JPH04141545A - High temperature low thermal expansion cast iron - Google Patents

High temperature low thermal expansion cast iron

Info

Publication number
JPH04141545A
JPH04141545A JP26484190A JP26484190A JPH04141545A JP H04141545 A JPH04141545 A JP H04141545A JP 26484190 A JP26484190 A JP 26484190A JP 26484190 A JP26484190 A JP 26484190A JP H04141545 A JPH04141545 A JP H04141545A
Authority
JP
Japan
Prior art keywords
thermal expansion
cast iron
coefficient
temperature
low thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26484190A
Other languages
Japanese (ja)
Other versions
JP2694240B2 (en
Inventor
Ichizo Sakurai
櫻井 市蔵
Yasushi Ueda
泰 上田
Kunihiko Matsuo
松尾 国彦
Kokichi Nakamura
中村 幸吉
Haruki Sumimoto
炭本 治喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2264841A priority Critical patent/JP2694240B2/en
Publication of JPH04141545A publication Critical patent/JPH04141545A/en
Application granted granted Critical
Publication of JP2694240B2 publication Critical patent/JP2694240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Braking Arrangements (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To provide cast iron with excellent damping capacity and mechanical characteristics and to stabilize its castability by specifying the content of Ni and Co and their relationship in a steel. CONSTITUTION:The compsn. of cast iron is formed of a one constituted of, by weight, 1.5 to 3.0% C, 0.5 to 2.0% Si, <=1.0% Mn, 22 to 30% Ni, 3 to 20% Co and the balance Fe with inevitable impurities. Furthermore, the content of Ni and Co lies in the range of 31.5<=Ni+0.75Co<=37. After casting, the cast iron is heated to about 900 to 1150 deg.C and is held for desired time. If required, this cast iron is furthermore incorporated with either or both of Mg and Ca by 0.02 to 0.1% in all. By the above compsn., a high temp. low thermal expansion member having a complicated shape can stably be provided with good castability.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は熱膨張率のきわめて低い鋳鉄材料、特に常温以
上250℃においても比較的その特性を持続する材料に
係る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cast iron material with an extremely low coefficient of thermal expansion, particularly a material that maintains its properties relatively even at temperatures above room temperature and 250°C.

[従来の技術] 従来、装置や機械内の部材として組込まれるもののうち
、機能上熱膨張率のきわめて小さい材料を求められる場
合がある。たとえば、精密機械の部品や金型、ラッピン
グプレートなどは、外的温度の変化に伴う膨張量が小さ
くないと、精緻な仕上状態に狂いが生じたり、製品のサ
イズにばらつきが生じて品質上の信頼性に悪い影響を及
ぼしたりする。
[Prior Art] Conventionally, materials that are incorporated into devices or machines as members have sometimes been required to have a functionally extremely small coefficient of thermal expansion. For example, precision machine parts, molds, wrapping plates, etc. must expand with changes in external temperature to a small extent, or the delicate finish may be distorted or the size of the product may vary, resulting in quality problems. It may have a negative impact on reliability.

このために特定の部材のために低熱膨張材料が開発され
既に多種類の材質が実地に提供されている。
For this purpose, low thermal expansion materials have been developed for specific members, and a wide variety of materials have already been provided in practice.

一般の鉄系合金は通常、熱膨張係数がlθ〜18X10
−6/”Cであるのに対し、種々の合金元素を添加して
この数値を大幅に引き下げようとする試みが加えられ、
最も著名な材質としてインバーが完成した。
Common iron alloys usually have a thermal expansion coefficient of lθ~18X10
-6/''C, attempts have been made to significantly lower this value by adding various alloying elements.
Invar was developed as the most prominent material.

インバーはCが(1,10以下の銅系でN1を35〜3
7%含み、その他Cr、Mo、Coを若干量添加された
材料で常温〜100℃における平均熱膨張係数は鍛造の
ままで1.88X 10−67”C1830℃焼入れ後
で0、G4X 10−8/”C1830°C焼入れ焼戻
し後で1.02X10−8/ ’Cまた830℃から炉
冷した場合でも2.01X 10−”/ ”Cの低い熱
膨張率が報告されている。
Invar is a copper system with C (1.10 or less) and N1 of 35 to 3
This material contains 7% of Cr, Mo, and Co, and the average coefficient of thermal expansion at room temperature to 100℃ is 1.88X 10-67" as forged, and 0 after quenching at 1830℃, G4X 10-8. A low thermal expansion coefficient of 1.02X10-8/'C after quenching and tempering at 1830°C and 2.01X10-'/'C even when furnace-cooled from 830°C has been reported.

