JP3875958B2 - High strength and high ductility hot dip galvanized steel sheet with excellent workability and manufacturing method thereof - Google Patents

High strength and high ductility hot dip galvanized steel sheet with excellent workability and manufacturing method thereof Download PDF

Info

Publication number
JP3875958B2
JP3875958B2 JP2003061073A JP2003061073A JP3875958B2 JP 3875958 B2 JP3875958 B2 JP 3875958B2 JP 2003061073 A JP2003061073 A JP 2003061073A JP 2003061073 A JP2003061073 A JP 2003061073A JP 3875958 B2 JP3875958 B2 JP 3875958B2
Authority
JP
Japan
Prior art keywords
steel sheet
temperature
strength
plating bath
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003061073A
Other languages
Japanese (ja)
Other versions
JP2004269947A (en
Inventor
昌史 東
展弘 藤田
学 高橋
康秀 森本
明博 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003061073A priority Critical patent/JP3875958B2/en
Publication of JP2004269947A publication Critical patent/JP2004269947A/en
Application granted granted Critical
Publication of JP3875958B2 publication Critical patent/JP3875958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、建材、家電製品、自動車などに適する加工性に優れた高強度高延性溶融亜鉛めっき鋼板及びその製造方法に関する。
【0002】
【従来の技術】
溶融亜鉛めっきは鋼板の防食を目的として施され、建材、家電製品、自動車など広範囲に使用されている。その製造法としては、連続ラインに於いて、脱脂洗浄後、非酸化性雰囲気にて加熱し、H2 及びN2 を含む還元雰囲気にて焼鈍後、めっき浴温度近傍まで冷却し、溶融亜鉛浴に浸漬後、冷却、もしくは再加熱してFe−Zn合金相を生成させた後に冷却、というゼンジマー法があり、鋼板の処理に多用されている。
【0003】
めっき前の焼鈍については、脱脂洗浄後、非酸化性雰囲気中での加熱を経ず直ちにH2 及びN2 を含む還元雰囲気にて焼鈍を行う、全還元炉方式も行われる場合がある。また、鋼板を脱脂、酸洗した後、塩化アンモニウムなどを用いてフラックス処理を行って、めっき浴に浸漬、その後冷却、というフラックス法も行われている。
【0004】
また近年、特に自動車車体において燃費向上や耐久性向上の観点を目的とした加工性の良い高強度めっき鋼板の需要が高まり、これまで以上の加工性を有する高強度鋼板の開発が切望されている。一方、高強度鋼板には種々の合金が添加されているうえ、組織制御を用いた高強度化と高延性化を行っていることから、熱処理方法にも大きな制約がある。
【0005】
しかし、めっきの観点からすると鋼中の合金成分、中でもSiの含有量が高くなったり、熱処理条件に大きな制約があったりすると、通常の溶融亜鉛めっき浴を用いたのではめっき濡れ性が大きく低下し、不めっきが発生するため外観品質が悪化するという問題を抱えている。また、一部合金化を必要とする場合には、合金化熱処理を施す必要がある。高強度鋼板の場合には、先にも述べたように添加元素が多量であるため、このめっき後の合金加熱処理も軟鋼の場合に比べ高温・長時間化傾向にあるため、材質を作りこむ上での大きな障害の1つになっている。
【0006】
この問題を解決する手段として、特許文献1および特許文献2等に見られるように、特定のめっきを付与することでめっき性の改善を行っているが、この方法では、溶融めっきライン焼鈍炉前段に新たにめっき設備を設けるか、もしくは、あらかじめ電気めっきラインにおいてめっき処理を行わなければならず、大幅なコストアップとなるという問題点がある。
【0007】
また、めっき製造性改善を目的として、特許文献3によりZn−Al−Mn−Fe系めっき層を有する溶融亜鉛めっき鋼板が開示されている。しかし、この発明は特に製造性には十分な考慮が払われているが、高強度かつ高延性材での高加工時のめっき密着性については配慮された発明ではない。
【0008】
さらには、特許文献4に見られるように、鋼板中にSi、MnおよびNiを含有する鋼板に関する発明はあるものの、これはめっき性の改善を目的としたものであり、本発明で述べる加工性の向上について配慮したものではない。
【0009】
一方、衝突エネルギー吸収能を高めることを目的として、特許文献5にフェライトを主相とし,その平均粒径が10μm以下であり、第2相として体積分率で3〜50%のオーステナイトまたは3〜30%のマルテンサイトからなり、第2相の平均粒径が5μm以下であり、選択的にベイナイトを含有する鋼板が開示されている。しかし、この発明はめっき濡れ姓を考慮するものではなく、高強度化に伴う薄肉化に耐食性の点で対応しうる発明ではない。
【0010】
【特許文献1】
特開平3−28359号公報
【特許文献2】
特開平3−64437号公報
【特許文献3】
特開平5−230608号公報
【特許文献4】
特開2000−850658号公報
【特許文献5】
特開平11−189839号公報
【0011】
【発明が解決しようとする課題】
本発明は、上記課題を解決し、加工性に優れた高強度高延性溶融亜鉛めっき鋼板及びその製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者らは、種々検討を行った結果、鋼板中に含まれるMn量とNi量を所定の範囲に制御することで、優れた加工性を有する鋼板が製造可能であることを明らかにした。ここで述べる加工性とは、鋼板の均一伸びと全伸びのことを意味する(以下同じ)。また、めっき性については、鋼中に含まれるSi量を所定の範囲に抑えることで改善可能であることを見出した。
【0013】
本発明は、上記知見に基づいて完成されたもので、その要旨とするところは以下の通りである。
(1)質量%で、
C:0.0001〜0.3%、
Si:0.001〜0.1%未満、
Mn:0.001〜3%、
Ni:0.79〜5%、
Al:0.1〜4%、
Mo:0.001〜4%、
P:0.0001〜0.3%、
S:0.01%以下
を含有し、かつ、Mn含有量とNi含有量が、下記(1)式を満たし、残部鉄及び不可避的不純物からなり、ミクロ組織が、体積分率最大の相としてフェライト又はフェライト及びベイナイトを体積分率で50〜97%含有し、第2相としてオーステナイトを3〜50%含む鋼板の表面に、
Al:0.001〜0.5%、
Fe:5〜20%を含有し、残部がZn及び不可避的不純物からなるめっき層を有することを特徴とする加工性に優れた高強度高延性溶融亜鉛めっき鋼板。
−3×Mn+3.5<Ni<−4.8×Mn+7.2・・(1)
(2)めっき層が
Al:0.001〜0.5%、
Fe:5%未満を含有し、残部がZn及び不可避的不純物からなることを特徴とする(1)記載の加工性に優れた高強度高延性溶融亜鉛めっき鋼板
(3)さらに、鋼中に質量%で、
Cu:0.001〜4%、
Cr:0.001〜4%、
Co:0.001〜4%
の1種又は2種以上を含有することを特徴とする(1)又は(2)記載の加工性に優れた高強度高延性溶融亜鉛めっき鋼板。
)さらに、鋼中に質量%で、Nb、Ti、Vの1種または2種以上を合計で0.001〜1%含有することを特徴とする(1)〜()のいずれかに記載の加工性に優れた高強度高延性溶融亜鉛めっき鋼板。
)さらに、鋼中に質量%で、B:0.0001〜0.1%を含有することを特徴とする(1)〜()のいずれかに記載の加工性に優れた高強度高延性溶融亜鉛めっき鋼板。
)前記(1)〜()のいずれかに記載の成分からなる鋳造スラブを鋳造まま、あるいは、一旦冷却した後に再度加熱し、熱延後巻き取った熱延鋼板を酸洗後冷延し、その後最高加熱温度が、Ac1+30℃以上、Ac3℃以下で焼鈍した後に、0.1〜10℃/秒の冷却速度で650〜710℃の温度域に冷却し、引き続いて1〜100℃/秒の冷却速度で、Znめっき浴温度〜Znめっき浴温度+100℃まで冷却した後、350℃〜Znめっき浴温度+100℃の温度域で、めっき浴の侵漬時間を含めて1〜3000秒保持した後、Znめっき浴に侵漬して、その後、室温まで冷却することを特徴とする加工性に優れた高強度高延性溶融亜鉛めっき鋼板の製造方法。
)Znめっき浴に浸漬した後、浴温〜Znめっき浴温度+100℃の温度範囲で1〜300秒間の保持を行い、室温まで冷却することを特徴とする()記載の加工性に優れた高強度高延性溶融亜鉛めっき鋼板の製造方法。
【0014】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0015】
本発明者らは、質量%で、C:0.0001〜0.3%、Si:0.001〜0.1%未満、Mn:0.001〜3%、Ni:0.1〜5%、Al:0.1〜4%、Mo:0.001〜4%、P:0.0001〜0.3%、S:0.01%以下を含有し、残部Fe及び不可避不純物からなる冷片の熱延鋼板を酸洗後冷延し、その後最高加熱温度がAc1 +30℃以上、Ac3 ℃以下で連続焼鈍し、1〜100℃/秒でZnめっき浴温度〜Znめっき浴温度+100℃まで冷却した後、350℃〜Znめっき浴温度+100℃で、めっき浴の侵漬時間を含めて1〜3000秒保持した後、450〜470℃のZnめっき浴に3秒間浸漬を行い、さらに500〜550℃で10〜60秒加熱を行った。めっき層の組成はAl:0.001〜0.5%、Fe:5〜20%、残部がZn及び不可避的不純物であった。その後、めっき鋼板表面の不めっき部面積の測定とめっき層中に含まれるFe量を調査することでめっき性を調査した。
【0016】
その結果、鋼中に含まれるSi量を0.1質量%未満とすることでめっきの濡れ性が良好となることを見出した。
【0017】
加工性の向上については、鋼板に含まれるMn含有量(質量%)とNi含有量(質量%)が、下記(1)式を満たすことで、同一強度のものを比較した場合、下記式を満たさないものに対し、満たすものは、均一伸び及び全伸びのいずれにおいても2〜5%程度向上することを見いだした。
