JP2009270126A - Cold rolled steel sheet, hot dip plated steel sheet and method for producing the steel sheet - Google Patents

Cold rolled steel sheet, hot dip plated steel sheet and method for producing the steel sheet Download PDF

Info

Publication number
JP2009270126A
JP2009270126A JP2008113920A JP2008113920A JP2009270126A JP 2009270126 A JP2009270126 A JP 2009270126A JP 2008113920 A JP2008113920 A JP 2008113920A JP 2008113920 A JP2008113920 A JP 2008113920A JP 2009270126 A JP2009270126 A JP 2009270126A
Authority
JP
Japan
Prior art keywords
steel sheet
less
hot
cold
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008113920A
Other languages
Japanese (ja)
Other versions
JP5391572B2 (en
Inventor
Kazuhiko Kishi
一彦 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2008113920A priority Critical patent/JP5391572B2/en
Publication of JP2009270126A publication Critical patent/JP2009270126A/en
Application granted granted Critical
Publication of JP5391572B2 publication Critical patent/JP5391572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high tensile strength cold rolled steel sheet and a hot dip plated steel sheet, which attain compatibility between ductility and bendability. <P>SOLUTION: The steel sheet has a chemical composition comprising, by mass, 0.08 to 0.25% C, ≤0.7% Si, 1.0 to 2.6% Mn, ≤1.5% Al, ≤0.02% P, ≤0.02% S and ≤0.01% N, wherein the relation between Si and Al satisfies 1.0%≤Si+Al≤1.8%, and the balance Fe with impurities, and preferably has a steel structure including a retained γ phase of ≥5 vol.%, and in which, regarding the region of a depth from the surface to 0.1 mm directly below the surface, the difference between the maximum hardness and the minimum hardness is ≤10 in Vickers hardness. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車、建築、電気機器等用の部材として主に使用される高張力の鋼板の中で、成形性、具体的には延性および曲げ性に優れる冷延鋼板および溶融めっき鋼板、ならびにこれらの鋼板の製造方法に関する。   The present invention relates to a cold-rolled steel sheet and a hot-dip plated steel sheet that are excellent in formability, specifically ductility and bendability, among high-tensile steel sheets mainly used as members for automobiles, buildings, electrical equipment, and the like, and The present invention relates to a method for manufacturing these steel plates.

近年、自動車の技術分野においては、車体を軽量化させつつ衝突安全性を確保するための開発が盛んに行われている。車体を軽量化すべく鋼板厚を薄くすると、成形性のよい軟質な鋼板では安全性を維持できなくなってしまう。このため、強度を高めた高張力鋼板の需要が高まっている。   In recent years, in the technical field of automobiles, development for ensuring collision safety while reducing the weight of a vehicle body has been actively performed. If the steel plate thickness is reduced to reduce the weight of the vehicle body, a soft steel plate with good formability cannot maintain safety. For this reason, the demand for high-strength steel sheets with increased strength is increasing.

しかしながら、強度が高くなると、一般的には、延性の低下および曲げ性の低下が発生しやすくなってしまう。このため、従来の高張力鋼板では部品加工時に割れが発生しやすく、部品設計の自由度を高めることができなかった。そこで、高強度でありながら、延性および曲げ性に優れた鋼板が必要とされている。   However, when the strength is increased, generally, a decrease in ductility and a decrease in bendability tend to occur. For this reason, in the conventional high-tensile steel sheet, cracks are likely to occur during part processing, and the degree of freedom in part design cannot be increased. Therefore, there is a need for a steel sheet that is high in strength and excellent in ductility and bendability.

ここで、鋼におけるSi含有量を多くすることは、良好な強度−延性バランスを確保する観点から非常に有効であり、さらに、フェライト生成元素のAlとオーステナイト生成元素のMnとを多量に含有させて、残留オーステナイトのTRIP効果を利用した高延性高張力鋼板の開発が行われている。   Here, increasing the Si content in the steel is very effective from the viewpoint of securing a good strength-ductility balance, and further contains a large amount of the ferrite-forming element Al and the austenite-forming element Mn. Thus, development of a high ductility, high-tensile steel sheet using the TRIP effect of retained austenite has been carried out.

このようなTRIP効果によって延性改善を図る鋼板は、塑性加工においてマルテンサイトを発生させることで高い延性を確保している。しかしながら、この生成するマルテンサイトが曲げ加工において障害となってしまうことから、このような鋼板では良好な曲げ性が得られないことが一般的であった。このため、自動車の足回り部品、補強部品を中心に、曲げ性は重要な特性の一つであるにも関わらず、曲げ性と延性とを両立させる高張力鋼板の開発はこれまでなされていない。   A steel sheet which is intended to improve ductility by such a TRIP effect ensures high ductility by generating martensite in plastic working. However, since the generated martensite becomes an obstacle in bending, it is common that such a steel sheet cannot provide good bendability. For this reason, high-strength steel sheets that have both bendability and ductility have not been developed so far, despite the fact that bendability is one of the important characteristics, centering on automobile undercarriage parts and reinforcement parts. .

例えば、特許文献1では、Si、Al添加型の残留γ型高強度鋼板が開示されており、実施例には引張強度TS(MPa)×全伸びEl(%)が開示されているが、部品加工に重要な曲げ性に関してはなんら言及されておらず、部品加工性に優れているかは不明である。   For example, Patent Document 1 discloses a residual γ-type high-strength steel sheet of Si and Al addition type, and the examples disclose tensile strength TS (MPa) × total elongation El (%). No mention is made of the bendability important for processing, and it is unclear whether it is excellent in part workability.

一方、耐食性および外観の向上という市場の要求に応えて部材の表面処理鋼板化が進んでおり、現在では、溶融めっき法などによって形成されためっき被膜を供えためっき鋼板が多くの部材に用いられている。しかし、通常の溶融亜鉛めっき工程では、Si含有量が多い鋼板を基材として用いた場合には、通常の還元性の雰囲気下でもSiの酸化物が鋼板表面に濃化し、めっきぬれ性の低下、およびその結果としてめっき密着性の低下を招いてしまう。したがって、通常のSi含有鋼ではめっき密着性の劣化が懸念されるため、高い耐食性が求められる用途への適用は進んでいない。その一方で、欧州における車体の20年保証防錆の動きにみられるように、耐食性の要求は年々厳しくなっており、十分な耐食性を有する高張力溶融めっき鋼板の開発が切実に望まれている。   On the other hand, in response to market demands for improved corrosion resistance and appearance, the use of surface-treated steel sheets for members has been progressing. Currently, plated steel sheets with plated coatings formed by hot dipping are used for many parts. ing. However, in a normal hot dip galvanizing process, when a steel sheet with a high Si content is used as a base material, the oxide of Si is concentrated on the steel sheet surface even under a normal reducing atmosphere, resulting in a decrease in plating wettability. And as a result, the plating adhesion is lowered. Therefore, since there is a concern about deterioration of plating adhesion in ordinary Si-containing steel, application to applications requiring high corrosion resistance has not progressed. On the other hand, the demand for corrosion resistance has become stricter year by year, as seen in the movement of rust prevention of car bodies in Europe for 20 years, and the development of high-tensile hot-dip galvanized steel sheets with sufficient corrosion resistance is urgently desired. .

このような要請に応えるべく、高張力鋼板についてめっき密着性の観点を含めた検討はこれまでもなされているが、さらに曲げ性をも考慮した例はない。
例えば、特許文献2には溶融亜鉛めっきの製造条件と特性の関係が開示されているが、上記の特許文献と同様にTS×Elの改善のための溶融亜鉛めっきの製造条件が検討されているに過ぎず、曲げ性を向上させるとの観点ではなんら検討がなされていない。
特開2003−105486号 特開平11−131145号
In order to meet such demands, high-strength steel sheets including a viewpoint of plating adhesion have been studied so far, but there is no example that considers bendability.
For example, Patent Document 2 discloses the relationship between hot-dip galvanizing manufacturing conditions and characteristics, but the hot-dip galvanizing manufacturing conditions for improvement of TS × El have been studied in the same manner as in the above-mentioned patent literature. However, no study has been made from the viewpoint of improving the bendability.
JP 2003-105486 A JP-A-11-131145

以上述べたように、高い強度を有しつつ、良好な成形性、特に延性と曲げ性を両立させるとの課題を効率よく解決できる技術は未だ開示されておらず、高張力鋼板の適用を推進する上で、これらの課題の解決が求められていた。   As described above, no technology has yet been disclosed that can efficiently solve the problem of achieving both good formability, particularly ductility and bendability, while having high strength, and promotes the application of high-tensile steel sheets. In doing so, there was a need to resolve these issues.

本発明の目的は、この課題を解決し、成形性、特に延性および曲げ性の双方に優れた引張強度590MPa以上の冷延鋼板および溶融めっき鋼板ならびにこれらの鋼板の製造方法を提供することにある。   An object of the present invention is to solve this problem and provide a cold-rolled steel sheet and a hot-dip steel sheet having a tensile strength of 590 MPa or more, which are excellent in both formability, particularly ductility and bendability, and a method for producing these steel sheets. .

本発明者らは、上記問題点を解決するため、化学組成および製造条件が鋼板の材質に及ぼす影響を詳細に調査した結果、以下の知見を得た。   In order to solve the above problems, the present inventors have investigated in detail the influence of the chemical composition and production conditions on the material of the steel sheet, and as a result, have obtained the following knowledge.

(a)TRIP効果による高延性を実現するためには、鋼板中の残留γ相の割合が5体積%以上であることが必要である。   (A) In order to realize high ductility due to the TRIP effect, the ratio of the residual γ phase in the steel sheet needs to be 5% by volume or more.

(b)5体積%以上の残留γ量を実現するためには、鋼板の化学組成において、SiおよびAlの含有量の和を所定の範囲以上に制御する必要がある。   (B) In order to realize a residual γ amount of 5% by volume or more, it is necessary to control the sum of the contents of Si and Al within a predetermined range in the chemical composition of the steel sheet.

(c)さらに、次の2条件を満足する鋼板が良好な延性と曲げ性を両立しうる:
TS×El≧17500(TS:引張強度(MPa)、El:全伸び(%))、
ρ≦1.5×t(ρ:限界曲げ半径(mm)、t:板厚(mm))。
(C) Furthermore, a steel sheet that satisfies the following two conditions can achieve both good ductility and bendability:
TS × El ≧ 17500 (TS: tensile strength (MPa), El: total elongation (%)),
ρ ≦ 1.5 × t (ρ: critical bending radius (mm), t: plate thickness (mm)).

(d)硬度が異なる相または組織の界面が亀裂起点となるため、組織の硬度ばらつきを抑制することで、限界曲げ半径を小さくすることが可能である。   (D) Since the phase having different hardness or the interface of the structure becomes a crack starting point, it is possible to reduce the critical bending radius by suppressing the hardness variation of the structure.

(e)残留γ相を安定化させるためには、主相(複合組織において体積率が最大の相または組織をいう。)をフェライト、第二相(上記の主相以外の相および組織をいう。)をベイナイトとすることが好ましく、この場合には、ベイナイトの硬度を低くすることで、限界曲げ半径を小さくすることが実現される。   (E) In order to stabilize the residual γ phase, the main phase (refers to the phase or structure having the largest volume ratio in the composite structure) is ferrite, and the second phase (phase and structure other than the main phase described above) is referred to. ) Is preferably bainite, and in this case, the critical bending radius can be reduced by reducing the hardness of bainite.

(f)上記特性を有する鋼板を安定的に製造する方法における特に重要な管理温度は次のとおりである:
ア)仕上温度、
イ)巻取温度、
ウ)均熱温度、
エ)合金化処理温度。
(F) Particularly important control temperatures in the method of stably producing a steel sheet having the above characteristics are as follows:
A) Finishing temperature,
B) Winding temperature,
C) Soaking temperature,
D) Alloying temperature.

上記の知見に基づき次の発明を完成するに至った。
(1)質量%で、C:0.08〜0.25%、Si:0.7%以下、Mn:1.0〜2.6%、Al:1.5%以下、P:0.03%以下、S:0.02%以下およびN:0.01%以下を含有し、かつ、SiとAlとの関係が1.0%≦Si+Al≦1.8%を満足し、残部Feおよび不純物からなる化学組成を有し、TS≧590(TS:引張強度(MPa))、TS×El≧17500(El:全伸び(%))、およびρ≦1.5×t(ρ:限界曲げ半径(mm)、t:板厚(mm))を満たす機械特性を有することを特徴とする冷延鋼板。
Based on the above findings, the inventors have completed the following invention.
(1) By mass%, C: 0.08 to 0.25%, Si: 0.7% or less, Mn: 1.0 to 2.6%, Al: 1.5% or less, P: 0.03 %, S: 0.02% or less and N: 0.01% or less, and the relationship between Si and Al satisfies 1.0% ≦ Si + Al ≦ 1.8%, and the balance Fe and impurities TS ≧ 590 (TS: tensile strength (MPa)), TS × El ≧ 17500 (El: total elongation (%)), and ρ ≦ 1.5 × t (ρ: critical bending radius) (mm), t: Cold-rolled steel sheet having mechanical properties satisfying sheet thickness (mm).

ここで、限界曲げ半径の測定は次のようにして行う。JIS Z2248(1996)に記載の押曲げ法に記載される曲げ方法により170°まで曲げた後に、複数の異なる曲げ半径での180°曲げおよび密着曲げを行って、曲げ部外側の表面を観察する。そして、亀裂およびくびれ(ネッキング)が観察されない最小の曲げ半径を限界曲げ半径とする。なお、上記の「くびれ」とは、周囲の板厚と比較して20%以上の局部的な板厚減少を伴うものをいう。   Here, the measurement of the limit bending radius is performed as follows. After bending to 170 ° by the bending method described in JIS Z2248 (1996), 180 ° bending and close contact bending are performed at a plurality of different bending radii, and the surface outside the bent portion is observed. . The minimum bending radius at which no cracks and necking (necking) are observed is taken as the limit bending radius. In addition, said "necking" means what is accompanied by the local thickness reduction of 20% or more compared with the surrounding thickness.

(2)残留γ相を5体積%以上含む鋼組織を有し、表面から表面直下の0.1mmまでの深さの領域について、最大硬度と最小硬度との差がビッカース硬度で10以下である硬度分布を有する、上記(1)に記載の冷延鋼板。   (2) It has a steel structure containing 5% by volume or more of the residual γ phase, and the difference between the maximum hardness and the minimum hardness is 10 or less in terms of Vickers hardness in a region from the surface to a depth of 0.1 mm immediately below the surface. The cold-rolled steel sheet according to (1), which has a hardness distribution.

ここで、鋼板の板厚方向の表面から1/4板厚深さ位置までの断面について、最大硬度と最小硬度との差がビッカース硬度で10以下であることが好ましい。
また、残留γ量は20体積%以下であることが好ましく、15体積%以下であれば特に好ましい。
Here, regarding the cross section from the surface in the plate thickness direction of the steel plate to the 1/4 plate thickness depth position, the difference between the maximum hardness and the minimum hardness is preferably 10 or less in terms of Vickers hardness.
The residual γ amount is preferably 20% by volume or less, particularly preferably 15% by volume or less.

さらに、鋼組織として、主相がフェライトであって、第二相がベイナイトおよび残留γ相であることが好ましい。   Furthermore, as a steel structure, it is preferable that the main phase is ferrite and the second phase is bainite and residual γ phase.

(3)前記化学組成が、Feの一部に代えて、質量%で、Ni:1.0%以下およびCu:0.5%以下の1種または2種を含有する、上記(1)または(2)に記載の冷延鋼板。   (3) The chemical composition (1) or (1) above, wherein the chemical composition contains one or two of Ni: 1.0% or less and Cu: 0.5% or less in mass% instead of a part of Fe. The cold-rolled steel sheet according to (2).

(4)前記化学組成が、Feの一部に代えて、質量%で、Ti:0.1%以下、Nb:0.1%以下およびV:0.2%以下からなる群から選ばれる1種または2種以上を含有する、上記(1)から(3)のいずれかに記載の冷延鋼板。   (4) The chemical composition is selected from the group consisting of Ti: 0.1% or less, Nb: 0.1% or less, and V: 0.2% or less in mass% instead of part of Fe. The cold-rolled steel sheet according to any one of (1) to (3), comprising seeds or two or more kinds.

(5)前記化学組成が、Feの一部に代えて、質量%で、Co:1.0%以下、Cr:1.0%以下、Mo:1.0%以下およびB:0.01%以下からなる群から選ばれる1種または2種以上を含有する、上記(1)から(4)のいずれかに記載の冷延鋼板。   (5) The chemical composition is mass% in place of part of Fe, Co: 1.0% or less, Cr: 1.0% or less, Mo: 1.0% or less, and B: 0.01% The cold-rolled steel sheet according to any one of (1) to (4), containing one or more selected from the group consisting of:

(6)前記化学組成が、Feの一部に代えて、質量%で、Ca:0.01%以下を含有する、(1)から(5)のいずれかに記載の冷延鋼板。   (6) The cold-rolled steel sheet according to any one of (1) to (5), wherein the chemical composition contains Ca: 0.01% or less in mass% instead of part of Fe.

(7)前記化学組成のSiが、質量%で、Si:0.6%以下である化学組成を有する上記(1)から(6)のいずれかに記載の冷延鋼板の表面に、亜鉛を含む溶融めっき層を備えることを特徴とする溶融めっき鋼板。   (7) On the surface of the cold-rolled steel sheet according to any one of (1) to (6) above, zinc is added to the surface of the cold-rolled steel sheet having a chemical composition in which Si of the chemical composition is mass% and Si: 0.6% or less. A hot-dip galvanized steel sheet comprising a hot-dip plated layer.

ここで、「亜鉛を含む溶融めっき層」とは、亜鉛のみによる溶融めっき層でもよいし、亜鉛に加えて、例えばアルミニウムが含まれた合金による溶融めっき層でもよい。また、溶融めっき処理後に鋼板構成元素との合金化処理が行われていてもよい。このように、「溶融めっき鋼板」とは、溶融めっき処理時に亜鉛を含む合金がめっきされたもの、および溶融めっき処理後にめっきが合金化されたものを含む。また、溶融めっき層における亜鉛の含有量が50質量%以下の場合も含む。   Here, the “hot-dipped layer containing zinc” may be a hot-dipped layer made only of zinc, or may be a hot-dipped layer made of an alloy containing, for example, aluminum in addition to zinc. Moreover, the alloying process with a steel plate structural element may be performed after the hot dipping process. Thus, the “hot-dipped steel sheet” includes one in which an alloy containing zinc is plated during the hot-dipping process and one in which plating is alloyed after the hot-dipping process. Moreover, the case where content of zinc in a hot dipping layer is 50 mass% or less is included.

(8)前記溶融めっき層が合金化溶融亜鉛めっき層である上記(7)記載の溶融めっき鋼板。   (8) The hot-dip galvanized steel sheet according to the above (7), wherein the hot-dip plated layer is an alloyed hot-dip galvanized layer.

(9)上記(1)から(6)のいずれかに記載される化学組成を有するスラブに、仕上温度:Ar点〜(Ar点+80℃)、巻取温度:450〜680℃の熱間圧延を施して熱延鋼板となし、前記熱延鋼板に酸洗および冷間圧延を施して冷延鋼板となし、前記冷延鋼板に、二相共存温度域で30秒以上保持し、次いで3℃/s以上の冷却速度で350〜600℃の温度域まで冷却し、該温度域に5秒以上保持する、連続焼鈍処理を施すことを特徴とする冷延鋼板の製造方法。 (9) A slab having the chemical composition described in any one of (1) to (6) above, finishing temperature: Ar 3 points to (Ar 3 points + 80 ° C.), coiling temperature: heat of 450 to 680 ° C. Hot-rolled steel sheet is subjected to hot rolling, the hot-rolled steel sheet is pickled and cold-rolled to be cold-rolled steel sheet, and the cold-rolled steel sheet is held in a two-phase coexisting temperature range for 30 seconds or more, then A method for producing a cold-rolled steel sheet, wherein the steel sheet is cooled to a temperature range of 350 to 600 ° C. at a cooling rate of 3 ° C./s or more, and is subjected to a continuous annealing treatment for 5 seconds or more.

ここで、「二相共存温度域」とは、フェライト(α)/オーステナイト(γ)の二相が共存するAc点〜Ac点の温度域である。
なお、上記二相共存温度域に保持した後の冷却における冷却速度を5〜30℃/sとしてもよい。また、仕上圧延の開始温度を1050℃以下とする条件を追加的に備えてもよい。
Here, the “two-phase coexistence temperature range” is a temperature range from Ac 1 point to Ac 3 point where two phases of ferrite (α) / austenite (γ) coexist.
In addition, it is good also considering the cooling rate in the cooling after hold | maintaining in the said two-phase coexistence temperature range as 5-30 degrees C / s. Moreover, you may additionally provide the conditions which make the start temperature of finishing rolling 1050 degrees C or less.

(10)上記(1)から(6)のいずれかに記載される化学組成を有するスラブに、仕上温度:Ar点〜(Ar点+80℃)、巻取温度:450〜680℃の熱間圧延を施して熱延鋼板となし、前記熱延鋼板に酸洗および冷間圧延を施して冷延鋼板となし、前記冷延鋼板に、二相共存温度域で30秒以上保持し、次いで3℃/s以上の冷却速度で450〜600℃の温度域まで冷却し、該温度域に5秒以上保持し、さらに亜鉛を含む溶融めっき層を形成する、連続溶融めっき処理を施すことを特徴とする溶融めっき鋼板の製造方法。 (10) To a slab having the chemical composition described in any one of (1) to (6) above, a finishing temperature: Ar 3 points to (Ar 3 points + 80 ° C.), a coiling temperature: 450 to 680 ° C. Hot-rolled steel sheet is subjected to hot rolling, the hot-rolled steel sheet is pickled and cold-rolled to be cold-rolled steel sheet, and the cold-rolled steel sheet is held in a two-phase coexisting temperature range for 30 seconds or more, then It is cooled to a temperature range of 450 to 600 ° C. at a cooling rate of 3 ° C./s or more, maintained in the temperature range for 5 seconds or more, and further subjected to continuous hot dipping treatment to form a hot dipping layer containing zinc. A method for producing a hot-dip galvanized steel sheet.

(11)前記連続溶融めっき処理で得られた溶融めっき鋼板に対して、580℃以下の合金化処理温度で合金化処理を行うことを特徴とする上記(10)記載の溶融めっき鋼板の製造方法。   (11) The method for producing a hot-dip galvanized steel sheet according to (10), wherein the hot dip galvanized steel sheet obtained by the continuous hot dip galvanizing process is subjected to an alloying process at an alloying temperature of 580 ° C. or lower. .

なお、合金化処理温度の下限は、めっき組成および鋼板組成、ならびに目的の合金組成、さらには経済性によって決定されるものであり、例えば450℃が挙げられる。   The lower limit of the alloying treatment temperature is determined by the plating composition, the steel plate composition, the target alloy composition, and further the economy, and for example, 450 ° C. can be mentioned.

本発明によれば、成形性に優れた、特に良好な延性と曲げ性とを兼ね備えた、引張強度590MPa以上の冷延鋼板および溶融めっき鋼板が提供される。この鋼板は、自動車、建築、電気機器等用の部材、特に自動車の足回り周辺の構造部材や補強備品用の部材の素材に好適であり、各技術分野において極めて有益である。   According to the present invention, a cold-rolled steel sheet and a hot-dip galvanized steel sheet having a tensile strength of 590 MPa or more and having particularly good ductility and bendability excellent in formability are provided. This steel sheet is suitable as a material for members for automobiles, buildings, electrical equipment, etc., particularly structural members around automobile suspensions and members for reinforcing equipment, and is extremely useful in each technical field.

以下に、本発明の最良の形態や製造条件の範囲およびこれらの設定理由について説明する。なお、本明細書において、化学組成を示す「%」は、特にことわりが無い限り「質量%」である。   The best mode of the present invention, the range of manufacturing conditions, and the reasons for setting them will be described below. In the present specification, “%” indicating a chemical composition is “% by mass” unless otherwise specified.

1.化学組成
まず、本実施形態に係る鋼の化学組成について説明する。
C:本実施形態に係る鋼は、Cを含有させて残留γ相を生成させることにより強度−延性バランスを向上させる。Cの含有量は狙いとする強度に応じて調整すればよいが、本実施形態に係る鋼が狙いとする590MPa以上の引張強度を達成するためには、少なくとも0.08%以上とする必要がある。好ましくは0.10%以上である。一方、上限は、自動車の足回り部品や補強備品を本実施形態に係る鋼の典型的な用途として想定しているため、スポット溶接性の観点から0.25%以下とする。好ましくは0.20%以下である。
1. Chemical Composition First, the chemical composition of the steel according to this embodiment will be described.
C: The steel according to the present embodiment improves the strength-ductility balance by containing C and generating a residual γ phase. The C content may be adjusted according to the target strength, but in order to achieve the target tensile strength of 590 MPa or more, the steel according to the present embodiment needs to be at least 0.08% or more. is there. Preferably it is 0.10% or more. On the other hand, the upper limit is assumed to be 0.25% or less from the viewpoint of spot weldability because it is assumed that automobile undercarriage parts and reinforcing equipment are typical uses of the steel according to the present embodiment. Preferably it is 0.20% or less.

Si:Siは、フェライト形成元素であり、オーステナイト中にCを濃縮させ、オーステナイトの安定度を調整して、TRIP効果による高延性を実現するために有効な元素である。しかしながら、鋼板表層に偏析しやすく易酸化元素でもあるため、含有量が多い場合には、酸洗後の表面性状を低下させる。したがって、その上限は0.7%以下とする。また、溶融めっきを行う場合には、めっきのぬれ性が極度に低下するため、その上限は0.6%以下とする。   Si: Si is a ferrite forming element, and is an element effective for concentrating C in austenite and adjusting the stability of austenite to achieve high ductility due to the TRIP effect. However, since it is easily segregated on the steel sheet surface layer and is also an easily oxidizable element, when the content is large, the surface properties after pickling are lowered. Therefore, the upper limit is made 0.7% or less. Moreover, when performing hot dipping, since the wettability of the plating is extremely lowered, the upper limit is made 0.6% or less.

Al:Alは、Siと同じように、フェライト形成元素であり、オーステナイト中にCを濃縮させ、オーステナイトの安定度を調整して、TRIP効果による高延性を実現するために重要な元素である。しかしながら、過剰に含有してもその効果は飽和し、しかも、DCバット溶接時などに溶融金属界面に介在物としてAlが析出して著しく溶接強度を低下させる。したがって、その上限は1.5%以下とする。 Al: Al, like Si, is a ferrite-forming element, and is an important element for realizing high ductility by the TRIP effect by concentrating C in austenite and adjusting the stability of austenite. However, even if contained in excess, the effect is saturated, and Al 2 O 3 precipitates as inclusions at the molten metal interface during DC butt welding or the like, and the welding strength is significantly reduced. Therefore, the upper limit is 1.5% or less.

SiとAlとの和:前述のように、SiおよびAlはフェライト形成元素であり、残留γ相を安定化させるには必須元素であり、上記C含有量の範囲で、残留γ量を5体積%以上とするには、これらの元素の含有量の総和を1.0%以上とする必要がある。好ましくは1.2%以上である。一方、その和が1.8%超では効果が飽和し、むしろ、SiおよびAlそれぞれの含有量が多い場合に懸念される悪影響(表面性状の低下やめっき性の低下、溶接強度の低下)が顕在化するおそれが高まってしまう。したがって、SiおよびAlの含有量の和における上限を1.8%以下とする。経済性をも考慮すると好ましくは1.7%以下である。   Sum of Si and Al: As described above, Si and Al are ferrite forming elements, and are essential elements for stabilizing the residual γ phase. In order to make it more than%, the total content of these elements needs to be made 1.0% or more. Preferably it is 1.2% or more. On the other hand, if the sum exceeds 1.8%, the effect is saturated. Rather, there is an adverse effect (a decrease in surface properties, a decrease in plating properties, a decrease in welding strength) that is a concern when the contents of Si and Al are large. The risk of materialization increases. Therefore, the upper limit in the sum of the contents of Si and Al is set to 1.8% or less. Considering economic efficiency, it is preferably 1.7% or less.

Mn:Mnは、鋼板の強度を高めるだけでなく、オーステナイトの安定化に作用する元素である。また、高温からの冷却中に炭化物の生成を抑制し、曲げ性を向上させる効果がある。これらの効果を発揮させるためには少なくとも1.0%以上のMnの含有が必要であり、狙いとする強度に応じてこの下限値以上でMnの含有量を調整すればよい。一方、上限は、曲げ性に悪影響を及ぼすバンド状組織の形成を抑制する観点や、さらには脆化抑制や経済性の観点から2.6%以下とする。好ましくは2.1%以下である。   Mn: Mn is an element that not only increases the strength of the steel sheet but also acts to stabilize austenite. In addition, there is an effect of suppressing the generation of carbide during cooling from a high temperature and improving the bendability. In order to exert these effects, it is necessary to contain at least 1.0% or more of Mn, and the content of Mn may be adjusted to the lower limit or more according to the target strength. On the other hand, the upper limit is set to 2.6% or less from the viewpoint of suppressing formation of a band-like structure that adversely affects bendability, and further from the viewpoint of embrittlement suppression and economic efficiency. Preferably it is 2.1% or less.

P:P含有量は極力低い方が好ましい。特にその含有量が0.03%を超えると鋼板のスポット溶接性が著しく劣化し、かつ延性が劣化する。したがって、P含有量は0.03%以下とする。   P: P content is preferably as low as possible. In particular, when the content exceeds 0.03%, the spot weldability of the steel sheet is remarkably deteriorated and the ductility is deteriorated. Therefore, the P content is 0.03% or less.

S:S含有量も極力低い方が好ましい。特にその含有量が0.02%を超えると、オーステナイト安定化元素として含有させるMnを析出物(MnS)として消費してしまい、特性に大きな影響を与える。また、この析出物は、亀裂要因となって鋼板の曲げ性を低下させる。したがって、S含有量は0.02%以下とする。   S: S content is preferably as low as possible. In particular, when the content exceeds 0.02%, Mn contained as an austenite stabilizing element is consumed as a precipitate (MnS), which greatly affects the characteristics. Moreover, this precipitate becomes a crack factor and reduces the bendability of the steel sheet. Therefore, the S content is 0.02% or less.

N:Nは0.01%を超えるとAlNとして消費されるAlの量が多くなり、上述したAlの効果が小さくなって鋼板の特性が低下してしまう。さらに、生成したAlNに起因する延性の劣化が顕在化しやすくなる。したがって、N含有量は0.01%以下とする。   If N: N exceeds 0.01%, the amount of Al consumed as AlN increases, and the above-described effect of Al is reduced and the properties of the steel sheet are deteriorated. Furthermore, the deterioration of ductility due to the generated AlN is likely to be manifested. Therefore, the N content is 0.01% or less.

本実施形態に係る鋼板は次の元素を任意成分として含んでもよい。
Ni、Cu:これらの元素はMnと同じように、オーステナイト生成元素であり、オーステナイトの安定化に作用すると同時に、強度を向上させる作用も有する。また、めっき密着性および溶融めっき時のめっきのぬれ性を向上させる元素である。しかも、Feよりも酸化しにくい元素であるので、鋼板表層に濃化し、Siの酸化によるめっき密着性およびぬれ性の低下を抑制する。したがって、これらの元素の1種以上を含有させることができる。しかしながら、Ni含有量が過剰であると熱間圧延段階で厚く密着性の高いスケールが発生し、鋼板の表面疵の原因となる。また、Cu含有量が過剰であると熱間圧延時に割れを生じる。このため、Ni含有量は1.0%以下とし、経済性をも考慮すると好ましくは0.8%以下である。また、Cu含有量は0.5%以下とする。
The steel plate according to this embodiment may contain the following elements as optional components.
Ni, Cu: These elements, like Mn, are austenite-generating elements, which act to stabilize austenite and at the same time have the effect of improving strength. Further, it is an element that improves the plating adhesion and the wettability of plating during hot dipping. And since it is an element which is harder to oxidize than Fe, it concentrates on a steel plate surface layer and suppresses the plating adhesiveness and wettability fall by oxidation of Si. Therefore, one or more of these elements can be contained. However, if the Ni content is excessive, a thick and highly adhesive scale is generated in the hot rolling stage, which causes surface flaws on the steel sheet. Further, if the Cu content is excessive, cracking occurs during hot rolling. For this reason, the Ni content is 1.0% or less, and preferably 0.8% or less in consideration of economy. Moreover, Cu content shall be 0.5% or less.

Ti、Nb、V:これらの元素は強度を向上させるだけでなく、亜鉛を含む溶融めっきを施して合金化処理を行う場合には合金化速度を向上させる作用を有する。したがって、これらの元素の1種または2種以上を含有させることができる。しかしながら、過剰の添加はTiCなどの析出物を大量に析出させ、こうした析出物は延性の劣化をもたらすだけでなく曲げ性の劣化をも招く。また、これらの元素はめっき層中のFe%を増加させる作用も有するため、過剰の添加は合金化溶融亜鉛めっきを施した場合においてパウダリング性を劣化させる。したがって、TiおよびNbを含有させる場合にはそれぞれ0.1%未満とする。Vについては、TiやNbと比較すると同一量含有させた場合の効果が小さいため、その含有量は0.2%未満とする。   Ti, Nb, V: These elements not only improve the strength, but also have an effect of improving the alloying speed when the alloying treatment is performed by hot-dip plating containing zinc. Accordingly, one or more of these elements can be contained. However, excessive addition causes a large amount of precipitates such as TiC to precipitate, and such precipitates not only cause deterioration of ductility but also deterioration of bendability. Moreover, since these elements also have the effect | action which increases Fe% in a plating layer, excessive addition will deteriorate powdering property, when alloying hot dip galvanization is given. Therefore, when Ti and Nb are contained, the content is less than 0.1%. About V, since the effect at the time of making it contain the same amount compared with Ti and Nb is small, the content shall be less than 0.2%.

Co、Cr、Mo、B:高温からの冷却過程で生成する可能性のあるパーライトは曲げ性に悪影響を及ぼすが、これらの元素はパーライトの生成を抑制するため曲げ性の向上に有効である。したがって、これらの元素の1種または2種以上を含有させてもよい。しかしながら、CoおよびCrの含有量についてはそれぞれ1.0%超、Mo含有量については1.0%超、B含有量については0.01%超含有させても効果は飽和するだけであるから、経済的観点から好ましくない。よって、これらの元素の含有量の上限は、CoおよびCrについてはそれぞれ1.0%以下、Mo含有量については1.0%以下、B含有量については0.01%以下とする。   Co, Cr, Mo, B: Although pearlite that may be generated in the cooling process from a high temperature adversely affects bendability, these elements are effective in improving bendability because they suppress the formation of pearlite. Therefore, you may contain 1 type, or 2 or more types of these elements. However, if the Co and Cr contents exceed 1.0%, the Mo content exceeds 1.0%, and the B content exceeds 0.01%, the effect is only saturated. This is not preferable from an economic viewpoint. Therefore, the upper limit of the content of these elements is 1.0% or less for Co and Cr, 1.0% or less for the Mo content, and 0.01% or less for the B content.

Ca:Caは、介在物の形態を制御して曲げ性を向上させる作用を有する。しかしながら、0.01%超含有させてもその効果は飽和して経済的に不利となる。このため、Caを含有させる場合には、その含有量を0.01%以下とする。   Ca: Ca has the effect | action which controls the form of an inclusion and improves bendability. However, even if the content exceeds 0.01%, the effect is saturated and economically disadvantageous. For this reason, when it contains Ca, the content shall be 0.01% or less.

上記以外の成分はFeおよび不純物である。   Components other than the above are Fe and impurities.

2.機械特性、鋼組織、硬度分布
次に、本実施形態に係る鋼板の機械特性、鋼組織および硬度分布について説明する。
2. Mechanical characteristics, steel structure, hardness distribution Next, the mechanical characteristics, steel structure, and hardness distribution of the steel sheet according to the present embodiment will be described.

(1)強度および延性と残留γ相
本実施形態に係る鋼板は、上記の化学組成を有し、引張強度(TS)が590MPa以上であって、さらに、TRIP効果によって優れた延性を発現させることで、次式を満たしている:
TS×El≧17500(TS:引張強度(MPa)、El:全伸び(%))。
(1) Strength, ductility and residual γ phase The steel sheet according to the present embodiment has the above-described chemical composition, has a tensile strength (TS) of 590 MPa or more, and further exhibits excellent ductility due to the TRIP effect. And satisfies the following formula:
TS × El ≧ 17500 (TS: tensile strength (MPa), El: total elongation (%)).

このため、鋼板内にγ相が残留していることが必要であり、この残留γ相の体積率は少なくとも5体積%以上であって、好ましくは、10体積%以上である。一方、この残留γ相が過剰である場合には、残留γ相から生成するマルテンサイトの体積率が多くなり、曲げ性に悪影響を及ぼす可能性が懸念される。したがって、残留γ相の体積率の上限は20%以下が好ましく、特に好ましくは15%以下である。   For this reason, it is necessary for the γ phase to remain in the steel sheet, and the volume ratio of the residual γ phase is at least 5% by volume, preferably 10% by volume or more. On the other hand, when the residual γ phase is excessive, the volume ratio of martensite generated from the residual γ phase increases, and there is a concern that the bendability may be adversely affected. Therefore, the upper limit of the volume ratio of the residual γ phase is preferably 20% or less, particularly preferably 15% or less.

なお、この残留γ相が多く残留しやすい化学組成からなる鋼板であっても、その残留γ相が不安定な場合、具体的には残留γ相に固溶する炭素濃度が低い場合には、例えば製造過程における熱処理(具体例としては合金化処理が挙げられる。)において残留γ相が分解してしまうことが懸念される。したがって、本実施形態に係る鋼板は、残留γ相の炭素濃度が高くなるように、ベイナイトを有することが好ましい。   In addition, even if the residual γ phase is unstable even if it is a steel plate made of a chemical composition in which many residual γ phases are likely to remain, specifically, when the carbon concentration dissolved in the residual γ phase is low, For example, there is a concern that the residual γ phase is decomposed during heat treatment in the production process (specifically, alloying treatment can be mentioned). Therefore, it is preferable that the steel sheet according to the present embodiment has bainite so that the carbon concentration of the residual γ phase becomes high.

したがって、本実施形態に係る鋼板の鋼組織の特に好ましい態様は、主相がフェライトであって、第二相がベイナイトと5〜20体積%の残留γ相である。
(2)曲げ性および硬度分布
本実施形態に係る鋼板が上記のような主相および第二相を有する場合には、第二相におけるベイナイトの硬度を低くすることが、良好な曲げ性を維持するために重要である。
Therefore, a particularly preferable aspect of the steel structure of the steel sheet according to the present embodiment is that the main phase is ferrite and the second phase is bainite and a residual γ phase of 5 to 20% by volume.
(2) Bendability and hardness distribution When the steel sheet according to the present embodiment has the main phase and the second phase as described above, it is possible to maintain the good bendability by reducing the hardness of the bainite in the second phase. Is important to do.

主相であるフェライトに比べて、第二相のベイナイトは、含有する炭素濃度などによって硬度が変動しやすい。このため、ベイナイトの硬度が高い場合には、フェライトとの硬度差が大きくなり、この二相の界面が曲げ加工時に亀裂起点となって割れが発生し易くなる。この硬度差に起因する亀裂は、曲げ加工時に圧縮応力や引張応力が顕著に与えられる表面近傍の領域において特に顕著である。   Compared with ferrite, which is the main phase, the hardness of bainite of the second phase is likely to vary depending on the concentration of carbon contained. For this reason, when the hardness of bainite is high, the difference in hardness from ferrite becomes large, and the interface between the two phases becomes a crack starting point during bending, and cracking is likely to occur. Cracks resulting from this hardness difference are particularly prominent in a region near the surface where compressive stress and tensile stress are significantly applied during bending.

そこで、表面から表面直下の0.1mmまでの深さの領域の硬度ばらつきについては、ビッカース硬度で10以下とする。好ましくは、鋼板の板厚方向の表面から1/4板厚深さ位置までの断面について、最大硬度と最小硬度の差がビッカース硬度で10以下とする。鋼板全体について硬度差が10以下であれば特に好ましい。   Accordingly, the hardness variation in the region from the surface to a depth of 0.1 mm immediately below the surface is set to 10 or less in terms of Vickers hardness. Preferably, the difference between the maximum hardness and the minimum hardness is 10 or less in terms of Vickers hardness with respect to the cross section from the surface in the plate thickness direction of the steel plate to the 1/4 plate thickness depth position. It is particularly preferable if the hardness difference is 10 or less for the entire steel plate.

このとき、曲げ性能として、ρ≦1.5×t(TS:引張強度(MPa)、ρ:限界曲げ半径(mm)、t:板厚(mm))が得られ、優れた曲げ性を有する鋼板を得ることが実現される。   At this time, ρ ≦ 1.5 × t (TS: tensile strength (MPa), ρ: limit bending radius (mm), t: plate thickness (mm)) is obtained as bending performance, and has excellent bendability. Obtaining a steel plate is realized.

なお、上記のように、本実施形態に係る鋼板が、フェライトを主相、ベイナイトを第二相として有する場合でない場合であっても、鋼板内の上記の表層領域における硬度ばらつきが抑制されていれば、同様に、優れた曲げ性を呈する。   As described above, even if the steel sheet according to the present embodiment is not a case where it has a ferrite as a main phase and a bainite as a second phase, the hardness variation in the surface layer region in the steel sheet is suppressed. In the same manner, it exhibits excellent bendability.

3.製造方法
本実施形態に係る鋼板は、上記のような化学組成や組織上の特徴を有し、引張強度が590MPaであって、さらに上記の2式で規定される機械特性を有するのであれば、製造方法には特に限定されない。ただし、次のような製造方法を採用すれば、本実施形態に係る鋼板を効率的に、かつ安定的に得ることが実現される。
3. Manufacturing Method The steel sheet according to the present embodiment has the above-described chemical composition and structural characteristics, and has a tensile strength of 590 MPa and further has mechanical properties defined by the above two formulas. The production method is not particularly limited. However, if the following manufacturing method is adopted, it is possible to efficiently and stably obtain the steel plate according to the present embodiment.

(1)熱間圧延
ア)粗圧延まで
上記の化学組成を有する鋼を常法により鋳造し、あるいはさらに分塊圧延し、得られたスラブを粗圧延する。スラブは常法により加熱して粗圧延されたのち、仕上圧延に供されるが、連続鋳造により得られたスラブを直送する場合や分塊圧延後のスラブを速やかに粗圧延に供する場合のように、鋳造もしくは分塊圧延後のスラブ温度が高く、後述する仕上圧延における仕上温度が確保できる場合には、スラブ加熱を省略して粗圧延しても構わない。また、薄スラブCCなど公知の方法により薄い鋳片が得られる場合には、粗圧延を省略しても構わない。
(1) Hot rolling a) Until rough rolling A steel having the above chemical composition is cast by a conventional method, or is further divided and rolled, and the resulting slab is roughly rolled. The slab is heated and rough rolled by a conventional method and then used for finish rolling. However, when the slab obtained by continuous casting is directly fed or the slab after partial rolling is used for rough rolling quickly. In addition, when the slab temperature after casting or partial rolling is high and a finishing temperature in finish rolling described later can be secured, rough rolling may be performed while omitting slab heating. Further, when a thin slab is obtained by a known method such as a thin slab CC, rough rolling may be omitted.

イ)仕上圧延
本実施形態に係る鋼板を製造する際の熱延板は、曲げ性を劣化させるバンド状の組織を生じさせないように、極力均一な鋼組織を備えたものとすることが好ましい。
B) Finish rolling It is preferable that the hot-rolled sheet in manufacturing the steel sheet according to the present embodiment has a uniform steel structure as much as possible so as not to generate a band-like structure that deteriorates bendability.

仕上温度を、Ar点に満たない温度とすると、バンド状の組織が形成されてしまう。この組織は冷間圧延ならびに連続焼鈍処理または連続溶融めっき処理を施した後の鋼組織にも影響を及ぼし、不均一な鋼組織を形成するため、曲げ性の劣化をもたらす。したがって、仕上温度はAr点以上とすることが好ましい。一方、仕上圧延後のフェライト変態を促進して鋼組織の均一化を図る観点からは、仕上圧延においてオーステナイトに導入する圧延歪み量が多い程好ましいので、仕上温度はより低温とすることが好ましい。したがって、仕上温度は(Ar点+80℃)以下とすることが好ましい。 If the finishing temperature is a temperature less than the Ar 3 point, a band-shaped structure is formed. This structure also affects the steel structure after being subjected to cold rolling and continuous annealing or continuous hot dipping, and forms a non-uniform steel structure, resulting in deterioration of bendability. Therefore, it is preferable that the finishing temperature is 3 points or more at Ar. On the other hand, from the viewpoint of promoting the ferrite transformation after finish rolling to make the steel structure uniform, it is preferable that the amount of rolling strain introduced into the austenite in the finish rolling is larger. Therefore, the finishing temperature is preferably lower. Therefore, the finishing temperature is preferably (Ar 3 points + 80 ° C.) or less.

なお、仕上圧延において、前述の仕上温度を鋼材の全長にわたって確保するように、必要に応じて補助加熱手段を用いることが望ましい。鋼材が長い場合には、圧延途中で鋼材温度が低下し、熱間圧延の後期などにおいて上記の仕上温度の下限(Ar点)が確保されないおそれがある。そこで、仕上圧延の入側で補助的に再加熱を施すのがよい。この補助再加熱方法は限定されないが、仕上圧延の入側における鋼材の温度分布に応じた加熱量の制御が容易である電磁誘導加熱方式が好ましい。 In finish rolling, it is desirable to use auxiliary heating means as necessary so as to ensure the above-mentioned finishing temperature over the entire length of the steel material. When the steel material is long, the steel material temperature is lowered during rolling, and the lower limit (Ar 3 points) of the finishing temperature may not be ensured in the latter stage of hot rolling. Therefore, it is preferable to supplementarily reheat at the entrance of finish rolling. Although this auxiliary reheating method is not limited, an electromagnetic induction heating method in which the heating amount can be easily controlled according to the temperature distribution of the steel material on the entry side of the finish rolling is preferable.

ウ)巻取温度
巻取温度で決定される鋼組織は、その後の冷間圧延および連続焼鈍処理を施して得られる冷延鋼板、ならびに冷間圧延および連続溶融めっき処理を施して得られる溶融めっき鋼板の特性に大きく影響する。このため、巻取温度の制御は重要である。
C) Winding temperature The steel structure determined by the winding temperature is a cold-rolled steel sheet obtained by subsequent cold rolling and continuous annealing treatment, and hot-dip plating obtained by cold rolling and continuous hot-dip plating treatment. It greatly affects the properties of the steel sheet. For this reason, control of coiling temperature is important.

具体的には、巻取温度は高めにするのが好ましい。巻取温度を高めることによって、鋼板内の微視的な炭素濃度分布にばらつきが発生しやすくなる。この微視的に炭素濃度が高い領域は、冷間圧延後の連続焼鈍処理や連続溶融めっき処理において、二相共存温度域で保持する際に速やかにオーステナイト変態し、フェライト相からのCの排出とオーステナイト相へのCの濃縮が促進される。さらに、冷却後に所定の温度域で保持する際のベイナイト変態も促進され、ベイナイト組織からのCの排出とオーステナイト相へのCの濃縮が促進される。その結果、安定な残留γ相が形成される。また、ベイナイト組織からのCの排出も促進されてベイナイト組織がより軟質となり、隣接するフェライト相との硬度差も小さくなるので、曲げ性も向上する。   Specifically, it is preferable to increase the winding temperature. By increasing the coiling temperature, the microscopic carbon concentration distribution in the steel sheet tends to vary. This microscopically high carbon concentration region undergoes rapid austenite transformation when held in a two-phase coexisting temperature range in continuous annealing or continuous hot dipping after cold rolling, and C is discharged from the ferrite phase. And the concentration of C in the austenite phase is promoted. Furthermore, the bainite transformation at the time of holding in a predetermined temperature range after cooling is also promoted, and the discharge of C from the bainite structure and the concentration of C into the austenite phase are promoted. As a result, a stable residual γ phase is formed. Further, C discharge from the bainite structure is promoted, the bainite structure becomes softer, and the hardness difference from the adjacent ferrite phase is reduced, so that the bendability is improved.

逆に、巻取温度が低い場合には、最終製品におけるベイナイト組織の硬度が高くなる。このような硬質のベイナイトが生成すると隣接するフェライト相との硬度差が大きくなり、この硬度の異なる相の界面が亀裂起点となって曲げ性の低下要因となる。   Conversely, when the coiling temperature is low, the hardness of the bainite structure in the final product increases. When such hard bainite is formed, the difference in hardness from the adjacent ferrite phase becomes large, and the interface between the phases having different hardness becomes a crack starting point and causes a decrease in bendability.

なお、巻取温度が低くなると熱間圧延鋼板におけるベイナイトの硬質化も招き、これにより後続する冷間圧延が困難になるという製造上の問題も生じる。
上記のような問題を回避しうる温度として、巻取温度は450℃以上とすることが好ましい。
Note that when the coiling temperature is lowered, the bainite in the hot-rolled steel sheet is hardened, which causes a manufacturing problem that subsequent cold rolling becomes difficult.
The coiling temperature is preferably 450 ° C. or higher as a temperature that can avoid the above problems.

一方、巻取温度を過度に高くすると、鋼板の表面が脱炭し表面品質が劣化してしまう。これを防止するために巻取温度は680℃以下とするのが望ましい。   On the other hand, when the coiling temperature is excessively increased, the surface of the steel sheet is decarburized and the surface quality is deteriorated. In order to prevent this, the coiling temperature is desirably 680 ° C. or lower.

(3)酸洗・冷間圧延
上記熱間圧延工程により得られた熱間圧延鋼板は、酸洗により脱スケール処理されたのちに冷間圧延が施され冷間圧延鋼板とされる。酸洗および冷間圧延は常法でかまわない。しかしながら、冷間圧延における圧下率を過度に大きくすると、加工硬化により板破断が生じ、生産能率が低下する。したがって、冷間圧延における圧下率は45%以上85%以下が好ましい。
(3) Pickling / cold rolling The hot-rolled steel sheet obtained by the hot rolling process is descaled by pickling and then cold-rolled to form a cold-rolled steel sheet. Pickling and cold rolling may be performed in a conventional manner. However, if the rolling reduction in cold rolling is excessively increased, plate breakage occurs due to work hardening, and the production efficiency decreases. Therefore, the rolling reduction in cold rolling is preferably 45% or more and 85% or less.

(4)連続焼鈍処理
本実施形態に係る鋼板を実現するためには、フェライト(α)/オーステナイト(γ)の二相共存温度域で30秒以上保持することが好ましい。この工程により、フェライトからのCの排出とオーステナイトへのCの濃縮が促進される。具体的には、還元性雰囲気中でAc点〜Ac点の二相共存温度域に加熱して、30秒以上保持する。特に好ましい保持時間は60秒以上である。このときの還元性雰囲気としては、水素が1〜30体積%、残部が窒素および不可避的な微量の水分からなることが好ましく、その水分量は、露点として−60〜0℃の範囲であればよい。特に好ましいのは、水素が2〜15体積%、残部が窒素および不可避的な微量の水分であって、その水分量が、露点として−50〜−0℃の範囲である場合である。保持時間の上限は、特に規定する必要はないが、長時間の保持は生産性の低下や連続焼鈍設備の長大化を招くので、600秒以下とすることが好ましく、300秒以下とすることがさらに好ましい。また、上述したように二相共存温度域で保持すればよいのであり、二相共存温度域内で昇温や降温などの温度変化があっても構わない。さらにまた、二相共存温度域で保持する前に、一旦Ac点超の温度域まで加熱しても構わない。
(4) Continuous annealing treatment In order to realize the steel sheet according to the present embodiment, it is preferable to hold for 30 seconds or more in the two-phase coexisting temperature range of ferrite (α) / austenite (γ). This step promotes C discharge from ferrite and C concentration to austenite. Specifically, it is heated to a two-phase coexistence temperature range of Ac 1 point to Ac 3 point in a reducing atmosphere and held for 30 seconds or more. A particularly preferable holding time is 60 seconds or more. As the reducing atmosphere at this time, it is preferable that hydrogen is 1 to 30% by volume, the balance is nitrogen and unavoidable trace moisture, and the moisture content is within a range of −60 to 0 ° C. as a dew point. Good. Particularly preferred is a case where hydrogen is 2 to 15% by volume, the balance is nitrogen and an inevitable minute amount of water, and the amount of water is in the range of −50 to −0 ° C. as a dew point. The upper limit of the holding time is not particularly required, but holding for a long time leads to a decrease in productivity and an increase in the length of the continuous annealing equipment, so it is preferably 600 seconds or less, and preferably 300 seconds or less. Further preferred. Further, as described above, the temperature may be maintained in the two-phase coexistence temperature range, and there may be a temperature change such as temperature rise or temperature fall within the two-phase coexistence temperature range. Furthermore, before holding in the two-phase coexistence temperature range, it may be once heated to a temperature range exceeding Ac 3 points.

上記二相共存温度域での保持に続く冷却工程は次のように行うことが好ましい。本実施形態に係る鋼板は最終製品において所定量の残留γ相を含有させるため、二相共存温度域からの冷却途中でのパーライトの生成を避ける必要がある。そこで、350〜600℃の温度域まで、3℃/s以上で冷却することが好ましく、特に好ましい冷却速度は5℃/s以上である。冷却速度の上限は特に規定する必要はないが、実用的には100℃/s以下であり、50℃以下とすることが特に好ましい。   It is preferable to perform the cooling process following the holding | maintenance in the said two-phase coexistence temperature range as follows. Since the steel sheet according to the present embodiment contains a predetermined amount of residual γ phase in the final product, it is necessary to avoid generation of pearlite during cooling from the two-phase coexisting temperature range. Therefore, it is preferable to cool at 3 ° C./s or higher to a temperature range of 350 to 600 ° C., and a particularly preferable cooling rate is 5 ° C./s or higher. The upper limit of the cooling rate is not particularly required, but is practically 100 ° C./s or less, particularly preferably 50 ° C. or less.

このようにして、パーライト生成を回避しつつ冷却し、350〜600℃の温度域で保持してベイナイトを生成させることにより、γ相中のC濃度を高め、常温までの冷却過程においてα相と炭化物とに分解しないようにγ相を安定化させる。また、ベイナイトからのCの排出を促進させ、ベイナイトをより軟質にして曲げ性を向上させる。したがって、この保持時間が短すぎるとベイナイトの生成が不十分となるので5秒以上とする。過時効帯を備える連続焼鈍設備を用いる場合には通常60秒以上である。保持時間の上限は特に規定する必要はないが、過度に長いと生産性が著しく低下したり、連続焼鈍設備の長大化を招いたりするので300秒以下とすることが好ましく、180秒以下とすることがさらに好ましい。   In this way, cooling is performed while avoiding the formation of pearlite, and the bainite is generated in the temperature range of 350 to 600 ° C., thereby increasing the C concentration in the γ phase, and in the cooling process to room temperature, The γ phase is stabilized so as not to decompose into carbides. Moreover, discharge | emission of C from a bainite is accelerated | stimulated, a bainite is made softer and a bendability is improved. Therefore, if the holding time is too short, bainite is not sufficiently generated, so the time is set to 5 seconds or more. When using a continuous annealing facility with an overaging zone, it is usually 60 seconds or longer. The upper limit of the holding time is not particularly required, but if it is excessively long, the productivity is remarkably reduced or the length of the continuous annealing equipment is increased. Therefore, it is preferably 300 seconds or less, and 180 seconds or less. More preferably.

(5)連続溶融めっき処理
連続溶融めっき処理における二相共存温度域での保持およびそれに続く冷却についての条件および理由は、上記連続焼鈍処理の項で述べたのと同一である。二相共存温度域の保持に続く冷却における冷却速度の上限も特に規定する必要はないが、連続焼鈍の場合と異なり連続溶融めっきの場合には設備制約上30℃/s以下となる。
(5) Continuous hot dipping treatment The conditions and reasons for maintaining in the two-phase coexisting temperature range and subsequent cooling in the continuous hot dipping treatment are the same as described in the section of the continuous annealing treatment. The upper limit of the cooling rate in the cooling following the maintenance of the two-phase coexisting temperature range is not particularly required, but in the case of continuous hot dipping unlike the case of continuous annealing, it is 30 ° C./s or less due to equipment constraints.

連続溶融めっき処理における前記冷却後に保持する温度域の上限および保持する時間の下限およびその理由も上記連続焼鈍処理の項で述べたのと同一である。前記温度域の下限は、連続焼鈍の場合と異なり、後続する溶融めっき処理を施す際の熱効率の観点から450℃以上とすることが好ましい。前記保持時間の上限も連続焼鈍の場合と同様に特に規定する必要はないが、連続溶融めっきの場合には90秒以下とすることが実用的である。   The upper limit of the temperature range held after the cooling in the continuous hot dipping process, the lower limit of the holding time, and the reason thereof are also the same as described in the section of the continuous annealing process. Unlike the case of continuous annealing, the lower limit of the temperature range is preferably set to 450 ° C. or more from the viewpoint of thermal efficiency when performing the subsequent hot dipping process. The upper limit of the holding time is not particularly required as in the case of continuous annealing, but in the case of continuous hot dipping, it is practical to set it to 90 seconds or less.

連続溶融めっき処理における溶融めっき処理は常法にしたがって行えばよい。溶融めっきの材質は亜鉛のみでもよいし、例えばアルミニウムを含有する合金であってもよい。
めっき後に合金化処理をする場合には、合金化処理温度を580℃以下にすることが好ましい。合金化処理温度が580℃を超えると、安定化したγ相がフェライトと炭化物に分解し、鋼板の特性として延性と曲げ性とが極端に低下する傾向がある。先に述べたように、熱間圧延の条件、特に巻取条件によって連続溶融亜鉛めっき処理における熱処理後のベイナイトの硬さを制御することが可能であるから、合金化処理温度を580℃以下に制御しつつ熱間圧延の条件を適切に設定することで、所望の曲げ性を得ることが実現される。
What is necessary is just to perform the hot dipping process in a continuous hot dipping process in accordance with a conventional method. The material of the hot dip plating may be only zinc or an alloy containing aluminum, for example.
When alloying is performed after plating, the alloying temperature is preferably 580 ° C. or lower. When the alloying temperature exceeds 580 ° C., the stabilized γ phase is decomposed into ferrite and carbide, and the ductility and bendability tend to be extremely lowered as the characteristics of the steel sheet. As described above, since the hardness of the bainite after the heat treatment in the continuous hot-dip galvanizing treatment can be controlled by the hot rolling conditions, particularly the winding conditions, the alloying treatment temperature is set to 580 ° C. or lower. By appropriately setting the hot rolling conditions while controlling, it is possible to obtain desired bendability.

なお、合金化処理温度の下限は、めっき組成および鋼板組成、ならびに目的の合金組成、さらには経済性によって決定されるものであり、例えば450℃が挙げられる。
また、めっき処理以降は通常の冷却条件にて冷却を行えばよい。このとき、Nおよび工業用ガスを用い冷却を行ってもよいし、さらに通常のミスト冷却を行ってもよい。
The lower limit of the alloying treatment temperature is determined by the plating composition, the steel plate composition, the target alloy composition, and further the economy, and for example, 450 ° C. can be mentioned.
Moreover, what is necessary is just to cool on normal cooling conditions after a plating process. At this time, cooling may be performed using N 2 and industrial gas, and further normal mist cooling may be performed.

(6)その他
以上の製造方法により、本実施形態に係る冷延鋼板や溶融めっき鋼板が、安定的かつ効率的に得ることが実現される。
(6) Others By the above manufacturing method, it is realized that the cold-rolled steel sheet and the hot-dip plated steel sheet according to the present embodiment are obtained stably and efficiently.

なお、上記以外の製造工程については公知の方法によって製造すればよい。例えば連続焼鈍処理後または溶融めっき処理後に、表面粗度調整や平坦矯正を目的にして、公知の方法により調質圧延を施しても構わない。   In addition, what is necessary is just to manufacture by a well-known method about manufacturing processes other than the above. For example, after continuous annealing or hot dipping, temper rolling may be performed by a known method for the purpose of surface roughness adjustment or flattening.

また、本実施形態に係る冷延鋼板は、上記の機械的な特性や鋼組織上の特徴を有していれば、その表面になんらかの処理が施されていてもよい。その処理には、化成処理、電気めっき処理、塗装処理が例示される。化成処理は、リン酸亜鉛系の化成処理でもよいし、リン酸マンガン系の化成処理でもよい。電気めっき処理は、亜鉛系でもよいし、スズ系でもよい。塗装処理は、塗液への単なる浸漬でもよいし、電着塗装処理でもよい。   In addition, the cold-rolled steel sheet according to the present embodiment may be subjected to some treatment on the surface as long as it has the above-described mechanical characteristics and steel structure characteristics. Examples of the treatment include chemical conversion treatment, electroplating treatment, and coating treatment. The chemical conversion treatment may be a zinc phosphate chemical conversion treatment or a manganese phosphate chemical conversion treatment. The electroplating process may be zinc-based or tin-based. The coating process may be a simple immersion in a coating solution or an electrodeposition coating process.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

1.冷延鋼板および合金化溶融亜鉛めっき鋼板の製造
表1に示す実施例の製造条件を説明する。
1. Production of Cold Rolled Steel Sheet and Alloyed Hot Dip Galvanized Steel Sheet The production conditions of the examples shown in Table 1 will be described.

Figure 2009270126
Figure 2009270126

表1に示される化学組成からなるスラブを、1100℃〜1350℃に加熱して粗熱間圧延を行って粗バーとなし、前記粗バーに誘導加熱装置を用いた補助加熱を適宜施して仕上圧延を行い得られた熱延鋼板をコイル状に巻き取った。仕上温度および巻取温度を表2に示す。   A slab having the chemical composition shown in Table 1 is heated to 1100 ° C. to 1350 ° C. and subjected to rough hot rolling to form a rough bar, and the rough bar is appropriately subjected to auxiliary heating using an induction heating device and finished. A hot-rolled steel sheet obtained by rolling was wound into a coil. Table 2 shows the finishing temperature and the winding temperature.

Figure 2009270126
Figure 2009270126

このようにして製造された熱延鋼板を、酸洗し、表1に示される板厚になるまで圧下率50%の冷間圧延を実施した。   The hot-rolled steel sheet thus manufactured was pickled and cold-rolled at a reduction rate of 50% until the plate thickness shown in Table 1 was reached.

続いて、冷間圧延された鋼板に次の条件の連続焼鈍処理または連続溶融めっき処理を施した。
(連続焼鈍処理)
均熱温度:表2参照
均熱雰囲気:露点−30℃、3%H−97%N
均熱時間:60秒
冷却速度:60℃/s
低温保持温度:表2参照
低温保持時間:110秒
低温保持雰囲気:露点−30℃、3%H−97%N
連続焼鈍処理は、上記均熱条件で均熱したのちに、上記冷却速度で上記低温保持温度まで冷却し、上記低温保持条件で低温保持する、熱処理を施した。
Subsequently, the cold-rolled steel sheet was subjected to continuous annealing treatment or continuous hot-dip plating treatment under the following conditions.
(Continuous annealing treatment)
Soaking temperature: see Table 2 Soaking atmosphere: dew point -30 ° C, 3% H 2 -97% N 2
Soaking time: 60 seconds Cooling rate: 60 ° C / s
Low temperature holding temperature: see Table 2 Low temperature holding time: 110 seconds Low temperature holding atmosphere: dew point −30 ° C., 3% H 2 −97% N 2
In the continuous annealing treatment, after soaking under the soaking conditions, a heat treatment was performed by cooling to the low temperature holding temperature at the cooling rate and holding the low temperature under the low temperature holding conditions.

(溶融めっき処理)
均熱温度:表2参照
均熱雰囲気:露点−30℃、10%H、残部N
均熱時間:120秒
冷却速度:20℃/s(ガス冷却)
低温保持温度:表2参照
低温保持時間:20秒
低温保持雰囲気:露点−40℃、7〜12%H−88〜93%N
連続焼鈍処理は、上記均熱条件で均熱したのちに、上記冷却速度で上記低温保持温度まで冷却し、上記低温保持条件で低温保持する熱処理を施した。さらに亜鉛めっき浴の浴温460℃とほぼ同等の温度まで冷却し、付着量が30〜50g/mの範囲になるように制御しながら溶融亜鉛めっきを行った。引き続いて、表2に示される合金化処理温度で、めっき層中のFe濃度が10%になるように種々合金化処理時間を調整しつつ、合金化処理を行った。その後、20℃/sの冷却速度で250℃以下に冷却し、合金化溶融亜鉛めっき鋼板を得た。
(Hot plating process)
Soaking temperature: see Table 2 Soaking atmosphere: dew point -30 ° C, 10% H 2 , balance N 2
Soaking time: 120 seconds Cooling rate: 20 ° C / s (gas cooling)
Low temperature holding temperature: see Table 2 Low temperature holding time: 20 seconds Low temperature holding atmosphere: dew point −40 ° C., 7 to 12% H 2 −88 to 93% N 2
In the continuous annealing treatment, after soaking under the soaking condition, the heat treatment was performed by cooling to the low temperature holding temperature at the cooling rate and holding at the low temperature under the low temperature holding condition. Furthermore, it was cooled to a temperature substantially equal to the bath temperature of 460 ° C. of the galvanizing bath, and hot dip galvanizing was performed while controlling the adhesion amount to be in the range of 30 to 50 g / m 2 . Subsequently, at the alloying treatment temperature shown in Table 2, the alloying treatment was performed while adjusting various alloying treatment times so that the Fe concentration in the plating layer became 10%. Then, it cooled to 250 degrees C or less with the cooling rate of 20 degrees C / s, and obtained the galvannealed steel plate.

得られた冷延鋼板および合金化溶融亜鉛めっき鋼板は、スキンパスを行って平坦度などの微調整を行った。   The obtained cold-rolled steel sheet and alloyed hot-dip galvanized steel sheet were subjected to skin pass to make fine adjustments such as flatness.

2.評価
得られた種々の冷延鋼板および合金化溶融亜鉛めっき鋼板の評価は次のようにして行った。
2. Evaluation Evaluation of the various cold-rolled steel sheets and galvannealed steel sheets obtained was performed as follows.

冷延鋼板および合金化溶融亜鉛めっき鋼板の鋼組織は、光学顕微鏡、SEMおよびX線回折装置により分析して、得られた光学顕微鏡画像、電子顕微鏡画像および結晶構造データに基づいて組織の評価を行った。   The steel structures of cold-rolled steel sheets and alloyed hot-dip galvanized steel sheets are analyzed with an optical microscope, SEM, and X-ray diffractometer, and the structure is evaluated based on the obtained optical microscope images, electron microscope images, and crystal structure data. went.

機械試験値(TS:引張強度、El:全伸び)についてはJIS Z2201 に規定される5号試験片を用い、JIS Z2241 に準拠して引張試験を実施して求めた。
曲げ試験はJIS Z2248に規定されている方法に従って実施した。押曲げ法により170°まで曲げた後に、複数の異なる曲げ半径での180°曲げおよび密着曲げを行って、曲げ部外側の表面を観察した。そして、亀裂およびくびれ(ネッキング)が観察されない最小の曲げ半径を限界曲げ半径とした。
The mechanical test values (TS: tensile strength, El: total elongation) were obtained by carrying out a tensile test in accordance with JIS Z2241, using a No. 5 test piece defined in JIS Z2201.
The bending test was performed according to the method defined in JIS Z2248. After bending to 170 ° by the push bending method, 180 ° bending and contact bending were performed at a plurality of different bending radii, and the surface outside the bent portion was observed. The minimum bending radius at which no cracks and necking (necking) were observed was taken as the limit bending radius.

また、硬度測定はマイクロビッカース硬度測定装置を用いて、ビッカース法により測定した(測定荷重:9.8kN)。硬度測定範囲は、測定する鋼板の断面についての板幅方向:5mmおよび板厚方向:表面〜0.1mm深さ位置の範囲とし、板幅方向について0.5mm間隔、板厚方向について0.01mm間隔で硬度測定を行った。なお、いずれの測定点についても3回の測定を行い、平均値をその測定点の硬度とした。こうして測定された断面の硬度のうちで、最大の硬度および最小の硬度を抽出してこれらの差を求め、その鋼板の硬度差とした。   The hardness was measured by a Vickers method using a micro Vickers hardness measuring device (measurement load: 9.8 kN). The hardness measurement range is a range of the plate width direction: 5 mm and the plate thickness direction: surface to 0.1 mm depth position with respect to the cross section of the steel plate to be measured, with an interval of 0.5 mm in the plate width direction and 0.01 mm in the plate thickness direction. Hardness measurements were taken at intervals. Each measurement point was measured three times, and the average value was taken as the hardness of the measurement point. Among the hardnesses of the cross sections thus measured, the maximum hardness and the minimum hardness were extracted to determine the difference between them, and the difference in hardness between the steel sheets was determined.

3.結果
得られた種々の冷延鋼板および合金化溶融亜鉛めっき鋼板を上記の方法で評価した結果を表3に示す。
3. Results Table 3 shows the results of evaluating the various cold-rolled steel sheets and galvannealed steel sheets obtained by the above-described methods.

Figure 2009270126
Figure 2009270126

Claims (11)

質量%で、C:0.08〜0.25%、Si:0.7%以下、Mn:1.0〜2.6%、Al:1.5%以下、P:0.03%以下、S:0.02%以下およびN:0.01%以下を含有し、かつ、
SiとAlとの関係が1.0%≦Si+Al≦1.8%を満足し、
残部Feおよび不純物からなる化学組成を有し、
TS≧590(TS:引張強度(MPa))、
TS×El≧17500(El:全伸び(%))、および
ρ≦1.5×t(ρ:限界曲げ半径(mm)、t:板厚(mm))
を満たす機械特性を有することを特徴とする冷延鋼板。
In mass%, C: 0.08 to 0.25%, Si: 0.7% or less, Mn: 1.0 to 2.6%, Al: 1.5% or less, P: 0.03% or less, S: 0.02% or less and N: 0.01% or less, and
The relationship between Si and Al satisfies 1.0% ≦ Si + Al ≦ 1.8%,
Having a chemical composition comprising the balance Fe and impurities,
TS ≧ 590 (TS: tensile strength (MPa)),
TS × El ≧ 17500 (El: total elongation (%)) and ρ ≦ 1.5 × t (ρ: critical bending radius (mm), t: plate thickness (mm))
A cold-rolled steel sheet characterized by having mechanical properties satisfying
残留γ相を5体積%以上含む鋼組織を有し、
表面から表面直下の0.1mmまでの深さの領域について、最大硬度と最小硬度との差がビッカース硬度で10以下である硬度分布を有する、
請求項1に記載の冷延鋼板。
Having a steel structure containing 5% by volume or more of residual γ phase,
For a region with a depth from the surface to 0.1 mm just below the surface, the difference between the maximum hardness and the minimum hardness is 10 or less in Vickers hardness,
The cold-rolled steel sheet according to claim 1.
前記化学組成が、Feの一部に代えて、質量%で、Ni:1.0%以下およびCu:0.5%以下の1種または2種を含有する、請求項1または2に記載の冷延鋼板。   3. The chemical composition according to claim 1, wherein the chemical composition contains one or two of Ni: 1.0% or less and Cu: 0.5% or less in mass% instead of a part of Fe. Cold rolled steel sheet. 前記化学組成が、Feの一部に代えて、質量%で、Ti:0.1%以下、Nb:0.1%以下およびV:0.2%以下からなる群から選ばれる1種または2種以上を含有する、請求項1から3のいずれかに記載の冷延鋼板。   The chemical composition is one or two selected from the group consisting of Ti: 0.1% or less, Nb: 0.1% or less, and V: 0.2% or less in mass% instead of part of Fe. The cold-rolled steel sheet according to any one of claims 1 to 3, comprising seeds or more. 前記化学組成が、Feの一部に代えて、質量%で、Co:1.0%以下、Cr:1.0%以下、Mo:1.0%以下およびB:0.01%以下からなる群から選ばれる1種または2種以上を含有する、請求項1から4のいずれかに記載の冷延鋼板。   The chemical composition comprises, in place of a part of Fe, in mass%, Co: 1.0% or less, Cr: 1.0% or less, Mo: 1.0% or less, and B: 0.01% or less. The cold-rolled steel sheet according to any one of claims 1 to 4, comprising one or more selected from the group. 前記化学組成が、Feの一部に代えて、質量%で、Ca:0.01%以下を含有する、請求項1から5のいずれかに記載の冷延鋼板。   The cold-rolled steel sheet according to any one of claims 1 to 5, wherein the chemical composition contains Ca: 0.01% or less in mass% instead of part of Fe. 前記化学組成のSiが、質量%で、Si:0.6%以下である化学組成を有する請求項1から6のいずれかに記載の冷延鋼板の表面に、亜鉛を含む溶融めっき層を備えることを特徴とする溶融めっき鋼板。   The surface of the cold-rolled steel sheet according to any one of claims 1 to 6, further comprising: A hot dipped galvanized steel sheet. 前記溶融めっき層が合金化溶融亜鉛めっき層である請求項7記載の溶融めっき鋼板。   The hot-dip plated steel sheet according to claim 7, wherein the hot-dip plated layer is an alloyed hot-dip galvanized layer. 請求項1から6のいずれかに記載される化学組成を有するスラブに、仕上温度:Ar点〜(Ar点+80℃)、巻取温度:450〜680℃の熱間圧延を施して熱延鋼板となし、前記熱延鋼板に酸洗および冷間圧延を施して冷延鋼板となし、前記冷延鋼板に、二相共存温度域で30秒以上保持し、次いで3℃/s以上の冷却速度で350〜600℃の温度域まで冷却し、該温度域に5秒以上保持する、連続焼鈍処理を施すことを特徴とする冷延鋼板の製造方法。 A slab having the chemical composition described in any one of claims 1 to 6 is subjected to hot rolling at a finishing temperature: Ar 3 points to (Ar 3 points + 80 ° C.) and a winding temperature: 450 to 680 ° C. It is made into a rolled steel plate, pickled and cold-rolled to the hot-rolled steel plate to make a cold-rolled steel plate, and kept in the cold-rolled steel plate for 30 seconds or more in a two-phase coexisting temperature range, and then 3 ° C / s or more A method for producing a cold-rolled steel sheet, which is subjected to a continuous annealing treatment in which cooling is performed at a cooling rate to a temperature range of 350 to 600 ° C. and maintained in the temperature range for 5 seconds or more. 請求項1から6のいずれかに記載される化学組成を有するスラブに、仕上温度:Ar点〜(Ar点+80℃)、巻取温度:450〜680℃の熱間圧延を施して熱延鋼板となし、前記熱延鋼板に酸洗および冷間圧延を施して冷延鋼板となし、前記冷延鋼板に、二相共存温度域で30秒以上保持し、次いで3℃/s以上の冷却速度で450〜600℃の温度域まで冷却し、該温度域に5秒以上保持し、さらに亜鉛を含む溶融めっき層を形成する、連続溶融めっき処理を施すことを特徴とする溶融めっき鋼板の製造方法。 A slab having the chemical composition described in any one of claims 1 to 6 is subjected to hot rolling at a finishing temperature: Ar 3 points to (Ar 3 points + 80 ° C.) and a winding temperature: 450 to 680 ° C. It is made into a rolled steel plate, pickled and cold-rolled to the hot-rolled steel plate to make a cold-rolled steel plate, and kept in the cold-rolled steel plate for 30 seconds or more in a two-phase coexisting temperature range, and then 3 ° C / s or more A hot-dip galvanized steel sheet which is cooled to a temperature range of 450 to 600 ° C. at a cooling rate, maintained in the temperature range for 5 seconds or more, and further subjected to a continuous hot-dip plating process to form a hot-dip plating layer containing zinc. Production method. 前記連続溶融めっき処理で得られた溶融めっき鋼板に対して、580℃以下の合金化処理温度で合金化処理を行うことを特徴とする請求項10記載の溶融めっき鋼板の製造方法。   The method for producing a hot-dip galvanized steel sheet according to claim 10, wherein the hot-dip galvanized steel sheet obtained by the continuous hot dip galvanizing process is alloyed at an alloying temperature of 580 ° C or lower.
JP2008113920A 2008-04-08 2008-04-24 Cold rolled steel sheet, hot dip plated steel sheet, and method for producing the steel sheet Active JP5391572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008113920A JP5391572B2 (en) 2008-04-08 2008-04-24 Cold rolled steel sheet, hot dip plated steel sheet, and method for producing the steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008100597 2008-04-08
JP2008100597 2008-04-08
JP2008113920A JP5391572B2 (en) 2008-04-08 2008-04-24 Cold rolled steel sheet, hot dip plated steel sheet, and method for producing the steel sheet

Publications (2)

Publication Number Publication Date
JP2009270126A true JP2009270126A (en) 2009-11-19
JP5391572B2 JP5391572B2 (en) 2014-01-15

Family

ID=41436948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008113920A Active JP5391572B2 (en) 2008-04-08 2008-04-24 Cold rolled steel sheet, hot dip plated steel sheet, and method for producing the steel sheet

Country Status (1)

Country Link
JP (1) JP5391572B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121174A (en) * 2008-11-19 2010-06-03 Sumitomo Metal Ind Ltd Hot-dip galvanized steel sheet and method for manufacturing the same
JP2010121176A (en) * 2008-11-19 2010-06-03 Sumitomo Metal Ind Ltd Steel sheet and method for manufacturing the same
JP2010121175A (en) * 2008-11-19 2010-06-03 Sumitomo Metal Ind Ltd Steel sheet and method for manufacturing the same
JP2010121173A (en) * 2008-11-19 2010-06-03 Sumitomo Metal Ind Ltd Steel sheet, surface-treated steel sheet and method for manufacturing them
JP2011153349A (en) * 2010-01-27 2011-08-11 Sumitomo Metal Ind Ltd Hot-dip galvannealed steel sheet having excellent appearance characteristic, and method for manufacturing the same
JP2011153368A (en) * 2010-01-28 2011-08-11 Sumitomo Metal Ind Ltd High-strength hot dip galvannealed steel sheet having excellent adhesion, and method for producing the same
WO2012053642A1 (en) * 2010-10-22 2012-04-26 新日本製鐵株式会社 Method for manufacturing hot stamped body having vertical wall, and hot stamped body having vertical wall
WO2012053636A1 (en) * 2010-10-22 2012-04-26 新日本製鐵株式会社 Process for producing hot stamp molded article, and hot stamp molded article
JP2013151708A (en) * 2010-12-27 2013-08-08 Nippon Steel & Sumitomo Metal Corp Method for manufacturing hot stamped body having small variation in hardness, and the hot stamped body
WO2013118679A1 (en) 2012-02-08 2013-08-15 新日鐵住金株式会社 High-strength cold-rolled steel sheet and process for manufacturing same
KR20140041833A (en) 2011-07-29 2014-04-04 신닛테츠스미킨 카부시키카이샤 High-strength galvanized steel sheet having superior bendability and method for producing same
JP2016074965A (en) * 2014-10-09 2016-05-12 Jfeスチール株式会社 High strength cold rolled steel sheet, high strength plated steel sheet and manufacturing method for them
US9896736B2 (en) 2010-10-22 2018-02-20 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot stamped body having vertical wall and hot stamped body having vertical wall
US10370737B2 (en) 2015-01-15 2019-08-06 Jfe Steel Corporation High-strength galvanized steel sheet
US10450642B2 (en) 2015-01-15 2019-10-22 Jfe Steel Corporation High-strength galvanized steel sheet and method for producing the same
CN110961454A (en) * 2019-11-22 2020-04-07 沈阳东宝海星金属材料科技有限公司 Preparation method of Al-Si coating differential thickness steel plate for hot forming
JP2021502482A (en) * 2017-11-08 2021-01-28 アルセロールミタル Alloyed hot-dip galvanized steel sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247586A (en) * 1992-03-02 1993-09-24 Nkk Corp Hot dip galvanized steel sheet having high strength and high ductility and excellent in adhesive strength of plating
JP2005256044A (en) * 2004-03-10 2005-09-22 Jfe Steel Kk High-strength cold rolled steel sheet having excellent workability and post-painting corrosion resistance and manufacturing method therefor
JP2006002186A (en) * 2004-06-15 2006-01-05 Jfe Steel Kk Method for producing high strength cold-rolled steel sheet excellent in ductility and pore-expandability
JP2006009057A (en) * 2004-06-23 2006-01-12 Nisshin Steel Co Ltd Method for producing high strength cold-rolled steel sheet excellent in bending and fatigue resistant characteristics
JP2007016319A (en) * 2006-08-11 2007-01-25 Sumitomo Metal Ind Ltd High tensile hot-dip galvanized steel sheet, and method for producing the same
JP2007177293A (en) * 2005-12-28 2007-07-12 Sumitomo Metal Ind Ltd Ultrahigh-strength steel sheet and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247586A (en) * 1992-03-02 1993-09-24 Nkk Corp Hot dip galvanized steel sheet having high strength and high ductility and excellent in adhesive strength of plating
JP2005256044A (en) * 2004-03-10 2005-09-22 Jfe Steel Kk High-strength cold rolled steel sheet having excellent workability and post-painting corrosion resistance and manufacturing method therefor
JP2006002186A (en) * 2004-06-15 2006-01-05 Jfe Steel Kk Method for producing high strength cold-rolled steel sheet excellent in ductility and pore-expandability
JP2006009057A (en) * 2004-06-23 2006-01-12 Nisshin Steel Co Ltd Method for producing high strength cold-rolled steel sheet excellent in bending and fatigue resistant characteristics
JP2007177293A (en) * 2005-12-28 2007-07-12 Sumitomo Metal Ind Ltd Ultrahigh-strength steel sheet and manufacturing method therefor
JP2007016319A (en) * 2006-08-11 2007-01-25 Sumitomo Metal Ind Ltd High tensile hot-dip galvanized steel sheet, and method for producing the same

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010121174A (en) * 2008-11-19 2010-06-03 Sumitomo Metal Ind Ltd Hot-dip galvanized steel sheet and method for manufacturing the same
JP2010121176A (en) * 2008-11-19 2010-06-03 Sumitomo Metal Ind Ltd Steel sheet and method for manufacturing the same
JP2010121175A (en) * 2008-11-19 2010-06-03 Sumitomo Metal Ind Ltd Steel sheet and method for manufacturing the same
JP2010121173A (en) * 2008-11-19 2010-06-03 Sumitomo Metal Ind Ltd Steel sheet, surface-treated steel sheet and method for manufacturing them
JP2011153349A (en) * 2010-01-27 2011-08-11 Sumitomo Metal Ind Ltd Hot-dip galvannealed steel sheet having excellent appearance characteristic, and method for manufacturing the same
JP2011153368A (en) * 2010-01-28 2011-08-11 Sumitomo Metal Ind Ltd High-strength hot dip galvannealed steel sheet having excellent adhesion, and method for producing the same
JP5547287B2 (en) * 2010-10-22 2014-07-09 新日鐵住金株式会社 Manufacturing method of hot stamping molded body and hot stamping molded body
US10030280B2 (en) 2010-10-22 2018-07-24 Nippon Steel & Sumitomo Metal Corporation Steel sheet and method for manufacturing steel sheet
WO2012053637A1 (en) * 2010-10-22 2012-04-26 新日本製鐵株式会社 Steel sheet and steel sheet production process
JP5224010B2 (en) * 2010-10-22 2013-07-03 新日鐵住金株式会社 Method for producing hot stamping molded body having vertical wall and hot stamping molded body having vertical wall
WO2012053636A1 (en) * 2010-10-22 2012-04-26 新日本製鐵株式会社 Process for producing hot stamp molded article, and hot stamp molded article
US9896736B2 (en) 2010-10-22 2018-02-20 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot stamped body having vertical wall and hot stamped body having vertical wall
CN103261452A (en) * 2010-10-22 2013-08-21 新日铁住金株式会社 Method for manufacturing hot stamped body having vertical wall, and hot stamped body having vertical wall
CN103314120A (en) * 2010-10-22 2013-09-18 新日铁住金株式会社 Process for producing hot stamp molded article, and hot stamp molded article
JP5293902B2 (en) * 2010-10-22 2013-09-18 新日鐵住金株式会社 Hot stamping steel plate and method for manufacturing hot stamping steel plate
US9840751B2 (en) 2010-10-22 2017-12-12 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot stamped body and hot stamped body
WO2012053642A1 (en) * 2010-10-22 2012-04-26 新日本製鐵株式会社 Method for manufacturing hot stamped body having vertical wall, and hot stamped body having vertical wall
CN103314120B (en) * 2010-10-22 2014-11-05 新日铁住金株式会社 Process for producing hot stamp molded article, and hot stamp molded article
KR101513378B1 (en) * 2010-10-22 2015-04-17 신닛테츠스미킨 카부시키카이샤 Steel sheet for hot stamping and method for producing steel sheet for hot stamping
US9598745B2 (en) 2010-10-22 2017-03-21 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot stamped body and hot stamped body
US9512499B2 (en) 2010-10-22 2016-12-06 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot stamped body having vertical wall and hot stamped body having vertical wall
JP2013151708A (en) * 2010-12-27 2013-08-08 Nippon Steel & Sumitomo Metal Corp Method for manufacturing hot stamped body having small variation in hardness, and the hot stamped body
US9234268B2 (en) 2011-07-29 2016-01-12 Nippon Steel & Sumitomo Metal Corporation High-strength galvanized steel sheet excellent in bendability and manufacturing method thereof
KR20140041833A (en) 2011-07-29 2014-04-04 신닛테츠스미킨 카부시키카이샤 High-strength galvanized steel sheet having superior bendability and method for producing same
WO2013118679A1 (en) 2012-02-08 2013-08-15 新日鐵住金株式会社 High-strength cold-rolled steel sheet and process for manufacturing same
US10544474B2 (en) 2012-02-08 2020-01-28 Nippon Steel Corporation High-strength cold-rolled steel sheet and method for producing the same
JP2016074965A (en) * 2014-10-09 2016-05-12 Jfeスチール株式会社 High strength cold rolled steel sheet, high strength plated steel sheet and manufacturing method for them
US10450642B2 (en) 2015-01-15 2019-10-22 Jfe Steel Corporation High-strength galvanized steel sheet and method for producing the same
US10370737B2 (en) 2015-01-15 2019-08-06 Jfe Steel Corporation High-strength galvanized steel sheet
JP2021502482A (en) * 2017-11-08 2021-01-28 アルセロールミタル Alloyed hot-dip galvanized steel sheet
JP2023027288A (en) * 2017-11-08 2023-03-01 アルセロールミタル Galvannealed steel sheet
US11884987B2 (en) 2017-11-08 2024-01-30 Arcelormittal Galvannealed steel sheet
CN110961454A (en) * 2019-11-22 2020-04-07 沈阳东宝海星金属材料科技有限公司 Preparation method of Al-Si coating differential thickness steel plate for hot forming
CN110961454B (en) * 2019-11-22 2021-11-23 苏州东宝海星金属材料科技有限公司 Preparation method of Al-Si coating differential thickness steel plate for hot forming

Also Published As

Publication number Publication date
JP5391572B2 (en) 2014-01-15

Similar Documents

Publication Publication Date Title
JP5391572B2 (en) Cold rolled steel sheet, hot dip plated steel sheet, and method for producing the steel sheet
US11427880B2 (en) High-strength galvanized steel sheet and method for manufacturing same
EP2371979B1 (en) High-strength cold-rolled steel sheet having excellent workability, molten galvanized high-strength steel sheet, and method for producing the same
JP4523937B2 (en) High strength hot dip galvanized steel sheet and method for producing the same
JP5413546B2 (en) High strength thin steel sheet and method for producing the same
JP5402007B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4781836B2 (en) Ultra-high strength steel sheet excellent in hydrogen embrittlement resistance, its manufacturing method, manufacturing method of ultra-high strength hot-dip galvanized steel sheet, and manufacturing method of ultra-high-strength galvannealed steel sheet
JP6414246B2 (en) High strength steel plate and manufacturing method thereof
JP6458834B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
JP6458833B2 (en) Manufacturing method of hot-rolled steel sheet, manufacturing method of cold-rolled full hard steel sheet, and manufacturing method of heat-treated plate
EP2407568A1 (en) High-strength hot-dip galvanized steel sheet having excellent formability and method for producing same
JP4837604B2 (en) Alloy hot-dip galvanized steel sheet
JP2010275627A (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet having excellent workability, and method for producing them
JP7164024B2 (en) High-strength steel plate and its manufacturing method
JP5741413B2 (en) Alloyed hot-dip galvanized steel strip and method for producing the same
JP6249140B1 (en) High yield ratio type high strength galvanized steel sheet and method for producing the same
KR102217100B1 (en) High-strength steel sheet and its manufacturing method
JP5126848B2 (en) Cold-rolled steel sheet, surface-treated steel sheet, and production method thereof
JP5741412B2 (en) Alloyed hot-dip galvanized steel strip and method for producing the same
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP2009013488A (en) High strength cold-rolled steel and manufacturing method thereof
JP2009209398A (en) Hot dip galvannealed steel sheet having excellent surface property and method for producing the same
JP2010132935A (en) Method for producing galvannealed steel sheet
JPWO2020110795A1 (en) High-strength steel sheet and its manufacturing method
JP3875958B2 (en) High strength and high ductility hot dip galvanized steel sheet with excellent workability and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R151 Written notification of patent or utility model registration

Ref document number: 5391572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350