JP4655366B2 - High strength alloyed hot dip galvanized steel sheet with excellent plating adhesion and corrosion resistance and method for producing the same - Google Patents

High strength alloyed hot dip galvanized steel sheet with excellent plating adhesion and corrosion resistance and method for producing the same Download PDF

Info

Publication number
JP4655366B2
JP4655366B2 JP2000369682A JP2000369682A JP4655366B2 JP 4655366 B2 JP4655366 B2 JP 4655366B2 JP 2000369682 A JP2000369682 A JP 2000369682A JP 2000369682 A JP2000369682 A JP 2000369682A JP 4655366 B2 JP4655366 B2 JP 4655366B2
Authority
JP
Japan
Prior art keywords
amount
corrosion resistance
plating
steel sheet
plating adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000369682A
Other languages
Japanese (ja)
Other versions
JP2002173756A (en
Inventor
善継 鈴木
一章 京野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000369682A priority Critical patent/JP4655366B2/en
Publication of JP2002173756A publication Critical patent/JP2002173756A/en
Application granted granted Critical
Publication of JP4655366B2 publication Critical patent/JP4655366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複雑なプレス成形加工にも充分に耐えうる高強度とめっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法に関するものである。
【0002】
【従来の技術】
近年、地球環境の保全という観点から、自動車の燃費改善が要求されている。さらに加えて、衝突時に乗員を保護するため、自動車車体の安全性向上も要求されている。このようなことから、最近では自動車車体の軽量化及び自動車車体の強化が積極的に進められている。特に、自動車車体の軽量化のために、熱延鋼板及び冷延鋼板等の自動車用鋼板を高強度化し鋼板板厚を低減することが考えられている。一方、鋼板を素材とする自動車用部品の多くがプレス加工によって成形されるため、自動車用鋼板には優れたプレス成形性が要求される。また、合金化溶融亜鉛めっき鋼板は防錆性に優れ、安価に製造できるため、自動車車体用防錆表面処理鋼板として多用されている。
鋼板を高強度化するには、易酸化性元素であるMn、Si等の元素を添加し、固溶強化等を図る必要がある。また、最近の防錆性能の要求レベルの高まりから、従来使用されていた合金化溶融亜鉛めっき鋼板の耐食性をさらに向上することが求められている。
【0003】
【発明が解決しようとする課題】
本発明は、上記問題を解決しようとするもので、下地鋼板がSi、Mnを多量に含んでいても、上層溶融亜鉛めっきの密着性に優れ、めっき鋼板として耐食性に優れた高強度合金化溶融亜鉛めっき鋼板及びその製造方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
すなわち、本発明は、次の(1)〜(6)に示す高強度合金化溶融亜鉛めっき鋼板及びその製造方法を提供するものである。
(1)C量0.05〜0.25%、Si量0.1〜1.5%、Mn量0.5〜3.5%及びB量≦5ppmを満たす鋼板上に、めっき層中のSi、Mn及びBの含有量がそれぞれ
{Fe%}*[Si%]/10(%)≧{Si%}≧{Fe%}*[Si%]/100(%)かつ
{Fe%}*[Mn%]/10(%)≧{Mn%}≧{Fe%}*[Mn%]/100(%)かつ
{B}(ppm)≦10(ppm)を満たし、かつ
合金化度が7(%)≦{Fe%}≦15(%)を満たす合金化溶融亜鉛めっき層を有することを特徴とするめっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板。但し、{ }はめっき層中の含有量、[ ]は鋼中の含有量、%は、以下、特に断らない限り質量%を表す。
【0005】
(2)C量0.05〜0.25%、Si量0.1〜1.5%、Mn量0.5〜3.5%及びB量≦5ppmを満たす鋼板を、加熱炉で750〜950℃に加熱し、Si及びMnを含む厚さ0.01〜0.3μmの酸化皮膜を生成させた後、60〜90℃、1〜20%の濃度の酸で1〜20秒間酸洗を施し、酸化被膜が0.001〜0.05μmになるまで除去した後、650〜850℃で焼鈍後、Al濃度が0.08〜0.20%である440〜480℃の亜鉛浴中にて溶融亜鉛めっきを施し、引き続き450〜600℃で合金化度が7(%)≦{Fe%}≦15(%)となるように合金化処理を施すことを特徴とするめっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。
【0006】
(3)さらに、前記鋼板中に、Cu、Ni及びMoからなる群から選択される少なくとも1種を0.01〜1%含み、かつ前記合金化溶融亜鉛めっき層中に、Cu、Ni及びMoからなる群から選択される少なくとも1種を0.01〜0.2%含むことを特徴とする前記(1)に記載のめっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板。
【0007】
(4)さらに、前記鋼板中に、Alを0.01〜1%含むことを特徴とする前記(1)又は(3)に記載のめっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板。
【0008】
(5)さらに、前記鋼板中に、Cu、Ni及びMoからなる群から選択される少なくとも1種を0.01〜1%含むことを特徴とする前記(2)に記載のめっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。
【0009】
(6)さらに、前記鋼板中に、Alを0.01〜1%含むことを特徴とする前記(2)又は(5)に記載のめっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。
【0010】
【発明の実施の形態】
上述のように、母材中のSi、Mn量が多いほど母材は高強度であり、めっき層中のSi、Mn量が多いほどめっき層の耐食性は向上することが知られているが、母材中にSi、Mnを多く含むとめっき密着性が低下する。そこで、本発明者らは、この問題を解決するために以下の実験を行い、得られた知見から本発明を完成させるに至った。なお、軽元素であるBは、Si、Mnより拡散しやすいため、焼鈍条件にもよるが、そのめっき層中の濃化量は、母材含有量の数十倍程度になりうると推定されている。
【0011】
本発明は以下の実験事実に基づいて完成されたものである。