【0018】
−3×Mn+3.5<Ni<−4.8×Mn+7.2・・(1)
また、(1)式は、鋼板の強度によらず有効であり、鋼板中のMn含有量とNi含有量が、(1)式を満たす限りその効果は発揮される。なお、(1)式は、鋼板の強度と延性に対する鋼板成分の影響を整理した重回帰分析により、本発明者等が新たに見出した式である。
【0019】
次に、本発明における鋼板成分の好適な範囲の限定理由について述べる。
【0020】
C:オーステナイト安定化元素であり、二相域加熱時およびベイナイト変態温度域でフェライトからオーステナイト中へと移動し、オーステナイト中に濃化する事でオーステナイトを安定化させる。その結果、室温においてもオーステナイトが安定化する事となり、優れた延性が確保される。Cが0.0001質量%未満だと3%以上のオーステナイトを確保するのが困難であることから、その下限値を0.0001質量%とした。一方では、Cが0.3質量%を超えると溶接が困難となる事から、その上限を0.3質量%とした。
【0021】
Si:Siは焼鈍中に鋼板表面に酸化物を形成してしまい不めっきの原因となる。これは、鋼中のSi含有量が0.1%以上になると顕著になることから、その上限を0.1質量%未満とした。また、0.001質量%を超えて鋼板を低Si化したとしても、不経済であることからその下限値を0.001質量%とした。
【0022】
Mn:Mnは強度確保に必要な元素であり、0.001質量%未満では、強化効果が発現しない事から下限を0.001質量%とした。一方、3質量%を超えると延性に悪影響を及ぼす事から3質量%を上限値とした。
【0023】
Ni:Niは、強度確保に必要な元素であり、0.1質量%未満では、強化効果が発現しない事から下限を0.1質量%とした。一方、5質量%を超えると延性に悪影響を及ぼす事から5質量%を上限値とした。Ni含有量の下限値は、実施例の表1中のFの鋼の0.79%に基づいて、0.79%以上とした。
【0024】
さらには、鋼板に含まれるNiを下記(1)式の範囲に制御することで、本発明の効果である優れた加工性が発揮される。ここで述べている加工性とは鋼板の均一伸びと全伸びを示し、鋼板の引張り強度(TS)と引張り試験の際の全伸び(El.)、あるいは、均一伸び(u−El.)の積として表される。Niの含有量が(1)式の左辺より少ない場合、本発明の効果である優れた延性は得られない。一方、Niの含有量が(1)式の右辺を超える添加は、過度なコストの向上を招くことから好ましくない。しかしながら、この値を超えたとしても、本発明の効果である優れた延性は発揮される。
−3×Mn+3.5<Ni<−4.8×Mn+7.2・・(1)
Al:Alは、脱酸材として用いられるのに加え、セメンタイトに固溶しない事から、セメンタイト析出を遅らせ、オーステナイトがフェライトとセメンタイトへ分解するのを遅らせる。この間に、オーステナイト中へとCを濃化させる事が可能となり、室温でもオーステナイトが存在し得る。ただし、0.1質量%未満だとその効果は発揮しない。一方、4%を超えると溶接性が悪化する事から、その上限を4質量%とした。
【0025】
Mo:Moは、セメンタイト析出およびパーライト変態を遅らせる事から、残留オーステナイトの確保に重要である。ただし、0.001質量%未満だとその効果を発揮しない。一方、4%を超えると延性に悪影響を及ぼすことから、上限値を4質量%とした。
【0026】
P:Pを0.0001質量%未満とすることは、経済的に不利であることからこの値を下限値とした。一方、0.3質量%を超える量の添加では、溶接性ならびに製造時および熱延時の製造性に悪影響を及ぼす。このことから上限値を、0.3質量%とした。
【0027】
S:Sは、溶接性ならびに製造時および熱延時の製造性に悪影響を及ぼす。このことから、その上限値を0.01質量%以下とした。
【0028】
さらに、本発明が対象とする鋼は、強度のさらなる向上を目的としてCu、Cr、Coの1種または2種以上を含有できる。
【0029】
Cuは、強化目的で0.001質量%以上の添加とし、4質量%を超える量の添加では、加工性に悪影響を及ぼす。
【0030】
Crは、強化目的および炭化物生成の抑制の目的から添加する元素で、0.001%以上とし、4%を超える量の添加では、加工性に悪影響を及ぼすため、これを上限とした。
【0031】
Coは、めっき性制御、ベイナイト変態制御による強度延性バランスの向上のため、0.001質量%以上の添加とした。一方、添加の上限は特に設けないが、高価な元素であるため多量添加は経済性を損なうため、4質量%以下にすることが望ましい。
【0032】
さらに、本発明が対象とする鋼は、強度のさらなる向上を目的として炭化物形成元素であるNb、Ti、Vの1種または2種以上を含有できる。これらの元素は、微細な炭化物、窒化物または炭窒化物を形成して、鋼板の強化に極めて有効であるため、必要に応じて1種または2種以上を合計で0.001質量%以上添加できる。一方で、延性劣化や残留オーステナイト中へのCの濃化を阻害することから、合計添加量の上限として1質量%とした。
【0033】
Bもまた、必要に応じて添加できる。Bは、0.0001質量%以上の添加で粒界の強化や鋼材の高強度化に有効ではあるが、その添加量が0.1質量%を超えるとその効果が飽和するばかりでなく、必要以上に鋼板強度を上昇させ、加工性が低下するため、上限を0.1質量%とした。
【0034】
不可避的不純物として、例えばSnなどがあるがこれら元素をSn≦0.01質量%以下の範囲で含有しても本発明の効果を損なうものではない。
【0035】
次に、基材鋼板の好ましいミクロ組織について述べる。
【0036】
本発明に係る高強度溶融亜鉛めっき鋼板の延性は、体積分率最大の相(主相)であるフェライトの体積分率と第2相である残留オーステナイトの体積分率に左右される。主相であるフェライトの体積分率が(以下同じ)50%未満であると優れた延性が発揮されない。そこでその下限値を、50%以上とした。加えて、更なる鋼板の高強度化を指向する場合にはベイナイト相を含んでも良いが、延性を確保する観点から主相としては、フェライトの単独相、又は、フェライト及びベイナイトの複合相を、50%以上含むことが望ましい。一方、主相であるフェライト又はフェライトおよびベイナイトが97%を超えると、鋼板の強度を向上させる硬質相(ここでは、主に、残留オーステナイトおよびマルテンサイトを示す。)の割合が極端に少なくなり、強度を向上させることができない。そこで、その上限値を97%以下とした。
【0037】
また、第2相である残留オーステナイトが3%未満では、その効果がほとんど表れない事から下限値を3%以上とした。一方、残留オーステナイトが50%を超えると、極端に著しい成形を加えた場合、成形後多量のマルテンサイトが存在する事となり、二次加工性や衝撃特性に問題を生じる事があるので、本発明では、その上限値を50%とした。
【0038】
また、第2相の残留オーステナイト以外の相として、マルテンサイトを含有しても、本発明を逸脱するものではない。
【0039】
鋼板の組織のサイズ分布については特に規定は設けないが、組織の均一性と細粒化による鋼板の強化の観点から、フェライト、ベイナイト及び残留オーステナイトの粒径は、50μm以下が望ましい。しかしながら、この大きさを超えたとしても本発明を逸脱するものではない。
【0040】
なお、上記ミクロ組織の各相、フェライト、ベイナイト、オーステナイト、マルテンサイトおよび残部組織の同定、存在位置の観察および体積分率の測定は、ナイタール試薬および特開昭59−219473号公報に開示された試薬により鋼板圧延方向断面または圧延直角方向断面を腐食して500倍〜1000倍の光学顕微鏡観察により定量化が可能である。
【0041】
上記の他にミクロ組織の残部組織として、炭化物、窒化物、硫化物、酸化物の1又は2以上を面積分率5%以下で含有する場合も本発明の範囲とする鋼板である。
【0042】
次にめっき層について説明する。
【0043】
めっき層中Al量は、0.001〜0.5質量%の範囲とすることが好ましい。Alは、0.001質量%未満では、ドロス発生が顕著で良好な外観が得られないこと、0.5質量%を超えてAlを添加すると合金化反応を著しく抑制してしまい、合金化溶融亜鉛めっき層を形成することが困難となるためである。
【0044】
また、特にスポット溶接性や塗装性が望まれる場合には、合金化処理によってこれらの特性を高めることができる。具体的には、Znメッキ浴に浸漬した後、300〜550℃で合金化処理を施すことで、めっき層中にFeが取り込まれ、塗装性やスポット溶接性に優れた高強度溶融亜鉛めっき鋼板を得ることができる。合金化処理後のFe量が5質量%未満ではスポット溶接性が不十分となる。一方、Fe量が20質量%を超えるとめっき層自体の密着性を損ない、加工の際めっき層が破壊・脱落し金型に付着することで、成形時の疵の原因となる。したがって、合金化処理を行う場合のめっき層中Fe量の範囲は5〜20質量%とする。
【0045】
また、合金化処理を行わない場合めっき層中のFe量が5質量%以下未満でも、合金化により得られるスポット溶接を除く効果である耐食性と延性や加工性は良好である。
【0046】
めっき付着量については、特に制約は設けないが、耐食性の観点から片面付着量で5g/m2 以上であることが望ましい。本発明の溶融Znめっき鋼板上に塗装性、溶接性を改善する目的で上層めっきを施すことや、各種の処理、例えば、クロメート処理、りん酸塩処理、潤滑性向上処理、溶接性向上処理等を施しても、本発明を逸脱するものではない。
【0047】
このような組織を有する高強度溶融亜鉛めっき鋼板の製造方法について以下説明する。
【0048】
上記成分組成を満足する鋳造スラブを鋳造まま、あるいは、一旦Ar3(℃)以下に冷却した後に再度加熱し、熱延後巻き取った熱延鋼板を酸洗後冷延し、その後最高加熱温度が、Ac1 +30℃以上、Ac3 ℃以下で焼鈍した後に、0.1〜10℃/秒の冷却速度で650〜710℃の温度域に冷却し、引き続いて1〜100℃/秒の冷却速度で、Znめっき浴温度〜Znめっき浴温度+100℃まで冷却した後、350℃〜Znめっき浴温度+100℃の温度域で、めっき浴の侵漬時間を含めて1〜3000秒保持した後、Znめっき浴に侵漬して、その後、めっき浴温からめっき浴温+100℃の温度範囲で1〜300秒間の保持を行った後、あるいは、保持を行わずに室温まで冷却することで、加工性に優れた、高強度溶融亜鉛めっき鋼板を製造できる。
【0049】
冷延鋼板の連続焼鈍では、その組織をフェライト+オーステナイトの二相組織とするため、Ac1 変態点以上Ac3 変態点以下の温度に加熱する。この時の加熱温度が、Ac1 +30℃未満になると、セメンタイトが再固溶するのに時間がかかりすぎ、オーステナイトの存在量も僅かとなってしまうため、加熱温度の下限値はAc1 +30℃とする。また、加熱温度が高くなりすぎるとオーステナイトの体積分率が大きくなりすぎて、オーステナイト中のC分率が低下するので、その上限温度をAc3 ℃とする。
【0050】