さらにその後の開発に係るスーパーインバー(F e 
−32N I−5G o)に至ると0.I X 10−
6/ ’Cと、はぼOに近い数値を示す。(以上、牛丼
 享「新しい素形材−低熱膨張鋳造材」:鋳鍛造と熱処
理89年1月号21〜28頁) しかしインバーの低熱膨張率は磁気変態点以下の強磁性
による自発体積磁歪(収縮)が本来の熱膨張と重なって
見かけ上の膨張を抑制していると説明されているから、
常温以上磁気変態点まではよいとしても、200℃以上
に昇温する場合この持続が問題となる。
Furthermore, super invar (F e
-32N I-5G o) 0. IX10-
6/'C indicates a value close to O. (The above is from Toru Gyudon, "New Formed Material - Low Thermal Expansion Casting Material": Casting, Forging and Heat Treatment, January 1989 issue, pages 21-28) However, Invar's low coefficient of thermal expansion is caused by spontaneous bulk magnetostriction due to ferromagnetism below the magnetic transformation point. It is explained that (contraction) overlaps with the original thermal expansion and suppresses the apparent expansion.
Even if it is fine from room temperature to the magnetic transformation point, this persistence becomes a problem when the temperature is raised to 200° C. or higher.

インバーよりC量を増加した低熱膨張材料もその後数多
く提案されていて、たとえば特開平1−306540号
公報においては、C083〜2.0%(実施例では0.
73) 、S i 0.3〜20%、Ni28〜3B%
、Co 2.0〜7.0%、Mg又はCaを0.1%含
むダクタイルオーステナイト鋳鉄を開示し、200℃ま
での熱膨張係数1.077X 10−6/’Cを例示し
て%Xる。また特開昭64−21037号公報番こお0
てもC: o、e〜1.0%、S I : 0.3〜1
.0%、l’Ji:2B〜32%、CO:8.0〜18
.0%を含み(N i+ CO)が40.0〜46.0
の範囲に入る高温低熱膨張鋳造合金を提示し、当該実施
例においてC:OJ2〜0.98、その他上記成分範囲
内にある5ケの試料の30〜500℃間の平均熱膨張係
数αは6.6〜?、4X10−”/”Cの間番こあるこ
とを明らかにした。さらに特開平1−283342号公
報はC:3.0以下、N125.0〜40.0、co:
8.0〜12.0と広範な含有範囲を指定して(するが
、実施例においてはC: 2.00〜1.70の比較的
狭い範囲における測定結果を示し、常温から200°C
までの平均熱膨張係数αは5.2〜4.IX 10−6
/ ”C&こ納まることを明らかにしている。
Since then, many low thermal expansion materials with an increased C content compared to Invar have been proposed. For example, in JP-A-1-306540, C083 to 2.0% (0.
73), Si 0.3-20%, Ni 28-3B%
, Co 2.0-7.0%, Mg or Ca 0.1% ductile austenitic cast iron is disclosed, and the thermal expansion coefficient up to 200°C is 1.077X 10-6/'C. . Also, Japanese Patent Application Laid-Open No. 64-21037 No. 0
Even C: o, e~1.0%, SI: 0.3~1
.. 0%, l'Ji: 2B-32%, CO: 8.0-18
.. 0% (N i + CO) is 40.0 to 46.0
In this example, C: OJ is 2 to 0.98, and the average coefficient of thermal expansion α between 30 and 500°C of five samples within the above component range is 6. .6~? , 4X10-"/"C. Further, JP-A-1-283342 discloses C: 3.0 or less, N125.0 to 40.0, co:
Specifying a wide content range of C: 8.0 to 12.0 (however, in the examples, measurement results are shown in a relatively narrow range of C: 2.00 to 1.70, and C: from room temperature to 200 ° C.
The average coefficient of thermal expansion α is 5.2 to 4. IX 10-6
/ ``It has become clear that C&K will fit.

[発明が解決しようとする課題] インバーを起点とする低熱膨張率材料は添加元素の調整
を主体にさまざまな発展を遂げてきた。
[Problems to be Solved by the Invention] Low thermal expansion coefficient materials starting with Invar have achieved various developments mainly through adjustment of additive elements.

成分的に見ればFe−Pt系、F e −P d系、Z
r−Nb−Fe系、Cr−Fe−Mn系など多岐に亘る
が、実用上鉄系としてはFe−N1−Coをベースとす
る材料が中心となって研究されてきた。
In terms of components, Fe-Pt system, Fe-Pd system, Z
Although there are a wide variety of materials such as r-Nb-Fe type and Cr-Fe-Mn type, research has focused on materials based on Fe-N1-Co as iron-based materials in practical use.

しかしインバーを筆頭に0%が低いオーステナイト鋼は
望むならば熱膨張率を常温ではほぼ0にさえすることが
可能となったが、前述のとおり、当材料の低熱膨張性が
磁気変態点以下の磁歪に起因するのであるから、常温よ
りやや高温の200℃〜250℃において使用される部
材については、常温における数値をそのまま援用できず
、温度上昇と共に急激に大きくなる熱膨張係数を採用せ
ざるを得なくなる。この理由のために機械や装置を構成
する部材としては難点となることがある。
However, it has become possible to reduce the coefficient of thermal expansion of austenitic steels with low 0%, such as Invar, to almost 0 at room temperature if desired. Because it is caused by magnetostriction, for members used at temperatures slightly higher than room temperature, 200°C to 250°C, the values at room temperature cannot be used as is, and it is necessary to use a coefficient of thermal expansion that increases rapidly as the temperature rises. You won't get any more. For this reason, it may be difficult to use as a component of machines or devices.

しかも低炭素オーステナイト鋼の共通要素として鋳造性
がきわめて劣悪であり、溶解温度の高いにも拘らず溶湯
の流動性が悪く、鋳造技術の向上した今日においても複
雑な形状の部材を健全に鋳造することが難しい。
Moreover, as a common element of low carbon austenitic steel, castability is extremely poor, and despite the high melting temperature, the fluidity of the molten metal is poor, and even today with improved casting technology, parts with complex shapes cannot be cast soundly. It's difficult.

さらに一般に低炭素鋼共通の要素である制振性の小さい
点は適用しようとする装置などの機能にマイナスの要因
を与える。低熱膨張材料が測定機器の標準尺にはじまり
電子機器(たとえばIC基盤、サーモスタット素子)や
低温機器(LPGタンク:超電導システム)と用途を拡
大するにつれ低熱膨張性が満足できても制振性が小さい
ために折角の機能を減殺されることは少なからずである
Furthermore, low vibration damping properties, which is a common element of low carbon steels, have a negative effect on the functionality of devices to which they are applied. As the use of low thermal expansion materials has expanded from standard measurement equipment to electronic equipment (e.g. IC boards, thermostat elements) and low-temperature equipment (LPG tanks: superconducting systems), even if low thermal expansion can be achieved, vibration damping properties are low. Therefore, it is not uncommon for the functionality of the device to be reduced.

次に比較的炭素含量の高いオーステナイト鋳鉄において
は周知のとおり制振性は優れ、切削性も格段に向上する
。必要とあれば黒鉛を球状化して強度と靭性を与えるこ
ともできる。
Next, as is well known, austenitic cast iron with a relatively high carbon content has excellent vibration damping properties and greatly improves machinability. If necessary, graphite can be spheroidized to provide strength and toughness.

しかし現在まで開示された高炭素系材料と言っても前記
の鋳造性や制振性において従来の普通鋳鉄(ダクタイル
鋳鉄)に比べてなお届かないことは炭素量より見て自明
であり、しかもその低熱膨張率についても低炭素鋼系に
大きく差をつけられていることは否めない。このことは
従来の先行技術が正しい道を辿っているが、厳しくて信
頼性の高いスクリーニングに今−歩の精緻さを欠き窮極
の最高条件へ追い詰める実験技術の問題と、範囲を統括
する実験処理の巧拙に基因するのではなかろうか。
However, even with the high carbon materials disclosed to date, it is obvious from the carbon content that they still fall short of conventional ordinary cast iron (ductile cast iron) in terms of castability and vibration damping properties. It is undeniable that it has a large difference in low thermal expansion coefficient compared to low carbon steels. Conventional prior art is on the right track in this regard, but there are problems with experimental technology that lacks the precision of rigorous and reliable screening and pushes it to the ultimate conditions, and experimental processing that controls the scope. This may be due to the lack of skill.

本発明は以上に述べた課題を解決するために、制振性や
機械的性質に優れ鋳造性もよく大量の複雑な形状の高温
低熱膨張部材でも安定して供給できる高温低熱膨張鋳鉄
の提供を目的とする。
In order to solve the above-mentioned problems, the present invention aims to provide a high-temperature, low-thermal-expansion cast iron that has excellent vibration-damping properties and mechanical properties, has good castability, and can be stably supplied even in large quantities of high-temperature, low-thermal-expansion members of complex shapes. purpose.

但し、ここで言う高温とは200〜250℃までの範囲
にとどまるものとする。
However, the high temperature referred to here is limited to a range of 200 to 250°C.

[課題を解決するための手段] 本発明に係る高温低熱膨張鋳鉄は、重量%でC: 1.
5〜3.0、S f: 0.5〜2.0、Mn: 1.
0以下、N1:22〜30、Co:3〜20、残部鉄お
よび不可避的不純物を含み、N+およびCOの含有率が
31.5≦ N I+0.75G o≦37の範囲内に
あることを基本として前記の課題を解決した。またこれ
に鋳造後900〜1150℃の温度に加熱し所望時間保
持する要件を付加すること、また前記要件にさらにMg
又はCaの何れか又は双方を合わせて0.02〜0.1
重量%含む第三の要件を付加する態様も有効であり得る
場合を示した。
[Means for Solving the Problems] The high temperature and low thermal expansion cast iron according to the present invention has C: 1.
5-3.0, S f: 0.5-2.0, Mn: 1.
0 or less, N1: 22-30, Co: 3-20, balance includes iron and unavoidable impurities, and the content of N+ and CO is basically within the range of 31.5≦N I+0.75G o≦37. The above problem was solved as follows. In addition, the requirements for heating to a temperature of 900 to 1150°C after casting and holding it for a desired period of time are added to this, and to the above requirements, Mg
or Ca or both together 0.02 to 0.1
A case was shown in which an embodiment adding the third requirement including weight % may also be effective.

[作用コ 本発明においては従来技術を超えた精密で系統的な実験
値を得て最高条件を特定するところに主要な意義がある
[Operations] The main significance of the present invention is that it specifies the highest conditions by obtaining more precise and systematic experimental values than those of the prior art.

鋳鉄は鋼と異なって不純物が多く、どうしてもデーター
のバラツキが大きくなる。一定の成分にしようとしても
溶解中に耐火物との反応やガスとの反応によって失われ
たり或いは取り込まれたりして成分に変動を来してしま
う。更に鋳型への鋳造に際しても、使われる鋳型材料に
よって鋳造組織が異なり、特に鋳物砂を用いる時は天然
のものであるので鋳型からもたらされる変動が大きい。
Unlike steel, cast iron has many impurities, which inevitably leads to large variations in data. Even if an attempt is made to keep the components constant, the components will fluctuate due to loss or incorporation due to reactions with refractories or gases during melting. Furthermore, when casting into a mold, the casting structure differs depending on the mold material used, and especially when molding sand is used, since it is a natural material, the variation caused by the mold is large.

一方熱膨張率の測定においても、通常20〜4(1wn
の長さの試料を使って測定されるが、10−6オーダー
の熱膨張率であれば1℃で0.01 ミクロンのオーダ
ーの膨張代であり、測定機器の精度や、試料の長さを測
定する場所の面粗度や、測定荷重による試料のひずみと
いった点も変動の大きな原因となる。
On the other hand, when measuring the coefficient of thermal expansion, it is usually 20 to 4 (1wn
However, if the thermal expansion coefficient is on the order of 10-6, the expansion margin is on the order of 0.01 microns at 1°C, and the accuracy of the measuring equipment and the length of the sample may be affected. The surface roughness of the area to be measured and the strain of the sample due to the measurement load are also major causes of variation.

以上のような種々の変動要因が重なり合い、真に熱膨張
率の低い合金組成がいずれにあるかがわかりにくい。そ
こで鋳鉄の溶解には高周波誘導電気炉による迅速溶解法
を用い、鋳造では調合型を用い、そして熱膨張率の測定
では50〜200℃又は250℃の平均熱膨張率を用い
た。
Due to the combination of the various fluctuation factors mentioned above, it is difficult to determine which alloy composition has a truly low coefficient of thermal expansion. Therefore, a rapid melting method using a high-frequency induction electric furnace was used for melting the cast iron, a compound mold was used for casting, and an average coefficient of thermal expansion of 50 to 200°C or 250°C was used for measuring the coefficient of thermal expansion.

通常の溶解時間の1/lO〜1/20の迅速溶解法は配
合成分からの成分変動が少なく、調合型は金型温度を一
定にすることによって鋳造した製品の成分偏析や鋳造組
織の変動が少ない。しかしながら調合型で鋳造した組織
は急冷組織でカーボンが炭化物となっているので、11
00℃の熱処理炉に2時間入れたあと急冷させて黒鉛と
オーステナイトの組織とした。そして熱膨張率を測定す
る際、常温から徐々にかつ一定の昇温速度を保ちながら
測定するが、変動の多い常温付近を避け、50℃を起点
として200℃又は250°Cまでの膨張代を測定する
ことによって、試料の長さを測定する場所の面粗度や、
測定荷重によるひずみの熱膨張率変動への影響を少なく
てきる。
The rapid melting method, which takes 1/10 to 1/20 of the normal melting time, has little variation in composition from the blended components, and by keeping the mold temperature constant, compounding molds prevent component segregation and fluctuations in the cast structure of the cast product. few. However, the structure cast with a compound mold is a rapidly quenched structure in which carbon becomes a carbide, so 11
It was placed in a heat treatment furnace at 00°C for 2 hours and then rapidly cooled to form a structure of graphite and austenite. When measuring the coefficient of thermal expansion, the temperature is gradually increased from room temperature while maintaining a constant temperature increase rate, but avoiding temperatures near room temperature where there are many fluctuations, and measuring the expansion range from 50°C to 200°C or 250°C. By measuring the surface roughness of the location where the length of the sample is measured,
This reduces the influence of strain caused by measurement load on thermal expansion coefficient fluctuations.

これらによって変動か小さくなった結果、データーの精
度が上がり、極めて明瞭な熱膨張率のグラフが得られた
As a result of these small fluctuations, the accuracy of the data increased and a very clear graph of the coefficient of thermal expansion was obtained.

試料番号1から30までは結果的に化学成分の若干のず
れが見られるが、その意図するところはN1%を22か
らはじめて32まで順次増加して行き、その各々のN1
%に対して Coを0−18%に亘って適宜の間隔を置
いて配分し両者の組合せによる50〜200℃の平均熱
膨張係数α(X 10−8/℃)を測定した点にある(
他の成分はほぼ統一)。
As a result, there are slight deviations in chemical composition from sample numbers 1 to 30, but the intention is to increase N1% sequentially from 22 to 32, and for each N1%.
%, Co was distributed at appropriate intervals over a range of 0-18%, and the average thermal expansion coefficient α (X 10-8/°C) between 50 and 200°C was measured for the combination of both (
Other ingredients are almost the same).