表2に記載の鋼種Aの組成の厚さ30mmのシートバーを1200℃で加熱し、5パスで厚さ2.0mmの熱延板とし、610℃で巻き取った。次いで、酸洗により黒皮を除去し、焼鈍炉においてこの熱延板を700〜970℃で60秒間焼鈍した後、60℃の5%HClで1〜20秒間酸洗した。その後、めっき装置にて、600〜900℃で20秒間焼鈍し、浴中Al濃度0.13%、浴温465℃の亜鉛浴中にて1秒間めっき処理した後、440〜550℃で合金化処理した。
得られた合金化溶融亜鉛めっき鋼板中の{Fe%}は10%であり、{Si%}は0.01〜0.8%、{Mn%}は0.1〜2.2%であった。
【0012】
ここで得られためっき鋼板のめっき密着性及び耐食性を調査した。めっき密着性は、めっき鋼板にセロファンテープを貼りテープ面を90°内に曲げ、曲げ戻しをした後テープを剥したときの単位長さ当りのめっき剥離量を蛍光X線によりZnカウント数として測定し、表1の基準に照らしてランク1、2のものを良好、3以上のものを不良として評価した。耐食性は、軟鋼板の合金化溶融亜鉛めっき鋼板の塩水噴霧試験の結果における錆発生状況と比較して、錆発生面積率が同等以下であるものを良好、10%超であるものを不良として評価した。図2は、耐食性に及ぼす酸洗前後の酸化被膜厚みの影響を示した図であり、耐食性が良好であったものを○とし、不良であったものを●として示した。
これらの結果を総合して、めっき密着性及び耐食性が共に良好であったものを○とし、耐食性は良好であるが、めっき密着性が不良であったものを◎とし、めっき密着性、耐食性が共に不良であったものを●として、図1に示した。
また、図3は、めっき密着性に及ぼす合金化溶融亜鉛めっき層中のBの濃度の影響を示した図である。めっき層中のB量が6ppm以下であると、めっき密着性は表1の基準に照らしてランク1(○)であり、また、めっき層中のB量が7〜10ppmであるとランク2(△)である。一方、めっき層中のB量が10ppmを超えると、ランク3以上(×)であった。
【0013】

Figure 0004655366
【0014】
得られた結果から以下の知見を得た。
1)めっき層中のSi、Mn量は、耐食性を向上させる効果がある。
2)Si、Mnの鋼材表面での濃化量は、母材含有量の数倍程度と推定されるため、めっき層中のSi、Mn量は、母材そのものの含有量から理論的に考えられる取り込み量より多めになる。
3)めっき層中のSi、Mnの量は、母材のSi、Mn量と、めっき層中の合金化後の{Fe%}に影響され、その範囲が
{Fe%}*[Si%]/10(%)≧{Si%}≧{Fe%}*[Si%]/100(%)、
{Fe%}*[Mn%]/10(%)≧{Mn%}≧{Fe%}*[Mn%]/100(%)
であれば、めっき密着性と耐食性が共に良好な範囲が存在する。
4)図2の結果から、酸洗前後の酸化被膜厚みが特定範囲内である場合に、耐食性が良好となることがわかる。
5)図3の結果から、Bはめっき密着性を劣化させることがわかり、鋼中含有量のみならずめっき層中への取り込みを極力低減すべきである。さらには、めっき密着性が劣化することにより、不めっき、ピンホールなどの地鉄裸出部が生成するため、めっき層中にSi等が取り込まれていても結果として耐食性が劣化するおそれがある。このため、めっき層中のB量は10ppm以下としなければならない。
【0015】
以上の実験により知見したことから以下の本発明を完成した。
本発明の特徴は、めっき層中の{Si%}、{Mn%}、鋼中の[Si%]、[Mn%]及びめっき層中の{Fe%}を特定範囲として、めっき密着性、耐食性及び強度を併せて満足しためっき鋼板が得られることにある。すなわち、めっき層中のSi、Mn、Bの含有量は、以下の式を満たす範囲が必要である。
{Fe%}*[Si%]/10(%)≧{Si%}≧{Fe%}*[Si%]/100(%)かつ
{Fe%}*[Mn%]/10(%)≧{Mn%}≧{Fe%}*[Mn%]/100(%)かつ
{B}(ppm)≦10(ppm)
{Si%}、{Mn%}が上記範囲より少ない場合、充分な耐食性向上を望めない。一方、{Si%}、{Mn%}が上記範囲を超える場合、耐食性は向上するが、溶融亜鉛めっき時に、めっき性が悪く、不めっきの部分は耐食性を劣化させる上、合金化後のめっき密着性を劣化させる。また、{B}が上記範囲を超える場合、めっき密着性を劣化させる。
【0016】
また、合金化度{Fe%}を限定した理由は次のとおりである。本発明のめっき層中の{Si}、{Mn}量の最適値は、合金化度と鋼中の[Si]、[Mn]量によって決定される。
合金化度:7≦{Fe%}≦15
7%未満だとζ相が多く残存するだけでなく、η相が残るため合金化が不十分となり摺動性が劣化するので、合金化度は7%以上が必要である。但し、15%を超えるとΓ相が多量に生成するためにめっき密着性が劣化し、曲げ加工部の耐食性が劣化するため、上記範囲とした。
【0017】
次に、本発明において鋼中の構成成分の含有量を限定した理由について説明する。
C量0.05〜0.25%
C量は、必要強度を得るためと所望の組織を得るために不可欠である。少なくとも0.05%が必要であるが、0.25%を超えると溶接性が悪化するため、上記範囲とした。
【0018】
Si量0.1〜1.5%
Si量は、固溶強化と所望の組織を得るために不可欠であり、延性を劣化させずに高強度化を図れる。また、Si、Mn酸化物には耐食性を向上する効果があるため、めっき直前に適正量のSi、Mn酸化物を残存させることにより、Si、Mn酸化物及び鋼中の固溶Si、Mnを供給源とし、めっき密着性を維持したまま合金層中に適正量を取り込むことにより耐食性を向上する効果が得られる。所望の効果を得るためには0.1%が必要であるが、1.5%を超えるとめっき密着性が劣化するため、上記範囲とした。
【0019】
Mn量0.5〜3.5%
Cと同様に必要強度を得るためと所望の組織を得るために0.5〜3.5%のMn量が不可欠である。また、Siと同様に耐食性を向上する効果を得るためには少なくとも0.5%に満たないと効果に乏しいが、3.5%を超えると溶接性が悪化するため、上記範囲とした。
【0020】
B量≦5ppm
Bはめっき密着性を劣化させるため、鋼中含有量のみならずめっき層中への取り込みを極力低減するべきである。さらには、めっき密着性が劣化することにより不めっき、ピンホールなどの地鉄裸出部が生成するため、めっき層中にSi等が取り込まれていても結果として耐食性が劣化するおそれがある。そのため上限を5ppmとした。
【0021】
さらに、本発明の高強度合金化溶融亜鉛めっき鋼板の鋼中には、以下の元素を以下の量少なくとも1種類含んでもよい。その場合はさらに以下の効果を有する。
Cu量0.01〜1%
Cuはオーステナイト中に偏析し、所望の強度を得るためと所望の組織を得るために重要であるだけでなく、めっき密着性を向上する効果もある。めっき密着性が向上する理由は現時点では明らかになっていないが、これら所望の効果を得るためには、好ましくは0.01%以上含んでいると効果的である。但し、1%を超えると経済性が劣化するため上限を1%とするのが好ましい。
【0022】
Ni量0.01〜1%
NiはCuと同様オーステナイト中に偏析し、必要強度を得るためと所望の組織を得るために重要であるだけでなく、めっき密着性を向上する効果も有するので必要に応じて添加する。めっき密着性が向上する理由は現時点では明らかになっていないが、これら所望の効果を得るためには、Cuと同様0.01%以上含んでいるのが好ましい。但し、1%を超えると経済性が劣化するため上限を1%とするのが好ましい。
【0023】
Mo量0.01〜1%
Moは高価であるが、オーステナイト中に偏析し、必要強度を得るためと所望の組織を得るために重要であるだけでなく、めっき密着性を向上する効果も有する。めっき密着性が向上する理由は、Cu、Niと同様現時点では明らかになっていないが、これら所望の効果を得るためには、0.01%以上含んでいるのが好ましい。但し、1%を超えると経済性が劣化するため上限を1%とするのが好ましい。
【0024】
Al量0.01〜1%
Alは必要強度を得るためと所望の組織を得るために重要であり、結果としてSi添加量を低減できるため、同等の引っ張り強度を有するSi添加鋼よりめっき密着性の改善に有利であるので必要に応じて添加する。所望の効果を得るためには0.01%以上含有するのが好ましいが、1%を超えると経済性が劣化するため上限を1%とするのが好ましい。
【0025】
鋼中にCu、Ni及びMoからなる群から選択される少なくとも1種を含む場合には、めっき層中にCu、Ni及びMoからなる群から選択される少なくとも1種を0.01〜0.2%含むことが好ましい。
めっき層中にこれらの元素の少なくともいずれか1種が含有されると、これらの元素とFe−Zn合金層の複合効果により耐食性の向上がより効果的であるため好ましい。母材にCu、Ni、Moを含む鋼板については、安定した耐食性向上効果を得るためには、めっき層中にそれぞれ0.01%以上含まれることが好ましいが、0.2%を超えるためには鋼板母材中の含有量を増加させなければならなくなり経済性が悪化するため0.2%を上限とするのが好ましい。
また、本発明では、めっき層中の{Fe%}、{Si%}及び{Mn%}と、鋼中の[Si%]及び[Mn%]を、上記式で示すような関係とすることが必要である。
【0026】
製造方法の特徴は、Si、Mnを含む酸化被膜を一旦つくり、次に、酸洗によりB量をコントロールし、めっき層中のSi、Mn量を一定範囲とすることにある。
めっき層中のB量を低減する方法は、加熱炉での加熱後であって、連続溶融亜鉛めっき設備(CGLと表す。)炉での焼鈍前における酸洗で、Si、Mn主体の酸化皮膜を酸洗によって適正量残存して合金化後に合金層中へ取り込み、それと同時にBを除去させることであるが、BはSi、Mnより酸洗されやすいため、後述する酸洗条件によりほぼ完全に除去される。
【0027】
以下、製造条件を限定した理由について説明する。
加熱炉での加熱温度
750℃を下回ると所望の組織が得られなくなり高強度化が図れないだけでなく、Si、Mnの表面濃化が不十分となる。この工程での表面濃化が不十分であると、合金化処理での表面濃化が多すぎてかえってめっき密着性が劣化する。950℃を超えると、効果が飽和するだけでなく操業上困難であり経済性に劣る。さらには多量の表面濃化物が生成するため、酸洗により適正量まで除去することができなくなり、不めっきが発生する。そのため、加熱炉での加熱温度は750〜950℃とする。
【0028】
加熱炉での酸化皮膜(酸洗前の酸化被膜)
酸化被膜が0.01μmを下回ると、酸洗後に残存する量が減るため耐食性が劣化する。また、0.3μmを超えると酸洗が困難である。そのため、加熱炉での酸化皮膜は0.01〜0.3μmとする。ここで、酸化皮膜の量はGDS、SIMS、AESなど各種測定装置によりスパッタリング速度を調整しながら測定することにより見積もれる。
【0029】
酸洗条件
酸洗温度が60℃未満もしくは酸洗時間が1秒間未満では効果が得られにくく、酸洗温度が90℃を超えるかもしくは酸洗時間が20秒間を超えると表面が荒れ、めっき後の外観を損ねる。そのため、酸洗条件は1〜20%の濃度の酸で、酸洗温度60〜90℃、酸洗時間1〜20秒間施すこととする。酸は塩酸が経済的で好ましいが、その他の酸でも、硫酸、燐酸、硝酸など特に種類は問わない。
【0030】
酸洗後の酸化皮膜量
酸洗後の酸化被膜量が0.001μm未満では合金化後にめっき層中に取り込む量が少なくなるため耐食性向上効果が得られない。また、0.05μmを超えるとめっき密着性が劣化するだけでなく、不めっき部による耐食性の劣化が起こる。そのため、酸洗後の酸化被膜量は0.001〜0.05μmとした。
【0031】
還元加熱温度
好ましくはCGL(合金化)炉においてH2 を含む還元性雰囲気中で加熱して還元するが、加熱温度は、650℃未満では酸洗により生じた酸化皮膜が還元できず不めっきが発生する。また、850℃を超えるとCGL炉でのSi、Mnの表面濃化が多いため、同様に不めっきが発生する。そのためCGL炉での加熱温度は650〜850℃とした。
【0032】
溶融亜鉛めっき浴
めっき層の合金化後の密着性を確保するため、Al濃度が0.08%以上であることが必要である。但し、Al濃度が0.20%を超えると合金化が困難になるため上限は0.20%とした。浴温は440℃未満であるとめっき浴の浴温変動により凝固点(420℃)を下回る箇所が出てくる可能性があり、操業上安定性に欠ける。また、480℃を超えると加熱保持にかかるコストがかさむ。そのため浴温は440〜480℃とした。
【0033】
合金化温度
合金化温度が450℃未満であるとζ相が生成しやすくなり、合金化溶融亜鉛めっき鋼板の摺動性に欠けるおそれがあるだけでなく、合金化に時間がかかるため生産性が劣化する。また、600℃を超えるとΓ相が生成しやすくなり、合金化溶融亜鉛めっき鋼板のめっき密着性に欠けるおそれがある。そのため、合金化温度は450〜600℃とした。また、合金化条件によってめっき層中のFe量が決定されるため、めっき層中のFe、Si、Mn量と、母材中のSi、Mn量を上記式で示す範囲とするためには合金化条件が重要である。
【0034】
【実施例】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
実施例1〜9、比較例1〜8
表2に示した化学組成(C,Si,Mn,Al,P,S,Cr,Cu,Ni,Mo,Ti,Nb,B)の厚さ300mmスラブを1200℃で加熱し、熱間圧延により厚さ2.3mmの熱延板とし、620℃で巻き取った。次いで、酸洗により黒皮を除去し、冷間圧延により50%の圧下率で圧延し、連続焼鈍炉(CAL)に通板した。続いて、CGLに通板して酸洗、亜鉛めっき、合金化処理を行った。めっき付着量は片面で40g/m2 ずつであった。合金化温度は450〜600℃、合金化時間は20秒間とした。
めっき鋼板の製造条件(加熱炉での加熱温度、加熱炉生成被膜量、酸洗後残存被膜量、酸洗時間、CGL焼鈍温度、めっき浴温、浴中Al濃度、合金化温度)を表3に、得られた合金化溶融亜鉛めっき鋼板のめっき層中のSi、Mn、B、Cu、Ni、Mo含有量、めっき外観、めっき密着性及び耐食性の調査結果を表4に示した。製造条件が本発明範囲内のものはいずれもめっき密着性、耐食性が良好であるが、本発明範囲外である比較例では、めっき密着性、耐食性のいずれかもしくは両方が劣っていた。
【0035】
【表1】
Figure 0004655366
【0036】
【表2】
Figure 0004655366
【0037】
【表3】
Figure 0004655366
【0038】
【発明の効果】
以上のように、本発明によれば、めっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板が得られる。本発明の鋼板を適用することにより、自動車車体の軽量化及び低燃費化が可能となり、ひいては地球環境の改善にも大きく貢献する。
【図面の簡単な説明】
【図1】 めっき密着性及び耐食性に及ぼす合金化溶融亜鉛めっき層中のSi及びMnの濃度の影響を示した図である。
【図2】 耐食性に及ぼす酸洗前後の酸化被膜の影響を示した図である。
【図3】 めっき密着性に及ぼす合金化溶融亜鉛めっき層中のBの濃度の影響を示した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength alloyed hot-dip galvanized steel sheet excellent in high strength, plating adhesion and corrosion resistance that can sufficiently withstand complex press-forming processes, and a method for producing the same.
[0002]
[Prior art]
In recent years, there has been a demand for improvement in fuel efficiency of automobiles from the viewpoint of conservation of the global environment. In addition, in order to protect passengers in the event of a collision, it is also required to improve the safety of automobile bodies. For these reasons, the weight reduction of automobile bodies and the reinforcement of automobile bodies have been actively promoted recently. In particular, in order to reduce the weight of an automobile body, it is considered to increase the strength of automobile steel sheets such as hot-rolled steel sheets and cold-rolled steel sheets to reduce the steel sheet thickness. On the other hand, since many automotive parts made of steel plates are formed by press working, the automotive steel plates are required to have excellent press formability. Moreover, since the galvannealed steel sheet is excellent in rust prevention and can be manufactured at low cost, it is frequently used as a rust-proof surface-treated steel sheet for automobile bodies.
In order to increase the strength of the steel sheet, it is necessary to add elements such as easily oxidizable elements such as Mn and Si to enhance the solid solution. Further, due to the recent increase in the required level of rust prevention performance, it has been demanded to further improve the corrosion resistance of conventionally used galvannealed steel sheets.
[0003]
[Problems to be solved by the invention]
The present invention is intended to solve the above problem, and even if the base steel sheet contains a large amount of Si and Mn, it has excellent adhesion to the upper layer hot dip galvanizing and is a high strength alloyed and melted alloy with excellent corrosion resistance as a plated steel sheet. It aims at providing a galvanized steel plate and its manufacturing method.
[0004]
[Means for Solving the Problems]
That is, the present invention provides a high-strength galvannealed steel sheet and a method for producing the same as shown in the following (1) to (6).
(1) On the steel sheet satisfying the C amount of 0.05 to 0.25%, the Si amount of 0.1 to 1.5%, the Mn amount of 0.5 to 3.5%, and the B amount of ≦ 5 ppm, The contents of Si, Mn and B are {Fe%} * [Si%] / 10 (%) ≧ {Si%} ≧ {Fe%} * [Si%] / 100 (%) and {Fe%} * [Mn%] / 10 (%) ≧ {Mn%} ≧ {Fe%} * [Mn%] / 100 (%) and {B} (ppm) ≦ 10 (ppm) and the degree of alloying is 7 A high-strength galvannealed steel sheet excellent in plating adhesion and corrosion resistance, characterized by having an alloyed galvanized layer satisfying (%) ≦ {Fe%} ≦ 15 (%). However, {} represents the content in the plating layer, [] represents the content in steel, and% represents mass% unless otherwise specified.
[0005]
(2) A steel sheet satisfying a C amount of 0.05 to 0.25%, a Si amount of 0.1 to 1.5%, a Mn amount of 0.5 to 3.5%, and a B amount of ≦ 5 ppm in a heating furnace After heating to 950 ° C. to form an oxide film having a thickness of 0.01 to 0.3 μm containing Si and Mn, pickling is performed for 1 to 20 seconds with an acid having a concentration of 1 to 20% at 60 to 90 ° C. And after removing the oxide film until it becomes 0.001 to 0.05 μm, after annealing at 650 to 850 ° C., in a zinc bath at 440 to 480 ° C. where the Al concentration is 0.08 to 0.20%. Applying hot dip galvanization, and then performing alloying treatment at 450 to 600 ° C. so that the degree of alloying is 7 (%) ≦ {Fe%} ≦ 15 (%). A method for producing excellent high-strength galvannealed steel sheets.
[0006]
(3) Further, 0.01 to 1% of at least one selected from the group consisting of Cu, Ni and Mo is contained in the steel plate, and Cu, Ni and Mo are contained in the galvannealed layer. The high-strength galvannealed steel sheet having excellent plating adhesion and corrosion resistance according to (1) above, containing 0.01 to 0.2% of at least one selected from the group consisting of:
[0007]
(4) The high strength alloyed hot dip galvanized steel having excellent plating adhesion and corrosion resistance according to (1) or (3), further comprising 0.01 to 1% of Al in the steel sheet. steel sheet.
[0008]
(5) Furthermore, 0.01 to 1% of at least one selected from the group consisting of Cu, Ni and Mo is included in the steel sheet, and the plating adhesion and corrosion resistance according to (2) above For producing high-strength galvannealed steel sheets with excellent strength.
[0009]
(6) The high strength alloyed hot dip galvanizing having excellent plating adhesion and corrosion resistance according to (2) or (5), further comprising 0.01 to 1% of Al in the steel sheet. A method of manufacturing a steel sheet.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As described above, it is known that the larger the amount of Si and Mn in the base material, the higher the strength of the base material, and the greater the amount of Si and Mn in the plating layer, the more the corrosion resistance of the plating layer is improved. When a large amount of Si and Mn is contained in the base material, the plating adhesion deteriorates. Therefore, the present inventors have conducted the following experiment in order to solve this problem, and have completed the present invention from the obtained knowledge. B, which is a light element, diffuses more easily than Si and Mn, and depending on the annealing conditions, the concentration in the plating layer is estimated to be several tens of times the content of the base material. ing.
