JP6124499B2 - High-strength galvannealed steel sheet with excellent plating adhesion and manufacturing method thereof - Google Patents

High-strength galvannealed steel sheet with excellent plating adhesion and manufacturing method thereof Download PDF

Info

Publication number
JP6124499B2
JP6124499B2 JP2011227344A JP2011227344A JP6124499B2 JP 6124499 B2 JP6124499 B2 JP 6124499B2 JP 2011227344 A JP2011227344 A JP 2011227344A JP 2011227344 A JP2011227344 A JP 2011227344A JP 6124499 B2 JP6124499 B2 JP 6124499B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
plating
steel plate
plating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011227344A
Other languages
Japanese (ja)
Other versions
JP2013087314A (en
Inventor
浩二郎 秋葉
浩二郎 秋葉
石塚 清和
清和 石塚
幸基 田中
幸基 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011227344A priority Critical patent/JP6124499B2/en
Publication of JP2013087314A publication Critical patent/JP2013087314A/en
Application granted granted Critical
Publication of JP6124499B2 publication Critical patent/JP6124499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、めっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板とその製造方法に関する。   The present invention relates to a high-strength galvannealed steel sheet excellent in plating adhesion and a method for producing the same.

近年、特に、自動車技術分野において、燃費向上による省エネを目的とする車体軽量化の観点から、高強度鋼板の需要が高まっている。このような需要に対し、例えば、特許文献1には、鋼板組織を、フェライト相、ベイナイト相、及び、オーステナイト相の3相が混合した組織とし、成型加工時に、残留オーステナイトがマルテンサイトに変態することで高延性を示す変態誘起塑性を利用した鋼板が開示されている。   In recent years, particularly in the field of automobile technology, demand for high-strength steel sheets is increasing from the viewpoint of reducing the weight of a vehicle body for the purpose of energy saving by improving fuel consumption. In response to such demand, for example, in Patent Document 1, the steel sheet structure is a structure in which three phases of a ferrite phase, a bainite phase, and an austenite phase are mixed, and the residual austenite is transformed into martensite during molding. A steel sheet using transformation-induced plasticity that exhibits high ductility is disclosed.

この種の鋼板は、例えば、Cを0.05〜0.4質量%、Siを0.2〜3.0質量%、Mnを0.1〜2.5質量%を含有し、2相域での焼鈍後、冷却過程の温度パターンを制御することで複合組織を形成していて、高価な合金元素を用いることなく、所要の特性を確保できるという特徴を備えている。   This type of steel sheet contains, for example, 0.05 to 0.4% by mass of C, 0.2 to 3.0% by mass of Si, and 0.1 to 2.5% by mass of Mn. After annealing, the composite structure is formed by controlling the temperature pattern of the cooling process, and the required characteristics can be secured without using expensive alloy elements.

このような鋼板に、防錆機能を付与すべく、連続溶融亜鉛めっき設備で亜鉛めっきを施す場合、鋼板のSi量が0.3質量%を超えていると、めっき濡れ性が大きく低下し、通常のAl含有めっき浴を用いるゼンジマー法では、不めっきが発生して、外観品質が悪化するという問題がある。   In order to give a rust prevention function to such a steel sheet, when performing galvanization with a continuous hot dip galvanizing facility, if the Si amount of the steel sheet exceeds 0.3% by mass, the plating wettability is greatly reduced, In the Sendzimer method using a normal Al-containing plating bath, there is a problem that non-plating occurs and the appearance quality deteriorates.

これは、還元焼鈍時に、鋼板表面に、SiやMnを含有する外部酸化皮膜が生成し、これらの酸化物の溶融Znに対する濡れ性が悪いことが原因であると言われている。   This is said to be due to the fact that an external oxide film containing Si or Mn is formed on the steel sheet surface during reduction annealing, and the wettability of these oxides to molten Zn is poor.

この問題を解決する手段として、特許文献2には、予め、空気比0.9〜1.2の雰囲気中で鋼板を加熱して、Fe酸化物を生成させ、次いで、H2を含む還元帯で、酸化物の厚みを500Å以下にした後、MnとAlを添加した浴でめっきを行う方法が提案されているが、実ラインでは、種々の添加元素を含む多様な鋼板を通板するので、酸化物の厚みを適確に制御することは困難である。 As means for solving this problem, Patent Document 2 discloses that a steel sheet is heated in advance in an atmosphere having an air ratio of 0.9 to 1.2 to generate Fe oxide, and then a reduction zone containing H 2. Then, after reducing the thickness of the oxide to 500 mm or less, a method of plating in a bath containing Mn and Al has been proposed, but in the actual line, various steel plates containing various additive elements are passed through. It is difficult to accurately control the thickness of the oxide.

他の不めっき抑制手段としては、特許文献3に、下層に特定のめっきを付与して、めっき性を改善する方法が開示されている。しかし、この方法では、溶融めっきラインにおいて、焼鈍炉の前段に、新たに、めっき設備を設けるか、又は、電気めっきラインにおいて、予めめっき処理を行う必要がある。いずれの場合にも、大幅な製造コストの増加が見込まれる。   As another non-plating suppressing means, Patent Document 3 discloses a method of improving plating properties by applying specific plating to the lower layer. However, in this method, it is necessary to newly provide a plating facility before the annealing furnace in the hot dipping line, or to perform a plating process in advance in the electroplating line. In either case, a significant increase in manufacturing cost is expected.

一方、特許文献4には、焼鈍時に、焼鈍雰囲気の酸素ポテンシャルを調整して、鋼板中のFeを酸化させずに、合金化溶融亜鉛めっき鋼板を製造する手法が開示されている。この手法においては、鋼中のSiやMn等の易酸化性元素を、雰囲気の酸素ポテンシャルを制御することで内部酸化させ、外部酸化皮膜の形成を抑制して、めっき性の向上を達成している。   On the other hand, Patent Document 4 discloses a method of manufacturing an alloyed hot-dip galvanized steel sheet without adjusting Fe in the steel sheet by adjusting the oxygen potential of the annealing atmosphere during annealing. In this method, oxidizable elements such as Si and Mn in steel are internally oxidized by controlling the oxygen potential of the atmosphere, and the formation of an external oxide film is suppressed, thereby achieving an improvement in plating performance. Yes.

この手法を適用することにより、めっき後に鋼板を再加熱し、Znめっき層と鋼板を反応させ、Zn−Fe合金からなる合金めっき層を形成する際のZn−Fe合金化反応を均一に進行させることが可能となる。   By applying this technique, the steel plate is reheated after plating, the Zn plating layer and the steel plate are reacted, and the Zn-Fe alloying reaction is uniformly progressed when an alloy plating layer made of a Zn-Fe alloy is formed. It becomes possible.

自動車用補強部材に用いる高強度鋼板は、一般に、曲げを主体とする加工で加工される。めっき原板として、C量が比較的高い高強度鋼板を用いる場合、めっき原板自体が硬いために、曲げ加工時に、鋼板表層にクラックが入り易い。このクラックは、鋼板の使用時に、鋼板が板厚方向に割れる要因となる。   In general, a high-strength steel plate used for a reinforcing member for automobiles is processed by processing mainly consisting of bending. When a high-strength steel plate having a relatively high C content is used as the plating original plate, the plating original plate itself is hard, so that cracks are likely to occur in the steel plate surface layer during bending. This crack becomes a factor that the steel plate breaks in the plate thickness direction when the steel plate is used.

この曲げ性の問題を解決すべく、出願人は、特許文献5で、焼鈍雰囲気中の酸素ポテンシャルを制御して、めっき性を向上させるだけでなく、鋼板表面のC量を下げ、ごく表層の延性を向上させて、クラックの発生を抑制し、さらに、鋼板表層付近に、Si、Mnの酸化物を生成させて、クラックが発生しても、この酸化物でクラックの伝播を抑制して、曲げ性を確保する技術を提案している。   In order to solve this problem of bendability, the applicant, in Patent Document 5, not only improves the plateability by controlling the oxygen potential in the annealing atmosphere, but also reduces the amount of C on the surface of the steel sheet, Improves ductility, suppresses the occurrence of cracks, and further generates Si, Mn oxide in the vicinity of the steel sheet surface layer, even if cracks occur, suppresses the propagation of cracks with this oxide, A technology to ensure bendability is proposed.

しかし、この技術においては、内部酸化する条件で鋼板を焼鈍しても、めっき/鋼板界面に生成する酸化物が全くなくなるわけでなく、内部酸化物の生成挙動に起因するめっき層/鋼板界面の性状によっては、鋼板とめっき層の密着性が劣化し、加工時にめっきが剥離するという問題が生じ易い。   However, in this technique, even if the steel sheet is annealed under the condition of internal oxidation, the oxide generated at the plating / steel sheet interface is not completely lost, and the plating layer / steel sheet interface caused by the generation behavior of the internal oxide is not eliminated. Depending on the properties, the adhesion between the steel sheet and the plating layer is deteriorated, and the problem that the plating peels off during processing is likely to occur.

また、これらの手法を用いてめっき鋼板を製造した場合、特許文献4に記載されているように、合金化処理後に、めっき層中に、SiやMnを含有した酸化物の粒子が分散する。   Moreover, when a plated steel plate is manufactured using these methods, as described in Patent Document 4, oxide particles containing Si and Mn are dispersed in the plating layer after the alloying treatment.

Zn−Fe合金めっき層には、Fe量が少ない順に、ζ相、δ1相、Γ相、Γ1相など、複数の相が存在する。一般に、Zn−Fe合金相は、Fe量が多いほど、硬くて脆くなるが、上記酸化物粒子がZn−Fe合金相中に分散した状態になると、該合金相の塑性変形能が小さくなり、めっき層に応力がかかったとき、めっき層の割れ又は剥離が起き易くなる。 In the Zn—Fe alloy plating layer, there are a plurality of phases such as a ζ phase, a δ 1 phase, a Γ phase, and a Γ 1 phase in ascending order of Fe amount. In general, the Zn-Fe alloy phase becomes harder and more brittle as the amount of Fe increases. However, when the oxide particles are dispersed in the Zn-Fe alloy phase, the plastic deformability of the alloy phase decreases, When stress is applied to the plating layer, the plating layer is easily cracked or peeled off.