ここで全体を観察してαが2.5X 10−6/ ”C
以下のグループをA1それ以上のグループをBとして備
考欄に記入してまとめたのが第1表である。
Now, observing the whole, α is 2.5X 10-6/”C
Table 1 is a summary of the following groups with A1 and above groups as B and written in the notes column.

(以下余白) 次の作業として各N1%別のCo%の変動と平均熱膨張
係数αとの相関を図表にプロットすることである。すな
わち第1図の22の曲線は試料番号1〜3までの 00
%とαとの関係を曲線で結んだものであり、各N1%群
ごとにそれぞれ顕著な最小点が形成されている。各曲線
ごとの最小点ばかりを拾い出してN1%とCo%とで成
立する不等式%式% いま第1表の試料について、l’tN%+0.75Co
%をそれぞれ計算した結果を示したのが第2表である。
(The following is a blank space) The next task is to plot the correlation between the variation in Co% for each N1% and the average coefficient of thermal expansion α. In other words, the curve 22 in Figure 1 is 00 for sample numbers 1 to 3.
The relationship between % and α is connected by a curved line, and a remarkable minimum point is formed for each N1% group. Inequality % formula % that is satisfied by picking out only the minimum points for each curve and N1% and Co% Now, for the sample in Table 1, l'tN% + 0.75Co
Table 2 shows the results of calculating each percentage.

(以下余白) 第2裏 第2表の結果Aランクにある試料はすべて前記の不等式
が成立する範囲内にふくまれ完全に整合する。しかしそ
の逆は真ならずで不等式内に含まれてもAランクに入ら
ない試料もある。たとえば、試料番号1.3.21.2
2.26〜29ではN1%+0.75%COの値は31
.5〜37の範囲にある。
(The following is a blank space) The results of Table 2 on the second back All the samples in rank A are included within the range where the above inequality holds true and are completely consistent. However, the converse is not true, and there are some samples that do not fall into A rank even if they are included in the inequality. For example, sample number 1.3.21.2
For 2.26-29, the value of N1% + 0.75% CO is 31
.. It is in the range of 5-37.

このことはこの種類のオーステナイト鋳鉄にとってN1
の最低と最高に厳密な臨界値があり、この前後にある成
分では要件に外れることを示唆しているので、Aランク
との整合性を検してN1%を22〜30に限定した。
This means that N1 for this type of austenitic cast iron.
There are strict critical values at the lowest and highest values, which suggests that components around these values do not meet the requirements, so N1% was limited to 22 to 30 after checking consistency with A rank.

なおその他の成分元素について簡単に言及すると、 C: カーボンを添加することによって合金の融点が下
がり、鋳造性が向上する。さらに組織中に黒鉛が晶出す
ることによって切削加工性が良くなり、制振性が向上す
る。
In addition, to briefly mention other component elements, C: Adding carbon lowers the melting point of the alloy and improves castability. Furthermore, crystallization of graphite in the structure improves machinability and vibration damping properties.

1.50%より少ないと融点が高くなるとともに組織中
への黒鉛の晶出が著しく少なくなり、鋳造性や切削加工
性、制振性が良いという利点が無くなる。3.0%を越
えると鋳造欠陥が出やすくなるとともに黒鉛が大きくな
り材質強度も低下する。
If it is less than 1.50%, the melting point will be high and crystallization of graphite in the structure will be significantly reduced, and the advantages of good castability, cutting workability, and vibration damping properties will be lost. If it exceeds 3.0%, casting defects tend to occur, graphite becomes larger, and material strength decreases.

Sl: 合金の融点を下げるので鋳造性が向上する。Sl: Lowers the melting point of the alloy, improving castability.

さらにカーボンの黒鉛化を助けるために、切削加工性が
良くなり、その結果、制振性も向上する。
Furthermore, since it helps graphitize the carbon, machinability is improved, and as a result, vibration damping performance is also improved.

0.5%より少ないと鋳造性が悪くなり、2.0%を越
えると熱膨張率が増大する。
When it is less than 0.5%, castability deteriorates, and when it exceeds 2.0%, the coefficient of thermal expansion increases.

Mn:  材質強度の向上には役立つが偏析し易く、熱
膨張率も増大させるので1.0%以下に限定される。
Mn: Mn is useful for improving material strength, but it tends to segregate and increases the coefficient of thermal expansion, so it is limited to 1.0% or less.

Co:  Coについては前記の不等式から自ら定まっ
てくるが一応3%から20%(Nlが22%かつ不等式
が37%であるとき)とする。
Co: Co is determined by itself from the above inequality, but it is assumed to be 3% to 20% (when Nl is 22% and the inequality is 37%).

以上の化学成分を特定した上で第二の要件として熱処理
を加えることも好結果に繋がる。
Adding heat treatment as a second requirement after specifying the above chemical components also leads to good results.

加熱の目的は鋳造組織の中に残る熱膨張率に有害な炭化
物の分解と、鋳造組織中に偏析しているニッケル、コバ
ルト、シリコンやマンガンヲ拡散させ均一合金相にする
ことである。この熱処理を行わないと熱膨張率は高くな
るとともにバラツキが大きくなる。900℃以下である
と効果がなく、1150℃以上であると変形が大きくな
るので好ましくない。加熱時間は温度が高いほど短時間
で良い。
The purpose of heating is to decompose carbides that remain in the cast structure and are harmful to the coefficient of thermal expansion, and to diffuse nickel, cobalt, silicon, and manganese that are segregated in the cast structure into a uniform alloy phase. If this heat treatment is not performed, the coefficient of thermal expansion will increase and the variation will increase. If the temperature is 900° C. or lower, there is no effect, and if the temperature is 1150° C. or higher, the deformation becomes large, which is not preferable. The higher the temperature, the shorter the heating time.

次に実施態様によっては多少の低熱膨張性を犠牲にして
もより強靭な機械的性質の向上を優先する場合もある。
Next, depending on the embodiment, priority may be given to improving tougher mechanical properties even at the expense of some low thermal expansion.

MgまたはCa:  黒鉛を球状化し鋳鉄の強度を向上
する。しかし、このうち1種または2種を合わせて0.
02%以上ないと、黒鉛が球状化しないので顕著な強度
の向上がない、一方0.1%以上であると熱膨張率が大
きくなるので0.1%以下に限定される。強度を要求さ
れるときだけ加え、通常は加えない。
Mg or Ca: Spheroidizes graphite and improves the strength of cast iron. However, the combination of one or two of these is 0.
If it is less than 0.02%, the graphite will not become spheroidized, so there will be no significant improvement in strength.If it is more than 0.1%, the coefficient of thermal expansion will increase, so it is limited to 0.1% or less. Add strength only when required, and do not normally add it.

Mgt Caを添加するという第三の要件は低熱膨張性
に着目したときはむしろマイナスの要因となる。
The third requirement of adding MgtCa is rather a negative factor when focusing on low thermal expansion.

凝固後まで残留したMg、caはミクロ的な偏析を生じ
ていてα降下の阻害要因となっていると判断されるので
、従来のダクタイルオーステナイト鋳鉄の最高の成績で
も α< 2 X 10−’/’Cの壁を破った報告は
見当らない。
Mg and ca remaining after solidification are thought to cause microscopic segregation and become a factor inhibiting α reduction, so even with the best performance of conventional ductile austenitic cast iron, α < 2 × 10−'/ I can't find any reports of breaking the 'C wall.

本発明では強靭性を特に求めるこの実施態様に限り前記
の三要件をすべて重ね合せることを課題解決の手段とし
た。
In the present invention, only in this embodiment where toughness is particularly required, the solution to the problem is to combine all three requirements mentioned above.

[実施例コ 以上のとおり特に精密さと正確さを指向した実験によっ
て望ましい成分範囲を特定できたが、発明を実施するに
当っては前記実験を踏襲できる訳ではなく通常溶解の通
常砂型鋳造と言う公知手段に戻らなければならない。
[Example 1] As described above, we were able to identify a desirable range of ingredients through experiments aimed at precision and accuracy, but it was not possible to follow the above experiments when implementing the invention, and we used ordinary sand casting with ordinary melting. We have to go back to known means.

ここに本発明を実施し、既に引用した従来技術との比較
によって改善の是非を評価することとする。
The present invention will now be implemented and the merits of improvement will be evaluated by comparison with the conventional techniques already cited.

原料に電解ニッケル、電解コバルト、ケベック銑、電解
鉄、フェロシリコン(75%81)を用い、配合率を変
えて原料を精密秤量し、配合した10kgの原料を55
KVAの高周波誘導電気炉に入れ、大気中で溶解し、珪
砂を使ったC OQ型で作ったJIS−G5122のA
号テストピース鋳型に鋳造した。その後、1100°C
の炉に2時間入れてから水冷したテストピースと比較の
ため炉冷したテストピースおよびアズキャストのテスト
ピースより、それぞれ5IΦX20mmLの熱膨張率測
定用試料を切削加工し、50〜200℃および50〜2
50℃に亘って熱膨張係数αを前項同様に測定した。
Using electrolytic nickel, electrolytic cobalt, Quebec pig iron, electrolytic iron, and ferrosilicon (75% 81) as raw materials, the raw materials were precisely weighed by changing the blending ratio, and 10 kg of the blended raw materials were mixed into 55%
A of JIS-G5122 made with COQ type using silica sand, put in KVA's high frequency induction electric furnace and melted in the atmosphere.
The test piece was cast in a No. 1 test piece mold. Then 1100°C
Samples for measuring thermal expansion coefficients of 5IΦ x 20mmL were cut from test pieces that had been placed in a furnace for 2 hours and then water-cooled, a test piece that had been cooled in a furnace for comparison, and an as-cast test piece. 2
The thermal expansion coefficient α was measured at 50° C. in the same manner as in the previous section.

測定結果を第3表に示すが、まず顕微鏡で観察すると、
試料A、B、Cともにセメンタイトはなく片状黒鉛の析
出したオーステナイト組織であった。
The measurement results are shown in Table 3. First, when observed with a microscope,
Samples A, B, and C all had an austenitic structure with no cementite and flaky graphite precipitated therein.

一方試料りは本発明の別の実施例であり、Mg処理によ
って黒鉛を球状化し、鋳造後オーステナイト領域まで加
熱、保持した後急冷又は徐冷した成績である。
On the other hand, the sample is another example of the present invention, in which graphite was spheroidized by Mg treatment, heated to the austenite region after casting, held, and then rapidly or gradually cooled.

比較材はすべて公開文献の資料のうちから抜きんでて優
良な成績を謳ったものをそのまま引用した。すなわち、
比較例aは特開平1−308540号公報・表1から、
比較例すは特開昭64−21037号公報・表29表3
から、比較例Cは特開平1−283342号公報・表1
2表2から、それぞれ出願人自身が発表した数値をその
まま移し採って比較に供したものである。
All comparison materials were taken directly from publicly available documents that boast outstanding results. That is,
Comparative example a is from JP-A-1-308540/Table 1,
Comparative example JP-A-64-21037/Table 29 Table 3
Therefore, Comparative Example C is disclosed in JP-A-1-283342, Table 1.
2 From Table 2, the numerical values announced by the applicants themselves have been taken directly and used for comparison.

(以下余白) なお第4表には試料B(片状黒鉛)と試料D(球状黒鉛
)のそれぞれのオーステナイト鋳鉄が水冷熱処理によっ
て機械的性質がどのように変動するかを示したもので、
Dでは引っ張り強さは約10%向上するのに対し、熱膨
張係数も約15%小さくなり熱処理の効果を例示する結
果となっている。
(Left below) Table 4 shows how the mechanical properties of sample B (flake graphite) and sample D (spheroidal graphite) change in mechanical properties due to water cooling heat treatment.
In D, the tensile strength increases by about 10%, while the thermal expansion coefficient also decreases by about 15%, illustrating the effect of heat treatment.

第4表 (注)※I BはMgを添加していない発明合金※2 
DはMgを添加した発明合金 [発明の効果] 本発明の効果は第3表の実施例、比較例を通覧すれば明
らかであるが、制振性、鋳造性、切削性において格段に
差のある低炭素系の低熱膨張材(比較例a)に近い値を
示し、特に熱処理水冷品においては比較例aに殆ど拮抗
、もしくはより優れた結果さえ散見できるレベルに達す
る。また比較的制振性、鋳造性などで優位に立つと思わ
れる高炭素系の比較例Cに比べると平均熱膨張係数にお
いて格段の差が認められる。
Table 4 (Note) *I B is an invention alloy with no Mg added *2
D is an invented alloy containing Mg [Effects of the Invention] The effects of the present invention are clear from the Examples and Comparative Examples in Table 3. It shows a value close to that of a certain low carbon-based low thermal expansion material (Comparative Example a), and in particular, in heat-treated water-cooled products, it reaches a level where results are almost comparable to, or even superior to, Comparative Example a. Furthermore, compared to Comparative Example C, which is a high carbon type material and is considered to have a comparative advantage in vibration damping properties, castability, etc., a significant difference in the average coefficient of thermal expansion is observed.

N1と00%の関係についてのみ従来技術と本発明を図
示比較して見ると第2図のとおりとなる。
FIG. 2 shows a comparison between the prior art and the present invention with respect to the relationship between N1 and 00%.

図中■は本発明、■は特開昭84−21037号公報(
比較例b)、■は特開平1−306540号公報(比較
例a)、■は特開平1−283342号公報(比較例C
)の属する範囲を示した。勿論、一部において本発明と
重なり合う範囲を有する従来技術もあることは認められ
るが、含有Cによる特有の負の影響を勘案するならば本
発明の宵利なことは疑う余地がないと思われる。
In the figure, ■ indicates the present invention, and ■ indicates the publication of Japanese Patent Application Laid-open No. 84-21037 (
Comparative example b), ■ is published in JP-A-1-306540 (Comparative example a),
) is shown. Of course, it is acknowledged that there are some prior art techniques that partially overlap with the present invention, but if the unique negative effects of the C content are taken into account, there is no doubt that the present invention is advantageous. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を特定するための実験結果をプロットし
た図、第2図は本発明と3件の異なる従来技術の範囲を
示す図。 第 図 第 図 N i ”/。
FIG. 1 is a diagram plotting experimental results for specifying the present invention, and FIG. 2 is a diagram showing the scope of the present invention and three different prior arts. Figure Figure Figure N i ”/.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%でC:1.5〜3.0、Si:0.5〜2
.0、Mn:1.0以下、Ni:22〜30、Co:3
〜20、残部鉄および不可避的不純物を含み、Niおよ
びCoの含有率が31.5≦Ni+0.75Co≦37
の範囲内にあることを特徴とする高温低熱膨張鋳鉄。
(1) C: 1.5-3.0, Si: 0.5-2 in weight%
.. 0, Mn: 1.0 or less, Ni: 22-30, Co: 3
~20, including the balance iron and unavoidable impurities, and the content of Ni and Co is 31.5≦Ni+0.75Co≦37
A high temperature and low thermal expansion cast iron characterized by being within the range of .
(2)請求項1において、鋳造後900〜1150℃の
温度に加熱し所望時間保持することを特徴とする高温低
熱膨張鋳鉄。
(2) The high-temperature, low-thermal-expansion cast iron according to claim 1, which is heated to a temperature of 900 to 1150°C and held for a desired time after casting.
(3)請求項2において、Mg又はCaの何れか又は双
方を合わせて0.02〜0.1重量%含むことを特徴と
する高温低熱膨張鋳鉄。
(3) The high-temperature, low-thermal-expansion cast iron according to claim 2, characterized in that it contains 0.02 to 0.1% by weight of either Mg or Ca or both in total.
JP2264841A 1990-10-01 1990-10-01 High temperature low thermal expansion cast iron manufacturing method Expired - Fee Related JP2694240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2264841A JP2694240B2 (en) 1990-10-01 1990-10-01 High temperature low thermal expansion cast iron manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2264841A JP2694240B2 (en) 1990-10-01 1990-10-01 High temperature low thermal expansion cast iron manufacturing method

