JPH0672290B2 - High strength low thermal expansion alloy - Google Patents

High strength low thermal expansion alloy

Info

Publication number
JPH0672290B2
JPH0672290B2 JP63132648A JP13264888A JPH0672290B2 JP H0672290 B2 JPH0672290 B2 JP H0672290B2 JP 63132648 A JP63132648 A JP 63132648A JP 13264888 A JP13264888 A JP 13264888A JP H0672290 B2 JPH0672290 B2 JP H0672290B2
Authority
JP
Japan
Prior art keywords
less
thermal expansion
strength
room temperature
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63132648A
Other languages
Japanese (ja)
Other versions
JPH01306541A (en
Inventor
隆三 原
健雄 田川
勝之 内堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Steel Mfg Co Ltd
Original Assignee
Mitsubishi Steel Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Steel Mfg Co Ltd filed Critical Mitsubishi Steel Mfg Co Ltd
Priority to JP63132648A priority Critical patent/JPH0672290B2/en
Publication of JPH01306541A publication Critical patent/JPH01306541A/en
Publication of JPH0672290B2 publication Critical patent/JPH0672290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高強度低熱膨張性の鉄系合金に関するもので、
セラミックスとの接合用材料、精密機器部品用材料ある
いは航空機部品用材料など、低い熱膨張特性と常温及び
高温での強度が必要とされる用途に好適なものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention relates to a high strength and low thermal expansion iron-based alloy,
It is suitable for applications requiring low thermal expansion characteristics and strength at room temperature and high temperature, such as materials for joining with ceramics, materials for precision equipment parts, and materials for aircraft parts.

[従来の技術] 従来の低熱膨張合金としては、Fe-Ni合金のインバー合
金(36%Ni-Fe)あるいはFe-Ni-Co合金のコバール合金
(29%Ni-17%Co-Fe)、スーパーインバー合金(30%Ni
-5%Co-Fe)などが良く知られているが、これらの合金
は熱膨張係数は低いものの、構造用材料としては強度も
低く、常温強度は冷間加工により確保するしかないが、
高温では冷間加工の効果がなくなり、強度の確保が困難
であった。
[Prior Art] Conventional low thermal expansion alloys include Fe-Ni alloy Invar alloy (36% Ni-Fe) or Fe-Ni-Co alloy Kovar alloy (29% Ni-17% Co-Fe), super alloy. Invar alloy (30% Ni
-5% Co-Fe) is well known, but although these alloys have low thermal expansion coefficients, they have low strength as structural materials and room temperature strength can only be secured by cold working.
At high temperatures, the effect of cold working disappeared and it was difficult to secure strength.

又、高い強度を有する低熱膨張合金としては、Al、Tiあ
るいはNb等の析出強化元素を添加したNi-Span C合金
(42%Ni-5%Cr-2.4%Ti-0.5%Al-Fe)あるいはIncolo
y 903合金(38%Ni-16%Co-1.5%Ti-1%Al-3%Nb-F
e)等が知られており、これらの合金は常温あるいは高
温で高い強度を有するが、室温から400℃までの熱膨張
係数は、構造用セラミックスとして代表的な窒化ケイ素
あるいは炭化ケイ素に比較して大きい。
Further, as a low thermal expansion alloy having high strength, a Ni-Span C alloy (42% Ni-5% Cr-2.4% Ti-0.5% Al-Fe) containing a precipitation strengthening element such as Al, Ti or Nb, or Incolo
y 903 alloy (38% Ni-16% Co-1.5% Ti-1% Al-3% Nb-F
e) and the like are known, and these alloys have high strength at room temperature or high temperature, but the coefficient of thermal expansion from room temperature to 400 ° C is higher than that of silicon nitride or silicon carbide, which is a typical structural ceramic. large.

[発明が解決しようとする課題] セラミックスを構造用材料として用いようとする際に
は、セラミックスの脆性等の欠点を補う目的で、金属材
料との接合化あるいは金属材料との複合材料化して使用
される場合が多い。
[Problems to be Solved by the Invention] When ceramics are to be used as a structural material, they are bonded to a metal material or used as a composite material with a metal material in order to compensate for defects such as brittleness of the ceramics. It is often done.

金属とセラミックスとが接合あるいは複合化して使用さ
れる際に、金属とセラミックスの熱膨張係数が大きく異
ると、金属とセラミックスとの接合部で割れあるいは剥
離が発生し、構造用材料として使用上問題がある。又、
セラミックスと金属とを接合化あるいは複合化した構造
材料は、セラミックスの耐熱性、軽さ等の特性を生かす
ためにも、金属材料には常温及び高温での強度が要求さ
れる。しかしながら、金属材料がセラミックスと接合化
あるいは複合化されて使用される際に、必要以上に強度
が高い場合、加工性等の問題が生じる。
When metals and ceramics are used in a bonded or compounded state, if the coefficients of thermal expansion of the metals and ceramics differ greatly, cracks or peeling will occur at the joints between the metals and ceramics, and they will be used as structural materials. There's a problem. or,
In the structural material in which ceramics and metal are bonded or combined, the metal material is required to have strength at room temperature and high temperature in order to take advantage of the heat resistance and lightness of ceramics. However, when the metal material is used by being bonded or compounded with ceramics and the strength is higher than necessary, problems such as workability occur.