高強度鋼板を原板として合金化溶融亜鉛めっき鋼板を製造する際に生じる、めっき剥離や耐パウダリング性の劣化という問題に対して、例えば、特許文献6には、めっき層と鋼板の界面に生成するSi−Mn酸化物とZn−Fe金属間化合物からなる組織の形状に着目し、該組織と鋼板との界面の凹凸の大きさを制御して、めっき層と鋼板との密着性を向上させる技術が開示されている。   For example, Patent Document 6 describes a problem that occurs at the interface between a plating layer and a steel sheet in response to the problems of plating peeling and powdering resistance degradation that occur when an alloyed hot-dip galvanized steel sheet is manufactured using a high-strength steel sheet as an original sheet. Paying attention to the shape of the structure consisting of the Si-Mn oxide and the Zn-Fe intermetallic compound to improve the adhesion between the plating layer and the steel sheet by controlling the size of the irregularities at the interface between the structure and the steel sheet Technology is disclosed.

しかし、この技術では、めっき前の焼鈍において、鋼板を酸化雰囲気中で加熱した後、還元雰囲気中で一定時間保持する工程を採用しており、合金化処理後のめっき層と鋼板の界面状態を所定の状態にするためには、焼鈍雰囲気を厳密に制御しなければならない。   However, this technique employs a process in which the steel sheet is heated in an oxidizing atmosphere and then held in a reducing atmosphere for a certain period of time in annealing before plating, and the interface state between the plated layer and the steel sheet after alloying treatment is adopted. In order to obtain a predetermined state, the annealing atmosphere must be strictly controlled.

特許文献7には、めっき層と鋼板の界面から、鋼板側の深さ方向におけるZn−Fe金属間化合物の進入深さを10μm以下に制御して、耐パウダリング性やめっき密着性を向上させる技術が開示されている。しかし、近年、自動車用途を始めとして、高強度合金化溶融亜鉛めっき鋼板にはより高い加工性が求められており、Zn−Fe金属間化合物の最大進入深さを制御するだけでは、厳しい加工に耐えるめっき密着性を確保することは困難である。   In Patent Document 7, the penetration depth of the Zn—Fe intermetallic compound in the depth direction on the steel sheet side is controlled to 10 μm or less from the interface between the plating layer and the steel sheet to improve powdering resistance and plating adhesion. Technology is disclosed. However, in recent years, higher workability is required for high-strength galvannealed steel sheets, including those for automobiles. By controlling the maximum penetration depth of Zn-Fe intermetallic compounds, severe processing is required. It is difficult to ensure endurance plating adhesion.

特開平05−59429号公報JP 05-59429 A 特開平04−276057号公報Japanese Patent Laid-Open No. 04-276057 特開2003−105514号公報JP 2003-105514 A 特許第4718782号公報Japanese Patent No. 4718782 国際公開WO2011/025042号パンフレットInternational Publication WO2011 / 025042 Pamphlet 特開2011−127216号公報JP 2011-127216 A 特開2011−153367号公報JP 2011-153367 A

本発明は、高強度合金化溶融亜鉛めっき鋼板に係る上記現状に鑑み、飛躍的にめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板とその製造方法を提供することを目的とする。   An object of this invention is to provide the high strength alloying hot dip galvanized steel plate which was remarkably excellent in plating adhesiveness, and its manufacturing method in view of the said present condition which concerns on a high strength alloying hot dip galvanized steel plate.

本発明者らは、高強度合金化溶融亜鉛めっき鋼板(以下、「めっき鋼板」と総称することがある。)のめっき密着性を向上させる手法について鋭意検討した。その結果、めっき処理後のめっき鋼板において、めっき層と鋼板との界面近傍において、(i)鋼板側に形成される組織と酸化物の形成状態、及び、(ii)Znがめっき層側から鋼板に浸入して生成したZn−Fe合金相の存在形態が、めっき密着性の向上に大きく影響することが判明した。   The present inventors diligently studied a method for improving the plating adhesion of a high-strength galvannealed steel sheet (hereinafter sometimes collectively referred to as “plated steel sheet”). As a result, in the plated steel sheet after the plating treatment, in the vicinity of the interface between the plating layer and the steel sheet, (i) the structure formed on the steel sheet side and the state of oxide formation, and (ii) Zn from the plating layer side to the steel sheet It was found that the presence form of the Zn—Fe alloy phase produced by intrusion into the steel greatly affects the improvement of the plating adhesion.

そして、本発明者らは、上記判明事実を踏まえ、めっき層と鋼板の界面近傍の組織を制御すれば、上記課題を解決できることを知見した。   And the present inventors discovered that the said subject could be solved if the structure | tissue near the interface of a plating layer and a steel plate was controlled based on the said clear fact.

本発明は、上記知見に基づいてなされたもので、その要旨は、以下の通りである。   This invention was made | formed based on the said knowledge, The summary is as follows.

質量%で、C:0.05〜0.50%、Mnを0.01〜3.0%含有し、さらに、Si:3.0%以下、Al:2.0%以下、Cr:2.0%以下の1種又は2種以上を含有し、Mn+Si+Al+Cr:0.4%以上で、残部Fe及び不可避的不純物からなる鋼板の表面に、Fe:7〜15%、Al:0.01〜1%、残部Zn及び不可避的不純物からなるめっき層を有する合金化溶融亜鉛めっき鋼板において、
(x)上記鋼板と上記めっき層の界面から鋼板側に10μm以内の領域に、(x1)結晶粒径2μm以下で、(x2)Mn、Si、Al、及び、Crの酸化物の1種又は2種以上、及び/又は、Mn、Si、Al、及び、Crの2種以上からなる複合酸化物の1種又は2種以上を内包する微細組織が存在し、
(y)上記微細組織の結晶粒界において、上記酸化物及び/又は複合酸化物の一部の周囲に、Zn−Fe合金相が存在する
ことを特徴とするめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板。
In mass%, C: 0.05 to 0.50%, Mn 0.01 to 3.0%, Si: 3.0% or less, Al: 2.0% or less, Cr: 2. One or two or more of 0% or less, Mn + Si + Al + Cr: 0.4% or more, Fe: 7 to 15%, Al: 0.01 to 1 on the surface of the steel plate made of the remaining Fe and inevitable impurities %, In the alloyed hot-dip galvanized steel sheet having a plating layer consisting of the balance Zn and inevitable impurities,
(X) One of oxides of (x2) Mn, Si, Al, and Cr, or (x1) having a crystal grain size of 2 μm or less in a region within 10 μm from the interface between the steel plate and the plating layer to the steel plate side or There is a microstructure that includes one or more of two or more and / or a composite oxide composed of two or more of Mn, Si, Al, and Cr,
(Y) A high-strength alloy excellent in plating adhesion, characterized in that a Zn-Fe alloy phase is present around a part of the oxide and / or composite oxide at the grain boundary of the microstructure. Hot-dip galvanized steel sheet.

(2)前記Zn−Fe合金相は、合金化処理時、めっき層から浸入したZnと鋼板中のFeが反応して生成したものであることを特徴とする前記(1)に記載のめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板。   (2) The plating adhesion according to (1), wherein the Zn—Fe alloy phase is formed by a reaction between Zn entering from the plating layer and Fe in the steel sheet during the alloying treatment. High strength alloyed hot-dip galvanized steel sheet with excellent properties.

(3)前記鋼板が、さらに、質量%で、B:0.010%以下を含有することを特徴とする前記(1)又は(2)に記載のめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板。   (3) The steel sheet further contains, in mass%, B: 0.010% or less, and the high strength alloying and melting excellent in plating adhesion according to (1) or (2) above Galvanized steel sheet.

(4)前記鋼板が、さらに、質量%で、P:0.10%以下を含有することを特徴とする前記(1)〜(3)のいずれかに記載のめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板。   (4) The high strength with excellent plating adhesion according to any one of (1) to (3), wherein the steel sheet further contains P: 0.10% or less by mass%. Alloyed hot-dip galvanized steel sheet.

(5)前記(1)〜(4)のいずれかに記載の密着性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法において、
前記(1)〜(4)のいずれかに記載の成分組成の鋼板を、水素:0.1〜50体積%、残部:窒素及び不可避不純物からなり、露点:−30℃超〜20℃の雰囲気中で、650℃以上740℃以下の温度領域内のT1℃以上T2℃以下の領域を、℃/秒以下の加熱速度で、T1℃以上T2℃以下の領域の滞在時間が10秒以上となるように加熱し、最高750〜900℃まで加熱して焼鈍し、その後、溶融亜鉛めっきを行い、次いで、合金化処理を行う
ことを特徴とする密着性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。
(5) In the method for producing a high-strength galvannealed steel sheet having excellent adhesion according to any one of (1) to (4),
The steel sheet having the component composition according to any one of (1) to (4), comprising hydrogen: 0.1 to 50% by volume, the balance: nitrogen and inevitable impurities, and dew point: an atmosphere of more than −30 ° C. to 20 ° C. In the temperature range of 650 ° C. or higher and 740 ° C. or lower, the region of T1 ° C. or higher and T2 ° C. or lower is set at a heating rate of 4 ° C./second or less, and the residence time in the region of T1 ° C. or higher and T2 ° C. or lower is High strength alloyed hot dip galvanized with excellent adhesion, characterized by heating to 750 to 900 ° C. and annealing, followed by hot dip galvanizing and then alloying A method of manufacturing a steel sheet.

(6)前記焼鈍を、連続式溶融めっき設備の全還元炉で行うことを特徴とする前記(5)に記載の密着性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。   (6) The method for producing a high-strength galvannealed steel sheet having excellent adhesion as described in (5) above, wherein the annealing is performed in a total reduction furnace of a continuous hot-dip plating facility.

(7)前記溶融亜鉛めっきを、Al:0.01〜1%を含む亜鉛めっき浴を用い、浴温:430〜500℃で行うことを特徴とする前記(1)〜(6)のいずれかに記載の密着性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。   (7) Any of the above (1) to (6), wherein the hot dip galvanizing is performed at a bath temperature of 430 to 500 ° C. using a galvanizing bath containing Al: 0.01 to 1%. The manufacturing method of the high intensity | strength galvannealed steel plate excellent in the adhesiveness of description.

(8)前記合金化処理を、450〜550℃で行うことを特徴とする前記(1)〜(7)のいずれかに記載の密着性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。   (8) The method for producing a high-strength galvannealed steel sheet having excellent adhesion according to any one of (1) to (7), wherein the alloying treatment is performed at 450 to 550 ° C. .

本発明によれば、めっき密着性が、従来以上に向上した高強度合金化溶融亜鉛めっき鋼板を提供することができる。   According to the present invention, it is possible to provide a high-strength galvannealed steel sheet having improved plating adhesion than ever before.

めっき密着性が顕著に向上する機構を模式的に示す図である。(a)は、内部酸化物を内包する微細組織の鋼板に亜鉛めっきを施した態様を示し、(b)は、めっき層から侵入したZnと鋼板中のFeが反応して、結晶粒界に存在する内部酸化物の周囲に生成した楔状のZn−Fe合金相の態様を示し、(c)は、合金化処理で形成したZn−Feめっき層の態様を示す図である。It is a figure which shows typically the mechanism in which plating adhesiveness improves notably. (A) shows the aspect which gave the zinc plating to the fine-structure steel plate which includes an internal oxide, (b) shows the Zn which penetrate | invaded from the plating layer, and Fe in a steel plate react, and it is in a crystal grain boundary. The aspect of the wedge-shaped Zn-Fe alloy phase produced | generated around the internal oxide which exists is shown, (c) is a figure which shows the aspect of the Zn-Fe plating layer formed by alloying process. 鋼板表面近傍に形成された“内部酸化物を内包する微細組織”とめっき層の相互関係を示す図である。(a)は、鋼板表面近傍に形成された“内部酸化物を内包する微細組織”の態様を模式的に示し、(b)は、鋼板側に残った“内部酸化物を内包する微細組織”の態様を模式的に示す。It is a figure which shows the correlation of the "microstructure containing an internal oxide" formed in the steel plate surface vicinity, and a plating layer. (A) schematically shows an embodiment of “a fine structure including an internal oxide” formed in the vicinity of the steel sheet surface, and (b) is a “fine structure including an internal oxide” remaining on the steel sheet side. The aspect of is shown typically. 焼鈍後の内部酸化物を内包する微細組織を示す図である。It is a figure which shows the fine structure which includes the internal oxide after annealing. 合金化処理後の鋼板と合金めっき層の界面近傍の微細組織を示す図である。It is a figure which shows the microstructure of the interface vicinity of the steel plate after an alloying process, and an alloy plating layer.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明のめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板(以下「本発明鋼板」ということがある。)は、質量%で、C:0.05〜0.50%、Mnを0.01〜3.0%含有し、さらに、Si:3.0%以下、Al:2.0%以下、Cr:2.0%以下の1種又は2種以上を含有し、Mn+Si+Al+Cr:0.4%以上で、残部Fe及び不可避的不純物からなる鋼板の表面に、Fe:7〜15%、Al:0.01〜1%、残部Zn及び不可避的不純物からなるめっき層を有する合金化溶融亜鉛めっき鋼板において、
(x)上記鋼板と上記めっき層の界面から鋼板側に10μm以内の領域に、(x1)結晶粒径2μm以下で、(x2)Mn、Si、Al、及び、Crの酸化物の1種又は2種以上、及び/又は、Mn、Si、Al、及び、Crの2種以上からなる複合酸化物の1種又は2種以上を内包する微細組織が存在し、
(y)上記微細組織の結晶粒界において、上記酸化物及び/又は複合酸化物の一部の周囲に、Zn−Fe合金相が存在することを特徴とする。
The high strength alloyed hot dip galvanized steel sheet (hereinafter sometimes referred to as “the present invention steel sheet”) having excellent plating adhesion of the present invention is mass%, C: 0.05 to 0.50%, and Mn is 0. 0.01 to 3.0%, Si: 3.0% or less, Al: 2.0% or less, Cr: 2.0% or less, or Mn + Si + Al + Cr: 0. 4% or more of alloyed hot dip zinc having a plating layer consisting of Fe: 7-15%, Al: 0.01-1%, the balance Zn and inevitable impurities on the surface of the steel plate consisting of the balance Fe and inevitable impurities In plated steel sheet,
(X) One of oxides of (x2) Mn, Si, Al, and Cr, or (x1) having a crystal grain size of 2 μm or less in a region within 10 μm from the interface between the steel plate and the plating layer to the steel plate side or There is a microstructure that includes one or more of two or more and / or a composite oxide composed of two or more of Mn, Si, Al, and Cr,
(Y) A Zn—Fe alloy phase is present around a part of the oxide and / or the composite oxide at a grain boundary of the microstructure .

亜鉛めっきを施す鋼板の厚さ(mm)は特に限定されない。通常、亜鉛めっきを施す鋼板の厚さは0.4〜3.2mmであるが、圧延機の負荷や生産性を考慮すると、1.0〜3.2mmが好ましい。   The thickness (mm) of the steel plate to which galvanization is applied is not particularly limited. Usually, the thickness of the steel sheet to which galvanization is applied is 0.4 to 3.2 mm, but 1.0 to 3.2 mm is preferable in consideration of the load and productivity of the rolling mill.

まず、本発明鋼板の成分組成を限定する理由について説明する。成分組成に係る%は質量%を意味する。   First, the reason which limits the component composition of this invention steel plate is demonstrated. % Related to the component composition means mass%.

C:0.05〜0.5%
Cは、鋼の強度を確保する元素である。0.05%未満では、強度向上効果が期待できず、0.5%を超えると、溶接性が劣化し、本発明鋼板の実用性が低下するので、Cは0.05〜0.5%とする。好ましくは0.10〜0.4%である。
C: 0.05-0.5%
C is an element that ensures the strength of steel. If it is less than 0.05%, the effect of improving the strength cannot be expected, and if it exceeds 0.5%, the weldability is deteriorated and the practicality of the steel sheet of the present invention is lowered. And Preferably it is 0.10 to 0.4%.

Mn:0.01〜3.0%
Mnは、鋼の強度を確保する元素である。また、Mnは、焼鈍時、鋼板の表面近傍の結晶粒の粗大化を抑制する内部酸化物を形成する元素である。0.01%未満では、添加効果が期待できず、3.0%超では、溶接性が劣化し、本発明鋼板の実用性が低下するので、Mnは0.01〜3.0%とする。好ましくは0.07〜3.0%である。
Mn: 0.01 to 3.0%
Mn is an element that ensures the strength of steel. Mn is an element that forms an internal oxide that suppresses coarsening of crystal grains in the vicinity of the surface of the steel sheet during annealing. If it is less than 0.01%, the effect of addition cannot be expected, and if it exceeds 3.0%, the weldability deteriorates and the practicality of the steel sheet of the present invention decreases, so Mn is 0.01 to 3.0%. . Preferably it is 0.07 to 3.0%.

Si:3.0%以下
Siは、鋼の強度を確保する元素である。また、Siは、焼鈍時、鋼板の表面近傍の結晶粒の粗大化を抑制する内部酸化物を形成する元素である。3.0%を超えると、粗大な内部酸化物が生成して、めっき層が剥離し易くなるので、Siは3.0%以下とする。好ましくは2.0%以下である。下限は0%を含むが、添加する場合は0.01%以上が好ましい。
Si: 3.0% or less Si is an element that ensures the strength of steel. Si is an element that forms an internal oxide that suppresses coarsening of crystal grains in the vicinity of the surface of the steel sheet during annealing. If it exceeds 3.0%, a coarse internal oxide is generated and the plating layer is easily peeled off, so Si is made 3.0% or less. Preferably it is 2.0% or less. The lower limit includes 0%, but when added, 0.01% or more is preferable.

Al:2.0%以下
Alは、鋼を脱酸する元素である。また、Alは、焼鈍時、鋼板の表面近傍の結晶粒の粗大化を抑制する内部酸化物を形成する元素である。2.0%を超えると、粗大な介在物及び内部酸化物が生成して、加工性が低下し、また、めっき層が剥離し易くなるので、Alは2.0%以下とする。高い加工性を確保する観点から、好ましくは1.5%以下である。下限は0%を含むが、添加する場合は0.01%以上が好ましい。
Al: 2.0% or less Al is an element that deoxidizes steel. In addition, Al is an element that forms an internal oxide that suppresses the coarsening of crystal grains in the vicinity of the surface of the steel sheet during annealing. If it exceeds 2.0%, coarse inclusions and internal oxides are produced, workability is lowered, and the plating layer is easily peeled off, so Al is made 2.0% or less. From the viewpoint of ensuring high workability, it is preferably 1.5% or less. The lower limit includes 0%, but when added, 0.01% or more is preferable.

Cr:2.0%以下
Crは、鋼板の加工性、特に、伸びを損なわずに、鋼の強度を確保する元素である。また、Crは、焼鈍時、鋼板の表面近傍の結晶粒の粗大化を抑制する内部酸化物を形成する元素である。2.0%を超えると、粒界偏析で粒界が脆化し、また、合金化速度が遅くなるので、Crは2.0%以下とする。好ましくは1.5%以下である。下限は0%を含むが、添加する場合は、強度の確保の点で、0.01%以上が好ましい。
Cr: 2.0% or less Cr is an element that ensures the strength of the steel without impairing the workability of the steel sheet, particularly the elongation. Cr is an element that forms an internal oxide that suppresses coarsening of crystal grains in the vicinity of the surface of the steel sheet during annealing. If it exceeds 2.0%, the grain boundary becomes brittle due to grain boundary segregation, and the alloying speed becomes slow. Therefore, Cr is made 2.0% or less. Preferably it is 1.5% or less. The lower limit includes 0%, but when added, 0.01% or more is preferable in terms of securing strength.

Mn+Si+Al+Cr:0.4%以上
Mn、Si、Al、及び、Crは、前述したように、いずれも、焼鈍時、鋼板の表面近傍の結晶粒の粗大化を抑制する内部酸化物を形成する元素である。Mn+Si+Al+Crが0.4%未満であると、内部酸化物の生成量が充分でなく、鋼板の表面近傍の結晶粒が粗大化して、所望の微細組織が得られない。それ故、Mn+Si+Al+Crは0.4%以上とする。好ましくは0.9%以上である。上限は、各元素の上限で定まるが、内部酸化物の過剰な生成を抑制する点で、6.0%以下が好ましい。
Mn + Si + Al + Cr: 0.4% or more As described above, Mn, Si, Al, and Cr are all elements that form an internal oxide that suppresses coarsening of crystal grains in the vicinity of the surface of a steel sheet during annealing. is there. If Mn + Si + Al + Cr is less than 0.4%, the amount of internal oxide produced is not sufficient, and the crystal grains near the surface of the steel sheet are coarsened, and a desired microstructure cannot be obtained. Therefore, Mn + Si + Al + Cr is 0.4% or more. Preferably it is 0.9% or more. Although an upper limit is decided by the upper limit of each element, 6.0% or less is preferable at the point which suppresses the excessive production | generation of an internal oxide.

ここで、内部酸化物は、Mn、Si、Al、及び、Crの酸化物、及び、Mn、Si、Al、及び、Crの2種以上からなる複合酸化物である。   Here, the internal oxide is an oxide of Mn, Si, Al, and Cr and a composite oxide composed of two or more of Mn, Si, Al, and Cr.

具体的には、Si酸化物、Mn酸化物、Si−Mn酸化物、Al酸化物、Al−Si複合酸化物、Al−Mn複合酸化物、Al−Si−Mn複合酸化物、Cr酸化物、Cr−Si複合酸化物、Cr−Mn複合酸化物、Cr−Si−Mn複合酸化物、Cr−Al複合酸化物、Cr−Al−Si複合酸化物、Cr−Al−Mn複合酸化物、Cr−Al−Mn−Si複合酸化物である。   Specifically, Si oxide, Mn oxide, Si—Mn oxide, Al oxide, Al—Si composite oxide, Al—Mn composite oxide, Al—Si—Mn composite oxide, Cr oxide, Cr-Si composite oxide, Cr-Mn composite oxide, Cr-Si-Mn composite oxide, Cr-Al composite oxide, Cr-Al-Si composite oxide, Cr-Al-Mn composite oxide, Cr- Al-Mn-Si composite oxide.

内部酸化物の大きさは、伸びが低下しないように、平均直径で1μmを超えないことが好ましく、鋼板の結晶粒界の移動を抑制する効果を発揮するためには、10nm以上であることが好ましい。酸化物の個数は特に限定しないが、断面観察時、深さd(μm)において、断面の板幅方向100μm長さ中に1個以上存在することが好ましい。   The size of the internal oxide is preferably not more than 1 μm in average diameter so that the elongation does not decrease, and in order to exhibit the effect of suppressing the movement of the grain boundary of the steel sheet, it should be 10 nm or more. preferable. The number of oxides is not particularly limited, but at the time of cross-sectional observation, it is preferable that at least one oxide is present in the length of 100 μm in the plate width direction of the cross section at a depth d (μm).

本発明鋼板は、上記成分の他、B:0.010%以下、及び、P:0.10%以下の一方又は両方を含有してもよい。   In addition to the above components, the steel sheet of the present invention may contain one or both of B: 0.010% or less and P: 0.10% or less.

B:0.010%以下
Bは、粒界を強化し、2次加工性を改善する元素であるが、めっき性を劣化させる元素でもある。それ故、上限を0.010%とする、好ましくは0.0075%である。下限は特に限定しないが、上記改善効果を確保する点で、0.0001%以上が好ましい。
B: 0.010% or less B is an element that reinforces grain boundaries and improves secondary workability, but is also an element that deteriorates plating properties. Therefore, the upper limit is 0.010%, preferably 0.0075%. Although a minimum is not specifically limited, 0.0001% or more is preferable at the point which ensures the said improvement effect.

P:0.10%以下
Pは、鋼の強度を高める元素であるが、鋼板の板厚中央部に偏析して、溶接部を脆化する元素でもある。それ故、上限を0.10%とする。好ましくは0.08%以下である。下限は特に限定しないが、強度向上効果を確保する点で、0.001%以上が好ましい。
P: 0.10% or less P is an element that enhances the strength of steel, but it is also an element that segregates at the center of the plate thickness of the steel sheet and embrittles the weld. Therefore, the upper limit is made 0.10%. Preferably it is 0.08% or less. Although a minimum is not specifically limited, 0.001% or more is preferable at the point which ensures the strength improvement effect.

本発明鋼板は、上記以外の元素としてS、Nを不可避的に含有するが、Sは、0.02%以下が好ましく、Nは、0.01%以下が好ましい。また、本発明鋼板は、本発明鋼板の特性を阻害しない範囲で、必要に応じ、Ti、Nb、Mo、W、Co、Cu、Ni、Sn、V、及び、REMの1種又は2種以上を含有してもよい。   The steel sheet of the present invention inevitably contains S and N as elements other than those described above, but S is preferably 0.02% or less, and N is preferably 0.01% or less. In addition, the steel sheet of the present invention is one or more of Ti, Nb, Mo, W, Co, Cu, Ni, Sn, V, and REM as necessary, as long as the properties of the steel sheet of the present invention are not impaired. It may contain.

本発明鋼板のめっき層の成分組成を限定する理由について説明する。成分組成に係る%は質量%を意味する。   The reason for limiting the component composition of the plating layer of the steel sheet of the present invention will be described. % Related to the component composition means mass%.

Fe:7〜15%
7%未満であると、未合金となり、表面外観が悪いだけでなく、プレス時の耐フレーキング性が劣位となる。一方で、15%を超えると、過合金となり、プレス時の耐パウダリング性が劣位となるので、めっき層中のFeは7〜15%とする。
Fe: 7 to 15%
If it is less than 7%, it becomes unalloyed and not only the surface appearance is bad, but also the flaking resistance during pressing is inferior. On the other hand, if it exceeds 15%, it becomes an overalloy and the powdering resistance at the time of pressing becomes inferior, so Fe in the plating layer is made 7 to 15%.

Al:0.01〜1%
0.01%未満であると、鋼板製造時にめっき層中でZn-Feの合金化反応が過度に進行してしまい、1%を超えると、逆に、AlによるZn−Fe合金化反応の抑制効果が顕著になることで、Zn−Fe反応を進行させるために、ライン速度を低減させざるを得なくなり、生産性を劣化させるので、めっき層中のAlは0.01〜1%とする。
Al: 0.01 to 1%
If it is less than 0.01%, the alloying reaction of Zn-Fe proceeds excessively in the plating layer during the production of the steel sheet, and if it exceeds 1%, on the contrary, the Zn-Fe alloying reaction by Al is suppressed. When the effect becomes remarkable, the Zn-Fe reaction is advanced, so the line speed must be reduced, and the productivity is deteriorated. Therefore, Al in the plating layer is set to 0.01 to 1%.

次に、本発明の組織的特徴について説明する。   Next, organizational features of the present invention will be described.

全還元炉型(RTF)のラインで、合金化溶融亜鉛めっきを製造する場合、焼鈍炉内の酸素ポテンシャルを調整して、鋼板表面に存在する酸化膜を還元しつつ、一方で、鋼板中のMn、Si、Al、及び、Cr(易酸化性元素)を酸化することができる。   When producing alloyed hot dip galvanizing in the total reduction furnace type (RTF) line, while adjusting the oxygen potential in the annealing furnace to reduce the oxide film present on the steel sheet surface, Mn, Si, Al, and Cr (an easily oxidizable element) can be oxidized.

焼鈍前の鋼板の組織は、通常、圧延まま組織であり、多くの場合、粒径がサブミクロンオーダーの微細な結晶粒で構成されている。この微細組織が、焼鈍炉内で加熱されて、ある一定の温度以上に達すると、回復・再結晶が起きて、結晶粒が徐々に粗大化する。   The structure of the steel sheet before annealing is usually a structure as it is rolled, and in many cases, it is composed of fine crystal grains having a particle size of the order of submicrons. When this microstructure is heated in an annealing furnace and reaches a certain temperature or higher, recovery and recrystallization occur, and the crystal grains gradually become coarser.

しかし、焼鈍炉内の酸素ポテンシャルや昇温パターンを調整すれば、鋼板表面近傍の結晶粒が粗大化する前に、鋼板中のMn、Si、Al、及び、Cr(易酸化性元素)を、鋼板の結晶粒界で優先的に酸化することができる。   However, by adjusting the oxygen potential and temperature rising pattern in the annealing furnace, before the crystal grains near the steel sheet surface are coarsened, Mn, Si, Al, and Cr (easy oxidizable elements) in the steel sheet are changed. It can be preferentially oxidized at the grain boundaries of the steel sheet.

優先酸化で生成した内部酸化物が、結晶粒界の移動を抑制するので、鋼板表面近傍の圧延まま微細組織を微細なままに維持し、鋼板表面近傍に、結晶粒界に内部酸化物を内包する微細組織を形成することができる。   The internal oxide produced by the preferential oxidation suppresses the movement of the crystal grain boundary, so that the microstructure is kept fine as it is rolled near the steel sheet surface, and the internal oxide is included in the crystal grain boundary near the steel sheet surface. A fine structure can be formed.

本発明鋼板においては、焼鈍で生成した内部酸化物の粒成長抑制作用で得られた微細組織の結晶粒界において、内部酸化物の周囲に、めっき層から浸入したZnと鋼板中のFeが反応して、Zn−Fe合金相が楔状に生成する。Zn−Fe合金相が楔状をなしているので、鋼板とめっき層の密着性が顕著に向上する。この密着性向上機構について、図面に基づいて説明する。   In the steel sheet of the present invention, Zn entering from the plating layer reacts with Fe in the steel sheet around the internal oxide at the grain boundary of the microstructure obtained by the grain growth inhibiting action of the internal oxide generated by annealing. Thus, the Zn—Fe alloy phase is formed in a wedge shape. Since the Zn—Fe alloy phase has a wedge shape, the adhesion between the steel sheet and the plating layer is significantly improved. This adhesion improving mechanism will be described with reference to the drawings.

図1に、めっき密着性が顕著に向上する機構を模式的に示す。図1(a)に、内部酸化物を内包する微細組織の鋼板に亜鉛めっきを施した態様を示し、図1(b)に、めっき層から侵入したZnと鋼板中のFeが反応して、結晶粒界に存在する内部酸化物の周囲に生成した楔状のZn−Fe合金相の態様を示し、図1(c)に、合金化処理で形成されたZn−Feめっき層の態様を示す。   FIG. 1 schematically shows a mechanism for significantly improving plating adhesion. FIG. 1 (a) shows an embodiment in which a fine-structure steel sheet containing an internal oxide is galvanized, and FIG. 1 (b) shows the reaction between Zn invading from the plating layer and Fe in the steel sheet. An embodiment of a wedge-shaped Zn—Fe alloy phase generated around an internal oxide existing at a grain boundary is shown, and FIG. 1C shows an embodiment of a Zn—Fe plating layer formed by alloying treatment.

図1(a)に示すように、内部酸化物4を内包する微細組織1を有する鋼板にめっき層2を形成する。内部酸化物4は、殆どの結晶粒界に存在するが、内部酸化物4が存在する結晶粒界は、めっき層2からZnが侵入し易く、合金化処理により、内部酸化物4が存在する結晶粒界の一部には、めっき層2から侵入したZnと、鋼板中のFeが結合して、図1(b)に示すように、内部酸化物4の周囲に楔状のZn−Fe合金相(金属間化合物)5が形成される。   As shown in FIG. 1A, a plating layer 2 is formed on a steel plate having a microstructure 1 that contains an internal oxide 4. Although the internal oxide 4 exists at almost all grain boundaries, Zn easily penetrates from the plating layer 2 at the crystal grain boundary where the internal oxide 4 exists, and the internal oxide 4 exists due to alloying treatment. Zn entering from the plating layer 2 and Fe in the steel sheet are bonded to a part of the crystal grain boundary, and a wedge-shaped Zn—Fe alloy is formed around the inner oxide 4 as shown in FIG. A phase (intermetallic compound) 5 is formed.

合金化処理の進行に伴い、図1(c)に示すように、合金めっき層3は、鋼板表面近傍の微細組織を取り込んで、内部に成長していくが、本発明者らは、鋼板表面近傍の微細組織1の内部に存在する楔状のZn−Fe合金相(金属間化合物)5が、合金めっき層3と鋼板表面近傍の微細組織1を強固に結合して、合金めっき層3と鋼板の密着性を飛躍的に高めることを見いだした。この点が、本発明の基礎をなす知見である。   As the alloying process proceeds, as shown in FIG. 1 (c), the alloy plating layer 3 takes in a fine structure in the vicinity of the steel sheet surface and grows inside. The wedge-shaped Zn—Fe alloy phase (intermetallic compound) 5 existing inside the microstructure 1 in the vicinity firmly bonds the alloy plating layer 3 and the microstructure 1 in the vicinity of the steel plate surface, and the alloy plating layer 3 and the steel plate. It has been found that the adhesion of can be dramatically improved. This is the knowledge forming the basis of the present invention.

前述したように、鋼板表面近傍の微細組織は、合金化処理により、鋼板表面側から、合金めっき層に取り込まれていくが、本発明者らは、焼鈍雰囲気と加熱速度を調整して、内部酸化の進行を制御すれば、鋼板表面近傍の微細組織の厚みを制御できることを見いだした。焼鈍雰囲気と加熱速度の調整については後述する。   As described above, the microstructure near the steel sheet surface is taken into the alloy plating layer from the steel sheet surface side by alloying treatment, but the inventors adjusted the annealing atmosphere and heating rate to adjust the internal structure. It has been found that the thickness of the microstructure near the surface of the steel sheet can be controlled by controlling the progress of oxidation. The adjustment of the annealing atmosphere and the heating rate will be described later.

内部酸化物を内包する微細組織を、ある程度の厚みをもって形成すれば、鋼板とめっき層の界面での合金化が迅速に進行し、かつ、合金化処理の終了後に、鋼板側に、微細組織の一部が残ることになる。   If the microstructure containing the internal oxide is formed with a certain thickness, alloying at the interface between the steel plate and the plating layer proceeds rapidly, and after the alloying process is completed, Some will remain.

図2に、鋼板表面近傍に形成された“内部酸化物を内包する微細組織”とめっき層の相互関係を示す。図2(a)に、鋼板表面近傍に形成された“内部酸化物を内包する微細組織”の態様を模式的に示し、図2(b)に、鋼板側に残った“内部酸化物を内包する微細組織”の態様を模式的に示す。   FIG. 2 shows the interrelationship between the “fine structure containing internal oxides” formed in the vicinity of the steel sheet surface and the plating layer. FIG. 2 (a) schematically shows an embodiment of “a fine structure including an internal oxide” formed in the vicinity of the steel sheet surface, and FIG. 2 (b) illustrates an “internal oxide included” remaining on the steel sheet side. An embodiment of “fine structure” is schematically shown.

図2(a)に示す鋼板の表面にめっき層を形成し、合金化処理を施すと、合金めっき層が、前述したように、“内部酸化物を内包する微細組織”を取り込んで鋼板側に成長するが、本発明鋼板においては、図2(b)に示すように、鋼板側に“内部酸化物を内包する微細組織”を残すこととする。   When a plating layer is formed on the surface of the steel plate shown in FIG. 2 (a) and alloying is performed, the alloy plating layer takes in the “microstructure containing the internal oxide” as described above, and on the steel plate side. Although it grows, in the steel sheet of the present invention, as shown in FIG. 2 (b), the "fine structure including the internal oxide" is left on the steel sheet side.

“内部酸化物を内包する微細組織”の結晶粒界に存在する“楔状のZn−Fe合金相”が、合金めっき層と鋼板を組織的に結び付ける役割を担うので、本発明鋼板では、めっき密着性が飛躍的に向上する。   Since the “wedge-like Zn—Fe alloy phase” present at the grain boundary of the “microstructure containing the internal oxide” plays a role of systematically connecting the alloy plating layer and the steel plate, the steel plate of the present invention is in close contact with the plating. Sexually improves.

めっき密着性の飛躍的向上を確保するため、本発明鋼板においては、鋼板とめっき層の界面から10μm以内の鋼板側に、(x1)結晶粒径が2μm以下で、(x2)内部酸化物(Mn、Si、Al、及び、Crの酸化物の1種又は2種以上、及び/又は、Mn、Si、Al、及び、Crの2種以上からなる複合酸化物の1種又は2種以上)を内包する微細組織を残すことを特徴とする。   In order to ensure a dramatic improvement in plating adhesion, in the steel sheet of the present invention, (x1) the crystal grain size is 2 μm or less and (x2) internal oxide (on the steel sheet side within 10 μm from the interface between the steel sheet and the plating layer) 1 or 2 or more types of oxides of Mn, Si, Al and Cr, and / or 1 or 2 or more types of composite oxides comprising 2 or more types of Mn, Si, Al and Cr) It is characterized by leaving a fine structure that encloses.

前述したように、焼鈍前の鋼板の組織は、通常、圧延まま組織であり、多くの場合、粒径がサブミクロンオーダーの微細な結晶粒で構成されている。このことを踏まえ、結晶粒界に、充分な量の“楔状のZn−Fe合金相”を形成するため、上記微細組織は、結晶粒径2μm以下の微細組織に規定した。好ましくは、微細組織の粒径が1μm以下となることである。   As described above, the structure of the steel sheet before annealing is usually a rolled structure, and in many cases, the structure is composed of fine crystal grains having a particle size of submicron order. Based on this, in order to form a sufficient amount of “wedge-like Zn—Fe alloy phase” at the crystal grain boundary, the microstructure is defined as a microstructure having a crystal grain size of 2 μm or less. Preferably, the particle size of the fine structure is 1 μm or less.

上記微細組織の存在範囲が“鋼板とめっき層の界面から10μm”を超えると、内部酸化組織が過度に存在することで鋼板表面近傍が脆くなり、曲げ加工時に割れを発生し易くなってしまう。それ故、微細組織の存在範囲を、鋼板側において、“鋼板とめっき層の界面から10μm以内”と規定した。   When the range of the fine structure exceeds “10 μm from the interface between the steel plate and the plating layer”, the presence of excessive internal oxide structure makes the vicinity of the steel plate surface brittle, and cracks are likely to occur during bending. Therefore, the existence range of the fine structure is defined as “within 10 μm from the interface between the steel plate and the plating layer” on the steel plate side.

十分な曲げ性を確保するためには、内部酸化物を内包する微細組織の存在領域が、“鋼板とめっき層の界面から5μm以内”となることが好ましい。   In order to ensure sufficient bendability, it is preferable that the region where the fine structure including the internal oxide is present is “within 5 μm from the interface between the steel plate and the plating layer”.

次に、本発明鋼板の製造方法について説明する。   Next, the manufacturing method of this invention steel plate is demonstrated.

本発明鋼板の製造方法は、所定の成分組成の鋼板を、水素:0.1〜50体積%、残部:窒素及び不可避不純物からなり、露点:−30℃超〜20℃の雰囲気中で、600℃以上のある一定の温度領域(T1以上T2以下の領域)を、6℃/秒以下で750〜900℃に加熱して焼鈍し、その後、溶融亜鉛めっきを行い、次いで、合金化処理を行うことを特徴とする。   The method for producing a steel sheet of the present invention comprises a steel sheet having a predetermined component composition comprising hydrogen: 0.1 to 50% by volume, the balance: nitrogen and inevitable impurities, in an atmosphere with a dew point of more than −30 ° C. to 20 ° C. A certain temperature range (T1 or more and T2 or less) at ℃ or higher is heated to 750 to 900 ℃ at 6 ℃ / second or less, then hot dip galvanized, and then alloyed. It is characterized by that.

前記焼鈍は、連続式溶融めっき設備の全還元炉で行うことが好ましい。めっき前の還元焼鈍雰囲気は、水素:0.1〜50体積%、残部:窒素及び不可避不純物からなる雰囲気とする。水素が0.1体積%未満であると、鋼板表面に存在する酸化膜を十分に還元することができず、めっき濡れ性を確保できない。それ故、還元焼鈍雰囲気の水素量は0.1体積%以上とする。   The annealing is preferably performed in a total reduction furnace of a continuous hot dip plating facility. The reducing annealing atmosphere before plating is an atmosphere composed of hydrogen: 0.1 to 50% by volume and the balance: nitrogen and inevitable impurities. If the hydrogen content is less than 0.1% by volume, the oxide film present on the surface of the steel sheet cannot be sufficiently reduced, and plating wettability cannot be ensured. Therefore, the amount of hydrogen in the reduction annealing atmosphere is set to 0.1% by volume or more.

還元焼鈍雰囲気中の水素が50体積%を超えると、露点(水蒸気分圧PH2Oに対応する)が上昇し過ぎて、結露を防ぐ設備を導入する必要がある。新たな設備の導入は、生産コストの上昇を招くので、還元焼鈍雰囲気の水素量は50体積%以下とする。好ましくは、0.1〜40体積%である。 If the hydrogen in the reducing annealing atmosphere exceeds 50% by volume, the dew point (corresponding to the water vapor partial pressure P H2O ) increases too much, and it is necessary to introduce equipment for preventing dew condensation. Since the introduction of new equipment causes an increase in production cost, the amount of hydrogen in the reduction annealing atmosphere is set to 50% by volume or less. Preferably, it is 0.1-40 volume%.

焼鈍還元雰囲気の露点は、−30℃超〜20℃とする。−30℃以下であると、Si、Mn等の易酸化性元素を、鋼中で内部酸化させるために必要な酸素ポテンシャルを確保することが困難となるので、露点は、−30℃超とする。好ましくは、−25℃以上である。一方で、20℃を超えると、還元ガスを流す配管の結露が顕著になり、安定した雰囲気制御が困難となるので、露点は、20℃以下とする。好ましくは、15℃以下である。   The dew point of the annealing reduction atmosphere is more than −30 ° C. to 20 ° C. If it is −30 ° C. or lower, it becomes difficult to secure an oxygen potential necessary for internal oxidation of easily oxidizable elements such as Si and Mn in steel, so the dew point is over −30 ° C. . Preferably, it is −25 ° C. or higher. On the other hand, if the temperature exceeds 20 ° C., dew condensation on the piping through which the reducing gas flows becomes remarkable, and stable atmosphere control becomes difficult. Therefore, the dew point is set to 20 ° C. or less. Preferably, it is 15 degrees C or less.

還元焼鈍雰囲気のlog(PH2O/PH2)を、0以下に調整することが好ましい。log(PH2O/PH2)を大きくすると、合金化は促進されるが、0を超えると、焼鈍前に鋼板表面に生成していた酸化膜を充分に還元できず、めっき濡れ性を確保できないので、log(PH2O/PH2)の上限は0とする。より好ましくは、−0.1以下である。 It is preferable to adjust the log (P H2O / P H2 ) of the reduction annealing atmosphere to 0 or less. If log (P H2O / P H2 ) is increased, alloying is promoted, but if it exceeds 0, the oxide film formed on the surface of the steel plate before annealing cannot be reduced sufficiently and plating wettability cannot be ensured. Therefore, the upper limit of log (P H2O / P H2 ) is set to zero. More preferably, it is -0.1 or less.

還元焼鈍雰囲気中では、鋼板が600℃に達すると、600℃以上のある一定の温度領域(T1℃以上T2℃以下の領域)を6℃/秒以下の加熱速度で加熱し、最高750〜900℃まで加熱して焼鈍を行う。T1℃以上T2℃以下の領域内の加熱速度が6℃/秒を超えると、加熱速度が早すぎて、内部酸化が十分に進行する前に鋼板内部の結晶粒が粗大化してしまい、本発明が必要とする組織形態が得られなくなってしまうので、加熱速度は6℃/秒以下とする。好ましくは4℃/秒以下である。下限は特に定めないが、生産性の観点から0.2℃/秒以上が好ましい。
なお、特許請求の範囲では、実施例に基づき、T1℃以上T2℃以下の領域は、650℃以上740℃以下の温度領域内とし、T1℃以上T2℃以下の領域の加熱速度を4℃/秒以下とし、4℃/秒以下の加熱速度で加熱する時間、すなわち、T1℃以上T2℃以下の間の滞在時間を10秒以上とした。
In the reduction annealing atmosphere, when the steel sheet reaches 600 ° C., a certain temperature region of 600 ° C. or higher (T1 ° C. or higher and T2 ° C. or lower region) is heated at a heating rate of 6 ° C./second or lower, and a maximum of 750 to 900 Heat to ℃ and anneal. When the heating rate in the region of T1 ° C. or more and T2 ° C. or less exceeds 6 ° C./second, the heating rate is too fast, and the crystal grains inside the steel sheet become coarse before the internal oxidation sufficiently proceeds. Therefore, the heating rate is set to 6 ° C./second or less. Preferably it is 4 degrees C / sec or less. The lower limit is not particularly defined but is preferably 0.2 ° C./second or more from the viewpoint of productivity.
In the claims, based on the examples, the region of T1 ° C. or more and T2 ° C. or less is set within the temperature region of 650 ° C. or more and 740 ° C. or less, and the heating rate of the region of T1 ° C. or more and T2 ° C. or less is 4 ° C. / The time for heating at a heating rate of 4 ° C./second or less, that is, the residence time between T1 ° C. and T2 ° C. was set to 10 seconds or longer.

焼鈍温度が750℃未満であると、焼鈍前に鋼板表面に生成していた酸化膜を充分に還元できず、めっき濡れ性を確保できないこと場合があるので、焼鈍温度は750℃以上とする。焼鈍温度が900℃を超えると、プレス成形性が劣化するとともに、加熱に必要な熱量が大きくなり、製造コストの上昇を招くので、焼鈍温度は900℃以下とする。好ましくは、760〜880℃である。   If the annealing temperature is less than 750 ° C., the oxide film formed on the surface of the steel plate before annealing cannot be sufficiently reduced, and plating wettability may not be ensured. Therefore, the annealing temperature is set to 750 ° C. or higher. If the annealing temperature exceeds 900 ° C., the press formability deteriorates and the amount of heat required for heating increases, resulting in an increase in manufacturing cost. Therefore, the annealing temperature is set to 900 ° C. or less. Preferably, it is 760-880 degreeC.

還元焼鈍雰囲気の成分組成及び露点、及び、鋼板の加熱速度及び焼鈍温度は、鋼板表面近傍に、所望の“内部酸化物を内包する微細組織”を形成する上で重要である。   The component composition and dew point of the reduction annealing atmosphere, and the heating rate and annealing temperature of the steel sheet are important in forming a desired “microstructure containing internal oxides” in the vicinity of the steel sheet surface.

本発明鋼板では、合金化処理後、めっき層に隣接する鋼板側に、“内部酸化物を内包する微細組織”が残っていることが特徴である。それ故、鋼板の表面近傍に、所定の厚さの“内部酸化物を内包する微細組織”を形成する必要がある。“内部酸化物を内包する微細組織”の厚さは、還元焼鈍雰囲気の成分組成及び露点、及び、鋼板の加熱速度及び焼鈍温度を調整して、所望の厚さの“内部酸化物を内包する微細組織”を形成する。   The steel sheet of the present invention is characterized in that after the alloying treatment, a “microstructure containing an internal oxide” remains on the steel sheet side adjacent to the plating layer. Therefore, it is necessary to form a “fine structure including an internal oxide” having a predetermined thickness in the vicinity of the surface of the steel plate. The thickness of the “microstructure containing the internal oxide” is adjusted by adjusting the component composition and dew point of the reducing annealing atmosphere, the heating rate and the annealing temperature of the steel sheet, and including the “internal oxide” of the desired thickness. A “fine structure” is formed.

溶融亜鉛めっきは、Al:0.01〜1%を含む亜鉛めっき浴を用い、浴温:430〜500℃で行う。   The hot dip galvanizing is performed at a bath temperature of 430 to 500 ° C. using a galvanizing bath containing Al: 0.01 to 1%.

Alが0.01%未満であると、めっき浴中でZn−Fe合金層が急激に成長し、鋼種によっては、浸漬時間のみの所望のめっき層を形成することができないだけでなく、めっき浴中におけるボトムドロスの生成量が増大し、ドロス起因の表面欠陥が生じ、鋼板の外観不良が生じることになる。   When Al is less than 0.01%, a Zn-Fe alloy layer grows rapidly in the plating bath, and depending on the steel type, not only a desired plating layer of only immersion time can be formed, but also the plating bath The amount of bottom dross generated inside increases, surface defects due to dross occur, and the appearance of the steel sheet deteriorates.

一方で、Alが1%を超えると、AlによるZn−Fe合金化反応の抑制効果が顕著になることで、Zn−Fe反応を進行させるためにライン速度を低減させざるを得なくなり、生産性を劣化させる。   On the other hand, if the Al content exceeds 1%, the effect of suppressing the Zn-Fe alloying reaction by Al becomes remarkable, so that the line speed must be reduced to advance the Zn-Fe reaction, and the productivity is increased. Deteriorate.

亜鉛めっき浴の浴温が430℃未満では、亜鉛の融点が約420℃であるので、浴温制御が不安定となり、浴が一部凝固してしまう懸念がある。浴温が500℃を超えると、シンクロールや亜鉛ポットなどの設備の寿命が短くなってしまう。それ故、亜鉛めっき浴の浴温は、420〜500℃が好ましい。より好ましくは440〜480℃である。   When the bath temperature of the galvanizing bath is less than 430 ° C., the melting point of zinc is about 420 ° C., so that the bath temperature control becomes unstable and there is a concern that the bath partially solidifies. When the bath temperature exceeds 500 ° C., the service life of facilities such as sink rolls and zinc pots is shortened. Therefore, the bath temperature of the galvanizing bath is preferably 420 to 500 ° C. More preferably, it is 440-480 degreeC.

めっき付着量は、特に制約はないが、耐食性の観点から片面付着量で1μm以上であることが望ましい。また、加工性、溶接性、及び、経済性の観点から片面付着量で20μm以下が望ましい。   The plating adhesion amount is not particularly limited, but is desirably 1 μm or more in terms of one-side adhesion amount from the viewpoint of corrosion resistance. Further, from the viewpoint of workability, weldability, and economy, the amount of adhesion on one side is preferably 20 μm or less.

合金化処理は、450〜550℃で行う。合金化温度が450℃未満であると、合金化の進行が遅くなり、めっき表層にZn層が残留する可能性がある。合金化速度が550℃を超えると、合金化が進み過ぎて、めっき鋼板界面に脆いΓ相が厚くできので、加工時のめっき密着力が低下する。   The alloying treatment is performed at 450 to 550 ° C. When the alloying temperature is lower than 450 ° C., the progress of alloying is slowed and there is a possibility that the Zn layer remains on the plating surface layer. When the alloying speed exceeds 550 ° C., alloying proceeds too much, and a brittle Γ phase can be thickened at the plated steel sheet interface, so that the plating adhesion during processing is reduced.

なお、本発明のめっき鋼板上に塗装性、溶接性を改善する目的で上層めっきを施すことや、各種の化成処理、例えば、りん酸塩処理、溶接性向上処理、潤滑性向上処理等を施すことは、本発明を逸脱しない。   The plated steel sheet of the present invention is subjected to upper layer plating for the purpose of improving paintability and weldability, and various chemical conversion treatments such as phosphate treatment, weldability improvement treatment, lubricity improvement treatment, etc. This does not depart from the present invention.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例)
表1に示す成分組成の冷延鋼板をめっき原板とし、縦型の溶融めっきシミュレータを用いて、合金化溶融亜鉛めっき鋼板を製造した。めっき前の還元焼鈍条件を表2に示す。最高到達温度は800℃、最高到達温度での保定温度は100秒とした。
(Example)
An alloyed hot-dip galvanized steel sheet was manufactured using a cold-rolled steel sheet having the component composition shown in Table 1 as a plating original sheet and using a vertical hot-dip plating simulator. Table 2 shows the reduction annealing conditions before plating. The maximum temperature reached 800 ° C., and the holding temperature at the maximum temperature was 100 seconds.

焼鈍後に連続して窒素ガス中で鋼板を450℃まで冷却し、Alを0.13%含有する溶融亜鉛浴に3秒浸漬した。溶融亜鉛めっき浴の温度は、鋼板が浴に進入した温度と同じ450℃とした。   After annealing, the steel sheet was continuously cooled to 450 ° C. in nitrogen gas and immersed in a molten zinc bath containing 0.13% Al for 3 seconds. The temperature of the hot dip galvanizing bath was 450 ° C., the same as the temperature at which the steel sheet entered the bath.

めっき後、ガスワイパーで亜鉛の目付量を5〜15μmに調整し、合金化処理を行った。合金化温度は450〜550℃とし、めっき層中のFe量が9〜11%未満となるようにした。合金化処理の後、鋼板を窒素ガスにて室温まで冷却した。めっき層の成分組成は、めっき層を酸で溶解した後、ICPを用いて化学分析して測定した。   After plating, the basis weight of zinc was adjusted to 5 to 15 μm with a gas wiper, and an alloying treatment was performed. The alloying temperature was 450 to 550 ° C., and the amount of Fe in the plating layer was 9 to less than 11%. After the alloying treatment, the steel sheet was cooled to room temperature with nitrogen gas. The component composition of the plating layer was measured by dissolving the plating layer with an acid and then chemically analyzing it using ICP.

また、めっき層と鋼板の界面の組織観察は、10mm×10mmに切り出した鋼板を、クロスセクションポリッシャを用いて加工した後、FE−SEMを用いて、10000倍の倍率で、各試料について20視野以上を観察して行った。得られた画像データを画像解析し、めっき/鋼板界面の鋼板側の組織において、鋼板の初期界面と平行方向の結晶粒径を測定した。結晶粒径が2μm以下のものを微細組織とした。   In addition, the observation of the structure of the interface between the plating layer and the steel plate was performed by processing a steel plate cut into 10 mm × 10 mm using a cross section polisher, and then using FE-SEM at a magnification of 10000 times and 20 fields for each sample. The above was observed. The obtained image data was subjected to image analysis, and the crystal grain size in the direction parallel to the initial interface of the steel plate was measured in the structure on the steel plate side of the plating / steel plate interface. A fine grain having a crystal grain size of 2 μm or less was used.

図3に、焼鈍後の内部酸化物を内包する微細組織を示し、図4に、合金化処理後の鋼板と合金めっき層の界面近傍の微細組織を示す。図3から、鋼板の表面近傍に、内部酸化物を内包する微細組織が形成されていることが解る。また、図4から、鋼板と合金めっき層の界面から鋼板側に、内部酸化物を内包する微細組織が残っていることが解る。   FIG. 3 shows the microstructure containing the internal oxide after annealing, and FIG. 4 shows the microstructure near the interface between the steel sheet after alloying and the alloy plating layer. From FIG. 3, it can be seen that a fine structure including an internal oxide is formed in the vicinity of the surface of the steel sheet. Moreover, it turns out from FIG. 4 that the fine structure which includes an internal oxide remains from the interface of a steel plate and an alloy plating layer to the steel plate side.

結晶粒径が2μm以下の結晶粒が見られなかったものについては、微細組織の平均粒径の測定は行わなかった。また、上記の画像データから、図1(b)に示すようなZn−Fe合金層の微細組織の結晶粒界への浸入の有無を確認した。   For those in which crystal grains having a crystal grain size of 2 μm or less were not observed, the average grain size of the microstructure was not measured. Further, from the above image data, it was confirmed whether or not the fine structure of the Zn—Fe alloy layer as shown in FIG.

これらの鋼板について、耐パウダリング性を調査した。結果を、還元焼鈍条件、界面の組織観察結果と併せて、表2に示す。   These steel sheets were investigated for powdering resistance. The results are shown in Table 2 together with the reduction annealing conditions and the observation results of the interface structure.

耐パウダリング性の評価方法は以下の通りとした。   The method for evaluating the powdering resistance was as follows.

耐パウダリング性
上記の手法で製造した合金化溶融亜鉛めっき鋼板を、幅40mm×長さ250mmに切り出し、r=5mmの半丸ビードの金型にてパンチ肩半径5mm、ダイ肩半径5mmで成形高さ65mmに加工した。加工の際、隔離しためっき層を測定し、以下の基準にて評価した。
Powdering resistance Alloyed hot-dip galvanized steel sheet manufactured by the above method is cut into a width of 40 mm and a length of 250 mm, and formed with a half-round bead die of r = 5 mm with a punch shoulder radius of 5 mm and a die shoulder radius of 5 mm. Processed to a height of 65 mm. During processing, the separated plating layer was measured and evaluated according to the following criteria.

評価基準
めっき剥離量:3g/m2未満:◎
3g/m2以上6g/m2未満:○
6g/m2以上10g/m2未満:△
10g/m2以上:×
Evaluation criteria Plating peeling amount: Less than 3 g / m 2 : ◎
3 g / m 2 or more and less than 6 g / m 2 : ○
6 g / m 2 or more and less than 10 g / m 2 :
10 g / m 2 or more: ×

前述したように、本発明によれば、めっき密着性が、飛躍的に向上した高強度合金化溶融亜鉛めっき鋼板を提供することができる。よって、本発明は、亜鉛めっき鋼板製造産業において利用可能性が高いものである。   As described above, according to the present invention, it is possible to provide a high-strength galvannealed steel sheet having dramatically improved plating adhesion. Therefore, the present invention has high applicability in the galvanized steel sheet manufacturing industry.

1 微細組織
2 めっき層
3 合金めっき層
4 内部酸化物
5 Zn−Fe合金相
6 酸化膜
DESCRIPTION OF SYMBOLS 1 Fine structure 2 Plating layer 3 Alloy plating layer 4 Internal oxide 5 Zn-Fe alloy phase 6 Oxide film

Claims (8)

質量%で、C:0.05〜0.50%、Mnを0.01〜3.0%含有し、さらに、Si:3.0%以下、Al:2.0%以下、Cr:2.0%以下の1種又は2種以上を含有し、Mn+Si+Al+Cr:0.4%以上で、残部Fe及び不可避的不純物からなる鋼板の表面に、Fe:7〜15%、Al:0.01〜1%、残部Zn及び不可避的不純物からなるめっき層を有する合金化溶融亜鉛めっき鋼板において、
(x)上記鋼板と上記めっき層の界面から鋼板側に10μm以内の領域に、(x1)結晶粒径2μm以下で、(x2)Mn、Si、Al、及び、Crの酸化物の1種又は2種以上、及び/又は、Mn、Si、Al、及び、Crの2種以上からなる複合酸化物の1種又は2種以上を内包する微細組織が存在し、
(y)上記微細組織の結晶粒界において、上記酸化物及び/又は複合酸化物の一部の周囲に、Zn−Fe合金相が存在する
ことを特徴とするめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板。
In mass%, C: 0.05 to 0.50%, Mn 0.01 to 3.0%, Si: 3.0% or less, Al: 2.0% or less, Cr: 2. One or two or more of 0% or less, Mn + Si + Al + Cr: 0.4% or more, Fe: 7 to 15%, Al: 0.01 to 1 on the surface of the steel plate made of the remaining Fe and inevitable impurities %, In the alloyed hot-dip galvanized steel sheet having a plating layer consisting of the balance Zn and inevitable impurities,
(X) One of oxides of (x2) Mn, Si, Al, and Cr, or (x1) having a crystal grain size of 2 μm or less in a region within 10 μm from the interface between the steel plate and the plating layer to the steel plate side or There is a microstructure that includes one or more of two or more and / or a composite oxide composed of two or more of Mn, Si, Al, and Cr,
(Y) A high-strength alloy excellent in plating adhesion, characterized in that a Zn-Fe alloy phase is present around a part of the oxide and / or composite oxide at the grain boundary of the microstructure. Hot-dip galvanized steel sheet.
前記Zn−Fe合金相は、合金化処理時、めっき層から浸入したZnと鋼板中のFeが反応して生成したものであることを特徴とする請求項1に記載のめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板。   2. The plating adhesion according to claim 1, wherein the Zn—Fe alloy phase is formed by a reaction between Zn infiltrated from a plating layer and Fe in a steel plate during alloying treatment. High strength galvannealed steel sheet. 前記鋼板が、さらに、質量%で、B:0.010%以下を含有することを特徴とする請求項1又は2に記載のめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板。   The high-strength galvannealed steel sheet with excellent plating adhesion according to claim 1 or 2, wherein the steel sheet further contains, in mass%, B: 0.010% or less. 前記鋼板が、さらに、質量%で、P:0.10%以下を含有することを特徴とする請求項1〜3のいずれか1項に記載のめっき密着性に優れた高強度合金化溶融亜鉛めっき鋼板。   The high-strength alloyed molten zinc with excellent plating adhesion according to any one of claims 1 to 3, wherein the steel sheet further contains, in mass%, P: 0.10% or less. Plated steel sheet. 請求項1〜4のいずれか1項に記載の密着性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法において、
請求項1〜4のいずれか1項に記載の成分組成の鋼板を、水素:0.1〜50体積%、残部:窒素及び不可避不純物からなり、露点:−30℃超〜20℃の雰囲気中で、650℃以上740℃以下の温度領域内のT1℃以上T2℃以下の領域を、℃/秒以下の加熱速度で、T1℃以上T2℃以下の領域の滞在時間が10秒以上となるように加熱し、最高750〜900℃まで加熱して焼鈍し、その後、溶融亜鉛めっきを行い、次いで、合金化処理を行う
ことを特徴とする密着性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。
In the manufacturing method of the high intensity | strength galvannealed steel plate excellent in the adhesiveness of any one of Claims 1-4,
The steel sheet having the component composition according to any one of claims 1 to 4, comprising hydrogen: 0.1 to 50% by volume, balance: nitrogen and inevitable impurities, and dew point: in an atmosphere of more than -30 ° C to 20 ° C In the region of T1 ° C. to T2 ° C. within the temperature region of 650 ° C. to 740 ° C., the residence time in the region of T1 ° C. to T2 ° C. is 10 seconds or more at a heating rate of 4 ° C./second or less. High strength alloyed hot dip galvanized steel sheet with excellent adhesion, characterized by heating to 750 to 900 ° C. and annealing, followed by hot dip galvanization and then alloying Manufacturing method.
前記焼鈍を、連続式溶融めっき設備の全還元炉で行うことを特徴とする請求項5に記載の密着性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。   6. The method for producing a high-strength galvannealed steel sheet with excellent adhesion according to claim 5, wherein the annealing is performed in a total reduction furnace of a continuous hot dip plating facility. 前記溶融亜鉛めっきを、Al:0.01〜1%を含む亜鉛めっき浴を用い、浴温:430〜500℃で行うことを特徴とする請求項1〜6のいずれか1項に記載の密着性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。   The adhesion according to any one of claims 1 to 6, wherein the hot dip galvanization is performed at a bath temperature of 430 to 500 ° C using a zinc plating bath containing Al: 0.01 to 1%. Of high strength alloyed hot-dip galvanized steel sheet with excellent properties. 前記合金化処理を、450〜550℃で行うことを特徴とする請求項1〜7のいずれか1項に記載の密着性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。   The said alloying process is performed at 450-550 degreeC, The manufacturing method of the high intensity | strength galvannealed steel plate excellent in the adhesiveness of any one of Claims 1-7 characterized by the above-mentioned.
JP2011227344A 2011-10-14 2011-10-14 High-strength galvannealed steel sheet with excellent plating adhesion and manufacturing method thereof Active JP6124499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011227344A JP6124499B2 (en) 2011-10-14 2011-10-14 High-strength galvannealed steel sheet with excellent plating adhesion and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011227344A JP6124499B2 (en) 2011-10-14 2011-10-14 High-strength galvannealed steel sheet with excellent plating adhesion and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013087314A JP2013087314A (en) 2013-05-13
JP6124499B2 true JP6124499B2 (en) 2017-05-10

Family

ID=48531542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011227344A Active JP6124499B2 (en) 2011-10-14 2011-10-14 High-strength galvannealed steel sheet with excellent plating adhesion and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6124499B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105908089B (en) * 2016-06-28 2019-11-22 宝山钢铁股份有限公司 A kind of hot-dip low density steel and its manufacturing method
JP7006257B2 (en) * 2017-12-27 2022-01-24 日本製鉄株式会社 A method for manufacturing a hot stamped body and a hot stamped body
JP7006256B2 (en) * 2017-12-27 2022-02-10 日本製鉄株式会社 Manufacturing method of hot-stamped hot-dip galvanized steel sheet and hot-stamped hot-dip galvanized steel sheet
WO2021193038A1 (en) * 2020-03-26 2021-09-30 Jfeスチール株式会社 Raw cold-rolled steel plate with iron-based coating, method for manufacturing raw cold-rolled steel plate with iron-based coating, method for manufacturing cold-rolled steel plate with iron-based coating, method for manufacturing steel plate plated with molten zinc, and method for manufacturing steel plate plated with alloyed molten zinc
US20230374639A1 (en) * 2020-11-06 2023-11-23 Jfe Steel Corporation Galvanized steel sheet, electrodeposition-coated steel sheet, automotive part, method of producing electrodeposition-coated steel sheet, and method of producing galvanized steel sheet
JP7311043B2 (en) * 2020-11-06 2023-07-19 Jfeスチール株式会社 Galvannealed steel sheet, electrodeposition coated steel sheet, automobile parts, method for manufacturing electrodeposition coated steel sheet, and method for manufacturing galvannealed steel sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223360B2 (en) * 2007-03-22 2013-06-26 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent formability and method for producing the same
JP5521520B2 (en) * 2009-12-03 2014-06-18 新日鐵住金株式会社 Alloyed hot-dip galvanized steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2013087314A (en) 2013-05-13

Similar Documents

Publication Publication Date Title
JP6583528B2 (en) High-strength hot-dip galvanized steel sheet with excellent impact resistance and corrosion resistance
JP5633653B1 (en) Alloyed hot-dip galvanized steel sheet and manufacturing method thereof
JP4589880B2 (en) High-strength hot-dip galvanized steel sheet excellent in formability and hole expansibility, high-strength alloyed hot-dip galvanized steel sheet, method for producing high-strength hot-dip galvanized steel sheet, and method for producing high-strength alloyed hot-dip galvanized steel sheet
JP6009438B2 (en) Method for producing austenitic steel
JP6124499B2 (en) High-strength galvannealed steel sheet with excellent plating adhesion and manufacturing method thereof
JP2020509205A (en) Hot-dip aluminum-plated steel excellent in corrosion resistance and workability and method for producing the same
JP4329639B2 (en) Steel plate for heat treatment with excellent liquid metal brittleness resistance
JP5392116B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JPWO2015022778A1 (en) Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
JP4555738B2 (en) Alloy hot-dip galvanized steel sheet
JP5176484B2 (en) Alloyed hot-dip galvanized steel sheet with excellent appearance
KR102127776B1 (en) Mn-containing alloyed hot-dip galvanized steel sheet and manufacturing method thereof
JP4720618B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP5741364B2 (en) Alloyed hot-dip galvanized steel sheet with excellent adhesive strength and its manufacturing method
JP7131719B1 (en) Hot press member, hot press steel sheet, and manufacturing method thereof
JP4452126B2 (en) Steel plate for galvannealed alloy
JP5245376B2 (en) Alloyed hot dip galvanized steel sheet using steel sheet for galvannealed alloy with excellent bake hardenability
JP4377784B2 (en) Alloy hot-dip galvanized steel sheet
JP5206114B2 (en) Alloyed hot-dip galvanized steel sheet with excellent workability, plating adhesion, corrosion resistance, and appearance quality
JP6089895B2 (en) Alloyed hot-dip galvanized steel sheet with excellent chipping resistance
JP5640661B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and high-strength galvannealed steel sheet
JP5092858B2 (en) Hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
KR102031459B1 (en) Ultra high strength high manganese galvanized steel sheet having excellent coatability and method of manufacturing the same
JP5728827B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP2005200711A (en) Method of producing hot dip galvannealed steel sheet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150413

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170404

R151 Written notification of patent or utility model registration

Ref document number: 6124499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350