焼鈍の最高加熱温度での保持時間が短すぎると、未溶解炭化物が残存する可能性が高く、オーステナイト体積率が少なくなるため、10秒以上とすることが望ましい。一方、保持時間が長すぎると、結晶粒が粗大化する可能性が高くなり強度−延性バランスが悪くなる傾向があるため、その上限は1000秒とすることが好ましい。
【0051】
その後、0.1〜10℃/秒の冷却速度で650〜710℃の温度域に冷却し、引き続いて1〜100℃/秒の冷却速度で、めっき浴温度〜めっき浴温度+100℃まで冷却した後、350℃〜めっき浴温度+100℃の温度域で、めっき浴の侵漬時間を含めて1〜3000秒保持する。
【0052】
これは、二相域に加熱して生成させたオーステナイトをパーライトに変態させることなく、ベイナイト変態まで維持し、350℃〜Znめっき浴温度+100℃の温度域を1〜3000秒間かけて通過させることで、その組織をフェライト(+ベイナイト)+残留オーステナイトとして所定の特性を得るためである。
【0053】
焼鈍後、650〜710℃までの冷却速度が0.1℃/秒未満では結晶粒が粗大化してしまうので好ましくなく、10℃/秒を超えるとオーステナイト中にCが濃化し難くなるので、好ましくない。
【0054】
冷却停止温度を650〜710℃の温度範囲としたのは、オーステナイトをパーライトに変態させることなく、ベイナイト変態まで維持し、350℃〜Znめっき浴温度+100℃の温度域を1〜3000秒間かけて通過させることで、その組織をフェライト(+ベイナイト)+残留オーステナイトとして所定の特性を得るためである。冷却停止温度が、650℃未満であると、オーステナイトがパーライトへと変態してしまい残留オーステナイトが得られず、所定の特性が得られない。冷却停止温度が710℃を超えると、オーステナイト中にCが濃化し難くなるので、好ましくない。
【0055】
また、その後めっき浴温度〜めっき浴温度+100℃までの冷却速度が1℃/秒未満では、冷却途中でオーステナイトがパーライトへと変態してしまうため、残留オーステナイトが残らず望ましくない。また、冷却速度が100℃/秒より速いと、板幅方向での冷却終点温度がばらつくこととなり、均一な鋼板の製造ができなくなるので好ましくない。
【0056】
めっき浴侵漬前の保持温度を350℃〜Znめっき浴温度+100℃としたのは、この温度域にてベイナイト変態が起こり、残留オーステナイトを室温まで残せるためである。350℃未満では、二相域に加熱して生成させたオーステナイトがマルテンサイト変態を起こしてしまい残留オーステナイトが残らないため、下限温度を350℃とした。保持温度がZnめっき浴温度+100℃より高いと、二相域に加熱して生成させたオーステナイトがパーライトへと変態する、あるいは、オーステナイト中からセメンタイトが析出するため、オーステナイトがベイナイトへと分解してしまうため、その上限温度をZnめっき浴温度+100℃とした。
【0057】
Znめっき浴浸漬時間を含めた前記の保持時間が1秒未満では鋼板をめっき浴へ侵漬する時間が十分でないので好ましくなく、3000秒を超えると設備が巨大になりすぎ、不経済となるため好ましくないので、前記の保持時間は1〜3000秒とした。
【0058】
必要に応じて実施するめっき浴侵漬後の保持温度を浴温〜Znめっき浴温度+100℃としたのは、この温度より高いと、オーステナイトがパーライトへと変態する、あるいは、オーステナイト中からセメンタイトが析出するため、オーステナイトがベイナイトへと分解してしまうことから、その上限温度をZnめっき浴温度+100℃とした。保持温度が浴温より低いと合金化に長時間の時間を要するので、下限温度を浴温とした。
【0059】
Znめっき浸漬後の保持温度から、あるいはZnめっき浴温度から室温までの冷却速度は特に限定するものではないが、これらの温度から350℃まで0.5〜100℃/秒で冷却することが好ましい。これらの温度から350℃までの冷却速度が0.5℃/秒より遅いと、設備が巨大になりすぎてしまい、経済性に劣る。そこで、冷却速度の下限値を0.5℃/秒以上とすることが好ましい。一方、冷却速度が100℃/秒を超えて、冷却したとしても、材質上はなんら問題を生じないが、過度に冷却速度を上げる事は、製造コスト高を招くこととなるので、上限を100℃/秒とすることが好ましい。
【0060】
めっき浴侵漬後、浴温〜めっき浴温度+100℃の温度範囲での保持を行わなくても、本発明に記載の加工性に優れた高強度溶融亜鉛めっき鋼板を得ることができる。
【0061】
また、本発明の加工性に優れた高強度高延性溶融亜鉛めっき鋼板の素材は、通常の製鉄工程である精錬、製鋼、鋳造、熱延、冷延工程を経て製造されることを原則とするが、その一部あるいは全部を省略して製造されるものでも、本発明に係わる条件を満足する限り、本発明の効果を得ることができる。
【0062】
また、めっき密着性をさらに向上させるために、焼鈍前に鋼板に、Ni、Cu、Co、Feの単独あるいは複数より成るめっきを施しても本発明を逸脱するものではない。
【0063】
さらには、めっき前の焼鈍については、「脱脂酸洗後、非酸化雰囲気にて加熱し、H2及びN2を含む還元雰囲気にて焼鈍後、めっき浴温度近傍まで冷却し、めっき浴に侵漬」というゼンジマー法、「焼鈍時の雰囲気を調節し、最初、鋼板表面を酸化させた後、その後還元することによりめっき前の清浄化を行った後にめっき浴に侵漬」という全還元炉方式、あるいは、「鋼板を脱脂酸洗した後、塩化アンモニウムなどを用いてフラックス処理を行って、めっき浴に侵漬」というフラックス法等があるが、いずれの条件で処理を行ったとしても本発明の効果は発揮できる。
【0064】
なお、焼鈍後、切削を行い鋼板表面の酸化物を除去した後、めっき浴に侵漬させ、めっきを施したとしても本発明の効果を得ることができる。
【0065】
【実施例】
以下実施例によって本発明をさらに詳細に説明する。
【0066】
表1に示すような組成の鋼板を、1200〜1250℃の温度域に加熱し、Ar3 変態温度以上で熱延を完了し、500〜700℃の温度範囲で巻き取った鋼帯を酸洗後、冷延して1.0mm厚とした。その後、各鋼の成分(質量%)によって下記式に従ってAc1 とAc3 変態温度を計算により求めた。
Ac1 =723−10.7×Mn(%)+29.1×Si(%)、
Ac3 =910−203×C(%)1/2+44.7×Si(%)+31.5×Mo(%)−30×Mn(%)−11×Cr(%)+400×Al(%

これらのAc1 とAc3 変態温度から計算される焼鈍温度に10%H2 −N2 雰囲気で昇温・保定した後、0.1〜10℃/秒の冷却速度で500〜710℃まで冷却し、その後、0.1〜10℃/秒の冷速でめっき浴温度まで冷却し、460〜500℃に10〜100秒保持後、浴組成を種々に変化させた460℃の溶融亜鉛めっき浴に3秒間侵漬することでめっきを行った。この際のめっき付着量は、片面50g/m2 とした。
【0067】
この後、一部の鋼板については、めっき浴温度〜600℃の温度範囲で保持をして合金化処理を行った後、350℃までの温度域を0.1〜100℃/秒の冷却速度で冷却後、室温まで冷却した。製造条件の詳細を表2、表3(表2の続きその1)、表4(表2の続きその2)に示す。
【0068】
めっき表面外観におけるドロス巻き込みの状況の目視観察および不めっき部面積の測定によりめっき性を評価した。作製しためっき層中濃度測定は、アミン系インヒビターを入れた5%塩酸でめっき層を溶かした後、ICP発光分析法を用いて行った。
【0069】
めっき密着性は、パウダリングを調査し、その剥離幅が3mmを超えた場合を不合格とした。
【0070】
これらめっきを施した鋼板から、JIS5号試験片を採取し、ゲージ長さ50mm、引張り試験速度10mm/分で常温引張り試験を行った。
【0071】
残留オーステナイト体積分率Vγの測定は、めっき層/鋼板界面より板厚の7/16内層を化学研磨後、Mo管球を用いたX線回折で、フェライトの(200)の回折強度Iα(200)、フェライトの(211)の回折強度Iα(211)とオーステナイトの(220)の回折強度Iγ(220)および(311)の回折強度Iγ(311)の強度比より求めた。
【0072】
Vγ(体積%)
=0.25
×{Iγ(220)/(1.35×Iα(200)+Iγ(220))
+Iγ(220)/(0.69×Iα(211)+Iγ(220))
+Iγ(311)/(1.5×Iα(200)+Iγ(311))
+Iγ(311)/(0.69×Iα(211)+Iγ(311))}
酸化物の体積分率と分布については、研磨を行った後、SEMおよびEPMAを用いて観察することで測定を行った。
【0073】
表5、表6(表5の続きその1)に機械特性、めっき特性等を示す。表3に示すように、鋼板成分が所定の範囲を満たすものは、不めっきもなく良好なめっき性が得られている。本発明鋼の均一伸び及び全伸びは、比較鋼に対し、2〜5%高い値を示し、加工性に優れる。
【0074】
鋼板の成分が所定の範囲であったとしても、製造条件および鋼板組織が所定の用件を満たさないものは、加工性およびめっき密着性に劣り、さらには、残留オーステナイト分率が低くなり、本発明の効果が発揮されない。
【0075】
製造条件が本発明を満たすものであっても、成分範囲が所定の用件を満たさないものは、本発明の効果を得ることができない。
【0076】
【表1】

Figure 0003875958
【0077】
【表2】
Figure 0003875958
【0078】
【表3】
Figure 0003875958
【0079】
【表4】
Figure 0003875958
【0080】
【表5】
Figure 0003875958
【0081】
【表6】
Figure 0003875958
【0082】
【発明の効果】
本発明により、延性に優れた高強度高延性溶融亜鉛めっき鋼板を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength, high-ductility hot-dip galvanized steel sheet excellent in workability suitable for building materials, home appliances, automobiles, and the like and a method for producing the same.
[0002]
[Prior art]
Hot dip galvanizing is applied for the purpose of corrosion protection of steel sheets, and is widely used in building materials, home appliances, automobiles and the like. As a manufacturing method thereof, in a continuous line, after degreasing and cleaning, heating in a non-oxidizing atmosphere,2 And N2 There is a Sendzimer method of cooling after annealing in a reducing atmosphere containing, cooling to near the plating bath temperature, immersing in a molten zinc bath, cooling or reheating to form an Fe-Zn alloy phase, It is frequently used for processing.