[0011]
The present invention has been completed based on the following experimental facts.
A 30 mm thick sheet bar having the composition of steel type A shown in Table 2 was heated at 1200 ° C. to form a hot rolled sheet having a thickness of 2.0 mm in 5 passes, and wound at 610 ° C. Next, the black skin was removed by pickling, and the hot-rolled sheet was annealed at 700 to 970 ° C. for 60 seconds in an annealing furnace, and then pickled with 5% HCl at 60 ° C. for 1 to 20 seconds. Then, annealing was performed at 600 to 900 ° C. for 20 seconds in a plating apparatus, and after plating for 1 second in a zinc bath having an Al concentration of 0.13% in the bath and a bath temperature of 465 ° C., alloying was performed at 440 to 550 ° C. Processed.
{Fe%} in the obtained galvannealed steel sheet was 10%, {Si%} was 0.01 to 0.8%, and {Mn%} was 0.1 to 2.2%. It was.
[0012]
The plating adhesion and corrosion resistance of the plated steel sheet obtained here were investigated. Plating adhesion is measured by measuring the amount of plating peeling per unit length as a Zn count with fluorescent X-rays when cellophane tape is applied to a plated steel sheet, the tape surface is bent within 90 °, bent back, and then peeled off. Then, according to the criteria in Table 1, those with ranks 1 and 2 were evaluated as good, and those with 3 or more were evaluated as bad. Corrosion resistance is evaluated as good when the rust generation area ratio is less than or equal to the rust generation status in the salt spray test result of the alloyed hot-dip galvanized steel sheet of mild steel sheet, and is evaluated as good when it exceeds 10%. did. FIG. 2 is a diagram showing the influence of the thickness of the oxide film before and after pickling on the corrosion resistance. The case where the corrosion resistance was good was shown as ◯, and the case where it was poor was shown as ●.
By combining these results, ◯ indicates that both the plating adhesion and corrosion resistance are good, and ◯ indicates that the corrosion resistance is good, but the plating adhesion is poor, and the plating adhesion and corrosion resistance are Those which were both bad are shown in FIG. 1 as ●.
FIG. 3 is a diagram showing the influence of the concentration of B in the alloyed hot-dip galvanized layer on the plating adhesion. When the amount of B in the plating layer is 6 ppm or less, the plating adhesion is Rank 1 (◯) in light of the criteria in Table 1, and when the amount of B in the plating layer is 7 to 10 ppm, Rank 2 ( Δ). On the other hand, when the amount of B in the plating layer exceeded 10 ppm, the rank was 3 or more (x).
[0013]
Figure 0004655366
[0014]
The following findings were obtained from the obtained results.
1) The amounts of Si and Mn in the plating layer have the effect of improving the corrosion resistance.
2) Since the concentration of Si and Mn on the steel surface is estimated to be several times the content of the base material, the amount of Si and Mn in the plating layer is theoretically considered from the content of the base material itself. More than the amount taken up.
3) The amount of Si and Mn in the plating layer is affected by the amount of Si and Mn in the base material and {Fe%} after alloying in the plating layer, and the range is {Fe%} * [Si%] / 10 (%) ≧ {Si%} ≧ {Fe%} * [Si%] / 100 (%)
{Fe%} * [Mn%] / 10 (%) ≧ {Mn%} ≧ {Fe%} * [Mn%] / 100 (%)
If it is, there exists a range with favorable plating adhesiveness and corrosion resistance.
4) From the results of FIG. 2, it can be seen that the corrosion resistance is good when the thickness of the oxide film before and after pickling is within a specific range.
5) From the results of FIG. 3, it can be seen that B deteriorates the plating adhesion, and not only the content in steel but also the incorporation into the plating layer should be reduced as much as possible. In addition, since the plating adhesion deteriorates, bare metal exposed parts such as non-plating and pinholes are generated, and thus corrosion resistance may deteriorate as a result even if Si or the like is incorporated in the plating layer. . For this reason, the amount of B in a plating layer must be 10 ppm or less.
[0015]
The following present invention was completed from the findings of the above experiments.
The characteristics of the present invention are: {Si%} in plating layer, {Mn%}, [Si%] in steel, [Mn%] and {Fe%} in plating layer as specific ranges, plating adhesion, It is to obtain a plated steel sheet that satisfies both corrosion resistance and strength. That is, the content of Si, Mn, and B in the plating layer needs to satisfy the following formula.
{Fe%} * [Si%] / 10 (%) ≧ {Si%} ≧ {Fe%} * [Si%] / 100 (%) and {Fe%} * [Mn%] / 10 (%) ≧ {Mn%} ≧ {Fe%} * [Mn%] / 100 (%) and {B} (ppm) ≦ 10 (ppm)
When {Si%} and {Mn%} are less than the above ranges, sufficient improvement in corrosion resistance cannot be expected. On the other hand, when {Si%} and {Mn%} exceed the above ranges, the corrosion resistance is improved, but the plating performance is poor during hot dip galvanizing, and the unplated portion deteriorates the corrosion resistance and is plated after alloying. Degradation of adhesion. Moreover, when {B} exceeds the above range, plating adhesion is deteriorated.
[0016]
The reason why the degree of alloying {Fe%} is limited is as follows. The optimum value of the amount of {Si} and {Mn} in the plating layer of the present invention is determined by the degree of alloying and the amount of [Si] and [Mn] in the steel.
Alloying degree: 7 ≦ {Fe%} ≦ 15
If it is less than 7%, not only a large amount of ζ phase remains, but also the η phase remains, so that alloying becomes insufficient and slidability deteriorates. Therefore, the degree of alloying needs to be 7% or more. However, if it exceeds 15%, a large amount of Γ phase is generated, so that the plating adhesion is deteriorated and the corrosion resistance of the bent portion is deteriorated.
[0017]
Next, the reason why the content of the constituent components in the steel is limited in the present invention will be described.
C amount 0.05-0.25%
The amount of C is indispensable for obtaining the required strength and obtaining the desired structure. At least 0.05% is necessary, but if it exceeds 0.25%, weldability deteriorates, so the above range was adopted.
[0018]
Si amount 0.1-1.5%
The amount of Si is indispensable for solid solution strengthening and obtaining a desired structure, and can increase the strength without deteriorating ductility. In addition, since Si and Mn oxide have the effect of improving the corrosion resistance, by leaving an appropriate amount of Si and Mn oxide immediately before plating, Si, Mn oxide and solid solution Si and Mn in steel can be reduced. The effect of improving the corrosion resistance can be obtained by taking an appropriate amount into the alloy layer while maintaining the plating adhesion, as a supply source. In order to obtain a desired effect, 0.1% is necessary. However, if it exceeds 1.5%, the plating adhesion deteriorates, so the above range was adopted.
