JP2009013488A - High strength cold-rolled steel and manufacturing method thereof - Google Patents
High strength cold-rolled steel and manufacturing method thereof Download PDFInfo
- Publication number
- JP2009013488A JP2009013488A JP2007179621A JP2007179621A JP2009013488A JP 2009013488 A JP2009013488 A JP 2009013488A JP 2007179621 A JP2007179621 A JP 2007179621A JP 2007179621 A JP2007179621 A JP 2007179621A JP 2009013488 A JP2009013488 A JP 2009013488A
- Authority
- JP
- Japan
- Prior art keywords
- cold
- less
- temperature
- rolled
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Coating With Molten Metal (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、主として電機、建材、自動車分野での部品用として好適な、引張強さが340MPa以上概ね500MPa以下の高張力冷延鋼板およびその製造方法に係り、特に成形性に優れた複合組織型高張力鋼板およびその製造方法に関する。なお、ここでいう「鋼板」とは、鋼板、鋼帯を含むものとする。 The present invention mainly relates to a high-tensile cold-rolled steel sheet having a tensile strength of 340 MPa or more and generally 500 MPa or less, and a method for producing the same, which is suitable mainly for parts in the fields of electric appliances, building materials, and automobiles. The present invention relates to a high-tensile steel plate and a method for producing the same. Here, the “steel plate” includes a steel plate and a steel strip.
一般に、電機分野、さらには自動車分野では、引張強さ:270MPa級の軟質鋼板が多用されている。しかし、近年、この分野においても、素材として高張力鋼板の利用が増加する傾向となっている。例えば、自動車分野では、地球環境の保全という観点から、自動車の燃費改善が強く要求されており、部材の軽量化を図るため、高張力鋼板を適用し薄肉化を図ることが有効であるとして、高張力鋼板の適用が増加している。また、さらに、車両衝突時の乗員保護という観点から、自動車車体の安全性向上が要求されており、部材の高強度化を図るため、使用材料として高張力鋼板の適用が増加している。また、最近では、家電分野でも、販売競争の激化に伴い、素材の低コスト化要求が高まると共に、さらに運送コストの低減要求があり、部材の軽量化が指向され、素材として、高張力鋼板を適用する傾向が強くなっている。また、電池缶、ドラム缶などの缶分野においても、電池容量の増加、耐圧強度の増加や軽量化等が期待され、素材として高張力鋼板を利用することが考えられている。 In general, in the electric field and further in the automobile field, a soft steel sheet having a tensile strength of 270 MPa is widely used. However, in recent years, the use of high-tensile steel sheets as raw materials has also been increasing in this field. For example, in the automotive field, there is a strong demand for improving the fuel efficiency of automobiles from the viewpoint of protecting the global environment, and in order to reduce the weight of members, it is effective to apply a high-strength steel sheet to reduce the thickness. The application of high strength steel sheets is increasing. Further, from the viewpoint of occupant protection in the event of a vehicle collision, there is a demand for improving the safety of automobile bodies, and in order to increase the strength of members, the application of high-tensile steel plates as materials for use is increasing. Recently, in the field of home appliances, as the competition for sales has intensified, there has been an increasing demand for cost reduction of materials, and there is also a demand for reduction in transportation costs. The tendency to apply is getting stronger. Further, in the can field such as battery cans and drum cans, an increase in battery capacity, an increase in pressure strength and a reduction in weight are expected, and it is considered to use a high-tensile steel plate as a material.
しかし、鋼板を素材とする部品の多くが、プレス加工により成形されるため、使用される高張力鋼板には、優れたプレス成形性を具備することが要求される。成形性に優れた鋼板としては、すでに各種の複合組織鋼板が開発されている。複合組織鋼板の代表としては、軟質のフェライトと硬質のマルテンサイトの複合組織を有する鋼板が例示できるが、とくに連続焼鈍後にガスジェット冷却で製造されたこの種の鋼板は、降伏比が低く、強度−延性バランスに優れるうえ、優れた焼付き硬化性を有する鋼板であるとされている。また、同時に降伏点伸びも低値となるため、不均一模様上の表面欠陥の発生も防止できる。また、とくに、近年の高張力鋼板適用の拡大に伴い、プレス成形性への要求が高度化し、通常求められる延性が高く、降伏比YRが低いことのみでなく、高い穴広げ性も要求される場合が多くなっている。 However, since many parts made of steel plate are formed by press working, the high-tensile steel plate used is required to have excellent press formability. As a steel sheet excellent in formability, various composite structure steel sheets have already been developed. A representative example of a composite steel sheet is a steel sheet having a composite structure of soft ferrite and hard martensite, but this type of steel sheet produced by gas jet cooling after continuous annealing has a low yield ratio and strength. -It is said that it is a steel plate having excellent ductility balance and excellent seizure curability. At the same time, since the yield point elongation is also low, the occurrence of surface defects on a non-uniform pattern can be prevented. In particular, with the recent expansion of the application of high-strength steel sheets, the demand for press formability has become higher, the ductility normally required is high, and not only the yield ratio YR is low, but also high hole expandability is required. There are many cases.
この種の鋼板の製造方法として、めっき鋼板ではあるが、例えば特許文献1には、C:0.005〜0.15%、Mn:0.3〜3.0%、Mo:0.05〜1.0%、あるいはさらにCr:0.05〜1.0%等を含有するめっき用母板を、Ac1変態点以上Ac3 変態点以下の温度で少なくとも1回焼鈍し、冷却後、ついでAc1変態点〜Ac3 変態点の温度範囲に加熱し、この加熱温度から少なくともめっき浴温度までの温度域を、合金元素の含有量に応じた臨界冷却速度以上で冷却し、ついで溶融亜鉛めっきを施し、めっき後300℃までの温度域を合金元素の含有量に応じた臨界冷却速度以上で冷却する、加工性に優れた溶融亜鉛めっき高張力鋼板の製造方法が提案されている。特許文献1に記載された技術によれば、フェライト+マルテンサイトの複合組織が形成され、降伏比55%以下の低降伏比を有し優れた加工性が発現し、さらにめっき性、耐パウダリング性に優れた溶融亜鉛めっき高張力鋼板の製造が可能になるとしている。 As a method for producing this type of steel sheet, although it is a plated steel sheet, for example, Patent Document 1 discloses that C: 0.005 to 0.15%, Mn: 0.3 to 3.0%, Mo: 0.05 to 1.0%, or Cr: 0.05 to 1.0. Is annealed at least once at a temperature not lower than the Ac 1 transformation point and not higher than the Ac 3 transformation point, cooled, and then heated to a temperature range from the Ac 1 transformation point to the Ac 3 transformation point. The temperature range from this heating temperature to at least the plating bath temperature is cooled at a critical cooling rate or higher according to the alloy element content, and then hot dip galvanizing is performed. There has been proposed a method for producing a hot-dip galvanized high-tensile steel sheet excellent in workability, which is cooled at a critical cooling rate or higher according to the amount. According to the technique described in Patent Document 1, a composite structure of ferrite and martensite is formed, a low yield ratio of 55% or less is exhibited, and excellent workability is exhibited. Furthermore, plating property and powdering resistance It is said that it is possible to manufacture hot-dip galvanized high-tensile steel sheets with excellent properties.
このような問題に対し、特許文献2には、N:0.03〜2.0%を含有し、マルテンサイトの体積率が3〜30%である、形状凍結性に優れた低降伏比高強度鋼板が提案されている。特許文献2に記載された技術では、熱間圧延後に550〜800℃の温度域でアンモニアを2%以上含む雰囲気中で処理(焼鈍)することにより、上記したN含有量を確保できるとしている。Nはオーステナイト相の安定化に効果があり、特許文献2に記載された技術では、Mo、Mn、さらにはCr等の合金元素を多量添加することなく、鋼板組織をマルテンサイト相を含む複合組織とすることができるとしている。
For such a problem,
また、特許文献3には、質量%で、C:0.02〜0.06%、Si:0.2%以下、Mn:1.5〜2.5%、Cr:0.03〜0.5%、Mo:0〜0.5%で、かつMn、CrおよびMoの合計量が1.8〜2.5%、sol.Al:0.01〜0.10%とし、P,S,Nを適正範囲に調整し、あるいはさらにBを含有する組成とし、組織を複合組織としたことを特徴とする素地鋼板を用いる合金化溶融亜鉛めっき鋼板が提案されている。特許文献3に記載された技術で製造された鋼板は、比較的低いC含有量とし、Mn、CrあるいはさらにMoといった合金元素を複合含有させ、あるいはさらにBを含有して、オーステナイト相を安定化させて複合組織化を容易とした、降伏点300N/m2以下の成形性に優れた合金化溶融亜鉛めっき高張力鋼板である。
しかし、特許文献1に記載された技術では、安定して複合組織を得るために、焼入れ性向上への寄与が大きい、Mo、Mn、さらにはCr等の合金元素を多量添加する必要があり、この種の鋼板の製造コストが高騰し、経済的に不利となるという問題があった。この傾向は、引張強さが440MPa以下の領域で顕著となる。このような引張強さの領域では、焼入れ性向上への寄与の大きいCr、Moを多量添加しないと、安定して複合組織鋼板が得られないためである。 However, in the technique described in Patent Document 1, it is necessary to add a large amount of alloying elements such as Mo, Mn, and Cr, which greatly contribute to the improvement of hardenability, in order to stably obtain a composite structure. There was a problem that the manufacturing cost of this type of steel plate increased and it was economically disadvantageous. This tendency becomes remarkable in the region where the tensile strength is 440 MPa or less. This is because in such a tensile strength region, unless a large amount of Cr or Mo, which greatly contributes to the improvement of hardenability, is added, a composite structure steel plate cannot be obtained stably.
また、特許文献2に記載された技術では、アンモニアを含む雰囲気中での焼鈍が高価であり、また、アンモニアを含む雰囲気中での焼鈍を行うためには、既存の焼鈍設備の大規模な改造を必要とするなど、経済性に問題を残していた。また、特許文献3に記載された技術では、Mn、Cr、あるいはさらにMoといった合金元素を複合含有した上で、さらにBを含有すると延性が低下しやすいという問題があった。加えて、複合組織型高張力鋼板の本質的な問題点として、低い降伏比、高い強度一延性バランスが得られるものの穴広げ性が若干低下するという問題があった。
Moreover, in the technique described in
本発明は、上記した従来技術の問題点を有利に解決し、CrやMoといった高価な合金元素を積極的に添加することなく、プレス成形性に優れた340MPa級〜440MPa級高張力冷延鋼板およびその製造方法を提案することを目的とする。 The present invention advantageously solves the above-mentioned problems of the prior art, and does not actively add expensive alloy elements such as Cr and Mo, and is excellent in press formability, 340 MPa class to 440 MPa class high-tensile cold-rolled steel sheet And it aims at proposing the manufacturing method.
本発明者らは、上記した目的を達成するためには、Cr、Mo等の高価な合金元素を多量に含有させることなく、鋼板組織を軟質なフェライト相と硬質なマルテンサイト相等とからなる複合組織を安定して確保する必要があることに鑑み、このような複合組織の形成に影響する各種要因について、鋭意研究した。その結果、従来あまり積極的に利用されることがなかったBに着目し、オーステナイト相を安定化させる元素であるBおよびMnの含有量を適正範囲に調整することにより、Cr、Mo等の合金元素を添加しなくても、しかも焼鈍後の冷却速度が低く、従来複合組織が得にくかった条件下においても、上記した複合組織を安定して形成でき、55%以下の低降伏比を安定して確保でき、成形性に優れた高張力冷延鋼板とすることができることを知見した。 In order to achieve the above-mentioned object, the present inventors do not include a large amount of expensive alloy elements such as Cr and Mo, and the steel sheet structure is composed of a composite composed of a soft ferrite phase and a hard martensite phase. In view of the need to secure a stable organization, we have intensively studied various factors that influence the formation of such a composite tissue. As a result, paying attention to B, which has not been actively used so far, by adjusting the content of B and Mn, which are elements that stabilize the austenite phase, to an appropriate range, alloys such as Cr and Mo Even without the addition of elements, the cooling rate after annealing is low, and even under conditions where it was difficult to obtain a conventional composite structure, the above-mentioned composite structure can be formed stably, and a low yield ratio of 55% or less is stable. It was found that a high-tensile cold-rolled steel sheet having excellent formability can be obtained.
まず、本発明の基礎となった実験結果について説明する。
質量%で、0.02%C−0.01%Si−0.01%P−0.001%S−0.03%Al−0.004%Nを基本成分とし、これにBを0.0001〜0.0028%、Mnを1.0〜2.O%の範囲で変化させた組成の鋼を溶製し、シートバーとした。これらシートバーを、1250℃に加熱し均熱した後、仕上圧延終了温度が900℃となるように調整した3パスの熱間圧延により板厚4.Ommの熱延板とした。なお、得られた熱延板には、仕上圧延終了後、コイル巻取り処理に相当する熱処理(600℃×1h)を施した。ついで、圧下率:80%の冷間圧延を施して、板厚:0.8mmの冷延板とした。ついで、これら冷延板に、780℃まで加熱し60s間保持した後、300℃までの平均冷却速度が10℃/sとなるようにガス、あるいはさらに水等を用いて冷却を行い、ついで酸洗した。酸洗後、調質圧延を施した。調質圧延の圧下率はO.5%とした。
First, the experimental results on which the present invention is based will be described.
In mass%, 0.02% C-0.01% Si-0.01% P-0.001% S-0.03% Al-0.004% N is the basic component, and B is 0.0001-0.0028% and Mn is 1.0-2.O%. Steel having a composition changed in the range was melted to obtain a sheet bar. These sheet bars were heated to 1250 ° C. and soaked, and then hot rolled with a thickness of 4.Omm by hot rolling of 3 passes adjusted so that the finish rolling finish temperature was 900 ° C. The obtained hot-rolled sheet was subjected to heat treatment (600 ° C. × 1 h) corresponding to the coil winding process after finishing rolling. Subsequently, cold rolling with a reduction ratio of 80% was performed to obtain a cold rolled sheet with a thickness of 0.8 mm. Next, these cold-rolled plates were heated to 780 ° C. and held for 60 s, and then cooled with gas or water or the like so that the average cooling rate to 300 ° C. was 10 ° C./s. Washed. After pickling, temper rolling was performed. The rolling reduction of temper rolling was O.5%.
得られた鋼板から、圧延方向に直交する方向を試験片の長さ方向としてJIS 5号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(降伏強さYS、引張強さTS、伸びEl)を求め、降伏比YR(=(降伏強さYS/引張強さTS)×100%)を算出し、また、強度−延性バランスTS×Elを算出し、得られた結果を(Mn+1300×B)との関係で図1および図2に示す。 A JIS No. 5 tensile test piece was taken from the obtained steel sheet with the direction perpendicular to the rolling direction as the length direction of the test piece, and subjected to a tensile test in accordance with the provisions of JIS Z 2241. Tensile properties (yield strength) YS, tensile strength TS, elongation El), yield ratio YR (= (yield strength YS / tensile strength TS) x 100%), and strength-ductility balance TS x El The obtained results are shown in FIGS. 1 and 2 in relation to (Mn + 1300 × B).
図1、図2から、Cr、Mo等を添加しなくても(Mn+1300×B)を2.O以上に調整することにより、焼鈍後の冷却逮度が1O℃/sと遅くても、55%以下の低降伏比と、16000MPa%以上の優れた強度−延性バランスを有する冷延鋼板とすることができることを見出した。
また、これら鋼板について穴広げ試験を実施し、穴広げ率λを測定し、強度−穴広げ率バランスTS×λを算出した結果、38000MPa%以上の優れた値を示すことを見出した。なお、穴広げ試験は、これら鋼板から試験片(大きさ:板厚0.8mm×80mm×80mm)を採取し、日本鉄鋼連盟規格JFST1001の規定に準拠して、初期穴径を10mmφ、ダイス内径を10.2mmφ、クリアランスを板厚の12.5%の条件で行い、亀裂が板厚を貫通したときの穴径をもとめ、次式で定義される穴広げ率λを求めた。
1 and 2, even if Cr, Mo, etc. are not added (Mn + 1300 × B) is adjusted to 2.O or more, the cooling arrest after annealing is as slow as 1O ° C / s. The present inventors have found that a cold-rolled steel sheet having a low yield ratio of 55% or less and an excellent strength-ductility balance of 16000 MPa% or more can be obtained.
Further, a hole expansion test was performed on these steel plates, the hole expansion ratio λ was measured, and the strength-hole expansion ratio balance TS × λ was calculated. As a result, it was found that an excellent value of 38000 MPa% or more was exhibited. In the hole expansion test, specimens (size: thickness 0.8mm x 80mm x 80mm) are taken from these steel plates, and the initial hole diameter is 10mmφ and the die inner diameter is in accordance with the provisions of JFST1001. 10.2 mmφ, clearance was 12.5% of the plate thickness, the hole diameter when the crack penetrated the plate thickness was determined, and the hole expansion ratio λ defined by the following equation was obtained.
λ(%)=((Dr−Do)/Do)×100
(ここで、Dr:亀裂が板厚を貫通した時の穴径(mm)、Do:初期穴径(mm))
このような低い降伏比、高い強度−延性バランス、さらには、高い強度−穴広げ率バランスを有する冷延鋼板が得られる機構の詳細については、現段階では不明であるが、本発明者らは次のように考えている。
λ (%) = ((Dr−Do) / Do) × 100
(Where Dr: hole diameter when crack penetrates plate thickness (mm), Do: initial hole diameter (mm))
The details of the mechanism by which a cold-rolled steel sheet having such a low yield ratio, high strength-ductility balance, and high strength-hole expansion ratio balance is unknown at this stage. I think as follows.
焼鈍、冷却後に低温生成相(硬質相)であるベイニティックフェライト相やマルテンサイト相を生成させるには、鋼の焼入れ性を向上させることが有効であり、そのためには、高価なMoやCrを多量含有させる必要がある。これは、炭素鋼では、焼入れ性向上元素を含有しない場合には、(フェライト十オーステナイト)の二相域、もしくはオーステナイト域の低温領域で焼鈍したのち、冷却するに際し、オーステナイト相が分解しフェライト相と粗大な炭化物Fe3Cになり易く、ベイニティックフェライトやマルテンサイト相が生成されないためである。一方、本発明のようなB、Mnを適正量含有する組成の場合には、B、Mnともにオーステナイト相を安定化させる元素であるが、特にBの粒界に偏析する効果等によりオーステナイト相が安定化し、焼鈍後の冷却時に炭化物が生成し難く、オーステナイト相が低温域まで安定で、すなわち低温域で硬質第二相を生成し、硬質第二相が残留し易く、所定の複合組織を形成することができるものと推定される。すなわち、B、Mnを適正量、すなわち(Mn+1300×B)値が2.0以上となるように、調整して含有することにより、上記したようなオーステナイト相の安定化が効果的に図れ、所定の複合組織を容易に形成できるものと考えられる。 In order to generate a bainitic ferrite phase and a martensite phase that are low-temperature generation phases (hard phases) after annealing and cooling, it is effective to improve the hardenability of the steel, and for that purpose, expensive Mo and Cr It is necessary to contain a large amount. This is because, in carbon steel, when it does not contain a hardenability-improving element, after annealing in the two-phase region (ferrite plus austenite) or the low-temperature region of the austenite region, the austenite phase decomposes and cools when cooled. This is because a coarse carbide Fe 3 C tends to be formed, and bainitic ferrite and martensite phases are not generated. On the other hand, in the case of a composition containing appropriate amounts of B and Mn as in the present invention, both B and Mn are elements that stabilize the austenite phase. Stabilized, hard to form carbide during cooling after annealing, austenite phase is stable up to low temperature range, that is, hard second phase is formed at low temperature range, hard second phase is likely to remain, forming a predetermined composite structure It is estimated that it can be done. That is, by adjusting and containing B and Mn so that an appropriate amount, that is, (Mn + 1300 × B) value is 2.0 or more, the above-mentioned austenite phase can be effectively stabilized, and a predetermined composite It is thought that an organization can be easily formed.
本発明では、オーステナイト相を安定化させる元素としてB、Mnに着目したが、BはMnに比べて少量でもオーステナイト相を安定化させる効果が大きいと考え、Mn含有量に比べB含有量の重み付けを大きくし、実験結果を検討した結果、(Mn+1300B)値を2.0以上とすることにより低降伏比、高い強度−延性バランスが得られることを見いだした。
また、B、Mnを適正量、すなわち(Mn+1300×B)値が2.0以上となるように、調整して含有する鋼板とすることにより、優れた強度−穴広げ性バランスが得られることについて、詳細な機構については不明であるが、本発明者らは、つぎのように考えている。すなわち、上記したようにBの粒界に偏析する効果により、フェライトの生成温度が低温化してフェライト相が硬質化し、フェライト相とマルテンサイト相との硬度差が減少したためであると推定される。なお、穴広げ率λは、マルテンサイト相とフェライト相との硬度差が小さいほど、高くなる傾向にある。
In the present invention, attention has been paid to B and Mn as elements for stabilizing the austenite phase, but B is considered to have a large effect of stabilizing the austenite phase even in a small amount as compared with Mn, and the weighting of the B content compared to the Mn content. As a result of examining the experimental results, it was found that a low yield ratio and a high strength-ductility balance can be obtained by setting the (Mn + 1300B) value to 2.0 or more.
In addition, it is possible to obtain an excellent balance between strength and hole expandability by adjusting the steel sheet to contain B and Mn in appropriate amounts, that is, (Mn + 1300 × B) value is 2.0 or more. Although the mechanism is unknown, the present inventors consider as follows. That is, it is presumed that due to the effect of segregating at the grain boundaries of B as described above, the ferrite formation temperature was lowered and the ferrite phase was hardened, and the hardness difference between the ferrite phase and the martensite phase was reduced. The hole expansion ratio λ tends to increase as the hardness difference between the martensite phase and the ferrite phase decreases.
本発明は、上記した知見に基づいて、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである。
(1)質量%で、C:0.01〜0.05%、Si:0.4%以下、Mn:1.0〜2.0%、P:0.08%以下、S:0.005%以下、Al:0.02〜0.10%、N:0.005%以下、B:0.0006〜0.0030%を含み、かつMn、Bを次(1)式
(Mn+1300×B)≧2.0 ‥‥(1)
(ここで、Mn、B:各元素の含有量(質量%))
を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成を有し、組織が、体積率で95.0〜99.5%のフェライト相と、体積率で0.5〜5.0%の低温生成相を有する複合組織であることを特徴とする引張強さ:340MPa以上の高張力冷延鋼板。
(2)(1)において、鋼板表面にめっき層を有することを特徴とする高張力冷延鋼板。
(3)鋼素材に、熱間圧延工程と、冷間圧延工程と、焼鈍工程とを順次施して冷延鋼板を製造するに当たり、前記鋼素材を、質量%で、C:0.01〜0.05%、Si:0.4%以下、Mn:1.0〜2.0%、P:0.08%以下、S:0.005%以下、Al:0.02〜0.10%、N:0.005%以下、B:0.0006〜0.0030%を含み、かつMn、Bを次(1)式
(Mn+1300×B)≧2.0 ‥‥(1)
(ここで、Mn、B:各元素の含有量(質量%))
を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記熱間圧延工程が、前記鋼素材を、加熱温度:1000℃以上の温度に加熱し、粗圧延してシートバーとした後、該シートバーに仕上圧延出側温度:800℃以上とする仕上圧延を施し、巻取り温度:750℃以下で巻き取り熱延板とする工程であり、前記冷間圧延工程が、該熱延板に冷間圧延を施し冷延板とする工程であり、前記焼鈍工程が、該冷延板を(Ac1変態点)〜(Ac3変態点+50℃)の範囲の温度に加熱した後、平均冷却速度:5℃/s以上で350℃以下の温度域まで冷却する工程であることを特徴とする引張強さが340MPa以上の高張力冷延鋼板の製造方法。
(4)(3)において、前記焼鈍工程に引続いて、鋼板表面に電気亜鉛めっき処理を施すことを特徴とする高張力冷延鋼板の製造方法。
(5)(3)において、前記焼鈍工程に代えて、前記冷延板を(Ac1変態点)〜(Ac3変態点+50℃)の範囲の温度に加熱した後、平均冷却速度:5℃/s以上で500℃以下に冷却し、溶融亜鉛めっき処理を施した後、平均冷却速度:5℃/s以上で350℃以下の温度域まで冷却する焼鈍−溶融亜鉛めっき処理工程とすることを特徴とする高張力冷延鋼板の製造方法。
(6)(3)において、前記焼鈍工程に代えて、前記冷延板を(Ac1変態点)〜(Ac3変態点+50℃)の範囲の温度に加熱した後、平均冷却速度:5℃/s以上で500℃以下に冷却し、溶融亜鉛めっき処理を施した後、合金化処理を施し、次いで平均冷却速度:5℃/s以上で350℃以下の温度域まで冷却する焼鈍−合金化溶融亜鉛めっき処理工程とすることを特徴とする高張力冷延鋼板の製造方法。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.01 to 0.05%, Si: 0.4% or less, Mn: 1.0 to 2.0%, P: 0.08% or less, S: 0.005% or less, Al: 0.02 to 0.10%, N: 0.005% Hereinafter, B: 0.0006 to 0.0030% is included, and Mn and B are expressed by the following formula (1)
(Mn + 1300 × B) ≧ 2.0 (1)
(Where, Mn, B: content of each element (mass%))
The composition is composed of the balance Fe and unavoidable impurities, and the structure is composed of a ferrite phase with a volume ratio of 95.0 to 99.5% and a low-temperature generation phase with a volume ratio of 0.5 to 5.0%. High tensile cold-rolled steel sheet with a tensile strength of 340 MPa or more.
(2) A high-strength cold-rolled steel sheet having a plating layer on the steel sheet surface in (1).
(3) In manufacturing a cold-rolled steel sheet by sequentially performing a hot rolling process, a cold rolling process, and an annealing process on the steel material, the steel material is mass%, C: 0.01 to 0.05%, Si: 0.4% or less, Mn: 1.0 to 2.0%, P: 0.08% or less, S: 0.005% or less, Al: 0.02 to 0.10%, N: 0.005% or less, B: 0.0006 to 0.0030%, and Mn, B is the following formula (1)
(Mn + 1300 × B) ≧ 2.0 (1)
(Where, Mn, B: content of each element (mass%))
And a steel material having a composition comprising the balance Fe and inevitable impurities, and the hot rolling step heats the steel material to a heating temperature of 1000 ° C. After rolling into a sheet bar, the sheet bar is subjected to finish rolling at a finish rolling exit temperature of 800 ° C. or higher, and a winding temperature of 750 ° C. or lower to obtain a hot rolled sheet, during the rolling process is a process for the cold-rolled sheet subjected to cold rolling to the heat-rolled plate, wherein the annealing step, the cold rolled sheet (Ac 1 transformation point) ~ (Ac 3 transformation point + 50 ° C.) Of high-tensile cold-rolled steel sheet with a tensile strength of 340 MPa or more, characterized in that it is a process of cooling to a temperature range of 350 ℃ or less at an average cooling rate of 5 ℃ / s after heating to a temperature in the range Method.
(4) The method for producing a high-tensile cold-rolled steel sheet according to (3), wherein the steel sheet surface is subjected to an electrogalvanizing treatment following the annealing step.
(5) In (3), instead of the annealing step, after the cold-rolled sheet is heated to a temperature in the range of (Ac 1 transformation point) to (Ac 3 transformation point + 50 ° C.), the average cooling rate: 5 After cooling to 500 ° C or less at ℃ / s and applying hot dip galvanizing treatment, the average cooling rate: annealing to hot dip galvanizing treatment process to cool to a temperature range of 5 ° C / s or more and 350 ° C or less A method for producing a high-tensile cold-rolled steel sheet.
(6) In (3), instead of the annealing step, after the cold-rolled sheet is heated to a temperature in the range of (Ac 1 transformation point) to (Ac 3 transformation point + 50 ° C.), the average cooling rate: 5 Annealing-alloy that is cooled to 500 ° C or less at ℃ / s and galvanized, then alloyed, and then cooled to an average cooling rate of 5 ° C / s to 350 ° C A method for producing a high-tensile cold-rolled steel sheet, characterized in that the hot-dip galvanizing process is performed.
本発明によれば、高価な合金元素を多量に添加することなく、合金元素量を微量としながら、降伏比:55%以下で、強度延性バランスTS×EI:16000MPa・%以上、強度穴広げ率バランスTS×λ:38000MPa・%以上を有し、優れたプレス成形性を有し、加工性に優れた340〜440MPa級複合組織型高張力冷延鋼板を容易に、しかも安価に製造することができ、産業上格段の効果を奏する。また、本発明になる高張力冷延鋼板は、軽度の曲げ加工やロールフォーミングによりパイプに成形されるような比較的軽加工に供されるものから、比較的厳しい絞り成形に供されるものまで、広範囲の用途に適するという効果もある。 According to the present invention, the yield ratio: 55% or less, the strength ductility balance TS × EI: 16000 MPa ·% or more, the strength hole expansion ratio, while adding a small amount of expensive alloy elements and keeping the amount of alloy elements small 340 to 440 MPa class high-strength cold rolled steel sheet with balance TS x λ: 38000 MPa ·% or more, excellent press formability and excellent workability can be manufactured easily and inexpensively. Yes, and it has a remarkable industrial effect. Further, the high-tensile cold-rolled steel sheet according to the present invention is used for relatively light processing such as being formed into a pipe by light bending or roll forming, to one subjected to relatively severe drawing. There is also an effect that it is suitable for a wide range of applications.
本発明鋼板は、引張強さが340MPa以上概ね500MPa以下の340MPa級〜440MPa級高張力冷延鋼板である。
まず、本発明鋼板の組成限定理由について説明する。以下、組成における質量%は、単に%と記す。
C:0.01〜0.05%
Cは、鋼板を高強度化する強化元素であるとともに、オーステナイト相に濃化してオーステナイト相を安定化させる作用を有する元素であり、本発明では重要な元素の一つである。このような効果を得るためには、0.01%以上の含有を必要とする。一方、0.05%を超えて含有すると、低温生成相の形成量が多くなり、強度が高くなりすぎて、所望の強度、延性が確保できなくなる。このため、Cは0.01〜0.05%の範囲に限定した。なお、好ましくは、Bによるオーステナイト相安定化の効力を最大限発揮させるという観点から、0.02〜O.05%である。
The steel sheet of the present invention is a 340 MPa class to 440 MPa class high-tensile cold-rolled steel sheet having a tensile strength of 340 MPa to approximately 500 MPa.
First, the reasons for limiting the composition of the steel sheet of the present invention will be described. Hereinafter, the mass% in the composition is simply referred to as%.
C: 0.01-0.05%
C is a strengthening element that increases the strength of the steel sheet, and is an element that has an action of concentrating the austenite phase and stabilizing the austenite phase, and is one of the important elements in the present invention. In order to acquire such an effect, 0.01% or more of content is required. On the other hand, if the content exceeds 0.05%, the amount of low-temperature generation phase is increased, the strength becomes too high, and the desired strength and ductility cannot be secured. For this reason, C was limited to the range of 0.01 to 0.05%. Preferably, it is 0.02 to 0.05% from the viewpoint of maximizing the effect of stabilizing the austenite phase by B.
Si:0.4%以下
Siは、鋼の延性を低下させることなく、鋼板を高強度化することができる有用な強化元素であり、さらにSiは焼鈍工程において、炭化物の生成を抑制し未変態オーステナイト相の安定性を向上させる作用を有する。本発明においては、Siは積極的に添加する必要はなく、含有量は零としてもよいが、上記したような効果を得るためには、0.01%以上含有することが望ましい。一方、0.4%を超える含有は、表面性状、化成処理性等の表面美麗性に悪影響を及ぼすとともに、表面美麗性を確保するために長時間の酸洗処理を行う必要があり、製造コストの高騰を招くことになる。このようなことから、Siは0.4%以下に限定した。なお、より表面の美麗性が要求される使途には、好ましくは0.3%以下とすることが好ましい。
Si: 0.4% or less
Si is a useful strengthening element that can increase the strength of a steel sheet without reducing the ductility of the steel. Si also suppresses the formation of carbides during the annealing process and improves the stability of the untransformed austenite phase. Have the effect of In the present invention, Si does not need to be positively added, and the content may be zero. However, in order to obtain the effects as described above, it is desirable to contain 0.01% or more. On the other hand, a content exceeding 0.4% adversely affects surface aesthetics such as surface properties and chemical conversion treatment properties, and it is necessary to perform pickling treatment for a long time to ensure surface aesthetics, resulting in an increase in manufacturing costs. Will be invited. For these reasons, Si is limited to 0.4% or less. In addition, it is preferably 0.3% or less for use in which a more beautiful surface is required.
Mn:1.0〜2.0%
Mnは、焼入れ性を向上させる元素であり、焼入れ性を介して鋼板の強度増加に大きく寄与するとともに、オーステナイト相に濃化してオーステナイト相の安定化に寄与する効果も有する。また、Mn はSと結合し、S起因の熱間割れを防止する有効な元素であり、含有するS量に応じて含有することが好ましい。このような効果を得るためには、1.0%以上の含有を必要とする。一方、2.0%を超える含有は、上記した効果が飽和するとともに、加工性やスポット溶接性が顕著に低下する。このため、Mn は1.0〜2.0%の範囲に限定した。なお、優れた成形性を要求される使途には、1.8%以下とすることが好ましい。
Mn: 1.0-2.0%
Mn is an element that improves hardenability, greatly contributes to increasing the strength of the steel sheet through hardenability, and also has the effect of concentrating in the austenite phase and contributing to stabilization of the austenite phase. Further, Mn is an effective element that binds to S and prevents hot cracking due to S, and is preferably contained according to the amount of S contained. In order to obtain such an effect, a content of 1.0% or more is required. On the other hand, when the content exceeds 2.0%, the above-described effects are saturated, and the workability and spot weldability are significantly reduced. For this reason, Mn was limited to the range of 1.0 to 2.0%. In addition, it is preferable to set it to 1.8% or less for the usage in which excellent moldability is required.
P:0.08%以下
Pは、鋼を強化する作用を有する元素であり、所望の強度に応じて0.005%以上含有させることもできるが、0.08%を超える多量の含有は、溶接性や加工後の低温靭性を低下させる。このため、Pは0.08%以下に限定した。なお、優れた溶接性や優れた靭性を要求される使途には0.05%以下とすることが好ましい。溶接性や靭性の観点から、より好ましくは0.03%以下である。
P: 0.08% or less P is an element that has the effect of strengthening steel, and can be contained in an amount of 0.005% or more depending on the desired strength, but a large content exceeding 0.08% Reduces low temperature toughness. For this reason, P was limited to 0.08% or less. In addition, it is preferable to make it 0.05% or less for usages that require excellent weldability and excellent toughness. From the viewpoint of weldability and toughness, it is more preferably 0.03% or less.
S:0.005%以下
Sは、鋼中では硫化物系介在物として存在し、鋼板の延性、成形性、とくに伸びフランジ成形性を低下させる元素であり、可及的に低減することが望ましいが、0.005%以下に低減すると伸びフランジ成形性への悪影響が許容できる程度となる。このため、Sは0.005%以下に限定した。なお、より優れた伸びフランジ成形性や、優れた溶接性を要求される使途には、0.003%以下とすることが好ましい。
S: 0.005% or less S is an element that exists as a sulfide inclusion in steel and lowers the ductility and formability of the steel sheet, particularly the stretch flange formability, and it is desirable to reduce it as much as possible. If it is reduced to 0.005% or less, the adverse effect on stretch flange formability is acceptable. For this reason, S was limited to 0.005% or less. In addition, it is preferable to make it 0.003% or less for the usage which requires more excellent stretch flange formability and excellent weldability.
Al:0.02〜0.10%
Alは、脱酸剤として作用し、鋼板の清浄度を向上させるとともに、鋼板組織の微細化に寄与する有用な元素である。このような効果を得るためには0.02%以上含有することが望ましいが、0.10%を超える多量の含有は、鋼板の表面性状を低下させる。このため、本発明ではAlは0.02〜0.10%に限定した。なお、材質の安定性という観点からはO.02〜O.08%に限定することが好ましい。
Al: 0.02-0.10%
Al is a useful element that acts as a deoxidizer, improves the cleanliness of the steel sheet, and contributes to the refinement of the steel sheet structure. In order to acquire such an effect, it is desirable to contain 0.02% or more, but if it contains more than 0.10%, the surface properties of the steel sheet will be lowered. For this reason, in this invention, Al was limited to 0.02 to 0.10%. From the viewpoint of the stability of the material, the content is preferably limited to O.02 to O.08%.
N:0.005%以下
Nは、Bと結合しBNを形成し易い元素であり、とくに0.005%を超えて多量に含有すると本発明で重要となる固溶Bを顕著に減少させ、オーステナイト相を不安定化しやすい。このため、Nは、含有量の上限を0.005%とし、できるだけ低減することが望ましい。なお、N低減に伴う精錬コストの大幅な高騰を避けるという観点から、0.001〜0.005%の範囲とすることが好ましい。
N: 0.005% or less N is an element that easily binds to B and forms BN. Particularly, when it is contained in a large amount exceeding 0.005%, the solid solution B, which is important in the present invention, is remarkably reduced, and the austenite phase is not formed. Easy to stabilize. For this reason, N is preferably reduced as much as possible by setting the upper limit of the content to 0.005%. In addition, it is preferable to set it as the range of 0.001 to 0.005% from a viewpoint of avoiding the sharp increase in the refining cost accompanying N reduction.
B:0.0006〜0.0030%
Bは、本発明において重要な役割を担う元素である。後述するMnとB含有量の適正化とともに、Bを0.0006%以上含有させることにより、安定して、目標とする複合組織を形成することができ、優れた成形性を発現することができる。なお、0.0030%を超える含有は、その効果が飽和するとともに、スラブの表面欠陥による歩留り低下を招く。このため、Bは0.0006〜0.0030%の範囲に限定した。
B: 0.0006-0.0030%
B is an element that plays an important role in the present invention. Along with the optimization of the Mn and B contents described later, by containing B in an amount of 0.0006% or more, a target composite structure can be stably formed, and excellent moldability can be exhibited. Note that when the content exceeds 0.0030%, the effect is saturated and the yield is reduced due to surface defects of the slab. For this reason, B was limited to the range of 0.0006 to 0.0030%.
さらに、本発明では、Mn、Bを、上記した範囲で含み、且つ次(1)式
(Mn+1300×B)≧2.0 ‥‥(1)
(ここで、Mn、B:各元素の含有量(質量%))
を満足するように調整して含む。MnとBはともに、オーステナイト相を安定化させる元素として重要であり、上記(1)式を満足するように、Mn、Bを調節して含有すれば、MoやCrなどの高価な焼入れ性向上元素を含有することなく、所望の複合組織を確保することができ、低降伏比で、強度−延性バランス、強度−穴広げ率バランスに優れた冷延鋼板とすることができる。このため、本発明では、Mn、Bを(1)式を満足するように含有することとした。
Furthermore, in the present invention, Mn and B are included in the above range, and the following formula (1)
(Mn + 1300 × B) ≧ 2.0 (1)
(Where, Mn, B: content of each element (mass%))
Adjusted to include Both Mn and B are important as elements that stabilize the austenite phase. If Mn and B are contained so as to satisfy the above formula (1), expensive hardenability such as Mo and Cr can be improved. A desired composite structure can be secured without containing elements, and a cold-rolled steel sheet having a low yield ratio and excellent strength-ductility balance and strength-hole expansion ratio balance can be obtained. For this reason, in this invention, it was decided to contain Mn and B so that Formula (1) may be satisfied.
上記した成分以外の残部は、Feおよび不可避的不純物である。不可避的不純物としては、Sb:0.01%以下、Sn:0.1%以下、Zn:0.01%以下、Co:0.1%以下等が許容できる。なお、Cr、Mo、Ca、REM、Zr等は、通常の鋼組成の範囲内であれば含有させても、何ら問題はない。
つぎに、本発明鋼板の組織の限定理由について説明する。
The balance other than the above components is Fe and inevitable impurities. As unavoidable impurities, Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01% or less, Co: 0.1% or less, etc. are acceptable. It should be noted that Cr, Mo, Ca, REM, Zr, and the like can be contained as long as they are within the normal steel composition range.
Next, the reason for limiting the structure of the steel sheet of the present invention will be described.
本発明鋼板は、主相として組織全体に対する体積率で95.0〜99.5%のフェライト相と、第二相として組織全体に対する体積率で0.5〜5.0%の低温生成相を有する複合組織鋼板である。主相であるフェライト相が組織全体に対する体積率で95%未満では、高い延性を確保することが困難となり、プレス成形性が低下する傾向となり、高度な加工性が要求される部材用鋼板として要求されるプレス成形性を確保することが難しくなる。一方、複合組織の利点を利用するため、主相であるフェライト相は体積率で99.5%以下とする必要がある。このようなことから、主相であるフェライト相は体積率で95.0〜99.5%の範囲に限定した。なお、更なる高い延性が要求される使途にはフェライト相は体積率で97%以上とすることが好ましい。 The steel sheet of the present invention is a composite structure steel sheet having a ferrite phase with a volume ratio of 95.0 to 99.5% relative to the whole structure as a main phase and a low-temperature generation phase with a volume ratio of 0.5 to 5.0% with respect to the entire structure as a second phase. If the ferrite phase, the main phase, is less than 95% by volume with respect to the entire structure, it becomes difficult to ensure high ductility, and press formability tends to decrease, which is required as a steel sheet for parts that require high workability. It becomes difficult to ensure the press formability. On the other hand, in order to utilize the advantages of the composite structure, the ferrite phase as the main phase needs to be 99.5% or less in volume ratio. For this reason, the ferrite phase as the main phase is limited to a volume ratio of 95.0 to 99.5%. It should be noted that the ferrite phase is preferably 97% or more by volume in applications where higher ductility is required.
第二相である低温生成相が体積率で0.5%未満では、高いプレス成形性、すなわち降伏比55%以下を確保することができない。一方、5.0%を超えて低温生成相が多くなると、延性の低下が著しくなる。このようなことから、第二相である低温生成相を体積率で0.5〜5.0%の範囲に限定した。なお、更なる高いプレス成形性が要求される使途には、第二相である低温生成相は体積率で1%以上とすることが好ましい。ここでいう「低温生成相」は、硬質のマルテンサイト相および/またはベイニティックフェライト相とする。 If the low-temperature generation phase as the second phase is less than 0.5% by volume, high press formability, that is, a yield ratio of 55% or less cannot be ensured. On the other hand, if the low temperature generation phase exceeds 5.0%, the ductility is remarkably reduced. For this reason, the low temperature generation phase as the second phase was limited to a range of 0.5 to 5.0% by volume ratio. It should be noted that the low-temperature product phase, which is the second phase, is preferably 1% or more in volume ratio for use in which further high press formability is required. The “low temperature generation phase” referred to here is a hard martensite phase and / or bainitic ferrite phase.
なお、本発明においては、上記したフェライト相(主相)と低温生成相(第二相)からなる複合組織とすることが好ましいが、上記した主相、第二相以外に、不可避的に形成される若干量(体積率で2%以下、すなわち主相と第二相の合計量は体積率で98%以上)のパーライト相等のその他の相の含有が許容できる。
本発明の冷延鋼板では、鋼板の表面にめっき(表面処理)層を形成してもよい。めっき層としては、溶融亜鉛めっき層、合金化溶融亜鉛めっき層、および電機亜鉛めっき層等が例示される。
In the present invention, a composite structure composed of the above-described ferrite phase (main phase) and a low-temperature generation phase (second phase) is preferable, but it is inevitably formed in addition to the above-described main phase and second phase. The inclusion of other phases such as a pearlite phase of 2% or less in volume ratio (that is, the total amount of the main phase and the second phase is 98% or more in volume ratio) is acceptable.
In the cold rolled steel sheet of the present invention, a plating (surface treatment) layer may be formed on the surface of the steel sheet. Examples of the plated layer include a hot dip galvanized layer, an alloyed hot dip galvanized layer, and an electrical galvanized layer.
つぎに、本発明鋼板の好ましい製造方法について説明する。
本発明の冷延鋼板は、鋼素材に、熱間圧延工程と、冷間圧延工程と、焼鈍工程とを順次施して製造される。鋼素材の製造方法はとくに限定されないが、上記した組成の溶鋼を転炉等の通常の溶製方法で溶製したのち、連続鋳造法等の通常の方法でスラブ等の鋼素材とすることが好ましい。なお、鋼素材(スラブ)は、造塊法、薄スラブ鋳造法によって製造してもよいことは言うまでもない。
Below, the preferable manufacturing method of this invention steel plate is demonstrated.
The cold-rolled steel sheet of the present invention is manufactured by sequentially performing a hot rolling process, a cold rolling process, and an annealing process on a steel material. The manufacturing method of the steel material is not particularly limited, but after the molten steel having the above composition is melted by a normal melting method such as a converter, it can be made into a steel material such as a slab by a normal method such as a continuous casting method. preferable. Needless to say, the steel material (slab) may be manufactured by an ingot-making method or a thin slab casting method.
製造された鋼素材(スラブ)には、ついで熱間圧延工程が施される。熱間圧延のための加熱は、鋼素材の保有熱量に応じて、一旦室温まで冷却し、その後再加熱のために加熱炉に装入する方法、あるいは室温まで冷却することなく温片のままで加熱炉に装入する方法、あるいはわずかの保熱を行ったのち直ちに圧延する直送圧延・直接圧延法などの省エネルギープロセスも問題なく適用できる。 The manufactured steel material (slab) is then subjected to a hot rolling process. Heating for hot rolling is a method in which the steel material is once cooled to room temperature according to the amount of heat stored in the steel material and then charged into a heating furnace for reheating, or left as a hot piece without cooling to room temperature. An energy saving process such as a method of charging in a heating furnace or a direct feed rolling / direct rolling method in which rolling is performed immediately after performing a slight heat retention can be applied without any problem.
熱間圧延工程は、鋼素材の加熱温度:1000℃以上とし、粗圧延してシートバーとした後、該シートバーに仕上圧延出側温度:800℃以上とする仕上圧延を施し、巻取り温度:750℃以下で巻き取り熱延板とする工程とすることが好ましい。
鋼素材の加熱温度:1000℃以上。
鋼素材(スラブ)の加熱温度は、熱間圧延時の圧延荷量の増加防止やミクロ組織の均質化の観点から、1000℃以上とすることが好ましい。なお、鋼素材(スラブ)の加熱温度の上限は特に規制されないが、酸化重量の増加にともなうスケールロスの増大などの観点から1280℃以下とすることが望ましい。
In the hot rolling step, the heating temperature of the steel material is set to 1000 ° C. or higher, rough rolled into a sheet bar, and then finish rolling to the finish rolling exit temperature: 800 ° C. or higher is applied to the sheet bar, and the winding temperature is set. : It is preferable to set it as the process made into a hot-rolled sheet at 750 degreeC or less.
Steel material heating temperature: 1000 ℃ or more.
The heating temperature of the steel material (slab) is preferably 1000 ° C. or higher from the viewpoint of preventing an increase in the rolling load during hot rolling and homogenizing the microstructure. The upper limit of the heating temperature of the steel material (slab) is not particularly limited, but is preferably 1280 ° C. or less from the viewpoint of an increase in scale loss accompanying an increase in oxidized weight.
仕上圧延出側温度:800℃以上
仕上圧延出側温度を800℃以上とすることにより、均一微細な組織を有する熱延板とすることができる。仕上圧延出側温度が800℃未満では、得られる熱延板組織が不均一となり、冷延、焼鈍後にも組織の不均一が残留し、プレス成形時に種々の不具合が発生する危険性が増大する。仕上圧延出側温度が800℃未満と低温になった場合には、加工組織が残留する危険性が増大する。仕上圧延出側温度が800℃未満と低温になった場合には、加工組織の残留を回避するため高い巻取り温度を採用しても、粗大粒が発生してプレス成形時に種々の不具合が生じることになる。このようなことから、仕上圧延出側温度を800℃以上に限定した。仕上圧延出側温度の上限は、とくに限定されないが、概ね1000℃以下程度とすることが、スケール疵の発生を防止する観点から好ましい。なお、更なる特性向上の観点から仕上圧延出側温度を820℃以上とすることが好ましい。
Finishing rolling exit temperature: 800 ° C. or more By setting the finishing rolling exit temperature to 800 ° C. or more, a hot rolled sheet having a uniform fine structure can be obtained. If the finish rolling exit temperature is less than 800 ° C., the resulting hot rolled sheet structure becomes non-uniform, and the non-uniform structure remains even after cold rolling and annealing, increasing the risk of various problems occurring during press forming. . When the finish rolling exit temperature is as low as less than 800 ° C., the risk that the processed structure remains increases. When the finish rolling exit temperature is as low as less than 800 ° C, even if a high coiling temperature is used to avoid the remaining of the processed structure, coarse grains are generated and various problems occur during press forming. It will be. For this reason, the finish rolling exit temperature was limited to 800 ° C. or higher. The upper limit of the finish rolling exit temperature is not particularly limited, but is preferably about 1000 ° C. or less from the viewpoint of preventing the occurrence of scale flaws. In addition, it is preferable that the finish rolling exit temperature is set to 820 ° C. or more from the viewpoint of further improving the characteristics.
巻取り温度:750℃以下
仕上圧延終了後、熱延板はコイル状に巻き取られるが、巻取り温度は750℃以下とすることが好ましい。巻取リ温度が750℃を超えて高温となると、スケールロスが増加する。このため、巻取り温度は750℃以下に限定することが好ましい。巻取り温度が低下するにしたがい、強度が増加するが、巻取り温度の下限は、材質上は厳しく限定はされない。しかし、巻取り温度が200℃を下回ると、鋼板の形状が顕著に乱れだし、実際の使用にあたり不具合を生ずる危険性が増大する。また、材質の均一性も低下する傾向となる。このため、巻取り温度は200℃以上に限定することが望ましい。さらに高い材質均一性が要求される使途には、巻取り温度は300℃以上とすることがより望ましい。
Winding temperature: 750 ° C. or lower After finishing rolling, the hot-rolled sheet is wound in a coil shape, but the winding temperature is preferably 750 ° C. or lower. When the winding temperature exceeds 750 ° C., the scale loss increases. For this reason, the winding temperature is preferably limited to 750 ° C. or lower. As the winding temperature decreases, the strength increases, but the lower limit of the winding temperature is not strictly limited in terms of material. However, when the coiling temperature is below 200 ° C., the shape of the steel sheet is significantly disturbed, and the risk of causing problems in actual use increases. In addition, the uniformity of the material tends to decrease. For this reason, it is desirable to limit the winding temperature to 200 ° C. or higher. For uses where even higher material uniformity is required, the winding temperature is more preferably 300 ° C. or higher.
得られた熱延板には、ついで冷間圧延工程が施される。冷間圧延工程は、基本的には熱延板に冷間圧延を施し冷延板とする工程とする。なお、冷間圧延工程では、熱延板に酸洗を施した後冷間圧延を施すことが好ましいが、極めて薄いスケールの状態であれば酸洗を行うことなく、直接冷間冷間圧延することも可能である。酸洗は、熱延板表面のスケールを除去できる方法であればよく、常用の酸洗方法を含め、特に限定されない。また、冷間圧延は所望の寸法形状の冷延板とすることができればよく、本発明では、圧下率等の冷延条件は特に限定されない。なお、表面の平坦度や組織の均一性の観点から冷延圧下率は40%以上とすることが好ましい。 The obtained hot-rolled sheet is then subjected to a cold rolling process. The cold rolling process is basically a process in which a hot rolled sheet is cold rolled to form a cold rolled sheet. In the cold rolling process, it is preferable to subject the hot-rolled sheet to pickling and then cold rolling. However, if it is in a very thin scale, it is directly cold-rolled without performing pickling. It is also possible. The pickling may be any method that can remove the scale on the surface of the hot-rolled sheet, and is not particularly limited, including a common pickling method. Further, it is sufficient that the cold rolling can be a cold-rolled plate having a desired size and shape, and in the present invention, the cold-rolling conditions such as the rolling reduction are not particularly limited. The cold rolling reduction ratio is preferably 40% or more from the viewpoint of surface flatness and tissue uniformity.
得られた冷延板には、ついで、焼鈍工程が施される。焼鈍工程では、冷延板をAc1変態点〜(Ac3変態点+50℃)の範囲の温度に加熱したのち、平均冷却速度:5℃/s以上の冷却速度で350℃以下の温度域まで冷却し、冷延焼鈍板とする。なお、冷延板の焼鈍は、連続焼鈍ライン、あるいは連続溶融亜鉛めっきラインを利用した処理とすることが好ましい。 The resulting cold-rolled sheet is then subjected to an annealing process. In the annealing process, after the cold-rolled sheet is heated to a temperature in the range of Ac 1 transformation point to (Ac 3 transformation point + 50 ° C.), the average cooling rate: up to a temperature range of 350 ° C. or less at a cooling rate of 5 ° C./s or more. Cool and use a cold-rolled annealed sheet. The cold-rolled sheet is preferably annealed using a continuous annealing line or a continuous hot dip galvanizing line.
焼鈍温度がAc1変態点未満では焼鈍後に硬質な低温変態相が形成されない。一方、焼鈍温度が(Ac3変態点+50℃)を超えて高温になると、BやMnによるオーステナイト相の安定化が希釈されて、焼鈍後の冷却時に安定して所定量の硬質な低温変態相を得ることが困難となる。このため、焼鈍温度はAc1変態点〜(Ac3変態点+50℃)の範囲の温度に限定することが好ましい。なお、ここでAc1変態点、Ac3変態点は熱膨張測定から求めた値を使用するものとした。また、上記した焼鈍温度での保持時間は1O〜120sとすることが好ましい。保持時間が10s未満では、再結晶や粒成長が十分に進行しない場合があり成形性が著しく劣化しやすく、また、保持時聞が120sを超えて長くなると、焼鈍時間の増加に伴うコストアップが避けられない。 When the annealing temperature is less than the Ac 1 transformation point, a hard low-temperature transformation phase is not formed after annealing. On the other hand, when the annealing temperature exceeds (Ac 3 transformation point + 50 ° C) and becomes high, stabilization of the austenite phase by B and Mn is diluted, and a predetermined amount of hard low-temperature transformation phase is stable during cooling after annealing. It becomes difficult to obtain. For this reason, it is preferable to limit the annealing temperature to a temperature in the range of Ac 1 transformation point to (Ac 3 transformation point + 50 ° C.). Here, Ac 1 transformation point, Ac 3 transformation point is assumed to use the value obtained from the thermal expansion measurement. Further, the holding time at the above-described annealing temperature is preferably 10 to 120 s. If the holding time is less than 10 s, recrystallization and grain growth may not proceed sufficiently, and the formability tends to deteriorate significantly.If the holding time exceeds 120 s, the cost increases due to an increase in annealing time. Inevitable.
焼鈍後は、上記した焼鈍温度から平均冷却速度で5℃/s以上の冷却速度で、350℃以下の温度域まで冷却することが好ましい。冷却速度が5℃/s未満では、第二相を所望の低温生成相とすることができなくなる。冷却が上記した範囲から外れると、未変態オーステナイトがフェライトとセメンタイトに分解し、所望の低温生成相を確保することができなくなる。 After annealing, it is preferable to cool from the annealing temperature to a temperature range of 350 ° C. or less at an average cooling rate of 5 ° C./s or more. When the cooling rate is less than 5 ° C./s, the second phase cannot be a desired low-temperature generation phase. When the cooling is out of the above range, the untransformed austenite is decomposed into ferrite and cementite, and a desired low-temperature generation phase cannot be secured.
また、本発明では、上記した焼鈍工程に続いて、電気亜鉛めっき処理、溶融亜鉛めっき処理、あるいは合金化溶融亜鉛めっき処理を施して、鋼板の表面にめっき層を形成するめっき処理工程を施してもよい。電気亜鉛めっき処理、溶融亜鉛めっき処理、あるいは合金化溶融亜鉛めっき処理の条件はとくに限定する必要はなく、常用の処理方法がいずれも適用できる。なお、溶融亜鉛めっき処理、あるいは合金化溶融亜鉛めっき処理では、所定量の低温生成相を確保するため、処理後の冷却を平均で5℃/s以上の平均冷却速度で350℃以下の温度域まで行う必要がある。 Further, in the present invention, following the annealing step, an electrogalvanizing treatment, a hot dip galvanizing treatment, or an alloyed hot dip galvanizing treatment is performed, and a plating treatment step for forming a plating layer on the surface of the steel sheet is performed. Also good. The conditions for the electrogalvanizing treatment, the hot dip galvanizing treatment, or the alloying hot dip galvanizing treatment are not particularly limited, and any conventional treatment method can be applied. In hot dip galvanizing or alloying hot dip galvanizing treatment, in order to secure a predetermined amount of low-temperature formation phase, cooling after the treatment is performed at an average cooling rate of 5 ° C./s or higher and a temperature range of 350 ° C. or lower It is necessary to do until.
また、連続溶融亜鉛めっきラインを利用して、焼鈍と溶融亜鉛めっき処理とを連続して行う焼鈍−溶融亜鉛めっき処理工程、あるいは焼鈍、溶融亜鉛めっき処理および合金化処理を連続して行う焼鈍−合金化溶融亜鉛めっき処理工程とすることが好ましい。
焼鈍と溶融亜鉛めっき処理、あるいは合金化溶融亜鉛めっき処理を連続して行う場合には、つぎのような工程とすることが好ましい。
Also, using a continuous hot dip galvanizing line, annealing and hot dip galvanizing treatment are carried out continuously-hot dip galvanizing treatment process, or annealing, hot dip galvanizing treatment and alloying treatment are carried out continuously- An alloying hot dip galvanizing treatment step is preferred.
In the case where annealing and hot dip galvanizing treatment or alloying hot dip galvanizing treatment is continuously performed, the following steps are preferable.
焼鈍と溶融亜鉛めっき処理を連続して行う場合には、冷延板をAc1変態点〜(Ac3変態点+50℃)の範囲の温度に加熱したのち、平均冷却速度:5℃/s以上の冷却速度で500℃以下まで冷却し、ついで鋼板表面に溶融亜鉛めっき層を形成する溶融亜鉛めっき処理を施したのち、平均冷却速度:5℃/s以上の冷却速度で350℃以下の温度域まで冷却する焼鈍−溶融亜鉛めっき処理工程とすることが好ましい。 When annealing and hot-dip galvanizing are performed continuously, the cold-rolled sheet is heated to a temperature in the range of Ac 1 transformation point to (Ac 3 transformation point + 50 ° C.), and then the average cooling rate: 5 ° C./s or more After cooling to 500 ° C or lower at a cooling rate of 5 ° C and then performing hot dip galvanizing treatment to form a hot dip galvanized layer on the steel sheet surface, the average cooling rate: 350 ° C or lower at a cooling rate of 5 ° C / s or higher It is preferable to set it as the annealing-hot-dip galvanization process process cooled to.