[0003]
For annealing before plating, after degreasing and washing, immediately after heating in a non-oxidizing atmosphere, H2 And N2 In some cases, an all-reducing furnace method in which annealing is performed in a reducing atmosphere containing selenium is also performed. In addition, a flux method is also performed in which a steel sheet is degreased and pickled, and then flux treatment is performed using ammonium chloride and the like, soaking in a plating bath, and then cooling.
[0004]
In recent years, the demand for high-strength plated steel sheets with good workability for the purpose of improving fuel economy and durability has been increasing, especially in the automobile body, and the development of high-strength steel sheets with higher workability is eagerly desired. . On the other hand, since various alloys are added to the high-strength steel sheet and the strength and ductility are increased by using the structure control, the heat treatment method has a great restriction.
[0005]
However, from the viewpoint of plating, if the alloy content in steel, especially Si content is high, or if heat treatment conditions are severely limited, the plating wettability is greatly reduced by using a normal hot dip galvanizing bath. However, since non-plating occurs, there is a problem that appearance quality deteriorates. Further, when partial alloying is required, it is necessary to perform alloying heat treatment. In the case of high-strength steel sheets, as described above, since there are a large amount of additive elements, the alloy heat treatment after plating tends to be performed at a higher temperature and longer time than in the case of mild steel. It is one of the big obstacles above.
[0006]
As a means for solving this problem, as shown in Patent Document 1 and Patent Document 2, etc., the plating property is improved by applying a specific plating. In this method, the first stage of the hot dipping line annealing furnace is used. Therefore, there is a problem that a new plating facility must be provided or a plating process must be performed in advance in the electroplating line, resulting in a significant increase in cost.
[0007]
Moreover, for the purpose of improving plating manufacturability, Patent Document 3 discloses a hot dip galvanized steel sheet having a Zn—Al—Mn—Fe based plating layer. However, although sufficient consideration is paid especially to manufacturability in the present invention, it is not an invention in which plating adhesion at the time of high working with a high strength and high ductility material is considered.
[0008]
Furthermore, as seen in Patent Document 4, although there is an invention relating to a steel sheet containing Si, Mn and Ni in the steel sheet, this is intended to improve the plateability, and the workability described in the present invention. It is not a consideration for improvement.
[0009]
On the other hand, for the purpose of enhancing the collision energy absorption capacity, Patent Document 5 discloses that ferrite is the main phase, the average particle size is 10 μm or less, and the second phase is 3 to 50% austenite or 3 to 3% by volume. A steel sheet comprising 30% martensite and having an average particle size of the second phase of 5 μm or less and selectively containing bainite is disclosed. However, the present invention does not consider the plating wetness, and is not an invention that can cope with the thinning accompanying the increase in strength in terms of corrosion resistance.
[0010]
[Patent Document 1]
JP-A-3-28359
[Patent Document 2]
Japanese Patent Laid-Open No. 3-64437
[Patent Document 3]
Japanese Patent Laid-Open No. 5-230608
[Patent Document 4]
JP 2000-850658 A
[Patent Document 5]
Japanese Patent Laid-Open No. 11-189839
[0011]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems and to provide a high-strength, high-ductility hot-dip galvanized steel sheet excellent in workability and a method for producing the same.
[0012]
[Means for Solving the Problems]
As a result of various studies, the present inventors have clarified that a steel sheet having excellent workability can be manufactured by controlling the Mn content and Ni content contained in the steel sheet within a predetermined range. . The workability described here means uniform elongation and total elongation of the steel sheet (the same applies hereinafter). Moreover, about the plating property, it discovered that it could improve by restraining the amount of Si contained in steel to a predetermined range.
[0013]
  The present invention has been completed based on the above findings, and the gist thereof is as follows.
(1) In mass%,
      C: 0.0001 to 0.3%,
      Si: 0.001 to less than 0.1%,
      Mn: 0.001 to 3%,
      Ni:0.79~ 5%
      Al: 0.1 to 4%
      Mo: 0.001 to 4%,
      P: 0.0001 to 0.3%,
      S: 0.01% or less
And the Mn content and the Ni content satisfy the following formula (1), and the balance is iron and inevitable impurities.In other words, the microstructure contains 50 to 97% of ferrite or ferrite and bainite as the phase with the largest volume fraction, and 3 to 50% of austenite as the second phase.On the surface of the steel plate,
      Al: 0.001 to 0.5%,
      A high-strength and high-ductility hot-dip galvanized steel sheet excellent in workability, characterized by comprising a plating layer containing Fe: 5 to 20%, the balance being Zn and inevitable impurities.
−3 × Mn + 3.5 <Ni <−4.8 × Mn + 7.2 (1)
(2) The plating layer is
      Al: 0.001 to 0.5%,
      Fe: Fe containing less than 5%, the balance consisting of Zn and inevitable impurities, the high strength and high ductility hot dip galvanized steel sheet with excellent workability described in (1).
(3) In addition, by mass% in steel,
      Cu: 0.001 to 4%,
      Cr: 0.001 to 4%,
      Co: 0.001 to 4%
(1) characterized by containing one or more ofOr (2)High-strength, high-ductility hot-dip galvanized steel sheet with excellent workability as described.
(4Further, the steel contains 0.001 to 1% in total of one or more of Nb, Ti, and V in mass%. (1) to (3) A high-strength, high-ductility hot-dip galvanized steel sheet with excellent workability.
(5) Further, the steel contains B: 0.0001 to 0.1% by mass% (1) to (4) A high-strength, high-ductility hot-dip galvanized steel sheet with excellent workability.
(6) (1) to (5The cast slab composed of any of the above components is cast, or once cooled and then heated again, the hot-rolled steel sheet wound after hot rolling is pickled and cold-rolled, and then the maximum heating temperature is Ac.1+ 30 ° C or higher, AcThreeAfter annealing at a temperature lower than or equal to ℃, it is cooled to a temperature range of 650 to 710 ° C at a cooling rate of 0.1 to 10 ° C / second, and subsequently at a cooling rate of 1 to 100 ° C / second, the temperature of the Zn plating bath to Zn plating After cooling to bath temperature + 100 ° C., hold in the temperature range of 350 ° C. to Zn plating bath temperature + 100 ° C. for 1 to 3000 seconds including the immersion time of the plating bath, then soak in the Zn plating bath, and then A method for producing a high-strength, high-ductility hot-dip galvanized steel sheet excellent in workability, characterized by cooling to room temperature.
(7) After being immersed in a Zn plating bath, holding is performed for 1 to 300 seconds in a temperature range of bath temperature to Zn plating bath temperature + 100 ° C., and cooling to room temperature (6) A method for producing a high-strength, high-ductility hot-dip galvanized steel sheet having excellent workability as described in the above.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0015]
The present inventors, in mass%, C: 0.0001 to 0.3%, Si: less than 0.001 to 0.1%, Mn: 0.001 to 3%, Ni: 0.1 to 5% , Al: 0.1 to 4%, Mo: 0.001 to 4%, P: 0.0001 to 0.3%, S: 0.01% or less, and a cold piece comprising the balance Fe and inevitable impurities The hot-rolled steel sheet is pickled and then cold-rolled.1 + 30 ° C or higher, AcThree After annealing at 1 ° C to 100 ° C / second to Zn plating bath temperature to Zn plating bath temperature + 100 ° C, 350 ° C to Zn plating bath temperature + 100 ° C, including plating bath immersion time After holding for 1-3000 seconds, it was immersed in a Zn plating bath at 450-470 ° C. for 3 seconds, and further heated at 500-550 ° C. for 10-60 seconds. The composition of the plating layer was Al: 0.001 to 0.5%, Fe: 5 to 20%, and the balance was Zn and inevitable impurities. Thereafter, the plating property was investigated by measuring the area of the non-plated portion on the surface of the plated steel sheet and investigating the amount of Fe contained in the plating layer.
[0016]
As a result, it has been found that the wettability of plating is improved by making the amount of Si contained in the steel less than 0.1% by mass.
[0017]
For improvement in workability, when the Mn content (mass%) and Ni content (mass%) contained in the steel sheet satisfy the following formula (1), and the same strength is compared, It was found that what is satisfied is improved by about 2 to 5% in both the uniform elongation and the total elongation compared to the unsatisfied one.
[0018]
−3 × Mn + 3.5 <Ni <−4.8 × Mn + 7.2 (1)
Moreover, (1) Formula is effective irrespective of the intensity | strength of a steel plate, and the effect will be exhibited as long as Mn content and Ni content in a steel plate satisfy Formula (1). In addition, (1) Formula is a formula which this inventor newly discovered by the multiple regression analysis which arranged the influence of the steel plate component with respect to the intensity | strength and ductility of a steel plate.
[0019]
Next, the reason for limiting the preferable range of the steel plate component in the present invention will be described.
[0020]
C: An austenite stabilizing element, which moves from ferrite to austenite during two-phase heating and bainite transformation temperature range, and stabilizes austenite by concentrating in austenite. As a result, austenite is stabilized even at room temperature, and excellent ductility is ensured. When C is less than 0.0001% by mass, it is difficult to secure 3% or more of austenite, and therefore the lower limit was set to 0.0001% by mass. On the other hand, if C exceeds 0.3 mass%, welding becomes difficult, so the upper limit was made 0.3 mass%.
[0021]
Si: Si forms an oxide on the surface of the steel sheet during annealing and causes non-plating. This becomes significant when the Si content in the steel is 0.1% or more, so the upper limit was made less than 0.1% by mass. Moreover, even if the steel sheet is made to have a low Si content exceeding 0.001% by mass, the lower limit is set to 0.001% by mass because it is uneconomical.
[0022]
Mn: Mn is an element necessary for ensuring the strength, and if it is less than 0.001% by mass, the reinforcing effect is not exhibited, so the lower limit was made 0.001% by mass. On the other hand, if it exceeds 3% by mass, the ductility is adversely affected, so 3% by mass was made the upper limit.
[0023]
Ni: Ni is an element necessary for ensuring the strength, and if it is less than 0.1% by mass, the reinforcing effect is not exhibited, so the lower limit was made 0.1% by mass. On the other hand, if it exceeds 5% by mass, the ductility is adversely affected, so 5% by mass was made the upper limit.The lower limit of the Ni content was set to 0.79% or more based on 0.79% of the F steel in Table 1 of the examples.
[0024]
  Furthermore, the excellent workability which is the effect of this invention is exhibited by controlling Ni contained in a steel plate to the range of following (1) Formula. The workability described here refers to the uniform elongation and total elongation of the steel sheet, and is the tensile strength (TS) of the steel sheet and the total elongation (El.) In the tensile test or uniform elongation (u-El.). Expressed as a product. When the Ni content is less than the left side of the formula (1), the excellent ductility that is the effect of the present invention cannot be obtained. On the other hand, the content of Ni is of the formula (1)right sideAddition exceeding 1 is not preferable because it causes an excessive increase in cost. However, even if this value is exceeded, the excellent ductility that is the effect of the present invention is exhibited.
−3 × Mn + 3.5 <Ni <−4.8 × Mn + 7.2 (1)
  Al: In addition to being used as a deoxidizer, Al does not dissolve in cementite, so it delays cementite precipitation and delays the decomposition of austenite into ferrite and cementite. During this time, it becomes possible to concentrate C into austenite, and austenite can exist even at room temperature. However, if it is less than 0.1% by mass, the effect is not exhibited. On the other hand, if it exceeds 4%, weldability deteriorates, so the upper limit was made 4% by mass.
[0025]
Mo: Mo is important for securing retained austenite because it delays cementite precipitation and pearlite transformation. However, if it is less than 0.001% by mass, the effect is not exhibited. On the other hand, if it exceeds 4%, the ductility is adversely affected, so the upper limit was made 4% by mass.
[0026]
P: Setting P to less than 0.0001 mass% is economically disadvantageous, so this value was set as the lower limit. On the other hand, the addition exceeding 0.3% by mass adversely affects weldability and manufacturability during production and hot rolling. Therefore, the upper limit value was set to 0.3% by mass.
[0027]
S: S adversely affects weldability and manufacturability during production and hot rolling. For this reason, the upper limit value was set to 0.01% by mass or less.
[0028]
Furthermore, the steel targeted by the present invention can contain one or more of Cu, Cr and Co for the purpose of further improving the strength.
[0029]
Cu is added in an amount of 0.001% by mass or more for the purpose of strengthening, and if added in an amount exceeding 4% by mass, workability is adversely affected.
[0030]
Cr is an element added for the purpose of strengthening and suppressing the formation of carbides, and is 0.001% or more. Since addition of more than 4% adversely affects workability, this is set as the upper limit.
[0031]
Co was added in an amount of 0.001% by mass or more in order to improve the balance of strength and ductility by controlling the plating property and bainite transformation. On the other hand, there is no particular upper limit for addition, but since it is an expensive element, addition of a large amount impairs economic efficiency, so it is desirable to make it 4% by mass or less.
[0032]
Furthermore, the steel targeted by the present invention can contain one or more of Nb, Ti, and V, which are carbide forming elements, for the purpose of further improving the strength. These elements form fine carbides, nitrides or carbonitrides, and are extremely effective for strengthening steel sheets. Therefore, if necessary, one or more elements are added in a total amount of 0.001% by mass or more. it can. On the other hand, since it inhibits ductility deterioration and concentration of C in retained austenite, the upper limit of the total addition amount is set to 1% by mass.
[0033]
B can also be added as needed. B is effective for strengthening grain boundaries and increasing the strength of steel by adding 0.0001% by mass or more. However, when the amount of addition exceeds 0.1% by mass, the effect is not only saturated but also necessary. Since the steel sheet strength is increased and the workability is lowered as described above, the upper limit is set to 0.1% by mass.
[0034]
Inevitable impurities include, for example, Sn, but even if these elements are contained in a range of Sn ≦ 0.01% by mass or less, the effect of the present invention is not impaired.
[0035]
Next, a preferable microstructure of the base steel sheet will be described.
[0036]
The ductility of the high-strength hot-dip galvanized steel sheet according to the present invention depends on the volume fraction of ferrite that is the phase (main phase) having the maximum volume fraction and the volume fraction of retained austenite that is the second phase. If the volume fraction of ferrite as the main phase is less than 50% (hereinafter the same), excellent ductility cannot be exhibited. Therefore, the lower limit is set to 50% or more. In addition, when aiming to further increase the strength of the steel sheet, it may contain a bainite phase, but as a main phase from the viewpoint of ensuring ductility, a single phase of ferrite, or a composite phase of ferrite and bainite, It is desirable to contain 50% or more. On the other hand, if the ferrite or ferrite and bainite as the main phase exceeds 97%, the ratio of the hard phase (in this case, mainly shows residual austenite and martensite) that improves the strength of the steel sheet is extremely reduced. Strength cannot be improved. Therefore, the upper limit is set to 97% or less.
[0037]
In addition, when the retained austenite, which is the second phase, is less than 3%, the effect hardly appears, so the lower limit is set to 3% or more. On the other hand, if the retained austenite exceeds 50%, when extremely remarkable molding is performed, a large amount of martensite is present after molding, which may cause problems in secondary workability and impact characteristics. Then, the upper limit was set to 50%.
[0038]
Moreover, even if it contains martensite as a phase other than the retained austenite of the second phase, it does not depart from the present invention.
[0039]
The size distribution of the structure of the steel sheet is not particularly specified, but from the viewpoint of the uniformity of the structure and the strengthening of the steel sheet by refining, the grain sizes of ferrite, bainite and retained austenite are preferably 50 μm or less. However, exceeding this size does not depart from the present invention.
[0040]
Incidentally, identification of each phase of the microstructure, ferrite, bainite, austenite, martensite and the remaining structure, observation of the existing position and measurement of the volume fraction were disclosed in Nital reagent and Japanese Patent Application Laid-Open No. 59-219473. It can be quantified by observing the cross section in the rolling direction of the steel sheet or the cross section in the direction perpendicular to the rolling direction with a reagent and observing the optical microscope at 500 to 1000 times.
[0041]
In addition to the above, the steel sheet within the scope of the present invention also includes one or more of carbides, nitrides, sulfides, and oxides with an area fraction of 5% or less as the remaining structure of the microstructure.
[0042]
Next, the plating layer will be described.
[0043]
The amount of Al in the plating layer is preferably in the range of 0.001 to 0.5 mass%. When Al is less than 0.001% by mass, dross generation is remarkable and a good appearance cannot be obtained, and when Al is added exceeding 0.5% by mass, the alloying reaction is remarkably suppressed, and alloying melts. This is because it becomes difficult to form a galvanized layer.
[0044]
Further, when spot weldability and paintability are desired, these characteristics can be enhanced by alloying treatment. Specifically, after being immersed in a Zn plating bath, an alloying treatment is performed at 300 to 550 ° C., whereby Fe is taken into the plating layer, and a high-strength hot-dip galvanized steel sheet excellent in paintability and spot weldability. Can be obtained. If the amount of Fe after alloying is less than 5% by mass, spot weldability is insufficient. On the other hand, if the amount of Fe exceeds 20% by mass, the adhesion of the plating layer itself is impaired, and the plating layer breaks and drops during processing and adheres to the mold, thereby causing defects during molding. Therefore, the range of the amount of Fe in the plating layer when performing the alloying treatment is 5 to 20% by mass.
[0045]
Further, when the alloying treatment is not performed, even if the amount of Fe in the plating layer is less than 5% by mass, the corrosion resistance, ductility, and workability, which are effects other than spot welding obtained by alloying, are good.
[0046]
There are no particular restrictions on the amount of plating deposited, but the amount on one side is 5 g / m from the viewpoint of corrosion resistance.2 The above is desirable. For the purpose of improving the paintability and weldability on the hot-dip Zn plated steel sheet of the present invention, various treatments such as chromate treatment, phosphate treatment, lubricity improvement treatment, weldability improvement treatment, etc. However, the present invention does not depart from the present invention.
[0047]
A method for producing a high-strength hot-dip galvanized steel sheet having such a structure will be described below.
[0048]
Cast slabs satisfying the above component composition as cast or once ArThree(° C) After cooling to below, it is heated again, the hot-rolled steel sheet wound up after hot rolling is pickled and cold-rolled, and then the maximum heating temperature is Ac.1 + 30 ° C or higher, AcThree After annealing at a temperature lower than or equal to ℃, it is cooled to a temperature range of 650 to 710 ° C at a cooling rate of 0.1 to 10 ° C / second, and subsequently at a cooling rate of 1 to 100 ° C / second, the temperature of the Zn plating bath to Zn plating After cooling to bath temperature + 100 ° C., hold in the temperature range of 350 ° C. to Zn plating bath temperature + 100 ° C. for 1 to 3000 seconds including the immersion time of the plating bath, then soak in the Zn plating bath, and then High-strength hot-dip galvanizing with excellent workability after holding for 1 to 300 seconds in the temperature range from plating bath temperature to plating bath temperature + 100 ° C, or by cooling to room temperature without holding Steel sheets can be manufactured.
[0049]
In the continuous annealing of cold-rolled steel sheets, the structure becomes a two-phase structure of ferrite and austenite.1 Above the transformation point AcThree Heat to a temperature below the transformation point. The heating temperature at this time is Ac1 When the temperature is lower than + 30 ° C., it takes too much time for the cementite to re-dissolve, and the austenite content becomes small, so the lower limit of the heating temperature is Ac.1 + 30 ° C. Further, if the heating temperature is too high, the volume fraction of austenite becomes too large and the C fraction in the austenite decreases, so the upper limit temperature is set to Ac.Three ℃.
[0050]
If the holding time at the highest heating temperature for annealing is too short, there is a high possibility that undissolved carbides remain, and the austenite volume fraction decreases, so it is desirable that the time be 10 seconds or longer. On the other hand, if the holding time is too long, there is a high possibility that the crystal grains become coarse and the strength-ductility balance tends to deteriorate, so the upper limit is preferably set to 1000 seconds.
[0051]
Then, it cooled to the temperature range of 650-710 degreeC with the cooling rate of 0.1-10 degrees C / sec, and it cooled to the plating bath temperature-plating bath temperature +100 degreeC with the cooling rate of 1-100 degrees C / sec subsequently. Then, hold | maintain for 1-3000 seconds including the immersion time of a plating bath in the temperature range of 350 degreeC-plating bath temperature +100 degreeC.
[0052]
This is to maintain the bainite transformation without transforming the austenite generated by heating in the two-phase region to pearlite, and to pass the temperature range of 350 ° C to Zn plating bath temperature + 100 ° C over 1 to 3000 seconds. In order to obtain predetermined characteristics, the structure is ferrite (+ bainite) + residual austenite.
[0053]
After annealing, if the cooling rate to 650 to 710 ° C. is less than 0.1 ° C./second, crystal grains are coarsened, and if it exceeds 10 ° C./second, it is difficult to concentrate C in the austenite. Absent.
[0054]
The cooling stop temperature was set to a temperature range of 650 to 710 ° C. because the austenite was not transformed into pearlite and maintained until bainite transformation, and a temperature range of 350 ° C. to Zn plating bath temperature + 100 ° C. was taken for 1 to 3000 seconds. This is to obtain predetermined characteristics by passing the structure as ferrite (+ bainite) + retained austenite. When the cooling stop temperature is less than 650 ° C., austenite is transformed into pearlite, and retained austenite cannot be obtained, and predetermined characteristics cannot be obtained. When the cooling stop temperature exceeds 710 ° C., it is difficult to concentrate C in the austenite, which is not preferable.
[0055]
Further, when the cooling rate from the plating bath temperature to the plating bath temperature + 100 ° C. is less than 1 ° C./second, austenite is transformed into pearlite during the cooling, so that residual austenite does not remain, which is not desirable. On the other hand, when the cooling rate is faster than 100 ° C./second, the cooling end point temperature in the plate width direction varies, and it is not preferable because a uniform steel plate cannot be produced.
[0056]
The reason why the holding temperature before immersion in the plating bath is set to 350 ° C. to Zn plating bath temperature + 100 ° C. is that bainite transformation occurs in this temperature range and residual austenite can be left to room temperature. When the temperature is lower than 350 ° C., the austenite generated by heating in the two-phase region causes martensitic transformation and no residual austenite remains, so the lower limit temperature was set to 350 ° C. When the holding temperature is higher than the temperature of the Zn plating bath + 100 ° C., the austenite generated by heating in the two-phase region is transformed into pearlite, or cementite precipitates from the austenite, so the austenite decomposes into bainite. Therefore, the upper limit temperature was set to Zn plating bath temperature + 100 ° C.
[0057]
If the holding time including the Zn plating bath immersion time is less than 1 second, it is not preferable because the time for immersing the steel sheet in the plating bath is not sufficient, and if it exceeds 3000 seconds, the equipment becomes too large and uneconomical. Since it is not preferable, the holding time is set to 1 to 3000 seconds.
[0058]
If necessary, the holding temperature after immersion in the plating bath is set to bath temperature to Zn plating bath temperature + 100 ° C. If the temperature is higher than this temperature, austenite is transformed into pearlite, or cementite is precipitated from the austenite. Therefore, since the austenite is decomposed into bainite, the upper limit temperature is set to the Zn plating bath temperature + 100 ° C. If the holding temperature is lower than the bath temperature, it takes a long time for alloying, so the lower limit temperature was taken as the bath temperature.
[0059]
The cooling rate from the holding temperature after immersion of Zn plating or from the temperature of the Zn plating bath to room temperature is not particularly limited, but it is preferable to cool from these temperatures to 350 ° C. at 0.5 to 100 ° C./second. . If the cooling rate from these temperatures to 350 ° C. is slower than 0.5 ° C./second, the equipment becomes too large and the economy is inferior. Therefore, the lower limit value of the cooling rate is preferably 0.5 ° C./second or more. On the other hand, even if the cooling rate exceeds 100 ° C./second, the material does not cause any problem. However, excessively increasing the cooling rate causes an increase in manufacturing cost, so the upper limit is set to 100. It is preferable to set it as ° C / second.
[0060]
Even if it does not hold | maintain in the temperature range of bath temperature-plating bath temperature +100 degreeC after plating bath immersion, the high intensity | strength hot-dip galvanized steel plate excellent in workability as described in this invention can be obtained.
[0061]
In addition, the material of the high-strength and high-ductility hot-dip galvanized steel sheet having excellent workability according to the present invention is manufactured in principle through refining, steelmaking, casting, hot rolling, and cold rolling processes, which are ordinary steelmaking processes. However, even if manufactured by omitting a part or all of them, the effects of the present invention can be obtained as long as the conditions according to the present invention are satisfied.
[0062]
Further, in order to further improve the plating adhesion, the present invention does not depart from the present invention even if the steel plate is plated with Ni, Cu, Co, or Fe alone or before the annealing.
[0063]
Furthermore, regarding the annealing before plating, “after degreasing pickling, heating in a non-oxidizing atmosphere,2And N2After the annealing in a reducing atmosphere, cool down to near the plating bath temperature and soak in the plating bath. Adjust the atmosphere during annealing, first oxidize the steel sheet surface, and then reduce it. All-reduction furnace method of “soaking in plating bath after cleaning before plating” or “flux treatment with degreased and acid-washed steel plate and ammonium chloride etc. and soaking in plating bath” However, the effect of the present invention can be exhibited even if the treatment is performed under any conditions.
[0064]
In addition, the effect of this invention can be acquired even if it cuts and removes the oxide on the surface of a steel plate after annealing, and is immersed in a plating bath and plated.
[0065]
【Example】
Hereinafter, the present invention will be described in more detail by way of examples.
[0066]
A steel plate having a composition as shown in Table 1 is heated to a temperature range of 1200 to 1250 ° C., and ArThree Hot rolling was completed above the transformation temperature, and the steel strip wound up in the temperature range of 500 to 700 ° C. was pickled and then cold rolled to a thickness of 1.0 mm. Then, according to the following formula by the component (mass%) of each steel, Ac1 And AcThree The transformation temperature was determined by calculation.
Ac1 = 723-10.7 × Mn (%) + 29.1 × Si (%),
AcThree = 910-203 * C (%) 1/2 + 44.7 * Si (%) + 31.5 * Mo (%)-30 * Mn (%)-11 * Cr (%) + 400 * Al (%
)
These Ac1 And AcThree 10% H in the annealing temperature calculated from the transformation temperature2 -N2 After heating and holding in the atmosphere, it is cooled to 500 to 710 ° C. at a cooling rate of 0.1 to 10 ° C./second, and then cooled to the plating bath temperature at a cooling rate of 0.1 to 10 ° C./second, After holding at 460 to 500 ° C. for 10 to 100 seconds, plating was performed by immersing in a 460 ° C. hot dip galvanizing bath with various changes in the bath composition for 3 seconds. In this case, the plating adhesion amount is 50 g / m on one side.2 It was.
[0067]
Thereafter, for some of the steel plates, after holding the alloy in the temperature range of the plating bath temperature to 600 ° C. and performing the alloying treatment, the temperature range up to 350 ° C. is set to a cooling rate of 0.1 to 100 ° C./second. And then cooled to room temperature. Details of the production conditions are shown in Table 2, Table 3 (Continuation 1 of Table 2) and Table 4 (Continuation 2 of Table 2).
[0068]
The plating property was evaluated by visual observation of the state of dross entrainment on the plating surface appearance and measurement of the area of the non-plated part. The concentration in the prepared plating layer was measured using ICP emission analysis after dissolving the plating layer with 5% hydrochloric acid containing an amine-based inhibitor.
[0069]
For plating adhesion, powdering was investigated and the case where the peel width exceeded 3 mm was rejected.
[0070]
JIS No. 5 test specimens were collected from these plated steel plates and subjected to a room temperature tensile test at a gauge length of 50 mm and a tensile test speed of 10 mm / min.
[0071]
The residual austenite volume fraction Vγ was measured by X-ray diffraction using a Mo tube after chemically polishing a 7/16 inner layer of the plate thickness from the plating layer / steel plate interface, and the diffraction intensity Iα (200) of ferrite (200). ), The diffraction intensity Iα (211) of ferrite (211), the diffraction intensity Iγ (220) of austenite (220), and the diffraction intensity Iγ (311) of (311).
[0072]
Vγ (volume%)
= 0.25
× {Iγ (220) / (1.35 × Iα (200) + Iγ (220))
+ Iγ (220) / (0.69 × Iα (211) + Iγ (220))
+ Iγ (311) / (1.5 × Iα (200) + Iγ (311))
+ Iγ (311) / (0.69 × Iα (211) + Iγ (311))}
The volume fraction and distribution of the oxide were measured by observing with SEM and EPMA after polishing.
[0073]
Tables 5 and 6 (continued from Table 5) show mechanical properties, plating properties, and the like. As shown in Table 3, when the steel sheet components satisfy the predetermined range, good plating properties are obtained without any plating. The uniform elongation and total elongation of the steel of the present invention are 2 to 5% higher than the comparative steel, and are excellent in workability.
[0074]
Even if the components of the steel sheet are within the predetermined range, those in which the manufacturing conditions and the steel sheet structure do not satisfy the predetermined requirements are inferior in workability and plating adhesion, and further, the retained austenite fraction becomes low. The effect of the invention is not exhibited.
[0075]
Even if the manufacturing conditions satisfy the present invention, the effect of the present invention cannot be obtained if the component range does not satisfy a predetermined requirement.
[0076]
[Table 1]
Figure 0003875958
[0077]
[Table 2]
Figure 0003875958
[0078]
[Table 3]
Figure 0003875958
[0079]
[Table 4]
Figure 0003875958
[0080]
[Table 5]
Figure 0003875958
[0081]
[Table 6]
Figure 0003875958
[0082]
【The invention's effect】
According to the present invention, a high strength and high ductility hot dip galvanized steel sheet excellent in ductility can be obtained.

Claims (7)

質量%で、
C:0.0001〜0.3%、
Si:0.001〜0.1%未満、
Mn:0.001〜3%、
Ni:0.79〜5%、
Al:0.1〜4%、
Mo:0.001〜4%、
P:0.0001〜0.3%、
S:0.01%以下
を含有し、かつ、Mn含有量とNi含有量が下記(1)式を満たし、残部鉄及び不可避的不純物からなり、ミクロ組織が、体積分率最大の相としてフェライト又はフェライト及びベイナイトを体積分率で50〜97%含有し、第2相としてオーステナイトを3〜50%含む鋼板の表面に、
Al:0.001〜0.5%、
Fe:5〜20%を含有し、残部がZn及び不可避的不純物からなるめっき層を有することを特徴とする加工性に優れた高強度高延性溶融亜鉛めっき鋼板。
−3×Mn+3.5<Ni<−4.8×Mn+7.2・・(1)
% By mass
C: 0.0001 to 0.3%,
Si: 0.001 to less than 0.1%,
Mn: 0.001 to 3%,
Ni: 0.79-5 %,
Al: 0.1 to 4%
Mo: 0.001 to 4%,
P: 0.0001 to 0.3%,
S: contains 0.01% or less, and satisfy Mn content and Ni content of the following formula (1), Ri Do the balance iron and unavoidable impurities, microstructure, as the largest phase volume fraction On the surface of the steel sheet containing ferrite or ferrite and bainite in a volume fraction of 50 to 97% and containing 2 to 50% austenite as the second phase ,
Al: 0.001 to 0.5%,
A high-strength and high-ductility hot-dip galvanized steel sheet excellent in workability, characterized by comprising a plating layer containing Fe: 5 to 20%, the balance being Zn and inevitable impurities.
−3 × Mn + 3.5 <Ni <−4.8 × Mn + 7.2 (1)
めっき層が
Al:0.001〜0.5%、
Fe:5%未満を含有し、残部がZn及び不可避的不純物からなることを特徴とする請求項1記載の加工性に優れた高強度高延性溶融亜鉛めっき鋼板。
The plating layer is Al: 0.001 to 0.5%,
The high-strength and high-ductility hot-dip galvanized steel sheet with excellent workability according to claim 1, wherein Fe: less than 5%, and the balance is made of Zn and inevitable impurities.
さらに、鋼中に質量%で、
Cu:0.001〜4%、
Cr:0.001〜4%、
Co:0.001〜4%
の1種又は2種以上を含有することを特徴とする請求項1又は2記載の加工性に優れた高強度高延性溶融亜鉛めっき鋼板。
Furthermore, in steel,
Cu: 0.001 to 4%,
Cr: 0.001 to 4%,
Co: 0.001 to 4%
The high-strength and high-ductility hot-dip galvanized steel sheet having excellent workability according to claim 1 or 2 , characterized by containing at least one of
さらに、鋼中に質量%で、Nb、Ti、Vの1種または2種以上を合計で0.001〜1%含有することを特徴とする請求項1〜のいずれか1項に記載の加工性に優れた高強度高延性溶融亜鉛めっき鋼板。The steel according to any one of claims 1 to 3 , further comprising 0.001 to 1% in total of one or more of Nb, Ti, and V in mass% in the steel. High strength, high ductility hot dip galvanized steel sheet with excellent workability. さらに、鋼中に質量%で、B:0.0001〜0.1%を含有することを特徴とする請求項1〜のいずれか1項に記載の加工性に優れた高強度高延性溶融亜鉛めっき鋼板。Further, the steel contains B: 0.0001 to 0.1% by mass% in steel, and has high workability and high strength and high ductility melt according to any one of claims 1 to 4. Galvanized steel sheet. 請求項1〜のいずれか1項に記載の成分からなる鋳造スラブを鋳造まま、あるいは、一旦冷却した後に再度加熱し、熱延後巻き取った熱延鋼板を酸洗後冷延し、その後最高加熱温度が、Ac1+30℃以上、Ac3℃以下で焼鈍した後に、0.1〜10℃/秒の冷却速度で650〜710℃の温度域に冷却し、引き続いて1〜100℃/秒の冷却速度で、Znめっき浴温度〜Znめっき浴温度+100℃まで冷却した後、350℃〜Znめっき浴温度+100℃の温度域で、めっき浴の侵漬時間を含めて1〜3000秒保持した後、Znめっき浴に侵漬して、その後、室温まで冷却することを特徴とする加工性に優れた高強度高延性溶融亜鉛めっき鋼板の製造方法。The cast slab comprising the component according to any one of claims 1 to 5 is cast as it is, or after being cooled, it is heated again, and the hot-rolled steel sheet wound up after hot rolling is pickled and cold-rolled, and then After annealing at a maximum heating temperature of Ac 1 + 30 ° C. or more and Ac 3 ° C. or less, it is cooled to a temperature range of 650 to 710 ° C. at a cooling rate of 0.1 to 10 ° C./second, and subsequently 1 to 100 ° C. / After cooling from Zn plating bath temperature to Zn plating bath temperature + 100 ° C at a cooling rate of 2 seconds, hold for 1-3000 seconds in the temperature range of 350 ° C to Zn plating bath temperature + 100 ° C, including the immersion time of the plating bath After that, a method for producing a high-strength, high-ductility hot-dip galvanized steel sheet excellent in workability, which is immersed in a Zn plating bath and then cooled to room temperature. Znめっき浴に浸漬した後、浴温〜Znめっき浴温度+100℃の温度範囲で1〜300秒間の保持を行い、室温まで冷却することを特徴とする請求項記載の加工性に優れた高強度高延性溶融亜鉛めっき鋼板の製造方法。After immersion in Zn plating bath, performs the retention of 1 to 300 seconds at a temperature range of bath temperature ~Zn plating bath temperature + 100 ° C., and excellent workability according to claim 6, wherein the cooling to room temperature high A method for producing a high strength ductile hot dip galvanized steel sheet.
JP2003061073A 2003-03-07 2003-03-07 High strength and high ductility hot dip galvanized steel sheet with excellent workability and manufacturing method thereof Expired - Fee Related JP3875958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003061073A JP3875958B2 (en) 2003-03-07 2003-03-07 High strength and high ductility hot dip galvanized steel sheet with excellent workability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003061073A JP3875958B2 (en) 2003-03-07 2003-03-07 High strength and high ductility hot dip galvanized steel sheet with excellent workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004269947A JP2004269947A (en) 2004-09-30
JP3875958B2 true JP3875958B2 (en) 2007-01-31

Family

ID=33123384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003061073A Expired - Fee Related JP3875958B2 (en) 2003-03-07 2003-03-07 High strength and high ductility hot dip galvanized steel sheet with excellent workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3875958B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043360A (en) * 2004-03-01 2010-02-25 Nippon Steel Corp High-strength and high-ductility hot-dip galvanized steel sheet superior in hole expandability, and manufacturing method therefor
KR100868457B1 (en) * 2007-05-31 2008-11-11 주식회사 포스코 Galvannealed steel sheet having superior adhesiveness of plated film and method for manufacturing the same
MX356054B (en) 2010-01-26 2018-05-11 Nippon Steel & Sumitomo Metal Corp High-strength cold-rolled steel sheet, and process for production thereof.

Also Published As

Publication number Publication date
JP2004269947A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
JP3527092B2 (en) High-strength galvannealed steel sheet with good workability and method for producing the same
CN111433380B (en) High-strength galvanized steel sheet and method for producing same
KR101608163B1 (en) High-strength hot dip galvanized steel plate having excellent moldability, weak material anisotropy and ultimate tensile strength of 980 mpa or more, high-strength alloyed hot dip galvanized steel plate and manufacturing method therefor
JP4510488B2 (en) Hot-dip galvanized composite high-strength steel sheet excellent in formability and hole expansibility and method for producing the same
JP5194841B2 (en) High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof
WO2010061972A1 (en) High-strength cold-rolled steel sheet having excellent workability, molten galvanized high-strength steel sheet, and method for producing the same
JP3921136B2 (en) High strength and high ductility hot dip galvanized steel sheet with excellent burring workability and manufacturing method thereof
JP3898923B2 (en) High-strength hot-dip Zn-plated steel sheet excellent in plating adhesion and ductility during high processing and method for producing the same
CN108603263B (en) High yield ratio type high strength galvanized steel sheet and method for producing same
JP5504737B2 (en) High-strength hot-dip galvanized steel strip excellent in formability with small variations in material within the steel strip and method for producing the same
JP5092507B2 (en) High tensile alloyed hot dip galvanized steel sheet and its manufacturing method
CA2850045A1 (en) Galvanized steel sheet and method of manufacturing the same
JP2009019258A (en) Hot dip galvannealed high strength steel sheet having tensile strength of &gt;=700 mpa and excellent corrosion resistance, hole expansibility and ductility, and method for producing the same
KR20180133508A (en) Plated steel sheet and manufacturing method thereof
JP2009270126A (en) Cold rolled steel sheet, hot dip plated steel sheet and method for producing the steel sheet
JP6249140B1 (en) High yield ratio type high strength galvanized steel sheet and method for producing the same
JP4855442B2 (en) Low yield ratio alloyed hot dip galvanized high strength steel sheet manufacturing method
JP6384623B2 (en) High strength steel plate and manufacturing method thereof
WO2014178358A1 (en) Galvanized steel sheet and production method therefor
JP4331915B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in fatigue durability and corrosion resistance and method for producing the same
JP3921135B2 (en) High strength and high ductility hot dip galvanized steel sheet with excellent burring workability and manufacturing method thereof
JP3631710B2 (en) Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same
JP4781577B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP3898924B2 (en) High-strength hot-dip galvanized steel sheet excellent in appearance and workability and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061027

R151 Written notification of patent or utility model registration

Ref document number: 3875958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees