JPH02274829A - Intermetallic compound ti3al-base lightweight heat-resistance alloy - Google Patents

Intermetallic compound ti3al-base lightweight heat-resistance alloy

Info

Publication number
JPH02274829A
JPH02274829A JP9614689A JP9614689A JPH02274829A JP H02274829 A JPH02274829 A JP H02274829A JP 9614689 A JP9614689 A JP 9614689A JP 9614689 A JP9614689 A JP 9614689A JP H02274829 A JPH02274829 A JP H02274829A
Authority
JP
Japan
Prior art keywords
alloy
weight
ti3al
intermetallic compound
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9614689A
Other languages
Japanese (ja)
Inventor
Hisashi Maeda
尚志 前田
Minoru Okada
稔 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9614689A priority Critical patent/JPH02274829A/en
Publication of JPH02274829A publication Critical patent/JPH02274829A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To improve the cold ductility of the Ti3Al-base alloy without deteriorating the characteristics of lightness in weight and high strength by dispersing a beta phase into an intermetallic compound Ti3Al in a specified ratio and incorporating specified small amounts of B, C, Si, etc., thereto. CONSTITUTION:The raw material of a V-Al series master alloy constituted of high purity sponge Ti, Al and 3 to 12wt.% V as the element for stabilizing a beta phase as well as TiB2, TiC, Si, etc, is melted in a vacuum arc melting furnace to refine an intermetallic compound Ti3Al in which 1 to 20vol.% betaphase is dispersed and contg. 0.001 to 0.4wt.% of one or more kinds among C, B, Si, etc. To Ti3Al which has the characteristics of lightness in weight and excellent high strength, but is inferior in cold ductility, V as a stabilizer for a beta phase is added and B, C, Si, etc., are incorporated to suppress the amt. of the beta phase to the minimum, by which low cold ductility which has been the defect of the alloy can highly be improved without deteriorating the characteristics of lightness in weight and high strength.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、軽くて高温強度が高く、航空機用エンジン部
材や発電用ガスタービン部材等への利用が期待されてい
る金属間化合物Ti3Al基合金であって、特にその軽
量および高強度という特徴が損なわれずに常温延性が改
善されたTiJQ基合金に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to an intermetallic compound Ti3Al-based alloy that is lightweight and has high high-temperature strength and is expected to be used in aircraft engine parts, power generation gas turbine parts, etc. In particular, the present invention relates to a TiJQ-based alloy with improved cold ductility without sacrificing its light weight and high strength characteristics.

(従来の技術) Ti−All!2元系において、TI、^f、TiAN
およびTlAj!2の3種類の金属間化合物が存在する
ことが知られている。このうちT1側に近いTiJlは
α2相とも呼ばれ、DOl、型の結晶構造を有している
(Prior art) Ti-All! In a binary system, TI, ^f, TiAN
and TlAj! It is known that three types of intermetallic compounds exist. Among these, TiJl near the T1 side is also called α2 phase and has a DOl type crystal structure.

Ti5Afは化学量論組成(Ti−15,8重量%Af
fi)からAffi側に広い固溶範囲を形成し、高温で
はβ相に変態する。
Ti5Af has a stoichiometric composition (Ti-15, 8% by weight Af
fi) forms a wide solid solution range from the Affi side, and transforms into the β phase at high temperatures.

Tl5Aj!はチタンよりも軽く、強度が高く、その強
度は750℃程度まで大きく低下す′ることかない。
Tl5Aj! It is lighter than titanium and has higher strength, and its strength does not decrease significantly up to about 750°C.

また、この温度付近まで耐酸化性が良好であることも大
きな長所である。現在の高温用チタン合金の使用可能な
上限温度は約600°Cであるが、上記Ti3Aj!を
主体とする合金(以下rTi、Al基合金」という)を
利用することにより、この使用限界温度を向上させるこ
とが可能であり、宇宙航空機用エンジン部材やタービン
部材等への応用が広がることが期待される。
Another great advantage is that it has good oxidation resistance up to around this temperature. The upper limit temperature at which current high-temperature titanium alloys can be used is about 600°C, but the Ti3Aj! By using alloys mainly composed of rTi (hereinafter referred to as rTi, Al-based alloys), it is possible to improve this service temperature limit, and its application to spacecraft engine parts, turbine parts, etc. can be expanded. Be expected.

しかしながら、TI、lは高温強度が優れている反面、
室温延性は皆無に近い、このためにTIJ fの実用化
が制限されているのが実情である。
However, while TI,l has excellent high temperature strength,
Room-temperature ductility is almost non-existent, which limits the practical application of TIJ f.

T13A lの常温延性を改善するためにβ相安定化元
素であるニオブ(Nb)を添加し、Ti3Al中に少量
のβ相を分散させる方法がある(米国特許4,292,
077号明細書)、このようなβ相を分散させる方法に
おいては、β相の増加に伴い、常温延性は向上するが、
反面、Ti1//!の大きな特長である高温強度が低下
する。従って、分散させるβ相の量には制限があり、常
温延性と高温強度の兼ね合いによってβ相の量、すなわ
ちアルミニウム(A ffi )とβ相安定化元素の比
率が決められることになる。高温強度を低下させないた
めには、β相が可能な限り少ない状態で常温延性を向上
させることが望ましい。
In order to improve the cold ductility of T13Al, there is a method of adding niobium (Nb), a β phase stabilizing element, to disperse a small amount of β phase in Ti3Al (US Pat. No. 4,292,
077 specification), in such a method of dispersing the β phase, the room temperature ductility improves as the β phase increases, but
On the other hand, Ti1//! The high temperature strength, which is a major feature of steel, decreases. Therefore, there is a limit to the amount of β phase to be dispersed, and the amount of β phase, ie, the ratio of aluminum (A ffi ) to β phase stabilizing elements, is determined by the balance between room temperature ductility and high temperature strength. In order not to reduce high-temperature strength, it is desirable to improve cold ductility with as little β phase as possible.

本発明者らは、先にAN : 9〜25重量%、B:0
.001〜0.400重量%、残部Tiからなるチタン
合金を提案した(特開昭62−250139号公報)、
その合金は、TiJj!主体の合金にBを添加すること
により熱間加工性を大幅に向上させたものである。
The present inventors previously determined that AN: 9 to 25% by weight, B: 0
.. proposed a titanium alloy consisting of 0.001 to 0.400% by weight and the balance being Ti (Japanese Patent Application Laid-open No. 62-250139).
The alloy is TiJj! Hot workability is greatly improved by adding B to the main alloy.

(発明が解決しようとする課題) TiJj!は常温延性が乏しく、そのために用途が非常
に制限される。その常温延性を高める方法として、常温
延性の高いβ相を分散させる前掲の米国特許4,292
,077号明細書の方法は優れた方法である。しかし、
そこに開示されている合金は、Nbを19.5〜30重
量%と多量に含むものである。 Nbは原子193の重
い元素で、しかも高価であるから、このような元素を多
量に添加することはTi3A 12の軽量性を損ない、
かつ材料コストを上げることになる。Nbに限らず、他
のβ相安定化元素を添加してTi5A lとβ相からな
る組織とする場合も同様の問題が生じる。
(Problem to be solved by the invention) TiJj! has poor room-temperature ductility, which severely limits its uses. As a method for increasing the room temperature ductility, the aforementioned U.S. Patent No. 4,292 discloses dispersing a β phase with high room temperature ductility.
, 077 is an excellent method. but,
The alloy disclosed therein contains a large amount of Nb, 19.5 to 30% by weight. Nb is a heavy element with 193 atoms and is expensive, so adding a large amount of such an element will impair the lightweight properties of Ti3A12.
This also increases material costs. Similar problems occur when not only Nb but also other β-phase stabilizing elements are added to create a structure consisting of Ti5Al and β-phase.

更に、通常は常温延性が向上すれば、常温強度および高
温強度が低下するのが一般的であり、これは耐熱合金の
長所を損なうことになる。
Furthermore, as cold ductility improves, cold strength and high temperature strength generally decrease, which detracts from the advantages of heat-resistant alloys.

本発明の課題は、tts^i基合金の本来の特性である
軽量、高強度という長所をできるだけ損なわず、その常
温延性を改善することにある。具体的には、TiJff
iとβ相からなる組織においてβ相の量を極力抑えて、
Ti1Al基合金の高温強度の低下を引き起こさず、そ
の常温延性を改善することを目的とする。
An object of the present invention is to improve the cold ductility of the tts^i-based alloy without impairing its original characteristics of light weight and high strength as much as possible. Specifically, TiJff
In a structure consisting of i and β phases, the amount of β phase is suppressed as much as possible,
The purpose is to improve the cold ductility of a Ti1Al-based alloy without causing a decrease in its high-temperature strength.

本発明において目標とするTllAl基合金の特性は、
常温引張伸びが3%以上、700”Cにおける0、2%
耐力が30kgf/■−2以上である。
The properties of the TllAl-based alloy targeted in the present invention are as follows:
Tensile elongation at room temperature is 3% or more, 0.2% at 700"C
The yield strength is 30 kgf/■-2 or more.

(課題を解決するための手段) 本発明は、基本的にはβ安定化元素を添加してTi、A
 l中に少量のβ相を分散させてその常温延性を改善す
るものである。しかし、この方法において、β安定化元
素量を増加させ、β相を増加させることは前記のような
問題が生じるため、分散させるβ相の量を極力抑えなが
ら延性を改善することが望まれる。
(Means for Solving the Problems) The present invention basically consists of adding β stabilizing elements to Ti, A
A small amount of β phase is dispersed in the steel to improve its room temperature ductility. However, in this method, increasing the amount of β-stabilizing elements and increasing the β-phase causes the above-mentioned problems, so it is desirable to improve ductility while suppressing the amount of the β-phase to be dispersed as much as possible.

本発明者らは、B(ボロン)、C(炭素)、Sl(珪素
)を単独または2種以上併せて適正量含有させることに
よって、β相の量を最小限に抑えながら、TiJ J!
基合金の常温延性を大きく改善できることを確認した。
The present inventors have discovered that by containing appropriate amounts of B (boron), C (carbon), and Sl (silicon) alone or in combination of two or more, TiJ J!
It was confirmed that the room temperature ductility of the base alloy could be greatly improved.

BSC,およびSlは、いずれも原子量がT1よりも小
さい軽元素であるから、前記のNbだけを多量に含有さ
せた場合のように合金の軽量性をt員なうことはない、
しかも、これらの元素の添加量を適正範囲にすれば、合
金の強度を低下させることもない。
BSC and Sl are both light elements with an atomic weight smaller than T1, so the lightness of the alloy will not be reduced as in the case where only a large amount of Nb is contained.
Furthermore, if the amounts of these elements added are within appropriate ranges, the strength of the alloy will not be reduced.

本発明は、「金属間化合物T1.^2を主体とし、体積
百分率(vol、%)で1〜20%のβ相が分散した組
織の合金であって、更にボロン(B)、炭素(C)、お
よび珪素(St)の1種以上を単独または合計で0.0
01〜0.4重量%含有する金属面化合物TrAl基軽
量耐熱合金」を要旨とする。
The present invention is an alloy with a structure consisting mainly of an intermetallic compound T1.^2 with a β phase of 1 to 20% by volume (vol, %) dispersed therein, and further comprising boron (B) and carbon (C). ), and one or more types of silicon (St), singly or in total, 0.0
01 to 0.4% by weight of a metal surface compound TrAl-based lightweight heat-resistant alloy.

(作用) まず、[金属間化合物TI!^2を主体とする合金」に
ついて説明する。
(Function) First, [Intermetallic Compound TI! An alloy mainly composed of ^2 will be explained.

この合金は、T1をベースとして、A?12〜16重量
%と、■、Mo、 Nb、 Ta、 W、 Cr、 M
n、 Fe、 Co、N1、Cuなどのβ相安定化元素
を1種以上含むものである。これらの成分の含有量は、
代表的なVに換算して、次の■当量式で3〜12重量%
になるように含有させればよい。
This alloy is based on T1 and A? 12-16% by weight, ■, Mo, Nb, Ta, W, Cr, M
It contains one or more β phase stabilizing elements such as n, Fe, Co, N1, and Cu. The content of these ingredients is
Converting to a typical V, 3 to 12% by weight according to the following ■equivalent formula
It is sufficient if it is contained so that it becomes.

Vsq(χ)−■(χ)+1.4Mo(χ) +0.4
Nb(χ)+0.3Ta(χ)+0.6W(χ)+2.
4Cr(χ)+2.3%Mn(X)+1.7N+(χ)
+4.3Fe(χ)+2.1Co(χ)+1.2Cu(
χ)式中元素の「χ」は「重量%」である。
Vsq(χ)−■(χ)+1.4Mo(χ)+0.4
Nb(χ)+0.3Ta(χ)+0.6W(χ)+2.
4Cr(χ)+2.3%Mn(X)+1.7N+(χ)
+4.3Fe(χ)+2.1Co(χ)+1.2Cu(
χ) "χ" of the element in the formula is "% by weight".

前記β相安定化元素のうちMo、 Nb、 Ta、 W
は■より重い、特にTa、 Wは重い元素であるので、
軽量性を維持するためには少ない含有量の方が好ましい
。また、W、Cr、Mn、 ML、 Fe、 Co、 
CuはTiと結びついて他の金属間化合物を形成しやす
い、従って、最も実用的なのは、■を3〜12重量%含
有する合金である。
Among the β phase stabilizing elements, Mo, Nb, Ta, W
is heavier than ■, especially since Ta and W are heavy elements,
In order to maintain lightness, a small content is preferable. Also, W, Cr, Mn, ML, Fe, Co,
Cu tends to combine with Ti to form other intermetallic compounds. Therefore, the most practical alloy is an alloy containing 3 to 12% by weight of ■.

β相の量は、上記β相安定化元素の添加量によって調整
できるが、前記の理由からその量は必要最小限にとどめ
る。望ましいβ相の量は1〜20vol。
The amount of β phase can be adjusted by adjusting the amount of the β phase stabilizing element added, but for the reasons mentioned above, the amount is kept to the minimum necessary. The desirable amount of β phase is 1 to 20 vol.

%である。%.

次に、B、C,およびStの含有量について説明する。Next, the contents of B, C, and St will be explained.

これらの元素の添加によって常温延性が改善されるのは
、次のような理由によるものと考えられる。すなわち、
これらの元素は、β相のみならずTiJffi相の粒界
に偏析し、粒界を強化して粒界破壊を防止することによ
ってTls^l基合金の常温延性を改善する。このよう
な作用により、β相の分散量が少ない場合でも高い常温
延性が得られるから、β相安定化元素の添加量は少なく
て済む。
The reason why room temperature ductility is improved by the addition of these elements is considered to be as follows. That is,
These elements segregate not only in the β phase but also in the grain boundaries of the TiJffi phase, strengthen the grain boundaries and prevent grain boundary fracture, thereby improving the room temperature ductility of the Tls^l-based alloy. Due to this effect, high cold ductility can be obtained even when the amount of β phase dispersed is small, so the amount of β phase stabilizing element added can be small.

B、CおよびSlはいずれも同様の効果を有するから、
単独添加でもよく、2種または3種の複合添加でもよい
、ただし、いずれの場合でも含有量は0.001〜0.
4重量%の範囲とする。 0.001重量%未満では添
加の効果は認められない、また、0.4重量%を超える
含有量になると、これらの元素の偏析が起こりやすく合
金の脆化をもたらし、常温延性は却って低下する。
Since B, C and Sl all have similar effects,
It may be added alone or in combination of two or three types, but in either case, the content is 0.001 to 0.
The range is 4% by weight. If the content is less than 0.001% by weight, the effect of addition is not recognized, and if the content exceeds 0.4% by weight, segregation of these elements tends to occur, resulting in embrittlement of the alloy, and the room temperature ductility decreases on the contrary. .

(実施例) 原料として純度99.7%のスポンジチタン、純度99
.9%のAl、84重量%V−16重量%Affiの母
合金、TiBx 、Tic、純度99.99%のSiを
用い、非消耗電極式真空アーク溶解炉を使用して第1表
に示す化学組成を有する1、2kgのインゴットを溶製
した。
(Example) Sponge titanium with a purity of 99.7% as a raw material, purity 99
.. Using a master alloy of 9% Al, 84 wt% V-16 wt% Affi, TiBx, Tic, and 99.99% pure Si, the chemistry shown in Table 1 was performed using a non-consumable electrode type vacuum arc melting furnace. A 1-2 kg ingot having the following composition was melted.

第1表中の比較材というのは、B、、St、Cのいずれ
をも含有しないもの、またはそれらの含有量が多すぎる
ものである。
The comparative materials in Table 1 are those that do not contain any of B, St, and C, or those that contain too much of these.

次にこれをβ域において熱間鍛造し外径15層層の丸棒
を得て、真空中で900’Cで2時間の焼鈍を行った。
Next, this was hot forged in the β range to obtain a round bar with an outer diameter of 15 layers, and annealed in vacuum at 900'C for 2 hours.

これより外径4I、標点間距離16mg+の丸棒引張試
験片を採取し、引張試験に供した。引張試験は室温およ
び700”Cにおいて歪速度を破断まで0.5%/wr
 i nとして実施した。試験の結果を第1表に示す。
From this, a round bar tensile test piece with an outer diameter of 4I and a gauge distance of 16 mg+ was taken and subjected to a tensile test. Tensile tests were performed at room temperature and 700"C with a strain rate of 0.5%/wr to failure.
It was carried out as i.n. The test results are shown in Table 1.

本発明材は全て常温伸びが3%以上、700℃での0.
2%耐力が30kgf/ma+”以上という目標値を満
足している。これに対して、比較材は、常温伸びと70
0”Cでの0.2%耐力の一方または両方が目標値に達
していない。
All of the materials of the present invention have an elongation at room temperature of 3% or more and an elongation of 0.2% at 700°C.
The 2% proof stress satisfies the target value of 30 kgf/ma+" or more. In contrast, the comparison material has a room temperature elongation of 70
One or both of the 0.2% yield strength at 0''C has not reached the target value.

(以下、余白) (発明の効果) 実施例の試験結果にも明らかなように、本発明の合金は
、従来のTi3Aj!基合金に較べて同等以上の強度を
保ちながら延性が改善されている。
(Hereinafter, blank space) (Effects of the invention) As is clear from the test results of the examples, the alloy of the present invention is different from the conventional Ti3Aj! Compared to the base alloy, it has improved ductility while maintaining the same or higher strength.

本発明のTi3A 1基合金は、実施例のように溶解法
で製造することも、或いは粉末冶金法で製造することも
可能であって、そして、この合金は板材、管材、その他
各種の鋳鍛造材として広(実用化できるものである。
The Ti3A single-base alloy of the present invention can be manufactured by a melting method as in the embodiments, or by a powder metallurgy method, and this alloy can be used for plate materials, pipe materials, and various other types of casting and forging. Widely used as a material (can be put to practical use).

Claims (2)

【特許請求の範囲】[Claims] (1)金属間化合物Ti_3Alを主体とし、体積百分
率で1〜20%のβ相が分散した組織の合金であって、
更にボロン、炭素、および珪素の1種以上を単独または
合計で0.001〜0.4重量%含有する金属間化合物
Ti_3Al基軽量耐熱合金。
(1) An alloy mainly composed of an intermetallic compound Ti_3Al and having a structure in which a β phase of 1 to 20% by volume is dispersed,
Furthermore, the intermetallic compound Ti_3Al-based lightweight heat-resistant alloy contains 0.001 to 0.4% by weight of one or more of boron, carbon, and silicon, singly or in total.
(2)β相安定化元素としてVを3〜12重量%含有す
る特許請求の範囲第1項記載の金属間化合物Ti_3A
l基軽量耐熱合金。
(2) Intermetallic compound Ti_3A according to claim 1, containing 3 to 12% by weight of V as a β-phase stabilizing element
L-based lightweight heat-resistant alloy.
JP9614689A 1989-04-14 1989-04-14 Intermetallic compound ti3al-base lightweight heat-resistance alloy Pending JPH02274829A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9614689A JPH02274829A (en) 1989-04-14 1989-04-14 Intermetallic compound ti3al-base lightweight heat-resistance alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9614689A JPH02274829A (en) 1989-04-14 1989-04-14 Intermetallic compound ti3al-base lightweight heat-resistance alloy

Publications (1)

Publication Number Publication Date
JPH02274829A true JPH02274829A (en) 1990-11-09

Family

ID=14157243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9614689A Pending JPH02274829A (en) 1989-04-14 1989-04-14 Intermetallic compound ti3al-base lightweight heat-resistance alloy

Country Status (1)

Country Link
JP (1) JPH02274829A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281285A (en) * 1992-06-29 1994-01-25 General Electric Company Tri-titanium aluminide alloys having improved combination of strength and ductility and processing method therefor
JP2003064434A (en) * 2001-08-21 2003-03-05 Daido Steel Co Ltd Ti BASED HEAT RESISTANT MATERIAL
CN104789808A (en) * 2015-04-29 2015-07-22 陕西理工学院 Titanium-aluminum-carbon-ceramic-reinforced Ti3Al-base composite material and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5281285A (en) * 1992-06-29 1994-01-25 General Electric Company Tri-titanium aluminide alloys having improved combination of strength and ductility and processing method therefor
JP2003064434A (en) * 2001-08-21 2003-03-05 Daido Steel Co Ltd Ti BASED HEAT RESISTANT MATERIAL
CN104789808A (en) * 2015-04-29 2015-07-22 陕西理工学院 Titanium-aluminum-carbon-ceramic-reinforced Ti3Al-base composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3027200B2 (en) Oxidation resistant low expansion alloy
US5462712A (en) High strength Al-Cu-Li-Zn-Mg alloys
JP3753143B2 (en) Ni-based super heat-resistant cast alloy and turbine wheel using the same
JP2679109B2 (en) Intermetallic compound TiA-based light-weight heat-resistant alloy
US4772342A (en) Wrought Al/Cu/Mg-type aluminum alloy of high strength in the temperature range between 0 and 250 degrees C.
US20080066831A1 (en) Cobalt-chromium-iron-nickel alloys amenable to nitride strengthening
US6054096A (en) Stable heat treatable nickel superalloy single crystal articles and compositions
JP2006070360A (en) Ni-Cr-Co ALLOY FOR ADVANCED GAS TURBINE ENGINE
JPH04202729A (en) Ti alloy excellent in heat resistance
US7922969B2 (en) Corrosion-resistant nickel-base alloy
JPS6115135B2 (en)
JP3303641B2 (en) Heat resistant titanium alloy
EP0593824A1 (en) Nickel aluminide base single crystal alloys and method
JPS63171862A (en) Manufacture of heat resistant ti-al alloy
US3666453A (en) Titanium-base alloys
US4944914A (en) Titanium base alloy for superplastic forming
JPH0578769A (en) Heat resistant alloy on intermetallic
US5006308A (en) Nickel aluminide alloy for high temperature structural use
JPH02274829A (en) Intermetallic compound ti3al-base lightweight heat-resistance alloy
JP2001234292A (en) LOW THERMAL EXPANSION Fe-BASE HEAT RESISTANT ALLOY, EXCELLENT IN HIGH TEMPERATURE STRENGTH
EP0962542A1 (en) Stable heat treatable nickel superalloy single crystal articles and compositions
JP2003138334A (en) Ni-BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE AND HIGH TEMPERATURE DUCTILITY
EP1052298A1 (en) Creep resistant gamma titanium aluminide
JP2819906B2 (en) Ni-base alloy for tools with excellent room and high temperature strength
JPH083665A (en) Nickel-base superalloy for die excellent in oxidation resistance and high temperature strength