そこで、構造用セラミックスとして代表的な窒化ケイ素
あるいは炭化ケイ素に、熱膨張係数が比較的近く、常温
及び高温での強度を具備した金属材料の開発が望まれて
いた。
Therefore, it has been desired to develop a metal material having a thermal expansion coefficient relatively close to that of silicon nitride or silicon carbide, which is a typical structural ceramic, and having strength at room temperature and high temperature.

又、精密機器部品用材料あるいは航空機部品材料等でも
軽量化あるいは使用温度条件から常温および高温強度が
高く、かつ、熱膨張による寸法の変化ができる限り少な
いことが望ましく、低い熱膨張係数と常温および高温で
の強度を具備した材料の開発が望まれていた。
Further, it is desirable that the materials for precision equipment parts, aircraft parts materials, etc. are lightweight and have high room temperature and high temperature strength in view of operating temperature conditions, and the dimensional change due to thermal expansion is as small as possible. It has been desired to develop a material having strength at high temperature.

本発明はかかる点に鑑み、従来の合金では得られない特
性として、常温から400℃までの熱膨張係数が6.5×10-6
/℃以下で、常温の引張強さが60〜130kgf/mm2400℃の
引張強さが40〜100kgf/mm2を示す高強度低熱膨張合金を
提供するものである。
In view of the above points, the present invention has characteristics that cannot be obtained with conventional alloys, that is, the coefficient of thermal expansion from room temperature to 400 ° C. is 6.5 × 10 −6.
/ ℃ below in which tensile strength at room temperature tensile strength of 60~130kgf / mm 2 400 ℃ to provide a high strength low thermal expansion alloy exhibiting 40~100kgf / mm 2.

[課題を解決するための手段] 本発明の第1発明は、下記のとおりである。[Means for Solving the Problems] The first invention of the present invention is as follows.

重量%で Ni:29%以上34%未満 Co:16%を超え21%以下 (ただし、Ni+Co:50%以下) Mo:0.5%以上3.0%以下 Ti:0.8%以上3.0%以下 Al:0.2%以上1.5%以下 C:0.1%以下 Si:1.0%以下 Mn:1.0%以下 並びに残部Feおよび不純物よりなり、固溶体処理及び時
効処理を施すことにより、常温の引張強さが60kgf/mm2
〜130kgf/mm2、400℃の引張強さが40kgf/mm2〜100kgf/m
m2、室温から400℃における平均熱膨張係数が6.5×10-6
/℃以下である高強度低熱膨張性合金。
% By weight Ni: 29% or more and less than 34% Co: More than 16% and 21% or less (however, Ni + Co: 50% or less) Mo: 0.5% or more and 3.0% or less Ti: 0.8% or more and 3.0% or less Al: 0.2 % Or more and 1.5% or less C: 0.1% or less Si: 1.0% or less Mn: 1.0% or less, and the balance Fe and impurities, and the tensile strength at room temperature is 60 kgf / mm 2 due to solid solution treatment and aging treatment.
Tensile strength of ~130kgf / mm 2, 400 ℃ is 40kgf / mm 2 ~100kgf / m
m 2, the average thermal expansion coefficient of 6.5 × 10 -6 at 400 ° C. from room temperature
High-strength, low thermal expansion alloy having a temperature of / ° C or less.

又、第2発明は、上記Moの代りにWを含有するものであ
り、さらに第3発明はMoとWとをともに含有するもので
ある。
Further, the second invention contains W instead of the above Mo, and the third invention contains both Mo and W.

すなわち、Ni-Co-Fe系合金にMoとWを単独あるいは複合
で所定量を含有することにより、熱膨張係数の増加を最
小限に抑えてオースナイト素地中を固溶強化するととも
に、0.2%耐力を上昇させ、かつ高温強度を向上させる
効果があることを実験により見出した。更にTiとAlを複
合添加し、時効処理することにより、熱膨張係数の増加
を最小限に抑えて、ガンマプライム相と呼ばれる金属間
化合物を生成し、合金を析出強化させる効果があること
を見出した。本合金の特徴とすることは、Mo、Wの固溶
強化とTi、Alの時効強化で、その含有量を調整すること
により、従来の合金では得られない特性を有する合金が
得られることを見出した。
That is, by containing a predetermined amount of Mo and W in the Ni-Co-Fe alloy individually or in combination, the increase in the thermal expansion coefficient is suppressed to the minimum and the solid solution strengthening in the austenite matrix is achieved. It was found by experiments that the yield strength is increased and the high temperature strength is improved. By further adding Ti and Al and performing aging treatment, it was found that the increase in the coefficient of thermal expansion is minimized, an intermetallic compound called a gamma prime phase is generated, and it has the effect of precipitation strengthening the alloy. It was This alloy is characterized by solid solution strengthening of Mo and W and aging strengthening of Ti and Al. By adjusting the contents of the alloys, it is possible to obtain alloys having characteristics that cannot be obtained by conventional alloys. I found it.

すなわち、常温の引張強さが60kgf/mm2〜130kgf/mm2、4
00℃の引張強さが40kgf/mm2〜100kgf/mm2、室温から400
℃における平均熱膨張係数が6.5×10-6/℃以下の特性
を有するものが得られる。
That is, the tensile strength at room temperature is 60 kgf / mm 2 to 130 kgf / mm 2 , 4
Tensile strength at 00 ℃ is 40kgf / mm 2 ~ 100kgf / mm 2 , room temperature to 400
An average thermal expansion coefficient at 6.5 ° C. of 6.5 × 10 −6 / ° C. or less is obtained.

次に各化学成分の限定理由について述べる。Next, the reasons for limiting each chemical component will be described.

Ni:NiはCoと共にオーステナイト相を形成するととも
に、熱膨張係数の低減に寄与する。又、時効処理を実施
することにより、Ni3(Al、Ti)で表わされるガンマプ
ライム相と呼ばれる金属間化合物を形成し、析出強化す
る。Niが29%未満あるいは34%以上では熱膨張係数を大
きくするので、29%以上34%未満に限定する。
Ni: Ni forms an austenite phase together with Co and contributes to the reduction of the thermal expansion coefficient. Further, by performing an aging treatment, an intermetallic compound called a gamma prime phase represented by Ni 3 (Al, Ti) is formed and precipitation strengthened. If the Ni content is less than 29% or more than 34%, the coefficient of thermal expansion increases, so the content is limited to 29% or more and less than 34%.

Co:CoはNiと共にオーステナイト相を形成するととも
に、熱膨張曲線が折点を示すキューリー点を高温側に移
行する効果をもっており、高温域までの熱膨張係数の低
減に寄与する。室温から400℃の温度範囲で低い熱膨張
係数が得られるのは、16%を超え、21%以下の範囲であ
るので、Coはこの範囲に限定する。
Co: Co forms an austenite phase together with Ni, and has the effect of shifting the Curie point where the thermal expansion curve shows a break point to the high temperature side, and contributes to the reduction of the thermal expansion coefficient up to the high temperature region. In the temperature range from room temperature to 400 ° C, the low coefficient of thermal expansion is obtained in the range of more than 16% and 21% or less, so Co is limited to this range.

Ni+Co:NiおよびCoは前述のとおりオーステナイト相の形
成と熱膨張係数の高温域までの低域に効果を示すが、Ni
+Co量が50%を超えると、キューリー点温度は高温側に
移行するが、キューリー点まで熱膨張係数が大きくな
り、室温から400℃までの熱膨張係数も6.5×10-6/℃を
超えるので、Ni+Co量を50%以下に限定する。
Ni + Co: Ni and Co are effective in forming the austenite phase and lowering the coefficient of thermal expansion up to a high temperature region as described above.
When the amount of + Co exceeds 50%, the Curie point temperature shifts to the high temperature side, but the coefficient of thermal expansion increases up to the Curie point, and the coefficient of thermal expansion from room temperature to 400 ° C also exceeds 6.5 × 10 -6 / ° C. Therefore, the amount of Ni + Co is limited to 50% or less.

Mo:Moはオーステナイト基地中に固溶して固溶強化作用
があり、耐力の増加にも効果的であり、高温強度の向上
にも寄与するが、充分な効果を得る為には0.5%以上の
添加が必要であり、又、添加量が多いと熱膨脹係数を増
加させるので0.5%以上3%以下に限定する。
Mo: Mo has a solid solution strengthening action by forming a solid solution in the austenite matrix, is effective in increasing the yield strength, and contributes to the improvement of high temperature strength, but 0.5% or more is necessary to obtain a sufficient effect. Is required, and the thermal expansion coefficient increases if the addition amount is large, so the content is limited to 0.5% or more and 3% or less.

W:WもMoと同様にオーステナイト基地中に固溶して固溶
強化作用があり、耐力の増加にも効果的であり、高温強
度の向上にも寄与するが、充分な効果を得る為には、0.
5%以上の添加が必要であり、又、添加量が多いと熱膨
脹係数を増加させるので0.5%以上3%以下に限定す
る。
W: W also has a solid solution strengthening action by forming a solid solution in an austenite matrix like Mo, and it is also effective in increasing proof stress and contributing to improvement in high temperature strength, but in order to obtain a sufficient effect. is 0.
It is necessary to add 5% or more, and if the addition amount is large, the coefficient of thermal expansion increases, so it is limited to 0.5% or more and 3% or less.

Mo+W:MoとWとの複合添加も、オーステナイト基地の固
溶強化作用があり、耐力の増加にも効果があり、高温強
度の向上にも寄与するが、充分な効果を得る為には、Mo
+W量が0.5%以上の添加が必要であり、又、Mo+Wの添
加量が多いと熱膨脹係数を増加させるので、Mo+W量を
0.5%以上3%以下に限定する。
Mo + W: The combined addition of Mo and W also has the effect of strengthening the solid solution of the austenite base, has the effect of increasing the yield strength, and contributes to the improvement of the high temperature strength, but in order to obtain a sufficient effect , Mo
It is necessary to add + W of 0.5% or more. Also, if the amount of addition of Mo + W is large, the coefficient of thermal expansion increases.
It is limited to 0.5% or more and 3% or less.

Ti:TiはAlとの共存で、時効処理によりガンマプライム
相Ni3(Al、Ti)を形成し、合金を析出強化し、高温強
度を向上させる。しかしながら、添加量が0.8%未満で
は添加効果が少く、3.0%を超えると熱膨張係数が大き
くなるので、0.8%以上3.0%以下に限定する。
Ti: Ti, together with Al, forms a gamma prime phase Ni 3 (Al, Ti) by aging treatment, precipitation strengthens the alloy and improves high temperature strength. However, if the addition amount is less than 0.8%, the addition effect is small, and if it exceeds 3.0%, the coefficient of thermal expansion increases, so the content is limited to 0.8% or more and 3.0% or less.

Al:AlはTiとの共存で、時効処理によりガンマプライム
相Ni3(Al、Ti)を形成し、合金を析出強化し、高温強
度を向上させる。しかしながら添加量が0.2%未満では
添加効果が少なく、1.5%を超えると熱膨張係数が大き
くなるので、0.2%以上1.5%以下に限定する。
Al: Al coexists with Ti to form a gamma prime phase Ni 3 (Al, Ti) by aging treatment, precipitation strengthening the alloy and improving high temperature strength. However, if the addition amount is less than 0.2%, the effect is small, and if it exceeds 1.5%, the coefficient of thermal expansion increases, so the content is limited to 0.2% or more and 1.5% or less.

C :Cは炭化物を形成して、高温強度の向上に寄与する
が、過度の添加は熱膨張係数を増加させるので、0.1%
以下に限定する。
C: C forms a carbide and contributes to the improvement of high temperature strength, but excessive addition increases the coefficient of thermal expansion, so 0.1%
Limited to:

Si:Siは脱酸及び熱間加工性の向上のために必要である
が、過度の添加は熱膨張係数を増加させるので、1%以
下に限定する。
Si: Si is necessary for deoxidation and improvement of hot workability, but excessive addition increases the coefficient of thermal expansion, so it is limited to 1% or less.

Mn:MnはSiと同様、脱酸及び熱間加工性の向上のために
必要であるが、過度の添加は熱膨張係数を増加させるの
で、1%以下に限定する。
Mn: Mn, like Si, is necessary for deoxidation and improvement of hot workability, but excessive addition increases the coefficient of thermal expansion, so it is limited to 1% or less.

本発明はかかる組成を有する合金材料の固溶体化処理及
び時効処理を施したものであるが、その条件は固溶化処
理温度が950〜1150℃、時効処理温度は580〜750℃、時
効処理時間は5〜48時間程度が好ましい。固溶化処理温
度は950℃未満では固溶化が不充分であり、1150℃を超
えると結晶粒の粗大化が起こるので950℃〜1150℃とす
る。時効処理温度は580〜750℃で時効するとすぐれた常
温及び高温強度が得られるので、この温度範囲が好まし
い。
The present invention is a solid solution treatment and aging treatment of the alloy material having such a composition, the conditions are solution treatment temperature 950 ~ 1150 ℃, aging temperature 580 ~ 750 ℃, aging time is About 5 to 48 hours is preferable. If the solution treatment temperature is lower than 950 ° C, solution treatment is insufficient, and if it exceeds 1150 ° C, coarsening of crystal grains occurs, so the temperature is set to 950 ° C to 1150 ° C. The aging treatment temperature is preferably 580 to 750 ° C, and this temperature range is preferred because excellent room temperature and high temperature strength can be obtained.

[実施例] 特性を比較するため、表に従来合金、本発明合金および
比較合金の化学成分、常温および400℃での引張強さと
0.2%耐力、室温から400℃までの熱膨張係数をそれぞれ
示す。
[Examples] In order to compare the characteristics, the table shows the chemical compositions of the conventional alloy, the alloy of the present invention and the comparative alloy, and the tensile strength at room temperature and 400 ° C.
0.2% proof stress and coefficient of thermal expansion from room temperature to 400 ° C are shown.

表に示した試料はそれぞれ真空誘導溶解炉で10kgのイン
ゴットを溶製後に直径15m/mに鍛造を実施したものであ
る。
Each of the samples shown in the table is obtained by melting a 10 kg ingot in a vacuum induction melting furnace and then forging it to a diameter of 15 m / m.

各試料の熱処理は次のとおりである。The heat treatment of each sample is as follows.

試料No.1(インバー合金)、試料No.2(スーパーインバ
ー合金)および試料No.3(コバール合金)は、850℃で
1時間加熱する固溶化処理を実施した。
Sample No. 1 (Invar alloy), Sample No. 2 (Super Invar alloy) and Sample No. 3 (Kovar alloy) were subjected to solution treatment by heating at 850 ° C. for 1 hour.

試料No.4(Ni-SpanC合金)は、950℃で1時間加熱後水
冷し、さらに730℃で5時間の時効処理を実施した。
Sample No. 4 (Ni-SpanC alloy) was heated at 950 ° C. for 1 hour, cooled with water, and then subjected to an aging treatment at 730 ° C. for 5 hours.

試料No.5(Incoloy903合金)は、950℃で1時間加熱後
水冷し、さらに718℃で8時間加熱後、621℃の温度まで
55℃/時間の冷却速度で炉冷し、さらに、621℃で8時
間加熱後空冷を実施したものである。
Sample No. 5 (Incoloy 903 alloy) was heated at 950 ° C for 1 hour, water-cooled, further heated at 718 ° C for 8 hours, and then heated to 621 ° C.
The furnace was cooled at a cooling rate of 55 ° C./hour, further heated at 621 ° C. for 8 hours and then air-cooled.

本発明合金の試料No.7および13以外の試料並びに比較合
金の試料No.18〜27は、それぞれ980℃で1時間加熱後水
冷の固溶化処理実施後、さらに620℃で24時間の時効処
理を実施したものである。
Samples other than Sample Nos. 7 and 13 of the present invention alloy and Samples Nos. 18 to 27 of comparative alloys were each heated at 980 ° C. for 1 hour and then subjected to a solution treatment of water cooling, and further subjected to an aging treatment at 620 ° C. for 24 hours. Was carried out.

又、本発明合金の試料No.7はNo.6と同一溶解試料で、試
料No.6と同一条件の固溶化処理を実施後、580℃で24時
間の時効処理を実施した。
Further, the sample No. 7 of the alloy of the present invention is the same dissolved sample as the sample No. 6, and after the solution treatment under the same conditions as the sample No. 6, the aging treatment was carried out at 580 ° C. for 24 hours.

試料No.13は試料No.12と同一溶解試料で、試料No.12と
同一条件の固溶化処理を実施後、650℃で24時間の時効
処理を実施した。
Sample No. 13 was the same dissolution sample as Sample No. 12, and after performing the solution treatment under the same conditions as Sample No. 12, aging treatment was performed at 650 ° C for 24 hours.

この様にして得た各試料より熱膨張係数測定試料として
直径5mm、長さ50mmの試料を採取し、室温から400℃まで
の熱膨張係数の測定を、引張試験用試料として、平行部
6mm×24mm(標点間)の引張試験片を採取し、室温と400
℃での引張試験を実施した。
From each sample obtained in this way, a sample with a diameter of 5 mm and a length of 50 mm was taken as a sample for measuring the thermal expansion coefficient, and the thermal expansion coefficient from room temperature to 400 ° C was measured.
Take a 6 mm x 24 mm (between gauge marks) tensile test piece and store it at room temperature and 400
A tensile test at ° C was performed.

表において、従来合金のNo.1〜5の中で、常温及び400
℃の強度が高いのは試料No.4とNo.5であり、又、熱膨張
係数が低い試料No.3は強度が低い。
In the table, among conventional alloy Nos. 1-5, room temperature and 400
Samples No. 4 and No. 5 have high strength at ℃, and Sample No. 3 with low thermal expansion coefficient has low strength.

本発明の試料No.9、No.6及び試料No.11はMo含有量がそ
れぞれ0.6%、0.9%及び2.8%でMo量の増加に従って常
温及び400℃での引張強さと0.2%耐力が向上するが、熱
膨張係数も大きくなる。試料No.18はMo含有量が3%以
上の例であり、常温及び400℃での強度は良好である
が、熱膨張係数が7.4×10-6/℃と大きな値を示す。
Sample No. 9, No. 6 and Sample No. 11 of the present invention have a Mo content of 0.6%, 0.9% and 2.8%, respectively, and the tensile strength at room temperature and 400 ° C and the 0.2% proof stress are improved as the Mo content increases. However, the coefficient of thermal expansion also increases. Sample No. 18 is an example in which the Mo content is 3% or more, and the strength at room temperature and 400 ° C. is good, but the coefficient of thermal expansion shows a large value of 7.4 × 10 −6 / ° C.

同様に本発明合金試料No.8及び試料No.14はWの含有量
がそれぞれ1.1%と2.7%で、W量の増加に従って常温及
び400℃での引張強さと0.2%耐力が向上するが熱膨張係
数も大きくなる。試料No.19はW含有量が3%以上の例
であり、常温及び400℃での強度は良好であるが、熱膨
張係数が7.6×10-6/℃と大きな値を示す。
Similarly, in the alloy samples No. 8 and No. 14 of the present invention, the W contents are 1.1% and 2.7%, respectively, and the tensile strength at room temperature and 400 ° C and the 0.2% proof stress improve as the W content increases, but The expansion coefficient also increases. Sample No. 19 is an example in which the W content is 3% or more, and the strength at room temperature and 400 ° C. is good, but the coefficient of thermal expansion shows a large value of 7.6 × 10 −6 / ° C.

試料No.17はMo+Wが上限の2.9%、試料No.20はMo+Wが
3%以上の例である。Mo+W量の増加に従って常温、及
び400℃での引張強さと0.2%耐力が向上するがMo+W量
が4.1%の試料No.20は、熱膨張係数が7.7×10-6/℃と
大きな値を示す。
Sample No. 17 is an example in which Mo + W is the upper limit of 2.9%, and sample No. 20 is an example in which Mo + W is 3% or more. As the amount of Mo + W increases, the tensile strength and 0.2% proof stress at room temperature and 400 ° C improve, but sample No. 20 with 4.1% Mo + W has a thermal expansion coefficient of 7.7 × 10 -6 / ° C. It shows a large value.

試料No.6、No.12、No.16およびNo.21はTi添加量がそれ
ぞれ1.0%、1.8%、2.8%および3.4%の例である。Ti量
の増加に従って常温及び400℃での強度が向上するが、T
i量が3.4%の試料No.21は熱膨張係数が7.6×10-6/℃と
大きな値を示す。
Samples No. 6, No. 12, No. 16 and No. 21 are examples of Ti addition amounts of 1.0%, 1.8%, 2.8% and 3.4%, respectively. As the Ti content increases, the strength at room temperature and 400 ° C improves, but T
Sample No. 21 with an i content of 3.4% has a large coefficient of thermal expansion of 7.6 × 10 -6 / ° C.

試料No.15はAl、Si及びMnが上限に近い試料である。Al
量が2.1%の試料No.22は、熱膨張係数が6.9×10-6/℃
と大きくなるが、Ti量も多いことにより、常温及び400
℃の強度は高い。
Sample No. 15 is a sample in which Al, Si and Mn are close to the upper limit. Al
The thermal expansion coefficient of Sample No. 22 with an amount of 2.1% is 6.9 × 10 -6 / ° C.
However, due to the large amount of Ti, at room temperature and 400
The strength at ℃ is high.

試料No.7及び試料No.13はそれぞれ試料6及び試料12の
時効処理条件を変更したものであるが、熱膨張係数はほ
とんど変化しないで、常温及び400℃の強度を調整する
ことが可能であり、同一成分でも時効処理条件を変更す
ることにより必要な強度を確保することができる。
Sample No. 7 and Sample No. 13 are obtained by changing the aging conditions of Sample 6 and Sample 12, respectively, but the coefficient of thermal expansion hardly changes and the strength at room temperature and 400 ° C can be adjusted. Therefore, even with the same component, the required strength can be secured by changing the aging treatment conditions.

試料No.9および試料No.10はそれぞれNi下限(Co上限)
及びNi上限(Co下限)でNi+Co量が50%以下を満足する
試料である。これに対して試料No.23〜No.27はNi量、Co
量あるいはNi+Co量が特許の請求範囲をはずれた例であ
る。常温及び400℃の強度は良好であるが、熱膨張係数
は7.5〜9.7×10-6/℃と大きな値を示した。
Sample No. 9 and Sample No. 10 are Ni lower limit (Co upper limit) respectively
And the upper limit of Ni (lower limit of Co), the content of Ni + Co is 50% or less. On the other hand, Samples No.23 to No.27 have Ni content and Co
The amount or Ni + Co amount is out of the scope of claims of the patent. The strength at room temperature and 400 ° C was good, but the coefficient of thermal expansion showed a large value of 7.5 to 9.7 × 10 -6 / ° C.

[発明の効果] 本発明合金は引張強さが常温で60kgf/mm2〜130kgf/m
m2、400℃で40kgf/mm2〜100kgf/mm2の高い強度を示し、
しかも室温から400℃における平均熱膨張係数が6.5×10
-6以下と小さい。したがつて低い熱膨張特性と常温およ
び高温での強度が必要とされる構造用セラミックスとの
接合用材料、精密機器部品用材料あるいは航空機部品用
材料等の用途に最適なものである。
[Effects of the Invention] The alloy of the present invention has a tensile strength of 60 kgf / mm 2 to 130 kgf / m 2 at room temperature.
High strength of 40kgf / mm 2 to 100kgf / mm 2 at m 2 and 400 ° C.
Moreover, the average coefficient of thermal expansion from room temperature to 400 ° C is 6.5 × 10
-6 or less and small. Therefore, it is optimal for applications such as bonding materials for structural ceramics, materials for precision equipment parts, materials for aircraft parts, etc., which require low thermal expansion characteristics and strength at room temperature and high temperature.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内堀 勝之 東京都江東区東雲1―9―31 三菱製鋼株 式会社技術開発センター内 (56)参考文献 特開 昭62−182165(JP,A) 特公 昭31−10507(JP,B1) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuyuki Uchibori 1-9-31 Shinonome, Koto-ku, Tokyo Mitsubishi Steel Mfg. Co., Ltd. Technology Development Center (56) Reference JP-A-62-182165 (JP, A) Kosho 31-10507 (JP, B1)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量%で Ni:29%以上34%未満 Co:16%を超え21%以下 (ただし、Ni+Co:50%以下) Mo:0.5以上3.0%以下 Ti:0.8%以上3.0%以下 Al:0.2%以上1.5%以下 C:0.1%以下 Si:1.0%以下 Mn:1.0%以下 並びに残部Feおよび不純物よりなり、固溶体処理及び時
効処理を施すことにより、常温の引張強さが60kgf/mm2
〜130kgf/mm2、400℃の引張強さが40kgf/mm2〜100kgf/m
m2、室温から400℃における平均熱膨張係数が6.5×10-6
/℃以下である高強度低熱膨張性合金。
[Claim 1] Ni: 29% or more and less than 34% by weight Co: 16% or more and 21% or less (however, Ni + Co: 50% or less) Mo: 0.5 or more and 3.0% or less Ti: 0.8% or more and 3.0% Below Al: 0.2% to 1.5% C: 0.1% or less Si: 1.0% or less Mn: 1.0% or less and balance Fe and impurities, and the tensile strength at room temperature is 60 kgf / mm 2
Tensile strength of ~130kgf / mm 2, 400 ℃ is 40kgf / mm 2 ~100kgf / m
m 2, the average thermal expansion coefficient of 6.5 × 10 -6 at 400 ° C. from room temperature
High-strength, low thermal expansion alloy having a temperature of / ° C or less.
【請求項2】重量%で Ni:29%以上34%未満 Co:16%を超え21%以下 (ただし、Ni+Co:50%以下) W:0.5以上3.0%以下 Ti:0.8%以上3.0%以下 Al:0.2%以上1.5%以下 C:0.1%以下 Si:1.0%以下 Mn:1.0%以下 並びに残部Feおよび不純物よりなり、固溶体処理及び時
効処理を施すことにより、常温の引張強さが60kgf/mm2
〜130kgf/mm2、400℃の引張強さが40kgf/mm2〜100kgf/m
m2、室温から400℃における平均熱膨張係数が6.5×10-6
/℃以下である高強度低熱膨張性合金。
[Claim 2] Ni: 29% or more and less than 34% by weight Co: 16% or more and 21% or less (however, Ni + Co: 50% or less) W: 0.5 or more and 3.0% or less Ti: 0.8% or more and 3.0% Below Al: 0.2% to 1.5% C: 0.1% or less Si: 1.0% or less Mn: 1.0% or less and balance Fe and impurities, and the tensile strength at room temperature is 60 kgf / mm 2
Tensile strength of ~130kgf / mm 2, 400 ℃ is 40kgf / mm 2 ~100kgf / m
m 2, the average thermal expansion coefficient of 6.5 × 10 -6 at 400 ° C. from room temperature
High-strength, low thermal expansion alloy having a temperature of / ° C or less.
【請求項3】重量%で Ni:29%以上34%未満 Co:16%を超え21%以下 (ただし、Ni+Co:50%以下) Mo:3.0%以下 W:3.0%以下 (ただし、Mo+W:0.5%以上3.0%以下) Ti:0.8%以上3.0%以下 Al:0.2%以上1.5%以下 C:0.1%以下 Si:1.0%以下 Mn:1.0%以下 並びに残部Feおよび不純物よりなり、固溶体処理及び時
効処理を施すことにより、常温の引張強さが60kgf/mm2
〜130kgf/mm2、400℃の引張強さが40kgf/mm2〜100kgf/m
m2、室温から400℃における平均熱膨張係数が6.5×10-6
/℃以下である高強度低熱膨張性合金。
3. By weight%, Ni: 29% or more and less than 34% Co: Over 16% and 21% or less (however, Ni + Co: 50% or less) Mo: 3.0% or less W: 3.0% or less (however, Mo + W: 0.5% to 3.0%) Ti: 0.8% to 3.0% Al: 0.2% to 1.5% C: 0.1% or less Si: 1.0% or less Mn: 1.0% or less and the balance Fe and impurities to form a solid solution. The tensile strength at room temperature is 60kgf / mm 2 by applying heat treatment and aging treatment.
Tensile strength of ~130kgf / mm 2, 400 ℃ is 40kgf / mm 2 ~100kgf / m
m 2, the average thermal expansion coefficient of 6.5 × 10 -6 at 400 ° C. from room temperature
High-strength, low thermal expansion alloy having a temperature of / ° C or less.
JP63132648A 1988-06-01 1988-06-01 High strength low thermal expansion alloy Expired - Lifetime JPH0672290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63132648A JPH0672290B2 (en) 1988-06-01 1988-06-01 High strength low thermal expansion alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63132648A JPH0672290B2 (en) 1988-06-01 1988-06-01 High strength low thermal expansion alloy

Publications (2)

Publication Number Publication Date
JPH01306541A JPH01306541A (en) 1989-12-11
JPH0672290B2 true JPH0672290B2 (en) 1994-09-14

Family

ID=15086236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63132648A Expired - Lifetime JPH0672290B2 (en) 1988-06-01 1988-06-01 High strength low thermal expansion alloy

Country Status (1)

Country Link
JP (1) JPH0672290B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7237345B2 (en) * 2019-01-30 2023-03-13 新報国マテリアル株式会社 Low thermal expansion casting and its manufacturing method
EP4130299A4 (en) * 2020-03-24 2023-12-20 Shinhokoku Material Corp. Low-thermal-expansion casting and method for manufacturing same
CN115717213A (en) * 2022-10-31 2023-02-28 北京科技大学 Ultralow-expansion invar alloy material and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62182165A (en) * 1986-02-05 1987-08-10 日本特殊陶業株式会社 Metal for joining ceramic

Also Published As

Publication number Publication date
JPH01306541A (en) 1989-12-11

Similar Documents

Publication Publication Date Title
US3438770A (en) Brazing alloy of improved workability containing nickel and palladium
JPH0784633B2 (en) Titanium aluminum alloy
US20020124913A1 (en) Ferritic Fe-Cr-Ni-Al alloy having exellent oxidation resistance and high strength and a plate made of the alloy
JP3310680B2 (en) Intermetallic compound-based heat-resistant alloy
US5718867A (en) Alloy based on a silicide containing at least chromium and molybdenum
JPH04218642A (en) Low thermal expansion superalloy
JPH0672290B2 (en) High strength low thermal expansion alloy
JP4288821B2 (en) Low thermal expansion Fe-based heat-resistant alloy with excellent high-temperature strength
US5422070A (en) Oxidation-resistant and corrosion-resistant alloy based on doped iron aluminide, and use of said alloy
KR100980475B1 (en) Active brazing filler metal alloy composition with high strength and low melting point
JP2523677B2 (en) Low thermal expansion lead frame material
JPH0627301B2 (en) High strength low thermal expansion alloy for ceramic bonding
US5215605A (en) Niobium-aluminum-titanium intermetallic compounds
JP3281685B2 (en) Hot bolt material for steam turbine
JPH0270040A (en) High-strength low thermal expansion alloy
JP3289847B2 (en) Low thermal expansion super heat resistant alloy with excellent oxidation resistance
JPS6254176B2 (en)
JP2941312B2 (en) High strength low thermal expansion alloy
JP3800345B2 (en) Hot chamber castable zinc alloy
JPH02274829A (en) Intermetallic compound ti3al-base lightweight heat-resistance alloy
JPH0621322B2 (en) Ceramic expansion brazing alloy for brazing
JPH108166A (en) Copper alloy for heat sink
JP2655332B2 (en) Aluminum alloy for ceramic joining
JPS61264161A (en) Low thermal expansion, superheat resistant alloy of resources conservation type
JPH08218149A (en) Intermetallic compound iron-aluminum alloy