また、焼鈍、溶融亜鉛めっき処理および合金化処理を連続して行う場合には、冷延板をAc1変態点〜(Ac3変態点+50℃)の範囲の温度に加熱したのち、平均冷却速度:5℃/s以上の冷却速度で500℃以下まで冷却し、鋼板表面に溶融亜鉛めっき層を形成する溶融亜鉛めっき処理を施したのち、該溶融亜鉛めっき層を合金化溶融亜鉛めっき層とする合金化処理を施し、ついで平均冷却速度:5℃/s以上の冷却速度で350℃以下の温度域まで冷却する焼鈍−合金化溶融亜鉛めっき処理工程とすることが好ましい。 Further, when annealing, hot dip galvanizing treatment and alloying treatment are carried out continuously, after the cold-rolled sheet is heated to a temperature in the range of Ac 1 transformation point to (Ac 3 transformation point + 50 ° C.), the average cooling rate : After cooling to 500 ° C. or less at a cooling rate of 5 ° C./s or more and performing hot dip galvanizing treatment to form a hot dip galvanized layer on the steel sheet surface, the hot dip galvanized layer is made an alloyed hot dip galvanized layer An alloying treatment is performed, and then an average cooling rate: an annealing-alloying hot dip galvanizing treatment step of cooling to a temperature range of 350 ° C. or less at a cooling rate of 5 ° C./s or more is preferable.
いずれの処理の場合も、通常行われているように、加熱後溶融亜鉛めっき浴温近傍まで、具体的には500℃以下に冷却するが、この際の冷却速度を所定量の低温生成相を確保するため、平均冷却速度:5℃/s以上とし、また、溶融亜鉛めっき処理後、あるいは合金化処理を施す場合は合金化処理後、350℃以下の温度域まで平均冷却速度5℃/s以上の冷却速度で冷却する。冷却速度が上記した範囲から外れると、未変態オーステナイトがフェライトとセメンタイトに分解し所定量の低温生成相を確保できなくなる。 In any case, as usual, after heating, it is cooled to the vicinity of the hot dip galvanizing bath temperature, specifically to 500 ° C. or less. In order to ensure, the average cooling rate: 5 ° C./s or more, and after the galvanizing treatment or alloying treatment, after the alloying treatment, the average cooling rate is 5 ° C./s to a temperature range of 350 ° C. or less. Cool at the above cooling rate. When the cooling rate is out of the above range, untransformed austenite is decomposed into ferrite and cementite, and a predetermined amount of low-temperature generation phase cannot be secured.
なお、溶融亜鉛めっき処理前の冷却停止温度は上記したように500℃以下とすることが好ましいが、より好ましくはめっき浴温+20℃以下であり、めっき浴温直上まで冷却しともよいし、めっき浴温以下まで冷却してもよい。
なお、本発明では、上記した焼鈍工程、焼鈍−溶融亜鉛めっき処理工程、あるいは焼鈍−合金化溶融亜鉛めっき処理工程のあと、常法にしたがって、形状矯正や粗度調整などの目的で、圧下率:0.2〜1.5%程度の調質圧延を施しても良い。
As described above, the cooling stop temperature before the hot dip galvanizing treatment is preferably 500 ° C. or lower, more preferably the plating bath temperature + 20 ° C. or lower. You may cool to below bath temperature.
In the present invention, after the annealing step, the annealing-hot dip galvanizing treatment step, or the annealing-alloyed hot dip galvanizing treatment step, the rolling reduction is performed for the purpose of shape correction or roughness adjustment according to a conventional method. : Temper rolling of about 0.2 to 1.5% may be performed.
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブ(鋼素材)とした。ついで、これらスラブを表2に示す条件で熱間工程を施し、板厚4.0mmの熱延鋼帯(熱延板)とした。ついで、これら熱延鋼帯(熱延板)に、酸洗、および圧下率:80%の冷間圧延を施す冷間圧延工程を施し、板厚0.8mmの冷延鋼帯(冷延板)とした。ついで、これら冷延板に、連続焼鈍ライン、溶融亜鉛めっきラインで焼鈍処理、あるいはさらに溶融亜鉛めっき処理、合金化溶融亜鉛めっき処理を施す、焼鈍工程、焼鈍−溶融亜鉛めっき処理工程、あるいは焼鈍−合金化溶融亜鉛めっき処理工程を施した。なお、溶融亜鉛めっき処理、あるいは合金化溶融亜鉛めっき処理においては、めっき浴温:460℃、合金化処理温度:500℃とした。一部の鋼板には、連続焼鈍ラインで焼鈍工程を行ったのち、酸洗して、電気亜鉛めっきラインで電気亜鉛めっき処理を施した。 Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab (steel material) by a continuous casting method. Subsequently, these slabs were subjected to a hot process under the conditions shown in Table 2 to obtain hot-rolled steel strips (hot-rolled sheets) having a thickness of 4.0 mm. Then, these hot-rolled steel strips (hot-rolled sheets) are pickled and subjected to a cold rolling process in which a cold rolling of a reduction ratio of 80% is performed to obtain a 0.8 mm-thick cold-rolled steel strip (cold-rolled sheets). It was. Subsequently, these cold-rolled sheets are subjected to an annealing process in a continuous annealing line and a hot dip galvanizing line, or further subjected to a hot dip galvanizing process and an alloyed hot dip galvanizing process, an annealing process, an annealing-hot dip galvanizing process, or an annealing process. An alloying hot dip galvanizing process was performed. In the hot dip galvanizing treatment or alloying hot dip galvanizing treatment, the plating bath temperature was set to 460 ° C., and the alloying treatment temperature was set to 500 ° C. Some steel plates were subjected to an annealing process in a continuous annealing line, then pickled and subjected to an electrogalvanizing treatment in an electrogalvanizing line.
得られた鋼帯(冷延板)に、さらに圧下率:0.5%の調質圧延を施した。なお、溶融亜鉛めっき処理、合金化溶融亜鉛めっき処理においては、めっき浴温:460℃、合金化処理温度:500℃とした。
得られた鋼帯から試験片を採取して、組織観察、引張試験、穴広げ試験、めっき性試験を実施した。試験方法は次のとおりとした。
(1)組織観察
得られた鋼帯から組織試験片を採取して、圧延方向に直交する断面(C断面)について、研磨しナイタールで腐食して、光学顕微鏡(倍率:×400)あるいは走査型電子顕微鏡(倍率:×1000)を用いて微視組織を撮像し、画像解析装置を利用して組織の種類を同定するとともに、各相の組織分率を求めた。
(2)引張試験
得られた鋼帯から、引張方向が圧延方向と直交する方向となるようにJIS5号引張試験片を採取して、JIS Z 2241の規定に準拠して引張試験を実施し、引張特性(降伏強さYS、引張強さTS、伸びEl、降伏伸びYS−EL)を求めた。得られたYS、TSから降伏比YR(=(YS/TS)×100%)を、得られたTS、Elから強度−延性バランスTS×Elを、それぞれ算出した。
(3)穴広げ試験
得られた鋼帯から、穴拡げ試験片(大きさ80mm×80mm×板厚0.8mm)を採取して、穴広げ試験を実施した。穴広げ試験は、日本鉄鋼連盟規格JFS T 1001の規定に準拠して行い、初期穴径を10mmφ、ダイス内径を10.2mmφ、クリアランスを板厚の12.5%の条件で行い、亀裂が板厚を貫通したときの穴径Drをもとめ、次式で定義される穴広げ率λを求めた。
The obtained steel strip (cold rolled sheet) was further subjected to temper rolling with a rolling reduction of 0.5%. In the hot dip galvanizing treatment and alloying hot dip galvanizing treatment, the plating bath temperature was set to 460 ° C., and the alloying treatment temperature was set to 500 ° C.
A specimen was collected from the obtained steel strip and subjected to structure observation, tensile test, hole expansion test, and plating test. The test method was as follows.
(1) Microstructure observation A structural specimen is taken from the obtained steel strip, and the cross section (C cross section) perpendicular to the rolling direction is polished and corroded with nital, and then optical microscope (magnification: × 400) or scanning type A microscopic tissue was imaged using an electron microscope (magnification: × 1000), the type of tissue was identified using an image analyzer, and the tissue fraction of each phase was determined.
(2) Tensile test JIS No. 5 tensile test piece was taken from the obtained steel strip so that the tensile direction was perpendicular to the rolling direction, and the tensile test was conducted in accordance with the provisions of JIS Z 2241. Tensile properties (yield strength YS, tensile strength TS, elongation El, yield elongation YS-EL) were determined. The yield ratio YR (= (YS / TS) × 100%) was calculated from the obtained YS and TS, and the strength-ductility balance TS × El was calculated from the obtained TS and El, respectively.
(3) Hole expansion test A hole expansion test piece (
λ(%)=((Dr−Do)/Do)×l00
(ここで、Dr:亀裂が板厚を貫通したときの穴径(mm)、Do:初期の穴径(mm))
(4)めっき性試験
表面にめっき層を形成した鋼帯について、全長にわたり鋼板表面を目視で、不めっき欠陥の有無を観察し、めっき性を評価した。
λ (%) = ((Dr−Do) / Do) × l00
(Here, Dr: hole diameter when the crack penetrates the plate thickness (mm), Do: initial hole diameter (mm))
(4) Plating property test About the steel strip which formed the plating layer on the surface, the steel plate surface was visually observed over the full length, the presence or absence of the non-plating defect was observed, and the plating property was evaluated.
なお、各鋼帯(鋼板)の変態点は熱膨張測定により求めた。
得られた結果を表3に示す。
The transformation point of each steel strip (steel plate) was determined by thermal expansion measurement.
The obtained results are shown in Table 3.
本発明例はいずれも、降伏比が55%以下、強度−延性バランスTS×Elが16000MPa%以上、強度−穴広げ率バランスTS×λが38000MPa%以上と、優れた成形性を有し、引張強さTSが340MPa以上概ね500MPa以下の340MPa級〜440MPa級の高張力冷延鋼板となっている。一方、本発明の範囲を外れる比較例では、成形性が劣化している。 In all of the examples of the present invention, the yield ratio is 55% or less, the strength-ductility balance TS × El is 16000 MPa% or more, and the strength-hole expansion ratio balance TS × λ is 38000 MPa% or more. It is a high-tensile cold-rolled steel sheet with a strength TS of 340MPa to 440MPa with a strength TS of 340MPa to 500MPa. On the other hand, in a comparative example outside the scope of the present invention, the moldability is deteriorated.
Claims (6)
C:0.01〜0.05%、 Si:0.4%以下、
Mn:1.0〜2.0%、 P:0.08%以下、
S:0.005%以下、 Al:0.02〜0.10%、
N:0.005%以下、 B:0.0006〜0.0030%
を含み、かつMn、Bを下記(1)式を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成を有し、組織が、体積率で95.0〜99.5%のフェライト相と、体積率で0.5〜5.0%の低温生成相を有する複合組織であることを特徴とする引張強さ:340MPa以上の高張力冷延鋼板。
記
(Mn+1300×B)≧2.0 ‥‥(1)
ここで、Mn、B:各元素の含有量(質量%) % By mass
C: 0.01 to 0.05%, Si: 0.4% or less,
Mn: 1.0 to 2.0%, P: 0.08% or less,
S: 0.005% or less, Al: 0.02 to 0.10%,
N: 0.005% or less, B: 0.0006 to 0.0030%
Mn and B are adjusted so as to satisfy the following formula (1), the composition is composed of the remaining Fe and inevitable impurities, and the structure is a ferrite phase with a volume ratio of 95.0 to 99.5%. A high strength cold-rolled steel sheet having a tensile strength of 340 MPa or more, characterized by being a composite structure having a low-temperature generation phase of 0.5 to 5.0% in volume ratio.
Record
(Mn + 1300 × B) ≧ 2.0 (1)
Here, Mn, B: Content of each element (mass%)
質量%で、
C:0.01〜0.05%、 Si:0.4%以下、
Mn:1.0〜2.0%、 P:0.08%以下、
S:0.005%以下、 Al:0.02〜0.10%、
N:0.005%以下、 B:0.0006〜0.0030%
を含み、かつMn、Bを下記(1)式を満足するように調整して含み、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
前記熱間圧延工程が、前記鋼素材を、加熱温度:1000℃以上の温度に加熱し、粗圧延してシートバーとした後、該シートバーに仕上圧延出側温度:800℃以上とする仕上圧延を施し、巻取り温度:750℃以下で巻き取り熱延板とする工程であり、
前記冷間圧延工程が、該熱延板に冷間圧延を施し冷延板とする工程であり、
前記焼鈍工程が、該冷延板を(Ac1変態点)〜(Ac3変態点+50℃)の範囲の温度に加熱した後、平均冷却速度:5℃/s以上で350℃以下の温度域まで冷却する工程であることを特徴とする引張強さが340MPa以上の高張力冷延鋼板の製造方法。
記
(Mn+1300×B)≧2.0 ‥‥(1)
ここで、Mn、B:各元素の含有量(質量%) In manufacturing a cold-rolled steel sheet by sequentially performing a hot rolling process, a cold rolling process, and an annealing process on a steel material,
% By mass
C: 0.01 to 0.05%, Si: 0.4% or less,
Mn: 1.0 to 2.0%, P: 0.08% or less,
S: 0.005% or less, Al: 0.02 to 0.10%,
N: 0.005% or less, B: 0.0006 to 0.0030%
And Mn and B are adjusted so as to satisfy the following formula (1), and a steel material having a composition composed of the remaining Fe and inevitable impurities,
In the hot rolling step, the steel material is heated to a temperature of 1000 ° C. or higher, roughly rolled into a sheet bar, and then finished to a finish rolling exit temperature of the sheet bar: 800 ° C. or higher. It is a process of rolling and making the coiled hot rolled sheet at a coiling temperature of 750 ° C. or less,
The cold rolling step is a step of cold rolling the hot rolled sheet to form a cold rolled sheet,
The annealing step, after heating the cold rolled sheet to a temperature range of (Ac 1 transformation point) ~ (Ac 3 transformation point + 50 ° C.), an average cooling rate: 5 ° C. / s or higher at 350 ° C. below the temperature A method for producing a high-strength cold-rolled steel sheet having a tensile strength of 340 MPa or more, characterized by being a step of cooling to an area.
Record
(Mn + 1300 × B) ≧ 2.0 (1)
Here, Mn, B: Content of each element (mass%)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007179621A JP2009013488A (en) | 2007-07-09 | 2007-07-09 | High strength cold-rolled steel and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007179621A JP2009013488A (en) | 2007-07-09 | 2007-07-09 | High strength cold-rolled steel and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009013488A true JP2009013488A (en) | 2009-01-22 |
Family
ID=40354750
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007179621A Pending JP2009013488A (en) | 2007-07-09 | 2007-07-09 | High strength cold-rolled steel and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009013488A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102796943A (en) * | 2012-08-31 | 2012-11-28 | 宝山钢铁股份有限公司 | Thin strip steel for thin-wall oil drum and manufacturing method of thin strip steel |
CN103667878A (en) * | 2012-08-31 | 2014-03-26 | 宝山钢铁股份有限公司 | Steel strip for thin-wall oil bucket and manufacturing method thereof |
KR20180130576A (en) | 2016-08-08 | 2018-12-07 | 신닛테츠스미킨 카부시키카이샤 | Steel plate |
JP6436268B1 (en) * | 2017-01-25 | 2018-12-12 | Jfeスチール株式会社 | Method for producing high-strength hot-dip galvanized steel sheet with excellent plating adhesion |
WO2019187031A1 (en) | 2018-03-30 | 2019-10-03 | 日本製鉄株式会社 | High-strength steel sheet having excellent ductility and hole expansion property |
-
2007
- 2007-07-09 JP JP2007179621A patent/JP2009013488A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102796943A (en) * | 2012-08-31 | 2012-11-28 | 宝山钢铁股份有限公司 | Thin strip steel for thin-wall oil drum and manufacturing method of thin strip steel |
CN103667878A (en) * | 2012-08-31 | 2014-03-26 | 宝山钢铁股份有限公司 | Steel strip for thin-wall oil bucket and manufacturing method thereof |
CN103667878B (en) * | 2012-08-31 | 2015-10-28 | 宝山钢铁股份有限公司 | A kind of Steel strip for thin-wall oil bucket and manufacture method thereof |
KR20180130576A (en) | 2016-08-08 | 2018-12-07 | 신닛테츠스미킨 카부시키카이샤 | Steel plate |
US11365465B2 (en) | 2016-08-08 | 2022-06-21 | Nippon Steel Corporation | Steel sheet |
JP6436268B1 (en) * | 2017-01-25 | 2018-12-12 | Jfeスチール株式会社 | Method for producing high-strength hot-dip galvanized steel sheet with excellent plating adhesion |
WO2019187031A1 (en) | 2018-03-30 | 2019-10-03 | 日本製鉄株式会社 | High-strength steel sheet having excellent ductility and hole expansion property |
KR20200124748A (en) | 2018-03-30 | 2020-11-03 | 닛폰세이테츠 가부시키가이샤 | High strength steel plate with excellent ductility and hole expandability |
US12060623B2 (en) | 2018-03-30 | 2024-08-13 | Nippon Steel Corporation | High-strength steel sheet with excellent ductility and hole-expandability |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6237900B2 (en) | High-strength cold-rolled steel sheet and manufacturing method thereof | |
CN109642288B (en) | High-strength steel sheet and method for producing same | |
KR102143834B1 (en) | Steel sheet, coated steel sheet, and mehtods for manufacturing same | |
KR101949627B1 (en) | High-strength steel sheet and method for manufacturing same | |
JP5821260B2 (en) | High-strength hot-dip galvanized steel sheet excellent in formability and shape freezing property, and method for producing the same | |
EP2589677B1 (en) | High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same | |
JP4737319B2 (en) | High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same | |
JP5493986B2 (en) | High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them | |
JP5971434B2 (en) | High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof | |
JP6179461B2 (en) | Manufacturing method of high-strength steel sheet | |
JP5151504B2 (en) | High tensile cold-rolled steel sheet and method for producing the same | |
WO2014020640A1 (en) | High-strength hot-dip galvanized steel sheet having excellent moldability and shape fixability, and method for manufacturing same | |
CN103764864B (en) | Cold-rolled steel sheet hot rolled steel plate, hot-dip galvanizing sheet steel hot rolled steel plate and manufacture method thereof | |
JPWO2016021193A1 (en) | High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate | |
CN108779536B (en) | Steel sheet, plated steel sheet, and method for producing same | |
KR20190073469A (en) | High strength steel sheet and manufacturing method thereof | |
JP2009270126A (en) | Cold rolled steel sheet, hot dip plated steel sheet and method for producing the steel sheet | |
JP3812279B2 (en) | High yield ratio type high-tensile hot dip galvanized steel sheet excellent in workability and strain age hardening characteristics and method for producing the same | |
JP2002053935A (en) | High tensile strength cold-rolled steel sheet excellent in strain age-hardening characteristic and its production method | |
JP4211520B2 (en) | High strength and high ductility galvanized steel sheet with excellent aging resistance and method for producing the same | |
JP5853884B2 (en) | Hot-dip galvanized steel sheet and manufacturing method thereof | |
JP5256689B2 (en) | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof | |
JP2009013488A (en) | High strength cold-rolled steel and manufacturing method thereof | |
JP5141232B2 (en) | High-strength hot-dip galvanized steel sheet with excellent formability and manufacturing method thereof | |
JP2006274378A (en) | High yield ratio high strength cold rolled steel sheet, high yield ratio high strength hot dip galvanized steel sheet, high yield ratio high strength alloyed hot dip galvanized steel sheet, and method for producing them |