[0019]
Mn amount 0.5-3.5%
Similar to C, an Mn amount of 0.5 to 3.5% is indispensable for obtaining the required strength and obtaining the desired structure. Further, in order to obtain the effect of improving the corrosion resistance similarly to Si, the effect is poor unless it is at least 0.5%. However, if it exceeds 3.5%, the weldability deteriorates.
[0020]
B amount ≦ 5ppm
Since B deteriorates the plating adhesion, the incorporation into the plating layer as well as the content in steel should be reduced as much as possible. Furthermore, since the bare metal parts such as non-plating and pinholes are generated due to the deterioration of the plating adhesion, the corrosion resistance may be deteriorated as a result even if Si or the like is taken into the plating layer. Therefore, the upper limit was set to 5 ppm.
[0021]
Furthermore, the steel of the high-strength galvannealed steel sheet of the present invention may contain at least one of the following elements in the following amounts. In that case, the following effects are further obtained.
Cu amount 0.01-1%
Cu segregates in austenite and is not only important for obtaining a desired strength and a desired structure, but also has an effect of improving plating adhesion. The reason why the plating adhesion is improved is not clarified at the present time. However, in order to obtain these desired effects, it is effective to contain 0.01% or more preferably. However, if it exceeds 1%, the economic efficiency deteriorates, so the upper limit is preferably made 1%.
[0022]
Ni content 0.01-1%
Ni is segregated in austenite like Cu and is not only important for obtaining the required strength and for obtaining the desired structure, but also has the effect of improving the plating adhesion, so it is added as necessary. The reason why the plating adhesiveness is improved is not clarified at the present time. However, in order to obtain these desired effects, it is preferable to contain 0.01% or more like Cu. However, if it exceeds 1%, the economic efficiency deteriorates, so the upper limit is preferably made 1%.
[0023]
Mo amount 0.01-1%
Although Mo is expensive, it segregates in austenite and is not only important for obtaining the required strength and for obtaining a desired structure, but also has an effect of improving plating adhesion. The reason why the plating adhesion is improved is not clarified at present as in the case of Cu and Ni. However, in order to obtain these desired effects, it is preferable to include 0.01% or more. However, if it exceeds 1%, the economic efficiency deteriorates, so the upper limit is preferably made 1%.
[0024]
Al content 0.01-1%
Al is important for obtaining the required strength and for obtaining the desired structure. As a result, the amount of Si added can be reduced, so it is advantageous because it is more advantageous for improving plating adhesion than Si-added steel having the same tensile strength. Add as appropriate. In order to obtain a desired effect, the content is preferably 0.01% or more. However, if it exceeds 1%, the economical efficiency deteriorates, so the upper limit is preferably made 1%.
[0025]
When the steel contains at least one selected from the group consisting of Cu, Ni and Mo, the plating layer contains at least one selected from the group consisting of Cu, Ni and Mo from 0.01 to 0.00. It is preferable to contain 2%.
When at least one of these elements is contained in the plating layer, it is preferable because the corrosion resistance is more effectively improved by the combined effect of these elements and the Fe—Zn alloy layer. For steel sheets containing Cu, Ni, and Mo in the base material, in order to obtain a stable effect of improving corrosion resistance, it is preferable that each of the plating layers contains 0.01% or more, but exceeds 0.2%. Is more preferably 0.2% because the content in the steel plate base material must be increased and the economic efficiency is deteriorated.
Further, in the present invention, {Fe%}, {Si%} and {Mn%} in the plating layer and [Si%] and [Mn%] in the steel have a relationship represented by the above formula. is required.
[0026]
The manufacturing method is characterized in that an oxide film containing Si and Mn is once formed, and then the amount of B is controlled by pickling to keep the amounts of Si and Mn in the plating layer within a certain range.
The method of reducing the amount of B in the plating layer is an oxide film mainly composed of Si and Mn by pickling after heating in a heating furnace and before annealing in a continuous hot dip galvanizing equipment (CGL) furnace. Is pickled into the alloy layer after alloying, and at the same time, B is removed, but since B is easier to pickle than Si and Mn, it is almost completely removed by pickling conditions described later. Removed.
[0027]
Hereinafter, the reason for limiting the manufacturing conditions will be described.
When the heating temperature in the heating furnace is lower than 750 ° C., a desired structure cannot be obtained and the strength cannot be increased, and the surface concentration of Si and Mn becomes insufficient. If the surface concentration in this step is insufficient, the surface concentration in the alloying process is too much, and the plating adhesion deteriorates. If it exceeds 950 ° C., the effect is not only saturated but also difficult to operate and inferior in economic efficiency. Furthermore, since a large amount of surface concentrate is generated, it cannot be removed to an appropriate amount by pickling, and non-plating occurs. Therefore, the heating temperature in a heating furnace shall be 750-950 degreeC.
[0028]
Oxide film in heating furnace (oxide film before pickling)
When the oxide film is less than 0.01 μm, the amount remaining after pickling is reduced, so that the corrosion resistance is deteriorated. Moreover, if it exceeds 0.3 μm, pickling is difficult. Therefore, the oxide film in a heating furnace shall be 0.01-0.3 micrometer. Here, the amount of the oxide film can be estimated by measuring while adjusting the sputtering rate by various measuring devices such as GDS, SIMS, and AES.
[0029]
Pickling conditions If the pickling temperature is less than 60 ° C or the pickling time is less than 1 second, the effect is difficult to obtain, and if the pickling temperature exceeds 90 ° C or the pickling time exceeds 20 seconds, the surface becomes rough and after plating Detracts from the appearance. Therefore, the pickling conditions are an acid having a concentration of 1 to 20%, a pickling temperature of 60 to 90 ° C., and a pickling time of 1 to 20 seconds. As the acid, hydrochloric acid is economical and preferable, but other acids such as sulfuric acid, phosphoric acid and nitric acid are not particularly limited.
[0030]
The amount of oxide film after pickling If the amount of oxide film after pickling is less than 0.001 μm, the amount taken into the plating layer after alloying is reduced, so the effect of improving corrosion resistance cannot be obtained. On the other hand, if it exceeds 0.05 μm, not only the plating adhesion deteriorates, but also the corrosion resistance deteriorates due to the non-plated portion. Therefore, the oxide film amount after pickling was set to 0.001 to 0.05 μm.
[0031]
Reduction heating temperature Preferably, reduction is performed by heating in a reducing atmosphere containing H 2 in a CGL (alloying) furnace. However, if the heating temperature is less than 650 ° C., the oxide film produced by pickling cannot be reduced and unplating may occur. appear. Further, when the temperature exceeds 850 ° C., the surface concentration of Si and Mn in the CGL furnace is large, so that non-plating occurs similarly. Therefore, the heating temperature in the CGL furnace was set to 650 to 850 ° C.
[0032]
In order to ensure adhesion after alloying of the hot dip galvanizing bath plating layer, the Al concentration needs to be 0.08% or more. However, if the Al concentration exceeds 0.20%, alloying becomes difficult, so the upper limit was made 0.20%. If the bath temperature is lower than 440 ° C., a portion below the freezing point (420 ° C.) may appear due to the bath temperature fluctuation of the plating bath, and the operation is not stable. Moreover, when it exceeds 480 degreeC, the cost concerning heating holding will increase. Therefore, the bath temperature was set to 440 to 480 ° C.
[0033]
Alloying temperature If the alloying temperature is less than 450 ° C, the ζ phase is likely to be generated, and not only the slidability of the alloyed hot-dip galvanized steel sheet may be lacking, but also the time required for alloying increases productivity. to degrade. Moreover, when it exceeds 600 degreeC, it will become easy to produce | generate a (GAMMA) phase and there exists a possibility that the plating adhesiveness of an galvannealed steel plate may be missing. Therefore, the alloying temperature was set to 450 to 600 ° C. In addition, since the amount of Fe in the plating layer is determined depending on the alloying conditions, the amount of Fe, Si, and Mn in the plating layer and the amount of Si and Mn in the base material must be in the range indicated by the above formula. Conditioning is important.
[0034]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited at all by these Examples.
Examples 1-9, Comparative Examples 1-8
A 300 mm thick slab having the chemical composition shown in Table 2 (C, Si, Mn, Al, P, S, Cr, Cu, Ni, Mo, Ti, Nb, B) is heated at 1200 ° C. and hot rolled. A hot-rolled sheet having a thickness of 2.3 mm was taken up at 620 ° C. Next, the black skin was removed by pickling, rolled at a reduction rate of 50% by cold rolling, and passed through a continuous annealing furnace (CAL). Subsequently, pickling, galvanizing, and alloying treatment were performed by passing through CGL. The amount of plating was 40 g / m 2 on one side. The alloying temperature was 450 to 600 ° C., and the alloying time was 20 seconds.
Table 3 shows the production conditions of the plated steel sheet (heating temperature in heating furnace, amount of coating film produced in heating furnace, amount of remaining coating after pickling, pickling time, CGL annealing temperature, plating bath temperature, Al concentration in bath, alloying temperature) Table 4 shows the results of investigations on the Si, Mn, B, Cu, Ni, and Mo contents, plating appearance, plating adhesion, and corrosion resistance in the plated layer of the obtained galvannealed steel sheet. Any of the production conditions within the range of the present invention have good plating adhesion and corrosion resistance, but in Comparative Examples outside the scope of the present invention, either or both of the plating adhesion and corrosion resistance were inferior.
[0035]
[Table 1]
Figure 0004655366
[0036]
[Table 2]
Figure 0004655366
[0037]
[Table 3]
Figure 0004655366
[0038]
【The invention's effect】
As described above, according to the present invention, a high-strength galvannealed steel sheet excellent in plating adhesion and corrosion resistance can be obtained. By applying the steel plate of the present invention, it is possible to reduce the weight and fuel consumption of an automobile body, and thus greatly contribute to the improvement of the global environment.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of Si and Mn concentrations in an alloyed hot-dip galvanized layer on plating adhesion and corrosion resistance.
FIG. 2 is a diagram showing the effect of an oxide film before and after pickling on corrosion resistance.
FIG. 3 is a diagram showing the influence of the concentration of B in the alloyed hot-dip galvanized layer on the plating adhesion.

Claims (6)

C量0.05〜0.25%、Si量0.1〜1.5%、Mn量0.5〜3.5%及びB量≦5ppmを満たす鋼板上に、めっき層中のSi、Mn及びBの含有量がそれぞれ
{Fe%}*[Si%]/10(%)≧{Si%}≧{Fe%}*[Si%]/100(%)かつ
{Fe%}*[Mn%]/10(%)≧{Mn%}≧{Fe%}*[Mn%]/100(%)かつ
{B}(ppm)≦10(ppm)を満たし、かつ
合金化度が7(%)≦{Fe%}≦15(%)を満たす合金化溶融亜鉛めっき層を有することを特徴とするめっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板。但し、{ }はめっき層中の含有量、[ ]は鋼中の含有量、%は、以下、特に断らない限り質量%を表す。
On the steel sheet satisfying the C amount of 0.05 to 0.25%, the Si amount of 0.1 to 1.5%, the Mn amount of 0.5 to 3.5%, and the B amount ≦ 5 ppm, Si and Mn in the plating layer And B content is {Fe%} * [Si%] / 10 (%) ≧ {Si%} ≧ {Fe%} * [Si%] / 100 (%) and {Fe%} * [Mn% ] / 10 (%) ≧ {Mn%} ≧ {Fe%} * [Mn%] / 100 (%) and {B} (ppm) ≦ 10 (ppm) and the degree of alloying is 7 (%) A high-strength galvannealed steel sheet excellent in plating adhesion and corrosion resistance, characterized by having an alloyed galvanized layer satisfying ≦ {Fe%} ≦ 15 (%). However, {} represents the content in the plating layer, [] represents the content in steel, and% represents mass% unless otherwise specified.
C量0.05〜0.25%、Si量0.1〜1.5%、Mn量0.5〜3.5%及びB量≦5ppmを満たす鋼板を、加熱炉で750〜950℃に加熱し、Si及びMnを含む厚さ0.01〜0.3μmの酸化皮膜を生成させた後、60〜90℃、1〜20%の濃度の酸で1〜20秒間酸洗を施し、酸化被膜が0.001〜0.05μmになるまで除去した後、650〜850℃で焼鈍後、Al濃度が0.08〜0.20%である440〜480℃の亜鉛浴中にて溶融亜鉛めっきを施し、引き続き450〜600℃で合金化度が7(%)≦{Fe%}≦15(%)となるように合金化処理を施すことを特徴とするめっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。A steel sheet satisfying a C amount of 0.05 to 0.25%, a Si amount of 0.1 to 1.5%, a Mn amount of 0.5 to 3.5%, and a B amount of ≦ 5 ppm is set to 750 to 950 ° C. in a heating furnace. After heating to form an oxide film having a thickness of 0.01 to 0.3 μm containing Si and Mn, pickling is performed with an acid having a concentration of 1 to 20% at 60 to 90 ° C. for 1 to 20 seconds, and oxidation is performed. After removing the coating to 0.001 to 0.05 μm, after annealing at 650 to 850 ° C., hot dip galvanization in a 440 to 480 ° C. zinc bath having an Al concentration of 0.08 to 0.20% And subsequently subjected to an alloying treatment at 450 to 600 ° C. so that the degree of alloying becomes 7 (%) ≦ {Fe%} ≦ 15 (%), which is excellent in plating adhesion and corrosion resistance. A method for producing a high-strength galvannealed steel sheet. さらに、前記鋼板中に、Cu、Ni及びMoからなる群から選択される少なくとも1種を0.01〜1%含み、かつ前記合金化溶融亜鉛めっき層中に、Cu、Ni及びMoからなる群から選択される少なくとも1種を0.01〜0.2%含むことを特徴とする請求項1に記載のめっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板。Furthermore, the steel plate contains 0.01 to 1% of at least one selected from the group consisting of Cu, Ni and Mo, and the alloyed hot-dip galvanized layer contains Cu, Ni and Mo The high-strength galvannealed steel sheet excellent in plating adhesion and corrosion resistance according to claim 1, comprising at least one selected from the group consisting of 0.01 to 0.2%. さらに、前記鋼板中に、Alを0.01〜1%含むことを特徴とする請求項1又は3に記載のめっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板。Furthermore, 0.01 to 1% of Al is contained in the said steel plate, The high-strength galvannealed steel plate excellent in the plating adhesiveness and corrosion resistance of Claim 1 or 3 characterized by the above-mentioned. さらに、前記鋼板中に、Cu、Ni及びMoからなる群から選択される少なくとも1種を0.01〜1%含むことを特徴とする請求項2に記載のめっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。Furthermore, 0.01 to 1% of at least 1 sort (s) selected from the group which consists of Cu, Ni, and Mo is contained in the said steel plate, The plating adhesion and corrosion resistance excellent in Claim 2 characterized by the above-mentioned. A method for producing a high-strength galvannealed steel sheet. さらに、前記鋼板中に、Alを0.01〜1%含むことを特徴とする請求項2又は5に記載のめっき密着性及び耐食性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。Furthermore, 0.01-1% of Al is contained in the said steel plate, The manufacturing method of the high intensity | strength galvannealed steel plate excellent in the plating adhesiveness and corrosion resistance of Claim 2 or 5 characterized by the above-mentioned.
JP2000369682A 2000-12-05 2000-12-05 High strength alloyed hot dip galvanized steel sheet with excellent plating adhesion and corrosion resistance and method for producing the same Expired - Fee Related JP4655366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000369682A JP4655366B2 (en) 2000-12-05 2000-12-05 High strength alloyed hot dip galvanized steel sheet with excellent plating adhesion and corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000369682A JP4655366B2 (en) 2000-12-05 2000-12-05 High strength alloyed hot dip galvanized steel sheet with excellent plating adhesion and corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002173756A JP2002173756A (en) 2002-06-21
JP4655366B2 true JP4655366B2 (en) 2011-03-23

Family

ID=18839687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000369682A Expired - Fee Related JP4655366B2 (en) 2000-12-05 2000-12-05 High strength alloyed hot dip galvanized steel sheet with excellent plating adhesion and corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4655366B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1612288B9 (en) * 2003-04-10 2010-10-27 Nippon Steel Corporation A method for producing a hot-dip zinc coated steel sheet having high strength
RU2572901C9 (en) 2011-07-29 2016-06-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Annealed layer of galvanic coating, and steel plate with such coating, and method of its producing
MX352497B (en) 2011-09-30 2017-11-28 Nippon Steel & Sumitomo Metal Corp Alloyed hot-dip galvanized steel sheet.
JP5852690B2 (en) * 2013-04-26 2016-02-03 株式会社神戸製鋼所 Alloyed hot-dip galvanized steel sheet for hot stamping
CN115874104B (en) * 2022-11-25 2024-05-03 常州大学 Medical degradable ZnFeMn medium entropy alloy and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001140022A (en) * 1999-08-27 2001-05-22 Nippon Steel Corp Method of manufacturing high strength galvanized steel sheet excellent in press-formability
JP2001207236A (en) * 2000-01-26 2001-07-31 Kawasaki Steel Corp High tensile strength hot dip galvanized steel plate and producing method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001140022A (en) * 1999-08-27 2001-05-22 Nippon Steel Corp Method of manufacturing high strength galvanized steel sheet excellent in press-formability
JP2001207236A (en) * 2000-01-26 2001-07-31 Kawasaki Steel Corp High tensile strength hot dip galvanized steel plate and producing method therefor

Also Published As

Publication number Publication date
JP2002173756A (en) 2002-06-21

Similar Documents

Publication Publication Date Title
JP6813133B2 (en) Manufacturing method of aluminum-plated steel sheet, hot stamping member and hot stamping member
KR100595947B1 (en) High strength thin steel sheet, high strength galvannealed steel sheet and manufacturing method thereof
JP3898923B2 (en) High-strength hot-dip Zn-plated steel sheet excellent in plating adhesion and ductility during high processing and method for producing the same
CN113272466B (en) Method for producing hot dip galvanized steel sheet
JP4631241B2 (en) High-tensile hot-dip galvanized steel sheet and high-tensile alloyed hot-dip galvanized steel sheet with excellent strength ductility balance, plating adhesion and corrosion resistance
JP2006063360A5 (en)
JP3598087B2 (en) High-strength galvannealed steel sheet with excellent workability and method for producing the same
JP4331915B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in fatigue durability and corrosion resistance and method for producing the same
JP3318385B2 (en) Alloyed hot-dip galvanized steel sheet with excellent press workability and plating resistance
JP3584911B2 (en) High tensile hot dip galvanized steel sheet and high tensile alloyed hot dip galvanized steel sheet
JP4781577B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP3444007B2 (en) Manufacturing method of high workability, high strength galvanized steel sheet
JP4655366B2 (en) High strength alloyed hot dip galvanized steel sheet with excellent plating adhesion and corrosion resistance and method for producing the same
JP4629138B2 (en) Alloy hot-dip galvanized steel sheet
JP5070863B2 (en) Alloyed steel sheet and manufacturing method thereof
JPH09176815A (en) High strength hot dip galvanized steel sheet excellent in plating adhesion
JP3738645B2 (en) High-tensile cold-rolled steel sheet with excellent electroplating adhesion and ductility and method for producing the same
JP2014240510A (en) Galvanized steel sheet and production method thereof
WO2021215100A1 (en) Hot-dip zinc plated steel sheet and method for producing same
JP2002371342A (en) Hot-dip galvanized steel sheet and manufacturing method therefor
JP3577930B2 (en) High-strength, high-ductility hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP2555821B2 (en) Method for producing hot dip galvanized steel sheet
JP2000109965A (en) Production of hot dip galvanized high tensile strength steel sheet excellent in workability
JP3875958B2 (en) High strength and high ductility hot dip galvanized steel sheet with excellent workability and manufacturing method thereof
WO2018211920A1 (en) Method for manufacturing high-strength molten zinc plated steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4655366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees