JP3631710B2 - Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same - Google Patents

Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same Download PDF

Info

Publication number
JP3631710B2
JP3631710B2 JP2001305365A JP2001305365A JP3631710B2 JP 3631710 B2 JP3631710 B2 JP 3631710B2 JP 2001305365 A JP2001305365 A JP 2001305365A JP 2001305365 A JP2001305365 A JP 2001305365A JP 3631710 B2 JP3631710 B2 JP 3631710B2
Authority
JP
Japan
Prior art keywords
steel sheet
mass
corrosion resistance
dip galvanized
galvanized steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001305365A
Other languages
Japanese (ja)
Other versions
JP2003105493A (en
Inventor
展弘 藤田
昌史 東
学 高橋
康秀 森本
將夫 黒崎
明博 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001305365A priority Critical patent/JP3631710B2/en
Publication of JP2003105493A publication Critical patent/JP2003105493A/en
Application granted granted Critical
Publication of JP3631710B2 publication Critical patent/JP3631710B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、建材、家電製品、自動車などに適する耐食性と延性に優れたSi含有高強度合金化溶融亜鉛めっき鋼板および溶融亜鉛めっき鋼板及びその製造方法に関する。
【0002】
【従来の技術】
溶融亜鉛めっきは鋼板の防食を目的として施され、建材、家電製品、自動車など広範囲に使用されている。その製造法としては、連続ラインに於いて、脱脂洗浄後、非酸化性雰囲気にて加熱し、H 及びN を含む還元雰囲気にて焼鈍後、めっき浴温度近傍まで冷却し、溶融亜鉛浴に浸漬後、冷却、もしくは再加熱してFe−Zn合金相を生成させた後に冷却、というゼンジマー法があり、鋼板の処理に多用されている。
【0003】
めっき前の焼鈍については、脱脂洗浄後、非酸化性雰囲気中での加熱を経ず直ちにH 及びN を含む還元雰囲気にて焼鈍を行う、全還元炉方式も行われる場合がある。また、鋼板を脱脂、酸洗した後、塩化アンモニウムなどを用いてフラックス処理を行って、めっき浴に浸漬、その後冷却、というフラックス法も行われている。
【0004】
これらのめっき処理で用いられるめっき浴中には溶融亜鉛の脱酸のために少量のAlが添加されている。ゼンジマー法においてZnめっき浴は質量%で0.1%程度のAlを含有している。この浴中のAlはFeとの親和力がFe−Znよりも強いため、鋼がめっき浴に浸漬した際、鋼表面にFe−Al合金相すなわちAlの濃化層が生成し、Fe−Znの反応を抑制することが知られている。Alの濃化層が存在するために、得られためっき層中のAl含有率は通常、めっき浴中のAl含有率より高くなる。
【0005】
近年、特に自動車車体において燃費向上を目的とした車体軽量化の観点から、延性の高い高強度鋼板の需要が高まりつつある。安価な強化法として鋼中へのSi添加が行われ、特に高延性高強度鋼板には1質量%以上含有する場合もある。
【0006】
一方で、めっきの観点からすると鋼中のSiの含有率が、質量%で0.1%を超えると、通常のAlを含有しためっき浴を用いたゼンジマー法ではめっき濡れ性が大きく低下し、不めっきが発生するため、使用環境によっては不めっき部分の耐食性が問題となる。また、加工部のめっき密着性についても、めっき剥離部分が不めっき部同様、使用環境によっては剥離部の耐食性が問題となる。
【0007】
これらのSi添加鋼について問題を解決する手段として、特開平3−28359号公報、特開平3−64437号公報等に見られるように、特定のめっきを付与することでめっき性の改善を行っているが、この方法では、溶融めっきライン焼鈍炉前段に新たにめっき設備を設けるか、もしくは、あらかじめ電気めっきラインにおいてめっき処理を行わなければならず、大幅なコストアップとなるという問題点がある。また、これらの発明では、加工時のめっき剥離部の耐食性を改善し得るものではない。
【0008】
【発明が解決しようとする課題】
本発明は、上記課題を解決し、不めっきが抑制され、耐食性と延性に優れたSi含有高強度合金化溶融亜鉛めっき鋼板および溶融亜鉛めっき鋼板及びその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
発明者らは、種々検討を行った結果、めっき層に特定の元素を適正濃度含有させることおよびそれと鋼板の成分と組み合わせることで、高強度鋼板の溶融亜鉛めっき濡れ性および合金化めっきに於ける合金化促進を見いだすとともに、めっき剥離時の耐食性が確保できることも併せて見出した。この効果は、めっき層中のFe, SiおよびMo量を制御することで出現する。すなわち、質量%で、めっき層中Fe含有率をX、めっき層中Si含有率をY、めっき層中Mo含有率をZとすると、X、Y、Zが下記(1)式
X/10−(Y+Z)+1≧0 ・・・(1)
を満たすことで達成される。耐食性向上の理由の詳細は不明であるが、めっき層自体の耐食性向上にはめっき層中に含有されるMoが効果的と考えられ、剥離部近傍の耐食性向上にはめっき中および鋼中のSiがめっきの腐食生成物である塩基性塩化亜鉛を安定化し、腐食生成物による下地鋼板の保護作用が向上するためであると推定される。
【0010】
本発明は、上記知見に基づいて完成されたもので、その要旨とするところは以下の通りである。
〔1〕 質量%で、
C :0.0001〜0.3%、
Si:0.1〜3.0%、
Mn:0.01〜3%、
Al:0.001〜4%
Mo:0.001〜1%、
P:0.0001〜0.3%、
S:0.0001〜0.1%、
を含有し、残部Fe及び不可避不純物からなる鋼板の表面に、質量%で、
Al:0.001〜4%、
Mo:0.0001〜1%、
Si:0.0001〜0.1%、
Fe:20%未満、
を含有し、残部がZn及び不可避不純物からなるめっき層を有する溶融亜鉛めっき鋼板であって、質量%で、めっき層中Fe含有率をX、めっき層中Si含有率をY、めっき層中Mo含有率をZとすると、X,Y,Zが(1)式を満たすことを特徴とする耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。
【0011】
X/10−(Y+Z)+1≧0 ・・・(1)
〔2〕 めっき層が、さらに質量%で、
Mn:0.0001〜3%
Ni:0.001〜3%
の1種または2種を含有することを特徴とする〔1〕記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。
〔3〕 めっき層が、さらに質量%で、
Ca:0.001〜0.1%、
Mg:0.001〜3%、
W:0.001〜0.1%、
Zr:0.001〜0.1%、
Cs:0.001〜0.1%、
Rb:0.001〜0.1%、
K:0.001〜0.1%、
Ag:0.001〜5%、
Na:0.001〜0.05%、
Cd:0.001〜3%、
Cu:0.001〜3%、
Co:0.001〜1%、
La:0.001〜0.1%、
Tl:0.001〜8%、
Nd:0.001〜0.1%、
Y:0.001〜0.1%、
In:0.001〜5%、
Be:0.001〜0.1%、
Cr:0.001〜0.05%、
Pb:0.001〜1%、
Hf:0.001〜0.1%、
Tc:0.001〜0.1%、
Ti:0.001〜0.1%、
Ge:0.001〜5%、
Ta:0.001〜0.1%、
V:0.001〜0.2%、
B:0.001〜0.1%、
の1種または2種以上を含有することを特徴とする〔1〕または〔2〕に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。
〔4〕 鋼が、さらに質量%で、
Cr:0.001〜25%、
Ni:0.001〜10%、
Cu:0.001〜5%、
Co:0.001〜5%、
W:0.001〜5%、
の1種または2種以上を含有することを特徴とする〔1〕〜〔3〕の何れか1項に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。
〔5〕 鋼が、さらに質量%で、Nb、Ti、V、Zr、Hf、Taの1種または2種以上を合計で0.001〜1%含有することを特徴とする〔1〕〜〔4〕のいずれか1項に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。
〔6〕 鋼が、さらに質量%で、B:0.0001〜0.1%を含有することを特徴とする〔1〕〜〔5〕のいずれか1項に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼。
〔7〕 鋼が、さらに質量%で、Y、Rem、Ca、Mg、Ceの1種又は2種以上を0.0001〜1%含有することを特徴とする〔1〕〜〔6〕のいずれか1項に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。
〔8〕 鋼のミクロ組織が、体積分率で50〜97%のフェライト相又はフェライト相とベイナイト相を主相とし、残部はマルテンサイト相、残留オーステナイト相の一方もしくは両方を、体積分率で合計3〜50%含む複合組織であることを特徴とするとする〔1〕〜〔7〕のいずれか1項に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。
〔9〕 鋼板のミクロ組織が、体積分率で70〜97%のフェライトを主相とし、その平均粒径が20μm以下であり、第2相として体積分率で3〜30%のオーステナイト及び/またはマルテンサイトからなり、第2相の平均粒径が10μm以下であることを特徴とする〔1〕〜〔8〕のいずれか1項に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。
〔10〕 鋼板の第2相がオーステナイトであり、鋼中の炭素量:C(質量%)、鋼中のMn量:Mn(質量%)、オーステナイトの体積率:Vγ(%)、フェライト及びベイナイトの体積率:Vα(%)が(2)式を満たすことを特徴とする〔1〕〜〔9〕の何れか1項に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。
【0012】
(Vγ+Vα)/Vγ×C+Mn/8 ≧ 2.000 ・・・(2)
〔11〕 鋼板のミクロ組織が、体積分率で50〜95%のフェライトを主相とし、その平均粒径が20μm以下であり、第2相として体積分率で3〜30%のオーステナイト及び/またはマルテンサイトを含有し、それらの平均粒径が10μm以下であり、さらに体積分率で2〜47%のベイナイトからなることを特徴とする〔1〕〜〔10〕の何れか1項に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。
〔12〕 〔1〕〜〔11〕の何れか1項に記載の高強度溶融亜鉛めっき鋼板を製造する方法であって、請求項1、4〜7の何れか1項に記載の鋼板の成分からなる鋳造スラブを鋳造ままもしくは一旦冷却した後に1180〜1250℃に再度加熱し、880〜1100℃で熱延を終了させた後巻取った熱延鋼板を酸洗後冷延し、その後、0.1×(Ac −Ac )+Ac (℃)以上Ac +50(℃)以下の温度域で10秒〜30分焼鈍した後に、0.1〜10℃/秒の冷却速度で650〜700℃の温度域に冷却し、引き続いて0.1〜100℃/秒の冷却速度でめっき浴温度−50℃〜めっき浴温度+50(℃)にまで冷却した後めっき浴に浸漬し、浸漬時間を含めて、めっき浴温度−50℃〜めっき浴温度+50(℃)の温度域に2〜200秒保持した後、室温まで冷却することを特徴とする耐食性と延性に優れたSi含有高強度溶融亜鉛系めっき鋼板の製造方法。
〔13〕 めっき浴浸漬および保持処理後に、合金化処理を400〜550℃の温度域で行い、室温まで冷却することを特徴とする〔12〕に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛系めっき鋼板の製造方法。
【0013】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0014】
発明者らは、質量%で、
C :0.0001〜0.3%、
Si:0.1〜3.0%、
Mn:0.01〜3%、
Al:0.001〜4%、
Mo:0.001〜1%、
P:0.0001〜0.3%、
S:0.0001〜0.1%、
を含有し、残部Fe及び不可避不純物からなる鋼板を焼鈍し、温度450〜470℃のZnめっき浴に3秒間浸漬を行い、さらに一部試料については500〜550℃で10〜60秒加熱を行った。その後、めっき鋼板表面の欠陥発生率に基づき耐食試験前の外観を5段階評価した。また、耐食試験は、めっき後試料表面にカッターナイフで長さ1cmのキズをつけて、乾・湿繰り返しのサイクル試験を100サイクルまでおこない、再度外観評価をした。また、機械的性質を引張り試験にて合わせて評価した。その結果、鋼板の表面に、質量%で、
Al:0.001〜4%、
Mo:0.0001〜1%、
Si:0.0001〜0.1%、
Fe:20%未満、
を含有し、残部がZn及び不可避不純物からなるめっき層を有する溶融亜鉛めっき鋼板であって、質量%で、めっき層中Fe含有率をX、めっき層中Si含有率をY、めっき層中Mo含有率をZとすると、X,Y,Zが(1)式を満たすことで、
X/10−(Y+Z)+1≧0 ・・・(1)
腐食試験前後で外観欠陥や発錆がほとんど生じない評点5〜4を得ることがわかった。
【0015】
評点1〜5はそれぞれ、めっきの外観は不めっきの発生状態および傷や模様の欠陥発生状態や腐食性生物形態を目視にて評価した。評価指標は以下の通りである。
評点5:不めっき、傷や模様、腐食試験後の発錆はほとんど無し(面積率で0.1%以下)
評点4:不めっき、傷や模様、腐食試験後の発錆は微小(面積率で0.1%超3%以下)
評点3:不めっき、傷や模様、腐食試験後の発錆は小(面積率で3%超50%未満)
評点2:不めっき、傷や模様、腐食試験後の発錆は多数(面積率で50%超)
評点1:めっき濡れずまたは、腐食試験後、前面錆。
【0016】
めっき付着量については、特に制約は設けないが、耐食性の観点から片面付着量で5g/m 以上であることが望ましい。本発明の溶融Znめっき鋼板上に塗装性、溶接性を改善する目的で上層めっきを施すことや、各種の処理、例えば、クロメート処理、りん酸塩処理、潤滑性向上処理、溶接性向上処理等を施しても、本発明を逸脱するものではない。
【0017】
めっき層中Al量を0.001〜4質量%の範囲としたのは、0.001%未満では、ドロス発生が顕著で良好な外観が得られないこと、4%を超えてAlを添加すると合金化反応を著しく抑制してしまい、合金化溶融亜鉛めっき層を形成することが困難となるためである。
【0018】
めっき層中Mo量を0.0001〜1質量%の範囲内としたのは、この範囲において不めっきが抑制され、良好な外観のめっきが得られるためうえ、耐食性を向上できるためである。Mo量が上限の1質量%を越えるとMoを含有するドロスの生成により、めっき外観が著しく低下する。
【0019】
めっき層中Si量を0.0001〜0.1質量%としたのは、不めっきが抑制され、良好な外観のめっきが得られることに加えて、耐食性が向上するためである。一方、上限を越えるとそれぞれの元素を含有するドロスの生成により、めっき外観が著しく低下する。
【0020】
また特に、不めっきの抑制や密着性の更なる改善には、めっき層中にMnおよび/またはNiをMn:0.0001〜3質量%、Ni:0.001〜3質量%とした。この範囲において不めっきが発生せず、良好な外観のめっきが得られるためである。Mn量およびNi量が上限の3質量%を超えるとめっき浴中にてZn化合物が析出し、めっき層中に取り込まれることで外観が著しく低下したり、ドロスの発生が顕著となり、これも外観を損ねる原因となる。
【0021】
さらにめっき層中にMg,Ca,W、Zr、Cs、Rb、K、Ag、Na、Cd、Cu、Co、La、Tl、Nd、Y、In、Be、Cr、Pb、Hf、Tc、Ti、Ge、Ta、V、Bの1種または2種以上を含有することで、不めっきが抑制されることおよび合金化が促進させることを見出した。
【0022】
Ca量を0.001〜0.1%、Mg量を0.001〜3%、W量を0.001〜0.1質量%、Zr量を0.001〜0.1質量%、Cs量を0.001〜0.1質量%、Rb量を0.001〜0.1質量%、K量を0.001〜0.1質量%、Ag量を0.001〜5質量%、Na量を0.001〜0.05質量%、Cd量を0.001〜3質量%、Cu量を0.001〜3質量%、Co量を0.001〜1質量%、La量を0.001〜0.1質量%、Tl量を0.001〜8質量%、Nd量を0.001〜0.1質量%、Y量を0.001〜0.1質量%、In量を0.001〜5質量%、Be量を0.001〜0.1質量%、Cr量を0.001〜0.05質量%、Pb量を0.001〜1質量%、Hf量を0.001〜0.1質量%、Tc量を0.001〜0.1質量%、Ti量を0.001〜0.1質量%、Ge量を0.001〜5質量%、Ta量を0.001〜0.1質量%、V量を0.001〜0.2質量%、B量を0.001〜0.1質量%の範囲内としたのは、それぞれこの範囲において不めっきが抑制され、良好な外観のめっきが得られるためである。各元素量が上限を越えるとそれぞれの元素を含有するドロスの生成により、めっき外観が著しく低下する。
【0023】
合金化処理によってめっき層中にFeが取り込まれ、塗装性やスポット溶接性に優れた高強度溶融亜鉛めっき鋼板を得ることができる。前記(1)に係る発明ではめっき層のFe量が20質量%を超えるとめっき層自体の密着性を損ない、加工の際めっき層が破壊・脱落し金型に付着することで、成形時の疵の原因となる。一方、スポット溶接性を良好にするためにはFe量を5質量%以上とすることが好ましい。したがって、合金化処理を行う場合のめっき層中Fe量の範囲は5〜20質量%とする。
【0024】
また、合金化処理を行わない場合めっき層のFe量が5質量%未満でも、合金化により得られる塗装性やスポット溶接性などの効果以外の効果である耐食性と延性や加工性等は良好である。
【0025】
次に、本発明における鋼板成分の限定理由について述べる。
【0026】
C:強度を確保するためにC量の下限を0.0001質量%とした。また、特に残留オーステナイトを充分な量と安定性を確保するのに必要な不可欠な添加元素である。一方では、溶接性を保持可能な上限として0.3質量%とした。
【0027】
Si:製造性および材質上強度を確保するため0.1%以上とし、また、過剰添加はフェライトの硬化につながり延性を劣化させるうえ、溶接性も劣化させることから3.0%以下とした。
【0028】
Mn:0.01〜3質量%の範囲としたのは、0.01質量%以上で強化効果が現れること、3質量%を上限としたのは、これを上回る添加は伸びに悪影響を及ぼすためである。
【0029】
Al:0.001〜4質量%の範囲としたのは、低Siであるがゆえに脱酸の目的で0.001質量%以上とした。また、強度延性バランスを向上させたりめっきの合金化挙動を促進させる効果を有する。一方、過剰添加は溶接性やめっき濡れ性、製造性に悪影響を及ぼすため4%を上限とした。
【0030】
Mo:強化元素である。強度延性バランスに悪影響を及ぼすパーライトや炭化物析出を抑制するために0.001%以上添加する。一方で、過剰添加は残留オーステナイトの生成や安定化およびフェライトを硬化させることから延性低下を伴うため1%を上限とした。
【0031】
P量を0.0001〜0.3質量%の範囲としたのは、0.0001質量%以上で強化効果が現れることや極低化は経済的にも不利であることからこれを下限とした。また、0.3質量%を上限としたのは、これを超える量の添加では、溶接性や鋳造時や熱延時の製造性に悪影響を及ぼすためである。
【0032】
S量を0.0001〜0.1質量%の範囲としたのは、極低化は経済的にも不利であることから、0.0001質量%を下限とし、また、0.1質量%を上限としたのは、これを超える量の添加では、溶接性や鋳造時や熱延時の製造性に悪影響を及ぼすためである。
【0033】
さらに、本発明が対象とする鋼は、強度のさらなる向上を目的としてCr、Ni、Cu、Co,Wの1種または2種以上を含有できる。
【0034】
Cr量を0.001〜25質量%の範囲としたのは、0.001質量%以上で強化効果が現れること、25質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。
【0035】
Ni量を0.001〜10質量%の範囲としたのは、0.001%以上で強化効果が現れること、10質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。
【0036】
Cu量を0.001〜5質量%の範囲としたのは、0.001質量%以上で強化効果が現れること、25質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。
【0037】
Co量を0.001〜5質量%の範囲としたのは、0.001質量%以上で強化効果が現れること、5質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。
【0038】
W量を0.001〜5質量%の範囲としたのは、0.001質量%以上で強化効果が現れること、5質量%を上限としたのは、これを超える量の添加では、加工性に悪影響を及ぼすためである。
【0039】
さらに、本発明が対象とする鋼は、強度のさらなる向上を目的として強炭化物形成元素であるNb,Ti,V,Zr,Hf,Taの1種または2種以上を含有できる。
【0040】
これらの元素は、微細な炭化物、窒化物または炭窒化物を形成して、鋼板の強化のは極めて有効であるため、必要に応じて1種または2種以上を合計で0.001質量%以上の添加とした。一方で、延性劣化や残留オーステナイト中へのCの濃化を阻害することから、1種又は2種以上の合計添加量の上限として1質量%とした。
【0041】
Bもまた、必要に応じて添加できる。Bは、0.0001%以上の添加で粒界の強化や鋼材の高強度化に有効ではあるが、その添加量が0.1質量%を超えるとその効果が飽和するばかりでなく、必要以上に鋼板強度を上昇させ、加工性が低下するため、上限を0.1質量%とした。
【0042】
Y、Rem、Ca、Mg、Ce、:めっきの濡れ性を劣化させるSi系の内部粒界酸化相生成を抑制する目的で添加する。Si系の酸化物のように粒界酸化物が形成するのではなく、比較的微細な酸化物を分散して形成させることができる。これらの元素群中から1種または2種以上の元素をあわせて0.0001%以上の添加とした。また一方で過剰添加は鋳造性や熱間加工性などの製造性および鋼板製品の延性を低下させるため1質量%を上限とした。
【0043】
次に、基材鋼板の好ましいミクロ組織について述べる。
加工性を十分に確保するためには主組織を体積分率で50%以上、好ましくは70%以上のフェライト相とするのが望ましいが、高強度化を考慮するとベイナイト相を含んでも良い。また、高強度と高延性を両立させるため、残留オーステナイト相および/またはマルテンサイト相を含む複合組織とする。高強度と高延性のために、残留オーステナイト相とマルテンサイト相は、体積率で合計3%以上とした。体積率が合計50%を超えると脆化傾向を示すため、50%以下が望ましい。
【0044】
フェライトの体積分率の増加は延性を高めるが強度低下に結びつくため、上限はベイナイト相を含有しない場合は体積分率で97%,ベイナイト相を含有する場合は体積分率で95%とする。また、高強度と高延性を両立させるため、残留オーステナイト及び/又はマルテンサイトを含む複合組織とする。高強度と高延性のために、残留オーステナイト相及び/又はマルテンサイトは、体積分率で合計3%以上とした。体積分率が合計30%を超えると脆化傾向を示すため、これを上限とした。
【0045】
鋼板自体の高延性を確保するたに、フェライトの平均粒径を20μm以下とし、第2相であるオーステナイト及び/又はマルテンサイトの平均粒径を10μm以下と規定する。またここで、第2相をオーステナイト及び/又はマルテンサイトとし、主相であるフェライトの平均粒径に対して0.7以下の比率を確保することが望ましい。一方、第2相であるオーステナイト及び/又はマルテンサイトの平均粒径はフェライトの平均粒径の0.01倍未満とすることは実製造上困難であるため、0.01倍以上であることが好ましい。
【0046】
さらに、めっき密着性と高い強度延性・延性のバランスを良好にするためには、鋼板の第2相がオーステナイトである場合に鋼中の炭素量:C、鋼中のMn量:Mn、オーステナイトの体積率:Vγ、フェライト及びベイナイトの体積率:Vαとしたき(2)式を満たすこととした。
【0047】
(Vγ+Vα)/Vγ×C+Mn/8 ≧ 2.000 ・・・(2)
この式を満たすことで特に強度・延性のバランスに優れ、かつめっき密着性も良好な鋼板が得られる。
【0048】
ベイナイトを含む場合における体積分率等について説明すると次のとおりである。ベイナイト相は体積分率で2%以上含有することにより高強度化に役立つ上、オーステナイト相と共存するとオーステナイトの安定化に寄与して結果として高n値化に役立つ。また、この相は基本的に微細であり、高加工時のめっき密着性にも寄与する。特に第2相がオーステナイトの場合には、ベイナイトの体積分率を2%以上とすると、さらにめっき密着性と延性のバランスが向上する。一方で、過多に生成すると延性低下を招く事からベイナイト相は体積分率で47%以下とする。
【0049】
上記の他にミクロ組織の残部組織として、炭化物、窒化物、硫化物、酸化物の1又は2種以上を含有する場合も本発明の鋼板の範疇であるが、これらの1種又は2種以上は体積分率で1%以下であることが好ましい。なお、上記ミクロ組織の、フェライト、ベイナイト、オーステナイト、マルテンサイトおよび残部組織の同定、存在位置の観察および平均粒径(平均円相当径)と占積率の測定は、ナイタール試薬および特開昭59−219473号公報に開示された試薬により鋼板圧延方向断面または圧延方向と直角な断面を腐食して500倍〜1000倍の光学顕微鏡観察により定量化が可能である。ここで、マルテンサイトの粒径測定は光学顕微鏡を用いた場合困難なことがある。この場合には、走査型電子顕微鏡を用いてマルテンサイトのブロック境界、パケット境界またはそれらの集合を観察・粒径測定して平均円相当径を求めることとする。
【0050】
平均粒径は、上記の方法により20視野観察以上した結果に基づいて、JISにより求めた値と定義する。
【0051】
このような組織を有する高強度溶融亜鉛めっき鋼板の製造方法について以下説明する。
【0052】
熱延後冷延・焼鈍して本発明の鋼板を製造する場合には、所定の成分に調整されたスラブを鋳造ままもしくは一旦冷却した後1180℃以上に再加熱して均一なスケールを鋼片表面に形成させてデスケール性を高める。一方、1250℃超の加熱が局部的な異常酸化を促進させてしまうことからこれを加熱温度の上限とした。また、過剰な内部酸化生成を抑制する目的から熱延は880℃以上で終了することとし、その後酸洗し、冷延後焼鈍することで最終製品とする。この時、熱延完了温度は鋼の化学成分によって決まるAr 変態温度以上で行うのが一般的であるが、Ar から10℃程度低温までであれば最終的な鋼板の特性を劣化させない。一方、酸化スケールの多量生成を避けるために、熱延完了温度は1100℃以下とする。
【0053】
また、冷却後の巻取温度は鋼の化学成分によって決まるベイナイト変態開始温度以上とすることで、冷延時の荷重を必要以上に高めることが避けられるが、冷延の全圧下率が小さい場合にはこの限りでなく、鋼のベイナイト変態温度以下で巻き取られても最終的な鋼板の特性を劣化させない。また、冷延の全圧下率は、最終板厚と冷延荷重の関係から設定されるが、40%以上であれば最終的な鋼板の特性を劣化させない。
【0054】
冷延後焼鈍する際に、焼鈍温度が鋼の化学成分によって決まる温度Ac 及びAc 温度(例えば「鉄鋼材料学」:W. C. Leslie著、幸田成康監訳、丸善P273)で、表現される0.1×(Ac −Ac1 )+Ac (℃)未満の場合には、焼鈍温度で得られるオーステナイト量が少ないので、最終的な鋼板中に残留オーステナイト相またはマルテンサイト相を残すことができないためにこれを焼鈍温度の下限とした。また、焼鈍温度がAc +50(℃)を超えても何ら鋼板の特性を改善することがでず製造コストの上昇をまねくために、焼鈍温度の上限をAc +50(℃)とした。この温度での焼鈍時間は鋼板の温度均一化とオーステナイトの確保のために10秒以上が必要である。しかし、30分超では、効果が飽和するばかりでなくコストの上昇を招くのでこれを上限とした。
【0055】
その後の一次冷却はオーステナイト相からフェライト相への変態を促して、未変態のオーステナイト相中にCを濃化させてオーステナイトの安定化をはかるのに重要である。この冷却速度が0.1℃/秒未満にすることは、必要な生産ライン長を長くしたり、生産速度を極めて遅くするといった製造上のデメリットを生じるために、この冷却速度の下限を0.1℃/秒とした。一方、冷却速度が10℃/秒超の場合にはフェライト変態が十分に起こらず、最終的な鋼板中の残留オーステナイト相確保が困難となったり、マルテンサイト相などの硬質相が多量になってしまうため、これを上限とした。
【0056】
この一次冷却が650℃未満まで行われると、冷却中にパーライトが生成したり充分なフェライトが生成しないことからこれを下限とした。しかしながら、冷却が700℃超までもフェライト変態の進行が十分ではないのでこれを上限とした。
【0057】
引き続き行われる二次冷却の急速冷却は、冷却中にパーライト変態や鉄炭化物の析出などが起こらないような冷却速度として最低0.1℃/秒以上が必要となる。但しこの冷却速度を100℃/秒超にすることは設備能力上困難であることから、0.1〜100℃/秒を冷却速度の範囲とした。
【0058】
この二次冷却の冷却停止温度がめっき浴温度−50℃よりも低いと操業上大きな問題となり、めっき浴温度+50(℃)を超えると炭化物析出が短時間で生じるため得られる残留オーステナイトやマルテンサイトの量が確保できなくなる。このため、2次冷却の停止温度をめっき浴温度−50℃以上めっき浴温度+50(℃)とした。鋼板中に残留しているオーステナイト相を室温で安定にするためには、その一部をベイナイト相へ変態させる事でオーステナイト中の炭素濃度を更に高めることが必須である。合金化処理を併せてベイナイト変態を短時間で進行させるため、めっき温度−50℃からめっき温度+50℃の温度域で浸漬時間を含めて2〜200秒保持することとした。
めっき温度−50℃未満ではベイナイト変態が起こりにくく、めっき温度+50℃を超えると炭化物が生じて十分な残留オーステナイト相を残すことが困難となる。
【0059】
マルテンサイト相を生成させるには、残留オーステナイト相の場合とは異なりベイナイト変態を生じさせる必要がない。一方では、炭化物やパーライト相の生成は残留オーステナイト相と同様、抑制する必要があるため、2次冷却後の十分な合金化処理を行うため400〜550℃の温度域で合金化処理することとする。
【0060】
【実施例】
以下、実施例によって本発明をさらに詳細に説明する。
【0061】
表1に示すような組成の鋼板を、1180〜1250℃に加熱し、880〜1100℃で熱延を完了し、冷却後各鋼の化学成分で決まるベイナイト変態開始温度以上で巻き取った鋼帯を酸洗後、冷延して1.0mm厚とした。
【0062】
【表1】

Figure 0003631710
【0063】
その後、各鋼の成分(質量%)から下記式にしたがってAc とAc 変態温度を計算により求めた。
【0064】
Ac =723−10.7×Mn%+29.1×Si%、
Ac =910−203×(C%)1/2+44.7×Si%+31.5×Mo%−30×Mn%−11×Cr%+400×Al%
これらのAc およびAc 変態温度から計算される焼鈍温度に10%H −N 雰囲気中で昇温・保定したのち、0.1〜10℃/秒の冷却速度で650〜700℃温度域に冷却し、引き続いて0.1〜20℃/秒の冷却速度でめっき浴温度にまで冷却し、浴組成を種々変化させた460〜470℃の亜鉛めっき浴に3秒間浸漬することでめっきを行った。
【0065】
また、一部の鋼板については、Fe−Zn合金化処理として、めっき後の鋼板を400〜550℃の温度域で15秒〜20分保持し、めっき層中のFe含有率が質量%で5〜20%となるよう調節した。めっき表面外観のドロス巻き込み状況の目視観察および不めっき部面積の測定によりめっき外観を評価した。作製しためっきはめっき層をインヒビターを含有した5%塩酸溶液で溶解し化学分析に供し組成を求め表2に示した。
【0066】
表2および表3より、本発明鋼は、外観評点が耐食試験前後ですべて5〜4で、かつ強度・伸びバランスにも優れる。一方、本発明の範囲を満たさない比較例は、いずれも外観評点が低く、強度・伸びバランスに劣る。また、本願発明の請求項の範囲で製造した鋼板は、ミクロ組織も上述した組織になっており外観及び強度・伸びバランスに優れている。
【0067】
【表2】
Figure 0003631710
【0068】
【表3】
Figure 0003631710
【0069】
【表4】
Figure 0003631710
【0070】
【発明の効果】
本発明の高強度溶融亜鉛めっき鋼板は耐食性に極めて優れ、加工性が良好であり、建材、家電製品、自動車車体用途等に極めて有効である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a Si-containing high-strength galvannealed steel sheet and hot-dip galvanized steel sheet that are excellent in corrosion resistance and ductility suitable for building materials, home appliances, automobiles, and the like, and a method for producing the same.
[0002]
[Prior art]
Hot dip galvanizing is applied for the purpose of corrosion protection of steel sheets, and is widely used in building materials, home appliances, automobiles and the like. As a manufacturing method thereof, in a continuous line, after degreasing and cleaning, heating in a non-oxidizing atmosphere, 2 And N 2 There is a Sendzimer method in which after cooling in a reducing atmosphere containing, cooled to near the plating bath temperature, immersed in a molten zinc bath, cooled, or reheated to produce an Fe-Zn alloy phase, the steel plate method It is frequently used for processing.
[0003]
For annealing before plating, after degreasing and washing, immediately after heating in a non-oxidizing atmosphere, H 2 And N 2 In some cases, an all-reducing furnace method in which annealing is performed in a reducing atmosphere containing selenium is also performed. In addition, a flux method is also performed in which a steel sheet is degreased and pickled, and then flux treatment is performed using ammonium chloride and the like, soaking in a plating bath, and then cooling.
[0004]
A small amount of Al is added to the plating bath used in these plating processes for deoxidation of molten zinc. In the Sendzimer method, the Zn plating bath contains about 0.1% Al by mass%. Since Al in this bath has a stronger affinity for Fe than Fe-Zn, when steel is immersed in the plating bath, an Fe-Al alloy phase, that is, an Al concentrated layer, is formed on the surface of the steel. It is known to suppress the reaction. Due to the presence of the Al concentrated layer, the Al content in the obtained plating layer is usually higher than the Al content in the plating bath.
[0005]
In recent years, the demand for high-strength steel sheets having high ductility has been increasing from the viewpoint of reducing the weight of a vehicle body for the purpose of improving the fuel efficiency particularly in the automobile body. As an inexpensive strengthening method, Si is added to the steel, and the high ductility and high strength steel sheet may contain 1% by mass or more.
[0006]
On the other hand, from the viewpoint of plating, if the Si content in the steel exceeds 0.1% by mass, plating wettability is greatly reduced in the Sendzimer method using a plating bath containing ordinary Al, Since non-plating occurs, the corrosion resistance of the non-plated part becomes a problem depending on the use environment. Moreover, also about the plating adhesion of a process part, the corrosion resistance of a peeling part becomes a problem depending on use environment like a plating peeling part like a non-plating part.
[0007]
As means for solving the problems with these Si-added steels, as shown in JP-A-3-28359, JP-A-3-64437, etc., the plating property is improved by applying specific plating. However, this method has a problem in that a new plating facility must be provided in front of the hot dipping line annealing furnace or a plating process must be performed in advance in the electroplating line, resulting in a significant increase in cost. Moreover, in these inventions, the corrosion resistance of the plating peeling part at the time of a process cannot be improved.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned problems, and to provide a Si-containing high-strength galvannealed steel sheet, a galvanized steel sheet, and a method for producing the same, in which non-plating is suppressed and corrosion resistance and ductility are excellent.
[0009]
[Means for Solving the Problems]
As a result of various investigations, the inventors have made the plating layer contain an appropriate concentration of a specific element and combine it with the components of the steel sheet, so that the hot-dip galvanizing wettability and alloying plating of the high-strength steel sheet can be achieved. In addition to finding acceleration of alloying, it was also found that corrosion resistance during plating peeling can be secured. This effect appears by controlling the amount of Fe, Si and Mo in the plating layer. That is, assuming that the Fe content in the plating layer is X, the Si content in the plating layer is Y, and the Mo content in the plating layer is Z in mass%, X, Y, and Z are expressed by the following formula (1).
X / 10− (Y + Z) + 1 ≧ 0 (1)
It is achieved by satisfying. The details of the reason for improving the corrosion resistance are unknown, but it is considered that Mo contained in the plating layer is effective for improving the corrosion resistance of the plating layer itself. It is estimated that this is because the basic zinc chloride, which is a corrosion product of plating, is stabilized, and the protective action of the base steel plate by the corrosion product is improved.
[0010]
The present invention has been completed based on the above findings, and the gist thereof is as follows.
[1] By mass%
C: 0.0001 to 0.3%,
Si: 0.1 to 3.0%,
Mn: 0.01 to 3%
Al: 0.001 to 4%
Mo: 0.001 to 1%,
P: 0.0001 to 0.3%,
S: 0.0001 to 0.1%,
In the surface of the steel plate made of the balance Fe and inevitable impurities,
Al: 0.001 to 4%,
Mo: 0.0001 to 1%,
Si: 0.0001 to 0.1%,
Fe: less than 20%,
A hot-dip galvanized steel sheet having a plating layer consisting of Zn and inevitable impurities, the balance being X, the Fe content in the plating layer being X, the Si content in the plating layer being Y, and the Mo in the plating layer being Mo. A Si-containing high-strength hot-dip galvanized steel sheet excellent in corrosion resistance and ductility, wherein X, Y, and Z satisfy the formula (1) where the content is Z.
[0011]
X / 10− (Y + Z) + 1 ≧ 0 (1)
[2] The plating layer is further mass%,
Mn: 0.0001 to 3%
Ni: 0.001 to 3%
The Si-containing high-strength hot-dip galvanized steel sheet having excellent corrosion resistance and ductility according to [1], characterized by containing one or two of the following:
[3] The plating layer is further mass%,
Ca: 0.001 to 0.1%,
Mg: 0.001 to 3%,
W: 0.001 to 0.1%,
Zr: 0.001 to 0.1%,
Cs: 0.001 to 0.1%,
Rb: 0.001 to 0.1%,
K: 0.001 to 0.1%,
Ag: 0.001 to 5%,
Na: 0.001 to 0.05%,
Cd: 0.001 to 3%
Cu: 0.001 to 3%,
Co: 0.001-1%,
La: 0.001 to 0.1%,
Tl: 0.001-8%
Nd: 0.001 to 0.1%,
Y: 0.001 to 0.1%
In: 0.001 to 5%,
Be: 0.001 to 0.1%,
Cr: 0.001 to 0.05%,
Pb: 0.001 to 1%,
Hf: 0.001 to 0.1%,
Tc: 0.001 to 0.1%,
Ti: 0.001 to 0.1%,
Ge: 0.001 to 5%,
Ta: 0.001 to 0.1%,
V: 0.001 to 0.2%,
B: 0.001 to 0.1%,
The Si-containing high-strength hot-dip galvanized steel sheet having excellent corrosion resistance and ductility according to [1] or [2].
[4] Steel is further mass%,
Cr: 0.001 to 25%,
Ni: 0.001 to 10%,
Cu: 0.001 to 5%,
Co: 0.001-5%
W: 0.001 to 5%,
The Si-containing high-strength hot-dip galvanized steel sheet having excellent corrosion resistance and ductility according to any one of [1] to [3].
[5] The steel further contains 0.001 to 1% in total of one or more of Nb, Ti, V, Zr, Hf, and Ta in mass%. 4] The Si-containing high-strength hot-dip galvanized steel sheet excellent in corrosion resistance and ductility.
[6] The steel is further mass% and contains B: 0.0001 to 0.1%, which is excellent in corrosion resistance and ductility according to any one of [1] to [5] High strength galvanized steel containing Si.
[7] Any one of [1] to [6], wherein the steel further contains 0.0001 to 1% of one or more of Y, Rem, Ca, Mg, and Ce in mass%. 2. A Si-containing high-strength hot-dip galvanized steel sheet excellent in corrosion resistance and ductility according to item 1.
[8] The microstructure of the steel has a ferrite phase or ferrite phase and bainite phase with a volume fraction of 50 to 97%, and the balance is one or both of martensite phase and residual austenite phase. The Si-containing high-strength hot-dip galvanized steel sheet having excellent corrosion resistance and ductility according to any one of [1] to [7], which is a composite structure containing 3 to 50% in total.
[9] The microstructure of the steel sheet is composed of 70 to 97% ferrite as a main phase in volume fraction, its average particle size is 20 μm or less, and as a second phase, austenite and / or 3 to 30% in volume fraction. Alternatively, the Si-containing high-strength molten zinc having excellent corrosion resistance and ductility according to any one of [1] to [8], which comprises martensite and has an average particle size of the second phase of 10 μm or less. Plated steel sheet.
[10] The second phase of the steel sheet is austenite, carbon content in steel: C (mass%), Mn content in steel: Mn (mass%), volume ratio of austenite: Vγ (%), ferrite and bainite The Si-containing high-strength hot-dip galvanized steel sheet having excellent corrosion resistance and ductility according to any one of [1] to [9], wherein Vα (%) satisfies the formula (2):
[0012]
(Vγ + Vα) / Vγ × C + Mn / 8 ≧ 2,000 (2)
[11] The microstructure of the steel sheet is mainly composed of ferrite with a volume fraction of 50 to 95%, the average grain size is 20 μm or less, and the second phase is austenite with a volume fraction of 3 to 30%. Or it contains martensite, those average particle diameters are 10 micrometers or less, and also consists of bainite of 2-47% by volume fraction, It is any one of [1]-[10] characterized by the above-mentioned High strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility.
[12] A method for producing the high-strength hot-dip galvanized steel sheet according to any one of [1] to [11], wherein the steel sheet component according to any one of claims 1, 4 to 7 is used. The cast slab comprising .1x (Ac 3 -Ac 1 ) + Ac 1 (℃) or more Ac 3 After annealing at a temperature range of +50 (° C.) or less for 10 seconds to 30 minutes, it is cooled to a temperature range of 650 to 700 ° C. at a cooling rate of 0.1 to 10 ° C./second, and subsequently 0.1 to 100 ° C. / After cooling to a plating bath temperature of −50 ° C. to a plating bath temperature of +50 (° C.) at a cooling rate of 2 seconds, it is immersed in the plating bath and includes the immersion time. A method for producing a Si-containing high-strength hot-dip galvanized steel sheet excellent in corrosion resistance and ductility, characterized by being held in the temperature range of 2 to 200 seconds and then cooled to room temperature.
[13] The high strength of Si-containing high strength excellent in corrosion resistance and ductility according to [12], wherein the alloying treatment is performed in a temperature range of 400 to 550 ° C. after the plating bath immersion and holding treatment, and is cooled to room temperature. Manufacturing method of hot dip galvanized steel sheet.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0014]
Inventors are mass%,
C: 0.0001 to 0.3%,
Si: 0.1 to 3.0%,
Mn: 0.01 to 3%
Al: 0.001 to 4%,
Mo: 0.001 to 1%,
P: 0.0001 to 0.3%,
S: 0.0001 to 0.1%,
The steel sheet comprising the remainder Fe and inevitable impurities is annealed, immersed in a Zn plating bath at a temperature of 450 to 470 ° C. for 3 seconds, and some samples are heated at 500 to 550 ° C. for 10 to 60 seconds. It was. Thereafter, the appearance before the corrosion resistance test was evaluated based on five levels based on the defect occurrence rate on the surface of the plated steel sheet. In addition, in the corrosion resistance test, the surface of the sample after plating was scratched with a cutter knife with a length of 1 cm, repeated dry and wet cycle tests were performed up to 100 cycles, and the appearance was evaluated again. Further, the mechanical properties were evaluated together by a tensile test. As a result, on the surface of the steel sheet,
Al: 0.001 to 4%,
Mo: 0.0001 to 1%,
Si: 0.0001 to 0.1%,
Fe: less than 20%,
A hot-dip galvanized steel sheet having a plating layer consisting of Zn and inevitable impurities, the balance being X, the Fe content in the plating layer being X, the Si content in the plating layer being Y, and the Mo in the plating layer being Mo. If the content rate is Z, X, Y and Z satisfy the formula (1),
X / 10− (Y + Z) + 1 ≧ 0 (1)
It was found that a score of 5 to 4 was obtained with almost no appearance defects or rusting before and after the corrosion test.
[0015]
In each of the grades 1 to 5, the appearance of plating was visually evaluated for the state of occurrence of non-plating, the state of occurrence of defects of scratches and patterns, and the corrosive biological form. The evaluation index is as follows.
Score 5: No plating, scratches and patterns, almost no rust after corrosion test (0.1% or less in area ratio)
Score 4: Non-plating, scratches and patterns, rusting after corrosion test is very small (over 0.1% in area ratio and 3% or less)
Score 3: Non-plating, scratches and patterns, rusting after corrosion test is small (over 3% and less than 50% in area ratio)
Score 2: Unplated, scratches and patterns, many rusting after corrosion test (area ratio exceeds 50%)
Rating 1: No plating wet or rust on the front after corrosion test.
[0016]
There are no particular restrictions on the amount of plating deposited, but the amount on one side is 5 g / m from the viewpoint of corrosion resistance. 2 The above is desirable. For the purpose of improving the paintability and weldability on the hot-dip Zn plated steel sheet of the present invention, various treatments such as chromate treatment, phosphate treatment, lubricity improvement treatment, weldability improvement treatment, etc. However, the present invention does not depart from the present invention.
[0017]
The reason why the amount of Al in the plating layer is in the range of 0.001 to 4% by mass is that if less than 0.001%, dross generation is remarkable and a good appearance cannot be obtained, and if adding Al exceeding 4% This is because the alloying reaction is remarkably suppressed and it becomes difficult to form an alloyed hot-dip galvanized layer.
[0018]
The reason why the amount of Mo in the plating layer is in the range of 0.0001 to 1% by mass is that non-plating is suppressed in this range, plating with a good appearance can be obtained, and corrosion resistance can be improved. When the amount of Mo exceeds the upper limit of 1% by mass, the appearance of the plating is remarkably deteriorated due to the generation of dross containing Mo.
[0019]
The reason why the Si amount in the plating layer is set to 0.0001 to 0.1% by mass is that non-plating is suppressed and plating having a good appearance is obtained, and corrosion resistance is improved. On the other hand, when the upper limit is exceeded, the appearance of plating is remarkably deteriorated due to generation of dross containing each element.
[0020]
In particular, in order to suppress non-plating and further improve the adhesion, Mn and / or Ni in the plating layer was Mn: 0.0001 to 3% by mass and Ni: 0.001 to 3% by mass. This is because non-plating does not occur in this range, and plating with a good appearance can be obtained. When the amount of Mn and the amount of Ni exceed the upper limit of 3% by mass, the Zn compound is precipitated in the plating bath and taken into the plating layer, so that the appearance is remarkably deteriorated or dross is noticeable. Cause damage.
[0021]
Further, Mg, Ca, W, Zr, Cs, Rb, K, Ag, Na, Cd, Cu, Co, La, Tl, Nd, Y, In, Be, Cr, Pb, Hf, Tc, Ti are contained in the plating layer. It has been found that non-plating is suppressed and alloying is promoted by containing one or more of Ge, Ta, V, and B.
[0022]
0.001 to 0.1% Ca content, 0.001 to 3% Mg content, 0.001 to 0.1 mass% W content, 0.001 to 0.1 mass% Zr content, Cs content 0.001 to 0.1 mass%, Rb content 0.001 to 0.1 mass%, K content 0.001 to 0.1 mass%, Ag content 0.001 to 5 mass%, Na content 0.001 to 0.05 mass%, Cd content is 0.001 to 3 mass%, Cu content is 0.001 to 3 mass%, Co content is 0.001 to 1 mass%, and La content is 0.001. -0.1 mass%, Tl content is 0.001-8 mass%, Nd content is 0.001-0.1 mass%, Y content is 0.001-0.1 mass%, and In content is 0.001. -5 mass%, Be amount 0.001-0.1 mass%, Cr amount 0.001-0.05 mass%, Pb amount 0.001-1 mass%, Hf amount 0.001-0. .1 quality %, Tc amount is 0.001 to 0.1% by mass, Ti amount is 0.001 to 0.1% by mass, Ge amount is 0.001 to 5% by mass, Ta amount is 0.001 to 0.1% by mass. %, V amount is 0.001 to 0.2 mass%, and B content is within the range of 0.001 to 0.1 mass%. Is obtained. When the amount of each element exceeds the upper limit, the appearance of plating is remarkably deteriorated due to generation of dross containing each element.
[0023]
Fe is taken into the plating layer by the alloying treatment, and a high-strength hot-dip galvanized steel sheet excellent in paintability and spot weldability can be obtained. In the invention according to the above (1), if the amount of Fe in the plating layer exceeds 20% by mass, the adhesion of the plating layer itself is impaired, and the plating layer breaks and falls off during processing and adheres to the mold. Causes wrinkles. On the other hand, in order to improve spot weldability, it is preferable that the amount of Fe is 5% by mass or more. Therefore, the range of the amount of Fe in the plating layer when performing the alloying treatment is 5 to 20% by mass.
[0024]
In addition, even when the alloying treatment is not performed, even if the amount of Fe in the plating layer is less than 5% by mass, the corrosion resistance, ductility, workability, etc., which are effects other than the effects such as paintability and spot weldability obtained by alloying are good is there.
[0025]
Next, the reasons for limiting the steel plate components in the present invention will be described.
[0026]
C: In order to ensure strength, the lower limit of the C amount was 0.0001% by mass. In particular, the retained austenite is an indispensable additive element necessary to ensure a sufficient amount and stability. On the other hand, the upper limit for maintaining weldability was set to 0.3% by mass.
[0027]
Si: 0.1% or more in order to ensure manufacturability and material strength. Further, excessive addition leads to hardening of ferrite and deteriorates ductility and weldability.
[0028]
The range of Mn: 0.01 to 3% by mass is that a strengthening effect appears at 0.01% by mass or more, and 3% by mass is the upper limit because addition exceeding this has an adverse effect on elongation. It is.
[0029]
Al: The range of 0.001 to 4% by mass is set to 0.001% by mass or more for the purpose of deoxidation because of low Si. It also has the effect of improving the strength ductility balance and promoting the alloying behavior of the plating. On the other hand, excessive addition adversely affects weldability, plating wettability and manufacturability, so 4% was made the upper limit.
[0030]
Mo: Strengthening element. 0.001% or more is added to suppress pearlite and carbide precipitation that adversely affect the strength and ductility balance. On the other hand, excessive addition is accompanied by a decrease in ductility because it generates and stabilizes retained austenite and hardens ferrite, so the upper limit was made 1%.
[0031]
The amount of P was set in the range of 0.0001 to 0.3% by mass because the strengthening effect appears at 0.0001% by mass or more and the extremely low is economically disadvantageous, so this was set as the lower limit. . The reason why the upper limit is 0.3% by mass is that the addition exceeding this amount adversely affects weldability and manufacturability during casting and hot rolling.
[0032]
The reason why the S amount is in the range of 0.0001 to 0.1% by mass is that the extremely low reduction is economically disadvantageous, so 0.0001% by mass is set as the lower limit, and 0.1% by mass is also required. The upper limit is because addition of an amount exceeding this adversely affects weldability, manufacturability during casting and hot rolling.
[0033]
Furthermore, the steel targeted by the present invention can contain one or more of Cr, Ni, Cu, Co, and W for the purpose of further improving the strength.
[0034]
The Cr content in the range of 0.001 to 25% by mass means that a strengthening effect appears at 0.001% by mass or more, and the upper limit is 25% by mass. This is to adversely affect
[0035]
The amount of Ni in the range of 0.001 to 10% by mass is that the strengthening effect appears at 0.001% or more, and the upper limit of 10% by mass is the workability when the amount exceeds this. This is to have an adverse effect.
[0036]
The amount of Cu in the range of 0.001 to 5% by mass is that the strengthening effect appears at 0.001% by mass or more, and the upper limit of 25% by mass is the workability when the amount exceeds this. This is to adversely affect
[0037]
The Co amount in the range of 0.001 to 5% by mass is that the strengthening effect appears at 0.001% by mass or more, and the upper limit of 5% by mass is the workability when the amount exceeds this. This is to adversely affect
[0038]
The amount of W in the range of 0.001 to 5% by mass is that the strengthening effect appears at 0.001% by mass or more, and the upper limit of 5% by mass is the workability when the amount exceeds this. This is to adversely affect
[0039]
Furthermore, the steel targeted by the present invention can contain one or more of Nb, Ti, V, Zr, Hf, and Ta, which are strong carbide forming elements, for the purpose of further improving the strength.
[0040]
These elements form fine carbides, nitrides, or carbonitrides, and are extremely effective in strengthening the steel sheet. Therefore, if necessary, one or more elements may be added in total to 0.001% by mass or more. Was added. On the other hand, since it inhibits ductility deterioration and concentration of C in retained austenite, the upper limit of the total addition amount of one kind or two or more kinds is set to 1% by mass.
[0041]
B can also be added as needed. B is effective for strengthening grain boundaries and increasing the strength of steel by adding 0.0001% or more, but when the amount of addition exceeds 0.1% by mass, the effect is saturated and more than necessary. Therefore, the upper limit was set to 0.1% by mass.
[0042]
Y, Rem, Ca, Mg, Ce, are added for the purpose of suppressing the formation of an Si-based internal grain boundary oxidation phase that deteriorates the wettability of plating. Grain boundary oxides are not formed like Si-based oxides, but relatively fine oxides can be dispersed and formed. From these element groups, one or more elements were added in an amount of 0.0001% or more. On the other hand, excessive addition reduces the manufacturability such as castability and hot workability, and the ductility of the steel sheet product, so the upper limit was made 1 mass%.
[0043]
Next, a preferable microstructure of the base steel sheet will be described.
In order to ensure sufficient workability, it is desirable that the main structure is a ferrite phase with a volume fraction of 50% or more, preferably 70% or more, but a bainite phase may be included in view of increasing the strength. Further, in order to achieve both high strength and high ductility, a composite structure including a retained austenite phase and / or a martensite phase is formed. For high strength and high ductility, the residual austenite phase and martensite phase were made 3% or more in total by volume. When the volume ratio exceeds 50% in total, an embrittlement tendency is exhibited, so 50% or less is desirable.
[0044]
An increase in the volume fraction of ferrite increases ductility but leads to a decrease in strength. Therefore, the upper limit is 97% in the case of containing no bainite phase and 95% in the case of containing a bainite phase. In order to achieve both high strength and high ductility, a composite structure containing retained austenite and / or martensite is used. Due to high strength and high ductility, the residual austenite phase and / or martensite was 3% or more in total in terms of volume fraction. When the volume fraction exceeds 30% in total, an embrittlement tendency is shown, so this was made the upper limit.
[0045]
In order to ensure the high ductility of the steel sheet itself, the average grain size of ferrite is set to 20 μm or less, and the average grain size of austenite and / or martensite as the second phase is specified to be 10 μm or less. In addition, here, it is desirable that the second phase is austenite and / or martensite and a ratio of 0.7 or less is ensured with respect to the average particle diameter of the ferrite as the main phase. On the other hand, the average particle size of the austenite and / or martensite, which is the second phase, is less than 0.01 times the average particle size of ferrite, and it is difficult to actually manufacture, so it may be 0.01 times or more. preferable.
[0046]
Furthermore, in order to improve the balance between plating adhesion and high strength ductility / ductility, when the second phase of the steel sheet is austenite, the carbon content in the steel: C, the Mn content in the steel: Mn, and the austenite The volume ratio: Vγ, the volume ratio of ferrite and bainite: Vα, and the formula (2) is satisfied.
[0047]
(Vγ + Vα) / Vγ × C + Mn / 8 ≧ 2,000 (2)
By satisfying this formula, a steel sheet having a particularly excellent balance between strength and ductility and good plating adhesion can be obtained.
[0048]
The volume fraction and the like in the case of including bainite will be described as follows. By containing 2% or more of the bainite phase in terms of volume fraction, it helps to increase the strength, and when it coexists with the austenite phase, it contributes to stabilization of the austenite and consequently increases the n value. In addition, this phase is basically fine and contributes to plating adhesion during high processing. In particular, when the second phase is austenite, the balance between plating adhesion and ductility is further improved when the volume fraction of bainite is 2% or more. On the other hand, when it produces | generates excessively, a ductility fall will be caused, and a bainite phase shall be 47% or less by a volume fraction.
[0049]
In addition to the above, the case of containing one or more of carbides, nitrides, sulfides, and oxides as the remaining structure of the microstructure is also within the category of the steel sheet of the present invention. Is preferably 1% or less in volume fraction. In addition, the ferrite, bainite, austenite, martensite, and the remaining structure of the above microstructure, the observation of the existing position, and the measurement of the average particle size (average equivalent circle diameter) and the space factor were made by using the Nital reagent and It can be quantified by observing an optical microscope at 500 to 1000 times by corroding a cross section in the rolling direction of the steel sheet or a cross section perpendicular to the rolling direction with the reagent disclosed in Japanese Patent No. 219473. Here, measurement of the particle size of martensite may be difficult when using an optical microscope. In this case, the average equivalent circle diameter is obtained by observing and measuring the martensite block boundary, packet boundary, or a set thereof using a scanning electron microscope.
[0050]
The average particle size is defined as a value obtained by JIS based on the result of 20 field observations or more by the above method.
[0051]
A method for producing a high-strength hot-dip galvanized steel sheet having such a structure will be described below.
[0052]
When the steel sheet of the present invention is manufactured by cold rolling and annealing after hot rolling, the slab adjusted to a predetermined component is cast or once cooled and then reheated to 1180 ° C. or higher to form a uniform scale. Increases descalability by forming on the surface. On the other hand, since heating above 1250 ° C. promotes local abnormal oxidation, this was set as the upper limit of the heating temperature. In addition, for the purpose of suppressing excessive internal oxidation, hot rolling is finished at 880 ° C. or higher, then pickling, and annealing after cold rolling to obtain a final product. At this time, the hot rolling completion temperature is determined by the chemical composition of the steel. 3 Generally, it is carried out at the transformation temperature or higher, but Ar 3 If it is from about 10 degreeC to about 10 degreeC low temperature, the characteristic of the final steel plate will not be deteriorated. On the other hand, in order to avoid the formation of a large amount of oxide scale, the hot rolling completion temperature is set to 1100 ° C. or lower.
[0053]
In addition, if the coiling temperature after cooling is higher than the bainite transformation start temperature determined by the chemical composition of the steel, it is possible to avoid unnecessarily increasing the load during cold rolling, but when the total rolling reduction of cold rolling is small Is not limited to this, and even if the steel sheet is wound at a temperature lower than the bainite transformation temperature of the steel, the properties of the final steel sheet are not deteriorated. Further, the total rolling reduction ratio of the cold rolling is set based on the relationship between the final sheet thickness and the cold rolling load, but if it is 40% or more, the final steel sheet characteristics are not deteriorated.
[0054]
Temperature Ac determined by the chemical composition of steel when annealing after cold rolling 1 And Ac 3 0.1 × (Ac) expressed by temperature (for example, “steel material science”: W. C. Leslie, translated by Koyasu Naruyasu, Maruzen P273) 3 -Ac1) + Ac 1 When the temperature is less than (° C.), since the amount of austenite obtained at the annealing temperature is small, the residual austenite phase or martensite phase cannot be left in the final steel sheet, so this was made the lower limit of the annealing temperature. Also, the annealing temperature is Ac 3 Even if the temperature exceeds +50 (° C.), the upper limit of the annealing temperature is set to Ac in order to improve the manufacturing cost without improving the properties of the steel sheet. 3 +50 (° C.). The annealing time at this temperature requires 10 seconds or more to make the temperature of the steel plate uniform and to secure austenite. However, if it exceeds 30 minutes, the effect is not only saturated but also the cost is increased.
[0055]
Subsequent primary cooling is important for promoting the transformation from the austenite phase to the ferrite phase and concentrating C in the untransformed austenite phase to stabilize the austenite. If the cooling rate is less than 0.1 ° C./second, a production disadvantage such as lengthening the required production line length or extremely slowing the production rate is caused. The temperature was 1 ° C./second. On the other hand, when the cooling rate exceeds 10 ° C./sec, ferrite transformation does not occur sufficiently, and it becomes difficult to secure the residual austenite phase in the final steel sheet, or the hard phase such as martensite phase becomes large. Therefore, this is the upper limit.
[0056]
When this primary cooling is performed to less than 650 ° C., pearlite is not generated during cooling, and sufficient ferrite is not generated. However, since the ferrite transformation does not progress sufficiently even when cooling exceeds 700 ° C., this is set as the upper limit.
[0057]
The subsequent rapid cooling of the secondary cooling requires a cooling rate of at least 0.1 ° C./second or more so as not to cause pearlite transformation or precipitation of iron carbide during cooling. However, since it is difficult to increase the cooling rate above 100 ° C./second in terms of equipment capacity, the cooling rate range was set to 0.1-100 ° C./second.
[0058]
If the cooling stop temperature of this secondary cooling is lower than the plating bath temperature −50 ° C., it becomes a serious problem in operation, and if it exceeds the plating bath temperature +50 (° C.), carbide precipitation occurs in a short time, resulting in the retained austenite and martensite. The amount of can not be secured. For this reason, the secondary cooling stop temperature was set to a plating bath temperature of −50 ° C. or higher and a plating bath temperature of +50 (° C.). In order to stabilize the austenite phase remaining in the steel sheet at room temperature, it is essential to further increase the carbon concentration in the austenite by transforming a part thereof into the bainite phase. In order to allow the bainite transformation to proceed in a short time together with the alloying treatment, it was held for 2 to 200 seconds including the dipping time in the temperature range from the plating temperature −50 ° C. to the plating temperature + 50 ° C.
If the plating temperature is lower than −50 ° C., the bainite transformation hardly occurs, and if it exceeds the plating temperature + 50 ° C., carbides are generated and it is difficult to leave a sufficient residual austenite phase.
[0059]
Unlike the retained austenite phase, it is not necessary to cause the bainite transformation to produce the martensite phase. On the other hand, since it is necessary to suppress the formation of carbides and pearlite phases in the same manner as the retained austenite phase, alloying treatment is performed in a temperature range of 400 to 550 ° C. in order to perform sufficient alloying treatment after secondary cooling. To do.
[0060]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0061]
A steel strip having a composition as shown in Table 1 was heated to 1180 to 1250 ° C., completed hot rolling at 880 to 1100 ° C., and wound up at a temperature higher than the bainite transformation start temperature determined by the chemical composition of each steel after cooling. After pickling, it was cold rolled to a thickness of 1.0 mm.
[0062]
[Table 1]
Figure 0003631710
[0063]
Then, according to the following formula from the component (mass%) of each steel, Ac 1 And Ac 3 The transformation temperature was determined by calculation.
[0064]
Ac 1 = 723-10.7 × Mn% + 29.1 × Si%,
Ac 3 = 910-203 × (C%) 1/2 + 44.7 * Si% + 31.5 * Mo% -30 * Mn% -11 * Cr% + 400 * Al%
These Ac 1 And Ac 3 10% H in the annealing temperature calculated from the transformation temperature 2 -N 2 After raising the temperature and holding in the atmosphere, it is cooled to a temperature range of 650 to 700 ° C. at a cooling rate of 0.1 to 10 ° C./second, and subsequently to the plating bath temperature at a cooling rate of 0.1 to 20 ° C./second. Then, the plating was carried out by immersing in a galvanizing bath at 460 to 470 ° C. with various changes in the bath composition for 3 seconds.
[0065]
Moreover, about some steel plates, as a Fe-Zn alloying process, the steel plate after plating is hold | maintained for 15 seconds-20 minutes in the temperature range of 400-550 degreeC, and the Fe content rate in a plating layer is 5 by mass%. Adjusted to ˜20%. The plating appearance was evaluated by visual observation of the dross entrainment situation of the plating surface appearance and measurement of the non-plated area. The prepared plating was dissolved in a 5% hydrochloric acid solution containing an inhibitor and subjected to chemical analysis, and the composition was determined and shown in Table 2.
[0066]
From Tables 2 and 3, the steel of the present invention has an appearance score of 5 to 4 before and after the corrosion resistance test, and is excellent in strength and elongation balance. On the other hand, all the comparative examples not satisfying the scope of the present invention have low appearance scores and are inferior in strength / elongation balance. Further, the steel sheet produced in the scope of the claims of the present invention has the microstructure described above, and is excellent in appearance, strength and elongation balance.
[0067]
[Table 2]
Figure 0003631710
[0068]
[Table 3]
Figure 0003631710
[0069]
[Table 4]
Figure 0003631710
[0070]
【The invention's effect】
The high-strength hot-dip galvanized steel sheet of the present invention is extremely excellent in corrosion resistance, has good workability, and is extremely effective for building materials, home appliances, automobile body applications, and the like.

Claims (13)

質量%で、
C :0.0001〜0.3%、
Si:0.1〜3.0%、
Mn:0.01〜3%、
Al:0.001〜4%、
Mo:0.001〜1%、
P:0.0001〜0.3%、
S:0.0001〜0.1%、
を含有し、残部Fe及び不可避不純物からなる鋼板の表面に、質量%で、
Al:0.001〜4%、
Mo:0.0001〜1%、
Si:0.0001〜0.1%、
Fe:20%未満、
を含有し、残部がZn及び不可避不純物からなるめっき層を有する溶融亜鉛めっき鋼板であって、質量%で、めっき層中Fe含有率をX、めっき層中Si含有率をY、めっき層中Mo含有率をZとすると、X,Y,Zが(1)式を満たすことを特徴とする耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。
X/10−(Y+Z)+1≧0 ・・・(1)
% By mass
C: 0.0001 to 0.3%,
Si: 0.1 to 3.0%,
Mn: 0.01 to 3%
Al: 0.001 to 4%,
Mo: 0.001 to 1%,
P: 0.0001 to 0.3%,
S: 0.0001 to 0.1%,
In the surface of the steel plate made of the balance Fe and inevitable impurities,
Al: 0.001 to 4%,
Mo: 0.0001 to 1%,
Si: 0.0001 to 0.1%,
Fe: less than 20%,
A hot-dip galvanized steel sheet having a plating layer consisting of Zn and inevitable impurities, the balance being X, the Fe content in the plating layer being X, the Si content in the plating layer being Y, and the Mo in the plating layer being Mo. A Si-containing high-strength hot-dip galvanized steel sheet excellent in corrosion resistance and ductility, wherein X, Y, and Z satisfy the formula (1) where the content is Z.
X / 10− (Y + Z) + 1 ≧ 0 (1)
めっき層が、さらに質量%で、
Mn:0.0001〜3%、
Ni:0.001〜3%、
の1種または2種を含有することを特徴とする請求項1記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。
The plating layer is further mass%,
Mn: 0.0001-3%
Ni: 0.001 to 3%,
The Si-containing high-strength hot-dip galvanized steel sheet having excellent corrosion resistance and ductility according to claim 1, wherein one or two of the above are contained.
めっき層が、さらに質量%で、
Ca:0.001〜0.1%、
Mg:0.001〜3%、
W:0.001〜0.1%、
Zr:0.001〜0.1%、
Cs:0.001〜0.1%、
Rb:0.001〜0.1%、
K:0.001〜0.1%、
Ag:0.001〜5%、
Na:0.001〜0.05%、
Cd:0.001〜3%、
Cu:0.001〜3%、
Co:0.001〜1%、
La:0.001〜0.1%、
Tl:0.001〜8%、
Nd:0.001〜0.1%、
Y:0.001〜0.1%、
In:0.001〜5%、
Be:0.001〜0.1%、
Cr:0.001〜0.05%、
Pb:0.001〜1%、
Hf:0.001〜0.1%、
Tc:0.001〜0.1%、
Ti:0.001〜0.1%、
Ge:0.001〜5%、
Ta:0.001〜0.1%、
V:0.001〜0.2%、
B:0.001〜0.1%、
の1種または2種以上を含有することを特徴とする請求項1または2に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。
The plating layer is further mass%,
Ca: 0.001 to 0.1%,
Mg: 0.001 to 3%,
W: 0.001 to 0.1%,
Zr: 0.001 to 0.1%,
Cs: 0.001 to 0.1%,
Rb: 0.001 to 0.1%,
K: 0.001 to 0.1%,
Ag: 0.001 to 5%,
Na: 0.001 to 0.05%,
Cd: 0.001 to 3%
Cu: 0.001 to 3%,
Co: 0.001-1%,
La: 0.001 to 0.1%,
Tl: 0.001-8%
Nd: 0.001 to 0.1%,
Y: 0.001 to 0.1%
In: 0.001 to 5%,
Be: 0.001 to 0.1%,
Cr: 0.001 to 0.05%,
Pb: 0.001 to 1%,
Hf: 0.001 to 0.1%,
Tc: 0.001 to 0.1%,
Ti: 0.001 to 0.1%,
Ge: 0.001 to 5%,
Ta: 0.001 to 0.1%,
V: 0.001 to 0.2%,
B: 0.001 to 0.1%,
The Si-containing high-strength hot-dip galvanized steel sheet having excellent corrosion resistance and ductility according to claim 1 or 2, characterized by containing one or more of the following.
鋼が、さらに質量%で、
Cr:0.001〜25%、
Ni:0.001〜10%、
Cu:0.001〜5%、
Co:0.001〜5%、
W:0.001〜5%、
の1種または2種以上を含有することを特徴とする請求項1〜3の何れか1項に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。
Steel is more mass%,
Cr: 0.001 to 25%,
Ni: 0.001 to 10%,
Cu: 0.001 to 5%,
Co: 0.001-5%
W: 0.001 to 5%,
The Si-containing high-strength hot-dip galvanized steel sheet having excellent corrosion resistance and ductility according to any one of claims 1 to 3, wherein one or more of the above are contained.
鋼が、さらに質量%で、Nb、Ti、V、Zr、Hf、Taの1種または2種以上を合計で0.001〜1%含有することを特徴とする請求項1〜4のいずれか1項に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。The steel further contains 0.001 to 1% in total of one or more of Nb, Ti, V, Zr, Hf, and Ta in mass%. A Si-containing high-strength hot-dip galvanized steel sheet excellent in corrosion resistance and ductility according to item 1. 鋼が、さらに質量%で、B:0.0001〜0.1%を含有することを特徴とする請求項1〜5のいずれか1項に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。The steel further contains B: 0.0001 to 0.1% by mass%, and the Si-containing high-strength melt excellent in corrosion resistance and ductility according to any one of claims 1 to 5 Galvanized steel sheet. 鋼が、さらに質量%で、Y、Rem、Ca、Mg、Ceの1種又は2種以上を0.0001〜1%含有することを特徴とする請求項1〜6のいずれか1項に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。7. The steel according to claim 1, wherein the steel further contains 0.0001 to 1% of one or more of Y, Rem, Ca, Mg, and Ce in mass%. High strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility. 鋼のミクロ組織が、体積分率で50〜97%のフェライト相又はフェライト相とベイナイト相を主相とし、残部はマルテンサイト相、残留オーステナイト相の一方もしくは両方を、体積分率で合計3〜50%含む複合組織であることを特徴とするとする請求項1〜7のいずれか1項に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。The microstructure of the steel has a ferrite phase of 50 to 97% by volume fraction, or a ferrite phase and a bainite phase as the main phase, and the balance is one or both of the martensite phase and residual austenite phase in a total volume of 3 to 3. The Si-containing high-strength hot-dip galvanized steel sheet having excellent corrosion resistance and ductility according to any one of claims 1 to 7, wherein the composite structure contains 50%. 鋼板のミクロ組織が、体積分率で70〜97%のフェライトを主相とし、その平均粒径が20μm以下であり、第2相として体積分率で3〜30%のオーステナイト及び/またはマルテンサイトからなり、第2相の平均粒径が10μm以下であることを特徴とする請求項1〜8のいずれか1項に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。The microstructure of the steel sheet is mainly composed of 70 to 97% ferrite in volume fraction, the average particle size is 20 μm or less, and the second phase is austenite and / or martensite in volume fraction of 3 to 30%. The Si-containing high-strength hot-dip galvanized steel sheet excellent in corrosion resistance and ductility according to any one of claims 1 to 8, wherein the second phase has an average particle size of 10 µm or less. 鋼板の第2相がオーステナイトであり、鋼中の炭素量:C(質量%)、鋼中のMn量:Mn(質量%)、オーステナイトの体積率:Vγ(%)、フェライト及びベイナイトの体積率:Vα(%)が(2)式を満たすことを特徴とする請求項1〜9の何れか1項に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。
(Vγ+Vα)/ Vγ×C+Mn/8 ≧ 2.000 ・・・(2)
The second phase of the steel sheet is austenite, carbon content in steel: C (mass%), Mn content in steel: Mn (mass%), volume ratio of austenite: Vγ (%), volume ratio of ferrite and bainite Vα (%) satisfies the formula (2). The Si-containing high-strength hot-dip galvanized steel sheet having excellent corrosion resistance and ductility according to any one of claims 1 to 9.
(Vγ + Vα) / Vγ × C + Mn / 8 ≧ 2,000 (2)
鋼板のミクロ組織が、体積分率で50〜95%のフェライトを主相とし、その平均粒径が20μm以下であり、第2相として体積分率で3〜30%のオーステナイト及び/またはマルテンサイトを含有し、それらの平均粒径が10μm以下であり、さらに体積分率で2〜47%のベイナイトからなることを特徴とする請求項1〜10の何れか1項に記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板。The microstructure of the steel sheet is austenite and / or martensite with a volume fraction of 50 to 95% of ferrite as the main phase, an average particle size of 20 μm or less, and a volume fraction of 3 to 30% as the second phase. The average particle size thereof is 10 μm or less, and further consists of bainite having a volume fraction of 2 to 47%, and the corrosion resistance and ductility according to claim 1, Excellent Si-containing high-strength hot-dip galvanized steel sheet. 請求項1〜11の何れか1項に記載の高強度溶融亜鉛めっき鋼板を製造する方法であって、請求項1、4〜7の何れか1項に記載の鋼板の成分からなる鋳造スラブを鋳造ままもしくは一旦冷却した後に1180〜1250℃に再度加熱し、880〜1100℃で熱延を終了させた後巻取った熱延鋼板を酸洗後冷延し、その後、0.1×(Ac −Ac )+Ac (℃)以上Ac +50(℃)以下の温度域で10秒〜30分焼鈍した後に、0.1〜10℃/秒の冷却速度で650〜700℃の温度域に冷却し、引き続いて0.1〜100℃/秒の冷却速度でめっき浴温度−50℃〜めっき浴温度+50(℃)にまで冷却した後めっき浴に浸漬し、浸漬時間を含めて、めっき浴温度−50℃〜めっき浴温度+50(℃)の温度域に2〜200秒保持した後、室温まで冷却することを特徴とする耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板の製造方法。A method for producing the high-strength hot-dip galvanized steel sheet according to any one of claims 1 to 11, comprising a cast slab comprising the steel sheet component according to any one of claims 1 and 4 to 7. As cast or once cooled, it is heated again to 1180 to 1250 ° C., and after hot rolling is finished at 880 to 1100 ° C., the wound hot-rolled steel sheet is pickled and cold-rolled, and then 0.1 × (Ac 3− Ac 1 ) + Ac 1 (° C.) to Ac 3 +50 (° C.) and after annealing for 10 seconds to 30 minutes, a cooling rate of 0.1 to 10 ° C./second and a temperature range of 650 to 700 ° C. Then, after cooling to a plating bath temperature of −50 ° C. to a plating bath temperature of +50 (° C.) at a cooling rate of 0.1 to 100 ° C./second, the plate is immersed in the plating bath, and includes the immersion time. 2 to 2 in the temperature range of bath temperature −50 ° C. to plating bath temperature +50 (° C.) A method for producing a Si-containing high-strength hot-dip galvanized steel sheet excellent in corrosion resistance and ductility, characterized by cooling to room temperature after holding for 00 seconds. めっき浴浸漬および保持処理後に、合金化処理を400〜550℃の温度域で行い、室温まで冷却することを特徴とする請求項12記載の耐食性と延性に優れたSi含有高強度溶融亜鉛めっき鋼板の製造方法。13. The high strength hot-dip galvanized steel sheet containing Si having excellent corrosion resistance and ductility according to claim 12, wherein the alloying treatment is performed in a temperature range of 400 to 550 ° C. after the plating bath immersion and holding treatment, and cooling to room temperature. Manufacturing method.
JP2001305365A 2001-10-01 2001-10-01 Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same Expired - Fee Related JP3631710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001305365A JP3631710B2 (en) 2001-10-01 2001-10-01 Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001305365A JP3631710B2 (en) 2001-10-01 2001-10-01 Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003105493A JP2003105493A (en) 2003-04-09
JP3631710B2 true JP3631710B2 (en) 2005-03-23

Family

ID=19125168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001305365A Expired - Fee Related JP3631710B2 (en) 2001-10-01 2001-10-01 Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same

Country Status (1)

Country Link
JP (1) JP3631710B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436785A (en) * 2013-07-11 2013-12-11 安徽源勋自动化科技有限公司 Manufacturing method for heat treatment-free cold forging steel used for riveted joint
CN108677084A (en) * 2018-04-08 2018-10-19 敬业钢铁有限公司 A kind of low production method for being mingled with clean steel

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515315B2 (en) * 2005-04-18 2010-07-28 株式会社神戸製鋼所 High strength and high ductility steel plate with excellent weldability
JP4644028B2 (en) * 2005-04-20 2011-03-02 新日本製鐵株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP4411326B2 (en) * 2007-01-29 2010-02-10 株式会社神戸製鋼所 High-strength galvannealed steel sheet with excellent phosphatability
JP5375001B2 (en) * 2008-09-29 2013-12-25 Jfeスチール株式会社 High-strength cold-rolled steel sheet and manufacturing method thereof
EP2762592B1 (en) * 2011-09-30 2018-04-25 Nippon Steel & Sumitomo Metal Corporation High-strength hot-dipped galvanized steel sheet and high-strength alloyed hot-dipped galvanized steel sheet, each having tensile strength of 980 mpa or more, excellent plating adhesion, excellent formability and excellent bore expanding properties, and method for producing same
CN106661708B (en) * 2014-07-31 2019-06-04 杰富意钢铁株式会社 The manufacturing method and galvanizing by dipping steel of galvanizing by dipping steel
RU2609155C1 (en) * 2015-12-07 2017-01-30 Юлия Алексеевна Щепочкина Steel
CN106435390A (en) * 2016-08-31 2017-02-22 芜湖市和蓄机械股份有限公司 High-strength connecting base casting raw material formula and preparing technology thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103436785A (en) * 2013-07-11 2013-12-11 安徽源勋自动化科技有限公司 Manufacturing method for heat treatment-free cold forging steel used for riveted joint
CN103436785B (en) * 2013-07-11 2016-12-28 张信群 A kind of heat treatment riveted joint cold-forging steel manufacture method
CN108677084A (en) * 2018-04-08 2018-10-19 敬业钢铁有限公司 A kind of low production method for being mingled with clean steel
CN108677084B (en) * 2018-04-08 2020-11-03 敬业钢铁有限公司 Production method of low-inclusion clean steel

Also Published As

Publication number Publication date
JP2003105493A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
KR100747133B1 (en) High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation
JP5403185B2 (en) High-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in plating adhesion, formability and hole expansibility having a tensile strength of 980 MPa or more, and a method for producing the same
JP3527092B2 (en) High-strength galvannealed steel sheet with good workability and method for producing the same
JP5499664B2 (en) High-strength cold-rolled steel sheet having a tensile maximum strength of 900 MPa or more excellent in fatigue durability, and its manufacturing method, and high-strength galvanized steel sheet and its manufacturing method
JP3887308B2 (en) High strength and high ductility hot dip galvanized steel sheet and its manufacturing method
JP4589880B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and hole expansibility, high-strength alloyed hot-dip galvanized steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP3898923B2 (en) High-strength hot-dip Zn-plated steel sheet excellent in plating adhesion and ductility during high processing and method for producing the same
JP3921136B2 (en) High strength and high ductility hot dip galvanized steel sheet with excellent burring workability and manufacturing method thereof
CN113272466A (en) Method for producing hot-dip galvanized steel sheet
JP4528135B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in hole expansibility and method for producing the same
JPH11236621A (en) Production of high tensile strength and high ductility galvanized steel sheet
JP4331915B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in fatigue durability and corrosion resistance and method for producing the same
JP3631710B2 (en) Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and ductility and method for producing the same
JP3921135B2 (en) High strength and high ductility hot dip galvanized steel sheet with excellent burring workability and manufacturing method thereof
JP4781577B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JPH06256903A (en) Galvannealed steel sheet excellent in press workability and plating peeling resistance
JP3898924B2 (en) High-strength hot-dip galvanized steel sheet excellent in appearance and workability and its manufacturing method
JP2003328099A (en) Production method for high-strength hot-dip galvanized steel sheet
JP4320913B2 (en) High-tensile hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP3898925B2 (en) High strength and high ductility hot dip galvanized steel sheet excellent in corrosion resistance and method for producing the same
JP6838665B2 (en) High-strength alloyed electrogalvanized steel sheet and its manufacturing method
JP3577930B2 (en) High-strength, high-ductility hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP3921101B2 (en) Manufacturing method of high strength and high ductility hot dip galvanized steel sheet with excellent shape freezing property
JP3875958B2 (en) High strength and high ductility hot dip galvanized steel sheet with excellent workability and manufacturing method thereof
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041217

R151 Written notification of patent or utility model registration

Ref document number: 3631710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees