the surface of the steel plate after molding, it causes welding defects in the later welding process, or the coating process May cause adhesion failure of paint. Therefore, in order to prevent this iron oxide scale, a zinc-based plated steel sheet may be used as in Patent Document 1. By using a zinc-based plated steel sheet, a small amount of zinc is oxidized before iron, thereby suppressing the oxidation of iron and significantly improving weldability and paintability.
しかし、鉄酸化スケールよりは溶接性は改善するものの、表面に酸化膜の無い非加熱の冷延鋼板やめっき鋼板に比べると、酸化亜鉛皮膜であっても電気伝導性は低いため、溶接性は低下する。よって、亜鉛系めっき鋼板を用いたホットスタンプ材でも、溶接性は十分ではなく、少しでも溶接性を改善することが求められている。 However, although the weldability is improved compared to the iron oxide scale, the zinc oxide film has lower electric conductivity than the unheated cold-rolled steel plate or plated steel plate having no oxide film on the surface, so the weldability is improved. descend. Therefore, even with a hot stamp material using a zinc-based plated steel sheet, the weldability is not sufficient, and it is required to improve the weldability even by a small amount.
その改善策には幾つか提案されており、特許文献2では、溶接抵抗増加の原因となる酸化亜鉛皮膜を加熱後研掃により取り除く事で、溶接抵抗を下げ溶接性を改善することが提案されている。この方法で、溶接性は改善するが、加熱後に自動車メーカや部品メーカでの研掃工程が必要となり、コスト増となる。また、特許文献3では、鋼板成分や鋼板表面のMn濃度、めっき付着量、めっき皮膜中のAl量、めっき皮膜中のAl濃度、鋼板表面の金属組織などを規定することで、溶接性の改善を試みている。この方法でもある程度の改善は見込めるが、劇的な改善効果は難しい。 Several proposals have been made for improvement measures, and in Patent Document 2, it is proposed that welding resistance be reduced and weldability be improved by removing the zinc oxide film that causes welding resistance by heating after cleaning. ing. In this method, the weldability is improved, but after heating, a cleaning process at a car maker or parts maker is required, resulting in an increase in cost. Further, in Patent Document 3, improvement of weldability is achieved by specifying the steel plate components, the Mn concentration of the steel plate surface, the plating adhesion amount, the Al amount in the plating film, the Al concentration in the plating film, the metal structure of the steel plate surface, etc. I'm trying. Even with this method, some improvement can be expected, but the dramatic improvement effect is difficult.
このように、従来の技術においては、亜鉛系ホットスタンプ用鋼板の溶接性を劇的に改善する技術は存在しなかった。 Thus, in the prior art, there has been no technology for dramatically improving the weldability of a zinc-based hot stamping steel sheet.
本発明は、このような背景でなされた発明であり、本発明の課題は、亜鉛系ホットスタンプ用鋼板において、ほとんどコスト増など無く、加熱後の溶接性を劇的に改善する技術を提供することである。 The present invention is an invention made under such background, and an object of the present invention is to provide a technique for dramatically improving the weldability after heating with little increase in cost in a steel sheet for zinc-based hot stamping It is.
上記課題を解決するため、溶融亜鉛めっき鋼板が用いられたホットスタンプ成形体表面において、TEM(透過型電子顕微鏡)を用いて倍率40000倍で2.8μm角の視野でFe−Zn固溶相とZn酸化皮膜との界面に存在するAl系酸化物皮膜を観察し、1視野につき200nm間隔で5点以上の点でAl系酸化皮膜の結晶構造の同定を行ない、それを5視野以上測定した合計25点以上を測定し、結晶構造がγ−Al2O3と一致し、酸素を除いた金属元素の原子分率でAlが80%以上となるγ−Al2O3に同定された点数をG、総測定点数をPとした時、0.20≦G/P<1.00であり、Zn酸化皮膜の下に金属元素の原子分率でAl濃度が80%以上となる単独Al酸化物皮膜が存在することを特徴とする溶接性に優れたホットスタンプ成形体とする。 In order to solve the above problems, on the surface of a hot stamped steel sheet on which a hot-dip galvanized steel sheet is used, an Fe-Zn solid solution phase with a magnification of 40000 times and a 2.8 μm square field of view using TEM (transmission electron microscope) The Al-based oxide film present at the interface with the Zn oxide film is observed, and the crystal structure of the Al-based oxide film is identified at five or more points at an interval of 200 nm per field of view. measured over 25 points, consistent crystal structure with gamma-Al 2 O 3, a score Al was identified in a 80% gamma-Al 2 O 3 in atomic percent of metallic elements except for oxygen G, when the total number of measurement points is P, it is 0.20 ≦ G / P <1.00 and a single Al oxide having an Al concentration of 80% or more in atomic fraction of metal element under Zn oxide film Excellent weldability characterized by the presence of a coating It was a hot stamping body.
また、前記溶融亜鉛めっき鋼板は、合金化処理が施されている構成とすることが好ましい。 Moreover, it is preferable that the hot-dip galvanized steel sheet is configured to be subjected to an alloying treatment.
また、焼鈍中に鋼板温度で200℃〜600℃の範囲を露点を−30℃〜20℃として焼鈍を行った後、目付け量が30g/m2以上の溶融亜鉛めっきを施し、調質圧延を施して溶融亜鉛めっき鋼板とし、当該鋼板を必要なサイズにブランキングした後に700℃〜1200℃の範囲まで加熱した後にプレス成形し、焼入れ冷却を行うことを特徴とする溶接性に優れたホットスタンプ成形体の製造方法とする。 In addition, annealing is performed with a steel sheet temperature in the range of 200 ° C. to 600 ° C. with a dew point of −30 ° C. to 20 ° C., followed by hot dip galvanization with a coating weight of 30 g / m 2 or more, and temper rolling Hot stamp with excellent weldability characterized by applying hot-dip galvanized steel sheet, blanking the steel sheet to required size, heating to a range of 700 ° C to 1200 ° C, press forming and quenching cooling It is set as the manufacturing method of a molded object.
また、前記製造方法において前記溶融亜鉛めっきを施した後に合金化処理を施すことが好ましい。 Moreover, it is preferable to perform an alloying process after performing the said hot dip galvanization in the said manufacturing method.
本発明を用いると、亜鉛系ホットスタンプ用鋼板において、ほとんどコスト増など無く、加熱後の溶接性を劇的に改善する技術を提供することができる。 According to the present invention, it is possible to provide a technique for dramatically improving the weldability after heating, with little increase in cost, in a zinc-based hot stamping steel sheet.
本発明者らは、焼鈍めっき前の鋼板の状態、めっき前の焼鈍条件、めっき条件などと、ホットスタンプ後の溶接性(溶接抵抗)との関係を、詳細に調査した結果、図1に示すように、めっき前の鋼板の焼鈍工程前半における焼鈍の雰囲気、特に露点を微酸化条件とすることでホットスタンプ後の溶接抵抗が著しく低減し、溶接性が大きく改善することを見出した。 The inventors of the present invention show in detail the relationship between the state of the steel plate before annealing plating, the annealing conditions before plating, the plating conditions, etc. and the weldability (welding resistance) after hot stamping, as a result of investigation in detail. As described above, it was found that by setting the atmosphere of annealing in the first half of the annealing process of the steel plate before plating, in particular, the dew point as the micro oxidation condition, the welding resistance after hot stamping is significantly reduced and the weldability is greatly improved.
尚、このように露点を微酸化雰囲気とする焼鈍で、溶接性が改善する詳細なメカニズムは不明であるが、後述するように、めっき前の焼鈍雰囲気を制御すると、鋼板表面や内部のFeやSi、Mnなどの酸化物や金属元素の濃化状態が変化し、その影響でめっき初期に形成されるFe−Al濃化層の状態が変化すると考えられる。その影響を受けて、その後のホットスタンプ時に酸化されるAlが、通常条件では、SiやMnとの複合酸化物化するが、本発明の微酸化条件下では金属元素の原子分率でAl濃度が80%以上となるγ−Al2O3と呼ばれる単独Al酸化物になり、溶接性改善に寄与するものと推定される。 Although the detailed mechanism by which the weldability is improved by the annealing in which the dew point is set to the slight oxidation atmosphere is unknown as described above, if the annealing atmosphere before plating is controlled as described later, It is considered that the state of concentration of oxides such as Si and Mn and the metal element changes, and the state of the Fe-Al-concentrated layer formed at the initial stage of plating changes. Under the influence of that, Al that is oxidized at the time of subsequent hot stamping becomes complex oxide with Si and Mn under the normal conditions, but under the micro oxidation conditions of the present invention, the Al concentration is the atomic fraction of the metal element It becomes a single Al oxide called γ-Al 2 O 3 which becomes 80% or more, and is presumed to contribute to improvement of weldability.
その詳細は以下のようである。Alを含有する酸化物には、金属元素の原子分率でAl濃度が80以上となるγ−Al2O3や、Alの他にZnやMn、Feなどを含有する複合酸化物などがある。本発明では、以降、金属元素の原子分率でAl濃度が80%以上となる酸化物を単独Al酸化物(γ−Al2O3、γ−アルミナ:結晶構造はAl2O3ともいわれる)、AlだけでなくZnやMnなどを多く含み金属元素の原子分率でAl濃度が80%未満の酸化物を複合Al酸化物(結晶構造は例えばZnAl2O4やMnAl2O4、(Zn,Mn)Al2O4など)、単独Al酸化物と複合Al酸化物の総称をAl系酸化物と記載する。尚、分析精度として周囲の元素の影響もうけるため、酸素を除いた金属成分のうちAlが原子分率でAl濃度が80%以上であれば単独Al酸化物、80%未満であれば複合Al酸化物とみなすことができる。 The details are as follows. Examples of oxides containing Al include γ-Al 2 O 3 in which the Al concentration is 80 or more in the atomic fraction of metal elements, and complex oxides containing Zn, Mn, Fe, etc. in addition to Al. . In the present invention, hereinafter, an oxide having an Al concentration of 80% or more as an atomic fraction of a metal element is a single Al oxide (γ-Al 2 O 3 , γ-alumina: crystal structure is also called Al 2 O 3 ) And Al, as well as a large amount of Zn, Mn, etc., with an atomic fraction of metal element and an oxide having an Al concentration of less than 80% (a crystal structure such as ZnAl 2 O 4 or MnAl 2 O 4 (Zn , Mn) Al 2 O 4, etc., a single Al oxide and a composite Al oxide are collectively referred to as an Al-based oxide. In addition, in order to be influenced by surrounding elements as analysis accuracy, if Al is an atomic fraction and Al concentration is 80% or more among metal components excluding oxygen, single Al oxide, if less than 80%, complex Al oxide It can be regarded as a thing.
図2に本発明条件のホットスタンプ加熱前のめっき皮膜断面構造の模式図を、図3にその本発明条件のめっきをホットスタンプ加熱した後の皮膜断面構造の模式図を、図4に比較となる通常条件のホットスタンプ加熱前のめっき皮膜断面構造の模式図を、図5にその通常条件のめっきをホットスタンプ加熱した後の皮膜断面構造の模式図をそれぞれ示す。図中の数字はそれぞれ、1:母材鋼板、2:加熱前Zn系めっき皮膜、3:本発明によるめっき表面の厚く強固な単独Al酸化物皮膜、4:通常条件のめっき表面の薄く疎な複合Al酸化物皮膜、5:ホットスタンプ加熱後のFe−Zn固溶相、6:本発明条件のホットスタンプ加熱後の厚く強固な単独Al酸化物皮膜、7:本発明条件のホットスタンプ加熱後の薄いZn酸化皮膜、8:通常条件のホットスタンプ加熱後の薄くZn、Mnなどを含有した複合Al酸化物皮膜、9:通常条件のホットスタンプ加熱後の厚いZn酸化皮膜、である。 2 compares the schematic view of the cross-sectional structure of the plated film before hot stamp heating under the conditions of the present invention, FIG. 3 compares the schematic view of the cross section of the film after hot stamping the plating under the conditions of the present invention, and FIG. FIG. 5 is a schematic view of the cross-sectional structure of the plated film before the hot stamp heating under the normal conditions, and FIG. 5 is a schematic view of the cross-sectional structure of the coating after the hot stamping of the plating under the normal conditions. The numbers in the figure are respectively 1: base steel plate 2: Zn-based plating film before heating 3: thick thick solid single Al oxide film of the plating surface according to the invention 4: thin and sparse plating surface under normal conditions Composite Al oxide film, 5: Fe-Zn solid solution phase after hot stamp heating, 6: thick solid single Al oxide film after hot stamp heating under the conditions of the present invention, 7: after hot stamp heating under the conditions of the present invention Thin Zn oxide film, 8: thin complex Al oxide film containing Zn, Mn, etc. after hot stamp heating under ordinary conditions, 9: thick Zn oxide film after hot stamp heating under ordinary conditions.
図2乃至図5に模式図で示すようにホットスタンプ後に最表面に形成し溶接抵抗となるZn系の酸化物(図3の7、図5の9)は、Znめっき層内部より前述のホットスタンプ時に形成されるこれらの単独Al酸化物皮膜(図2の3)もしくはAlとZnやMnなどからなる複合Al酸化物皮膜(図4の4)など、いずれもAl系酸化物を通ってめっきZn(図中2)がめっき表面に向かって拡散することにより形成するため、このAl系酸化物皮膜の形成状態の違いによりZnの酸化物の形成量が異なり、このZn酸化物の量が少ない方が溶接性が改善すると考えられる。すなわち、単独Al酸化物皮膜は他の元素を含有しないため、非常に緻密で高温での酸化雰囲気においてZn等の他の金属元素がその単独Al酸化物皮膜を拡散透過してZnの酸化を抑制するバリア層として非常に効果が大きいのに対して、ZnやMnなどを含有する複合Al酸化物では、自身の中にZnなどを含有するため、Znなどが透過しやすくZnの酸化を抑制するバリア層として十分機能しないものと考えられる。 The Zn-based oxides (7 in FIG. 3 and 9 in FIG. 5), which are formed on the outermost surface after hot stamping and serve as welding resistance as shown in the schematic views in FIGS. Any of these single Al oxide films (3 in FIG. 2) or composite Al oxide films (4 in FIG. 4) made of Al and Zn or Mn formed at the time of stamping are all plated through Al-based oxides. Since Zn (2 in the figure) is formed by diffusion toward the plating surface, the formation amount of Zn oxide differs depending on the formation state of the Al-based oxide film, and the amount of Zn oxide is small. It is thought that the weldability improves. That is, since the single Al oxide film does not contain other elements, other metallic elements such as Zn diffuse and permeate through the single Al oxide film in a very dense and high temperature oxidizing atmosphere to suppress the oxidation of Zn. While the effect is very large as a barrier layer, in the case of a composite Al oxide containing Zn, Mn, etc., since Zn etc. is contained in itself, Zn etc. is easily transmitted and the oxidation of Zn is suppressed. It is considered that it does not function sufficiently as a barrier layer.
ホットスタンプ後の酸化物の形成状態とホットスタンプ後の溶接抵抗の関係の調査結果を図6に示す。両者には強い相関がある。すなわち、Znなどを含有する複合Al酸化物とAlを単独で含有する単独Al酸化物で構成される、Al系酸化物のうち、Alを単独で含有する単独Al酸化物相が占める割合が多いほど、ホットスタンプ後の溶接抵抗が低減し、溶接性が改善できることが明らかとなった。 The investigation result of the relationship between the formation state of the oxide after hot stamping and the welding resistance after hot stamping is shown in FIG. There is a strong correlation between the two. That is, a ratio of a single Al oxide phase containing Al alone among the Al-based oxides composed of a single Al oxide containing Zn and the like alone and a composite Al oxide containing Zn etc. is large It became clear that welding resistance after hot stamping decreased and weldability could be improved.
ここで、単独Al酸化物相の比率を測定する方法は、以下の通りである。FIB(集束イオンビーム法)を用いてホットスタンプ材の最表面層の断面薄膜試料を作成し、上記のTEM(透過型電子顕微鏡)を用いて倍率40000倍で2.8μm角の視野でFe−Zn固溶相とZn酸化皮膜との界面に存在するAl系酸化物皮膜を観察し、EDX元素マッピングを行い、Al系酸化物皮膜の位置を特定する。測定面は、LD(圧延)方向、TD(圧延方向と板面内垂直)方向のどちらでもよい。この後、Al系酸化物皮膜に電子ビームを当て、ディフラクションをとり成分分析をすることによりAl系酸化物の結晶構造を同定する。本材料のAl系酸化物の結晶構造としては、単独Al酸化物であるγ−Al2O3の他、ZnAl2O4などの複合Al酸化物が存在する可能性があるが、1視野につき200nm間隔で5点以上の点でAl系酸化物の結晶構造の同定を行ない、それを5視野以上測定した合計25点以上を測定し、結晶構造がγ−Al2O3と一致し、酸素を除いた金属元素の原子分率でAlが80%以上となるγ−Al2O3、即ち単独Al酸化物に同定された点数をG、総測定点数をPとした時、G/Pの比率で評価する。TEM観察方法は、特に規定しないが、実施形態においては、日本電子製 JEM-200CXやJEM−2100で、加速電圧200kVで観察し、組織観察、元素分析、電子線回折などで相や結晶構造を特定した。 Here, the method of measuring the ratio of a single Al oxide phase is as follows. A cross-sectional thin film sample of the outermost surface layer of the hot stamping material is prepared using FIB (focused ion beam method), and Fe— with a field of view of 2.8 μm square with a magnification of 40000 × using the above TEM (transmission electron microscope). The Al-based oxide film present at the interface between the Zn solid solution phase and the Zn oxide film is observed, EDX element mapping is performed, and the position of the Al-based oxide film is specified. The measurement surface may be either the LD (rolling) direction or the TD (rolling direction and in-plane vertical) direction. Thereafter, an electron beam is applied to the Al-based oxide film, and the di-fraction is taken to analyze the component to identify the crystal structure of the Al-based oxide. As the crystal structure of the Al-based oxide of this material, there may be a complex Al oxide such as ZnAl 2 O 4 other than γ-Al 2 O 3 which is a single Al oxide, The crystal structure of the Al-based oxide is identified at five points or more at 200 nm intervals, and a total of 25 points or more measured in five or more fields of view are measured, and the crystal structure matches γ-Al 2 O 3 and oxygen The atomic fraction of the metal element excluding Al is 80% or more, that is, γ-Al 2 O 3 , that is, the point identified as a single Al oxide is G and the total measurement point is P, G / P Evaluate by ratio. The TEM observation method is not particularly defined, but in the embodiment, observation is performed with an acceleration voltage of 200 kV with JEM-200 CX or JEM-2100 manufactured by JEOL, and phase or crystal structure is observed by structure observation, elemental analysis, electron beam diffraction, etc. Identified.
図6に示すように、G/Pが0.20以上あれば単独Al酸化物によるZn拡散の抑制効果が出現し、Zn酸化膜の形成量が抑制されることにより、溶接抵抗が減少し溶接性が改善する。望ましくは、G/Pは0.5以上であることが好ましい。但し、G/Pが1.00に非常に近くなると、単独Al酸化物が形成された材料表面では、Zn酸化膜の抑制効果は得られるが、鋼板表面にFeの酸化膜も発生するようになり、そこでの溶接抵抗が上昇してしまうため、G/Pは1.00未満であることが望ましい。よって、適正なG/Pの上限はG/P<1.00、更に望ましくはG/P≦0.99、更に望ましくはG/P≦0.95である。 As shown in FIG. 6, when G / P is 0.20 or more, the effect of suppressing Zn diffusion by a single Al oxide appears, and the formation amount of the Zn oxide film is suppressed, so that the welding resistance is reduced. Sex improves. Desirably, it is preferable that G / P is 0.5 or more. However, if G / P becomes very close to 1.00, the suppression effect of the Zn oxide film is obtained on the surface of the material on which the single Al oxide is formed, but an Fe oxide film is also generated on the steel sheet surface. Therefore, it is desirable that G / P be less than 1.00 because the welding resistance there is increased. Therefore, the upper limit of the appropriate G / P is G / P <1.00, more desirably G / P ≦ 0.99, and further desirably G / P ≦ 0.95.
上記0.20≦G/P<1.00は、例えば、焼鈍における雰囲気条件の調整が有効である。図7に示すように、G/Pを0.20以上とするには焼鈍露点を−30℃以上とし、G/Pを1.00未満とするには焼鈍露点を20℃以下とすることで可能となる。焼鈍露点が20℃超では鋼板中のFeの酸化が顕著となりその後の還元で活性なFeが多く発生してしまいAlが過多に濃化してしまうため、G/Pは1となってしまう。G/Pを0.20以上とするには、焼鈍露点が−30℃以上とすれば可能となる。焼鈍露点が−30℃より低い場合には鋼板表面でのMnやSiの内部酸化が十分起こらないため、鋼板表面にMnやSiが金属として多く残留するために、Al酸化時にこれら元素が含有されやすくなり、単独Al酸化物が形成されにくくなってしまう。 For the above 0.20 ≦ G / P <1.00, for example, adjustment of the atmosphere conditions in annealing is effective. As shown in FIG. 7, in order to set G / P to 0.20 or more, the annealing dew point is set to -30.degree. C. or more, and to set G / P to less than 1.00, the annealing dew point is set to 20.degree. It becomes possible. When the annealing dew point is over 20 ° C., the oxidation of Fe in the steel sheet becomes remarkable, and a large amount of active Fe is generated in the subsequent reduction to excessively concentrate Al, so G / P becomes 1. In order to make G / P 0.20 or more, it will become possible if an annealing dew point shall be -30 ° C or more. When the annealing dew point is lower than -30 ° C., internal oxidation of Mn and Si does not occur sufficiently on the steel sheet surface, so many Mn and Si remain as metal on the steel sheet surface, and these elements are contained during Al oxidation It becomes easy and it becomes difficult to form a single Al oxide.
本発明者らは、更にこのようなホットスタンプ後のAl系酸化物形態、ひいてはその元となるめっき前の鋼板表面でのSiやMnの欠乏層を形成するための手法として焼鈍中の雰囲気だけでなく、特に加熱中の温度や昇温速度が重要であり、溶融亜鉛めっきの目付け量を変更しても有効であることを解明した。 The present inventors further set only the atmosphere during annealing as a method for forming an Al-based oxide form after such hot stamping and, consequently, a Si or Mn depleted layer on the steel plate surface before the original plating. In addition, the temperature and heating rate during heating were particularly important, and it was clarified that changing the coating amount of hot-dip galvanization is effective.
すなわち、焼鈍雰囲気中のH2濃度が体積分率で1〜15%焼鈍中の鋼板温度が200℃〜600℃の範囲において、図8に示すように露点が−30℃〜20℃の範囲ならば、めっき目付量が45g/m2以上で溶接抵抗が軽減され、溶接性が良好である。尚、図8中のプロットで、溶接性が著しく劣化する溶接抵抗の高い領域として溶接抵抗が50mΩを超える領域を×、溶接性が合格する範囲のうち溶接抵抗が30〜50mΩとなる領域を△、より溶接性が改善できる望ましい条件として溶接抵抗が10〜30mΩとなる領域を○、更に溶接性が改善できる望ましい条件として溶接抵抗が10mΩ以下となる領域を●でプロットした。 That is, if the H 2 concentration in the annealing atmosphere is in the range of 200 ° C. to 600 ° C. in the range of 200 ° C. to 600 ° C., the dew point is in the range of −30 ° C. to 20 ° C. as shown in FIG. For example, when the coating weight is 45 g / m 2 or more, the welding resistance is reduced and the weldability is good. In the plot in FIG. 8, a region where the welding resistance exceeds 50 mΩ as a region having high welding resistance where the weldability is significantly deteriorated is x, and a region where the welding resistance is 30 to 50 mΩ in a region where the weldability passes is Δ. An area where the welding resistance is 10 to 30 mΩ is plotted as ○ as a desirable condition that can further improve the weldability, and an area where the welding resistance is 10 mΩ or less is plotted as ● as a desirable condition that can improve the weldability.
鋼板温度を上記のように設定した理由は、鋼板の温度が200℃より低い場合では、温度が低すぎて鋼中でのSiやMnがほとんど拡散しないため、鋼板表面にSiやMnの欠乏層を形成することができず、600℃超では拡散は十分に起こるが、その後の保持時間を含めた焼鈍時間が短くなってしまい、SiやMnの欠乏層が十分形成するだけの時間が得られないためである。このように鋼板温度は200℃〜600℃の範囲がSiやMnの拡散速度や焼鈍時間の観点から最も望ましいが、更に望ましくは300℃〜500℃の範囲である。 The steel plate temperature is set as described above because, when the temperature of the steel plate is lower than 200 ° C., the temperature is too low and Si and Mn in the steel hardly diffuse, so the Si and Mn deficiency layer on the steel plate surface Can not be formed, and diffusion occurs sufficiently at temperatures higher than 600 ° C, but the annealing time including the subsequent holding time becomes short, and a sufficient time for sufficient formation of a Si or Mn depleted layer is obtained. It is because there is not. Thus, the steel sheet temperature is most preferably in the range of 200 ° C. to 600 ° C. from the viewpoint of the diffusion rate of Si and Mn and the annealing time, and more preferably in the range of 300 ° C. to 500 ° C.
また、雰囲気については、H2以外は大半がN2ガスであり、それ以外は不可避的不純物である。H2濃度は1%以下だと鋼板の還元が不十分となり、不めっきなどの原因となる。一方、15%以上では焼鈍中のH2の消費が多くなりコスト的に問題がある。よって、H2濃度は1〜15%が好ましく、更に好ましくは2〜12%である。焼鈍時の露点としては、−30℃未満では、鋼中のSi、Mnを十分酸化することができずSiやMnの欠乏層を形成することができない。また、+20℃超では、鋼板中のFeの酸化が発生し不めっきなどの原因となるため好ましくない。よって焼鈍露点は、−30℃〜20℃が好ましく、更に好ましくは−20℃〜10℃、更に好ましくは−15〜0℃である。この露点の調整には、N2もしくはN2に1〜15%のH2を含んだガスを水蒸気によって加湿し、そのガスを焼鈍炉内に導入して制御する。 As for the atmosphere, most of the atmosphere except H 2 is N 2 gas, and the others are unavoidable impurities. If the H 2 concentration is 1% or less, the reduction of the steel plate becomes insufficient, which causes non-plating and the like. On the other hand, if it is 15% or more, the consumption of H 2 during annealing increases and there is a problem in cost. Therefore, the H 2 concentration is preferably 1 to 15%, more preferably 2 to 12%. As a dew point at the time of annealing, if it is less than -30 ° C, Si and Mn in steel can not be oxidized enough, and it can not form a lack layer of Si and Mn. Further, if the temperature is higher than + 20 ° C., it is not preferable because oxidation of Fe in the steel sheet occurs to cause non-plating and the like. Accordingly, the annealing dew point is preferably -30 ° C to 20 ° C, more preferably -20 ° C to 10 ° C, and still more preferably -15 to 0 ° C. In order to adjust the dew point, a gas containing N 2 or N 2 containing 1 to 15% of H 2 is humidified with water vapor, and the gas is introduced into the annealing furnace for control.
ホットスタンプの条件は特に規定しないが、前記溶融亜鉛めっき鋼板もしくは前記合金化溶融亜鉛めっき鋼板を必要なサイズにブランキングした後、輻射加熱、誘導加熱、通電加熱などを用い、700℃〜1200℃の範囲に加熱した後、プレス成形し、焼入れ冷却することが好ましい。 The conditions of the hot stamping are not particularly specified, but after the hot-dip galvanized steel sheet or the alloyed hot-dip galvanized steel sheet is blanked to a required size, radiation heating, induction heating, electric current heating, etc. are used to 700 ° C to 1200 ° C. After heating to the range, it is preferable to press-mold and quench-quench.
本発明で使用可能な亜鉛系めっき鋼板の種類としては、亜鉛を主成分とするめっき鋼板であれば特に限定しないが、亜鉛めっき鋼板(略称GI)、合金化亜鉛めっき鋼板(略称GA)、溶融亜鉛−アルミニウム合金めっき、溶融亜鉛−アルミニウム−シリコン合金めっき、溶融亜鉛−アルミニウム−マグネシウム合金めっきなどを含み、またそれぞれの詳細な元素組成も特に限定はしない。めっきの目付量についても特に限定しないが、一般的なホットスタンプ用めっきの付着量である、30g/m2〜120g/m2程度まで使用可能である。鋼板の材質は特に限定はしないが、ホットスタンプ用途として用いられる焼入れ高強度鋼が一般的である。 The type of zinc-based plated steel sheet that can be used in the present invention is not particularly limited as long as it is a plated steel sheet mainly containing zinc, but galvanized steel sheet (abbreviated GI), alloyed galvanized steel sheet (abbreviated GA), molten steel It includes zinc-aluminum alloy plating, hot-dip zinc-aluminium-silicon alloy plating, hot-dip zinc-aluminium-magnesium alloy plating and the like, and the detailed elemental composition of each is not particularly limited. Not limited particularly also the basis weight of the plating, but the adhesion amount of common hot stamping plating, can be used up to 30g / m 2 ~120g / m 2 approximately. Although the material of the steel plate is not particularly limited, a hardened high-strength steel used as a hot stamp application is generally used.
厚さ1.0mmで、鋼組成がC:0.211%(質量%、以下同じ)、Si:0.033%、Mn:1.2%、P:0.01%、S:0.007%、Cr:0.2%、Ti:0.02%、B:0.003%、残部Fe及び不純物からなるホットスタンプ用溶融亜鉛めっき鋼板と合金化溶融亜鉛めっき鋼板に、表1の条件にて焼鈍とめっきを施した。その際、焼鈍時の雰囲気を種々に変更した後、めっきを施した。尚、焼鈍露点の値は焼鈍中の鋼板温度が200℃〜600℃の間のあたいである。めっきの目付量は表/裏で50/50g/m2とした。めっき後の鋼板は焼鈍条件が例えば露点が+20℃以上の場合は、不めっきが観察されるものがあった。不めっきとは、めっき前の母材表面の酸化が進行しすぎた場合、めっきの濡れ性が悪くなり、めっきがはじいてめっきが付いていない場所であり、発生したものは不良とした。 The steel composition is C: 0.211% (mass%, the same below), Si: 0.033%, Mn: 1.2%, P: 0.01%, S: 0.007 at a thickness of 1.0 mm. %, Cr: 0.2%, Ti: 0.02%, B: 0.003%, balance Fe and galvanized steel sheet and hot-dip galvanized steel sheet consisting of Fe and impurities according to the conditions shown in Table 1 Annealing and plating. At that time, plating was performed after changing the atmosphere at the time of annealing variously. In addition, the value of the annealing dew point is a hot plate temperature between 200 degreeC-600 degreeC during annealing. The coating weight of plating was 50/50 g / m 2 on the front / back side. In the case of annealing conditions, for example, when the dew point is + 20 ° C. or more, there was a steel sheet after plating in which non-plating was observed. The non-plating was a place where the wettability of the plating deteriorated when the oxidation of the surface of the base material before plating progressed too much, and the plating repelled and was not attached, and the generated one was regarded as defective.
めっき後の鋼板は、100mm角のサイズに切り出した後、大気雰囲気の電気炉を900℃に加熱しその中で4分間加熱後取り出し、速やかに水冷配管を内蔵した平板プレスに挟んで急冷してホットスタンプ高強度材を得た。溶接性の指標として溶接抵抗を測定した。溶接抵抗測定条件は、電極:CF型φ6R40、荷重:250kgf、電流値:2Aで通電し、その際の抵抗値を測定した。溶接抵抗は小さいほど良いが、50mΩ以下になれば、溶接時のちり発生がほとんど無くなり、溶接強度も安定するため、50mΩ以下で良好、更に好ましくは25mΩ以下とした。 After cutting out the steel plate after plating to a size of 100 mm square, heat the electric furnace in the atmosphere to 900 ° C., heat it for 4 minutes in it and take it out, and rapidly quench it by sandwiching it in a flat plate with water cooling piping. I got a hot stamp high strength material. Welding resistance was measured as an indicator of weldability. The welding resistance was measured under the following conditions: electrode: CF type φ6R40, load: 250 kgf, current value: 2 A, and the resistance value at that time was measured. The smaller the welding resistance, the better. However, if the welding resistance is 50 mΩ or less, the generation of dust during welding is almost eliminated and the welding strength is also stable. Therefore, 50 mΩ or less is preferable, more preferably 25 mΩ or less.
表1に示されるように、焼鈍雰囲気の範囲は、焼鈍露点が−30℃よりも低くなると、溶接性改善効果が得られない。一方、焼鈍露点を20℃を超えると、めっき前母材が酸化され過ぎて不めっきが発生するため、外観不良などが発生し好ましくない。 As shown in Table 1, in the range of the annealing atmosphere, the effect of improving weldability can not be obtained when the annealing dew point is lower than -30 ° C. On the other hand, when the annealing dew point is higher than 20 ° C., the base material before plating is oxidized too much to cause non-plating, which is not preferable because appearance defects occur.
以上、実施形態を例に本発明を説明してきたが、本発明は上記実施形態に限定されることはなく、各種の態様とすることが可能である。 Although the present invention has been described above by taking the embodiment as an example, the present invention is not limited to the above embodiment, and various aspects can be made.
1 母材鋼板
2 加熱前Zn系めっき皮膜
3 本発明によるめっき表面の厚く強固な単独Al酸化物皮膜
4 通常条件のめっき表面の薄く疎な複合Al酸化物皮膜
5 ホットスタンプ加熱後のFe−Zn固溶相
6 本発明条件のホットスタンプ加熱後の厚く強固な単独Al酸化物皮膜
7 本発明条件のホットスタンプ加熱後の薄いZn酸化皮膜
8 通常条件のホットスタンプ加熱後の薄くZn、Mnなどを含有した複合Al酸化物皮膜
9 通常条件のホットスタンプ加熱後の厚いZn酸化皮膜
1 base metal steel plate 2 Zn-based plating film before heating 3 thick solid single Al oxide film on plating surface according to the present invention 4 thin and sparse composite Al oxide film on plating surface under ordinary conditions 5 Fe-Zn after hot stamp heating Solid solution phase 6 thick solid single Al oxide film 7 after hot stamp heating under the conditions of the present invention thin Zn oxide film 8 after hot stamp heating under the conditions of the present invention 8 thin Zn, Mn, etc. after hot stamp heating under normal conditions Composite Al oxide film 9 containing thick Zn oxide film after hot stamp heating under normal conditions
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017250353A JP7006257B2 (en) | 2017-12-27 | 2017-12-27 | A method for manufacturing a hot stamped body and a hot stamped body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017250353A JP7006257B2 (en) | 2017-12-27 | 2017-12-27 | A method for manufacturing a hot stamped body and a hot stamped body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019116655A true JP2019116655A (en) | 2019-07-18 |
JP7006257B2 JP7006257B2 (en) | 2022-01-24 |
Family
ID=67305201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017250353A Active JP7006257B2 (en) | 2017-12-27 | 2017-12-27 | A method for manufacturing a hot stamped body and a hot stamped body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7006257B2 (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005074464A (en) * | 2003-08-29 | 2005-03-24 | Sumitomo Metal Ind Ltd | Hot-pressing formed product and its producing method |
JP2005120447A (en) * | 2003-10-17 | 2005-05-12 | Jfe Steel Kk | Galvanized steel sheet having excellent press formability, and its production method |
JP2009256781A (en) * | 2008-03-27 | 2009-11-05 | Kobe Steel Ltd | Hot-dip galvanized steel sheet having chromate-free coating excellent in corrosion resistance |
JP2011117041A (en) * | 2009-12-03 | 2011-06-16 | Sumitomo Metal Ind Ltd | HIGH-Si-CONTAINING HOT-DIP GALVANNEALED STEEL SHEET SUPERIOR IN WELDABILITY AND MANUFACTURING METHOD THEREFOR |
JP2013087314A (en) * | 2011-10-14 | 2013-05-13 | Nippon Steel & Sumitomo Metal Corp | High-strength galvannealed steel sheet excellent in plating adhesion and method for manufacturing the same |
WO2014024825A1 (en) * | 2012-08-07 | 2014-02-13 | 新日鐵住金株式会社 | Zinc-plated steel sheet for hot press molding |
JP2014159624A (en) * | 2012-04-23 | 2014-09-04 | Kobe Steel Ltd | Alloyed hot-dipped galvanized steel sheet for hot stamping and method of manufacturing the same, and hot stamped component |
JP2014221943A (en) * | 2009-12-29 | 2014-11-27 | ポスコ | Galvanized steel sheet for hot pressing which is excellent in surface characteristic, hot press forming part using galvanized steel sheet and production method of hot press forming part |
JP2014224311A (en) * | 2013-04-26 | 2014-12-04 | 株式会社神戸製鋼所 | Hot-dip galvannealed steel sheet for hot stamp |
JP2016125101A (en) * | 2015-01-06 | 2016-07-11 | 新日鐵住金株式会社 | Hot stamp molded body and manufacturing method of hot stamp molded body |
JP2017186663A (en) * | 2016-03-30 | 2017-10-12 | 株式会社神戸製鋼所 | Alloyed hot-dip galvanized steel sheet for hot stamp |
WO2017195269A1 (en) * | 2016-05-10 | 2017-11-16 | 新日鐵住金株式会社 | Hot stamp molded body |
-
2017
- 2017-12-27 JP JP2017250353A patent/JP7006257B2/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005074464A (en) * | 2003-08-29 | 2005-03-24 | Sumitomo Metal Ind Ltd | Hot-pressing formed product and its producing method |
JP2005120447A (en) * | 2003-10-17 | 2005-05-12 | Jfe Steel Kk | Galvanized steel sheet having excellent press formability, and its production method |
JP2009256781A (en) * | 2008-03-27 | 2009-11-05 | Kobe Steel Ltd | Hot-dip galvanized steel sheet having chromate-free coating excellent in corrosion resistance |
JP2011117041A (en) * | 2009-12-03 | 2011-06-16 | Sumitomo Metal Ind Ltd | HIGH-Si-CONTAINING HOT-DIP GALVANNEALED STEEL SHEET SUPERIOR IN WELDABILITY AND MANUFACTURING METHOD THEREFOR |
JP2014221943A (en) * | 2009-12-29 | 2014-11-27 | ポスコ | Galvanized steel sheet for hot pressing which is excellent in surface characteristic, hot press forming part using galvanized steel sheet and production method of hot press forming part |
JP2013087314A (en) * | 2011-10-14 | 2013-05-13 | Nippon Steel & Sumitomo Metal Corp | High-strength galvannealed steel sheet excellent in plating adhesion and method for manufacturing the same |
JP2014159624A (en) * | 2012-04-23 | 2014-09-04 | Kobe Steel Ltd | Alloyed hot-dipped galvanized steel sheet for hot stamping and method of manufacturing the same, and hot stamped component |
WO2014024825A1 (en) * | 2012-08-07 | 2014-02-13 | 新日鐵住金株式会社 | Zinc-plated steel sheet for hot press molding |
JP2014224311A (en) * | 2013-04-26 | 2014-12-04 | 株式会社神戸製鋼所 | Hot-dip galvannealed steel sheet for hot stamp |
JP2016125101A (en) * | 2015-01-06 | 2016-07-11 | 新日鐵住金株式会社 | Hot stamp molded body and manufacturing method of hot stamp molded body |
JP2017186663A (en) * | 2016-03-30 | 2017-10-12 | 株式会社神戸製鋼所 | Alloyed hot-dip galvanized steel sheet for hot stamp |
WO2017195269A1 (en) * | 2016-05-10 | 2017-11-16 | 新日鐵住金株式会社 | Hot stamp molded body |
Also Published As
Publication number | Publication date |
---|---|
JP7006257B2 (en) | 2022-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2798094B1 (en) | High-strength hot-dip galvanized steel sheet having excellent plating surface quality and adhesion, and method of manufacturing the same | |
US9963755B2 (en) | Hot-pressed member | |
US9644252B2 (en) | Hot stamped high strength part excellent in post painting anticorrosion property and method of production of same | |
KR102301116B1 (en) | Method for producing a steel component having a metal coating protecting it against corrosion, and steel component | |
US9932659B2 (en) | Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same (as amended) | |
US9873934B2 (en) | Hot-dip galvanized steel sheets and galvannealed steel sheets that have good appearance and adhesion to coating and methods for producing the same | |
EP3395465B1 (en) | Hot press formed product having excellent corrosion resistance and method for preparing same | |
US11529795B2 (en) | Steel sheet plated with Al—Fe for hot press forming having excellent corrosion resistance and spot weldability, and manufacturing method thereof | |
WO2022097734A1 (en) | Fe-ELECTROPLATED STEEL SHEET, ELECTRODEPOSITION COATED STEEL SHEET, AUTOMOBILE COMPONENT, METHOD FOR MANUFACTURING ELECTRODEPOSITION COATED STEEL SHEET, AND METHOD FOR MANUFACTURING Fe-ELECTROPLATED STEEL SHEET | |
WO2022097736A1 (en) | Galvanized steel sheet, electrodeposition coated steel sheet, automotive part, method for manufacturing electrodeposition coated steel sheet, and method for manufacturing galvanized steel sheet | |
KR102280093B1 (en) | STEEL SHEET PLATED WITH Al-Fe FOR HOT PRESS FORMING HAVING EXCELLENT CORROSION RESISTANCE AND SPOT WELDABILITY, AND MANUFACTURING METHOD THEREOF | |
KR20160077538A (en) | Method for manufacturing high strength galvanized steel sheet having excellent surface property and coating adhesion | |
JP7006256B2 (en) | Manufacturing method of hot-stamped hot-dip galvanized steel sheet and hot-stamped hot-dip galvanized steel sheet | |
WO2022097737A1 (en) | Galvannealed steel sheet, electrodeposition-coated steel sheet, automotive vehicle component, manufacturing method for electrodeposition-coated steel sheet, and manufacturing method for galvannealed steel sheet | |
KR20130103409A (en) | High strength hot dip galvannealed steel sheet of excellent phosphatability and ductility, and a production process therefor | |
JP7440771B2 (en) | hot stamp molded body | |
JP7006257B2 (en) | A method for manufacturing a hot stamped body and a hot stamped body | |
JP5194366B2 (en) | Hot-dip galvanized steel sheet with excellent surface appearance | |
EP4116457B1 (en) | Hot pressed member and method of producing same. and coated steel sheet for hot press forming | |
WO2022097733A1 (en) | Zinc alloy-plated steel sheet, electrodeposited steel sheet, motor vehicle component, method for producing electrodeposited steel sheet, and method for producing zinc alloy-plated steel sheet | |
KR101359161B1 (en) | Plated steel sheet for hot press forming having corrosion resistance | |
US20230407449A1 (en) | Hot-pressed member, steel sheet for hot pressing, and method for manufacturing hot-pressed member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200805 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210524 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210601 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210713 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211207 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211220 |