Publications (2)

Publication Number Publication Date
JPH04141545A true JPH04141545A (en) 1992-05-15
JP2694240B2 JP2694240B2 (en) 1997-12-24

Family

ID=17408959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2264841A Expired - Fee Related JP2694240B2 (en) 1990-10-01 1990-10-01 High temperature low thermal expansion cast iron manufacturing method

Country Status (1)

Country Link
JP (1) JP2694240B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179938A (en) * 1992-12-15 1994-06-28 Toshiba Corp High strength and low expansion cast iron and production thereof
WO2023176791A1 (en) * 2022-03-14 2023-09-21 日之出水道機器株式会社 Iron casting and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210149A (en) * 1982-05-29 1983-12-07 Shinichi Enomoto Cast iron
JPH01283342A (en) * 1987-08-31 1989-11-14 Shimazu Kinzoku Seiko Kk Cobalt-containing austenitic low thermal expansion cast iron
JPH01306540A (en) * 1988-05-31 1989-12-11 Shinichi Enomoto Low thermal expansion alloy iron
JPH02125837A (en) * 1988-11-02 1990-05-14 Toshiba Corp Low thermal expansion cast iron
JPH0436136A (en) * 1990-05-29 1992-02-06 Daikin Ind Ltd Device for controlling noxious insect in carpet for heating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210149A (en) * 1982-05-29 1983-12-07 Shinichi Enomoto Cast iron
JPH01283342A (en) * 1987-08-31 1989-11-14 Shimazu Kinzoku Seiko Kk Cobalt-containing austenitic low thermal expansion cast iron
JPH01306540A (en) * 1988-05-31 1989-12-11 Shinichi Enomoto Low thermal expansion alloy iron
JPH02125837A (en) * 1988-11-02 1990-05-14 Toshiba Corp Low thermal expansion cast iron
JPH0436136A (en) * 1990-05-29 1992-02-06 Daikin Ind Ltd Device for controlling noxious insect in carpet for heating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179938A (en) * 1992-12-15 1994-06-28 Toshiba Corp High strength and low expansion cast iron and production thereof
WO2023176791A1 (en) * 2022-03-14 2023-09-21 日之出水道機器株式会社 Iron casting and method for producing same

Also Published As

Publication number Publication date
JP2694240B2 (en) 1997-12-24

Similar Documents

Publication Publication Date Title
KR100933849B1 (en) Composite material and its manufacturing method
US8585837B2 (en) High-manganese spheroidal graphite cast iron
TWI243858B (en) Steel alloy plastic moulding tool and tough-hardened blank for plastic moulding tools
JP6628902B2 (en) Low thermal expansion alloy
CN101538693A (en) Iron-based amorphous alloy and preparation method thereof
EP0544836A1 (en) Controlled thermal expansion alloy and article made therefrom.
CS202531B2 (en) Ferritic rustless steel and method of making the same
KR920008956B1 (en) Low thermal expansion cast-iron
CN109423569A (en) A kind of steel for low-temperature pressure container and its manufacturing method
US5340414A (en) Heat-resistant ferritic cast steel member
JP3654899B2 (en) Manufacturing method of high strength low expansion cast iron
US5470402A (en) Ferritic heat-resistant cast steel and process for producing the same
JPH04141545A (en) High temperature low thermal expansion cast iron
JP2020056076A (en) Low thermal expansion cast
JP2694239B2 (en) Low thermal expansion cast iron manufacturing method
WO2016194377A1 (en) Black heart malleable cast iron and method for manufacturing same
JP7246684B2 (en) Low thermal expansion alloy
Stefanescu Compacted graphite iron
JP5475380B2 (en) Austenitic cast iron, its manufacturing method and austenitic cast iron casting
JPS6321728B2 (en)
JPH06179938A (en) High strength and low expansion cast iron and production thereof
JP2001192777A (en) Low thermal expansion casting material
JPH08269613A (en) Low thermal expansion cast iron and production thereof
Hu et al. The high-temperature mechanical properties of EN 1.4509 stainless steel cast using investment casting
JP2010095747A (en) Method for producing low thermal-expansion cast iron material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees