JPH0578769A - Heat resistant alloy on intermetallic - Google Patents

Heat resistant alloy on intermetallic

Info

Publication number
JPH0578769A
JPH0578769A JP3245429A JP24542991A JPH0578769A JP H0578769 A JPH0578769 A JP H0578769A JP 3245429 A JP3245429 A JP 3245429A JP 24542991 A JP24542991 A JP 24542991A JP H0578769 A JPH0578769 A JP H0578769A
Authority
JP
Japan
Prior art keywords
atomic
phase
alloy
resistant alloy
heat resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3245429A
Other languages
Japanese (ja)
Other versions
JP3310680B2 (en
Inventor
Toshimitsu Tetsui
利光 鉄井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24542991A priority Critical patent/JP3310680B2/en
Publication of JPH0578769A publication Critical patent/JPH0578769A/en
Application granted granted Critical
Publication of JP3310680B2 publication Critical patent/JP3310680B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a lightweight heat resistant alloy based on (Ti, Nb)Al as an intermetallic compd. and having high specific strength and excellent oxidation resistance. CONSTITUTION:This heat resistant alloy is based on (Ti, Nb)Al as an intermetallic compd. and contains 25-60 atomic % Ti, 2-25 atomic % Nb and 40-55 atomic % Al or further contains 0.1-10 atomic % one or more among Cr, Si, Ni, Zr, Y, V, Mn, Ta, W, Hf and Mo.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は軽量かつ高比強度であ
り、優れた耐酸化性をもつ金属間化合物(Ti,Nb)
Al基耐熱合金に関し、特に山形過給機用ロータ材、エ
ンジンバルブ(自動車用)に有利に適用することができ
る同合金に関する。
BACKGROUND OF THE INVENTION The present invention is an intermetallic compound (Ti, Nb) which is lightweight and has high specific strength and excellent oxidation resistance.
The present invention relates to an Al-based heat-resistant alloy, and particularly to the same alloy that can be advantageously applied to a rotor material for mountain turbochargers and engine valves (for automobiles).

【0002】[0002]

【従来の技術】TiとAlの2元系において、Alが約
48〜70原子%にわたって結晶構造がL10 である金
属間化合物TiAl(以下、TiAl相と云う)が存在
することは知られている。このTiAl相は(1)軽
い、(2)比強度が大きいという特徴をもっている。
BACKGROUND OF THE INVENTION 2-element of Ti and Al, Al of about 48 to 70 between the metal crystal structure is L1 0 over atomic% compound TiAl (hereinafter, referred to as TiAl phase) exists that is known to the There is. This TiAl phase is characterized by (1) being light and (2) having a high specific strength.

【0003】しかし、このTiAl相は常温延性に乏し
く、700℃以上において強度及び耐酸化性が低下する
という問題点をもっている。
However, this TiAl phase is poor in room temperature ductility and has a problem that strength and oxidation resistance are lowered at 700 ° C. or higher.

【0004】近年、常温延性を改善したものとしてV添
加合金(米国特許第4294615号明細書参照)及び
Mn添加合金(特公昭62−215号公報参照)が知ら
れているが、これらのいずれの合金も常温延性は改善さ
れたが、高温域における強度及び耐酸化性が不十分であ
るという欠点は解消されていないため、使用温度に制限
を受けている。
In recent years, V-added alloys (see US Pat. No. 4,294,615) and Mn-added alloys (see Japanese Patent Publication No. 62-215) are known as those having improved room temperature ductility. The alloy also has improved room temperature ductility, but the drawbacks of insufficient strength and oxidation resistance in the high temperature region have not been solved, and therefore the operating temperature is limited.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記技術水準
に鑑み、TiAl相の常温延性、高温強度及び耐酸化性
を改善し、前記のV添加合金及びMn添加合金より更に
高温用途に実用化し得る金属間化合物(Ti,Nb)A
l基耐熱合金を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention improves the room temperature ductility, high temperature strength and oxidation resistance of the TiAl phase and makes it practical for use at higher temperatures than the above V-added alloy and Mn-added alloy. Obtained intermetallic compound (Ti, Nb) A
It is intended to provide an l-base heat resistant alloy.

【0006】[0006]

【課題を解決するための手段】本発明は金属間化合物
(Ti,Nb)Al相をベースとした合金であって、T
iを25〜60原子%、Nbを2〜25原子%、Alを
40〜55原子%含有する金属間化合物基耐熱合金であ
る。
The present invention is an alloy based on an intermetallic compound (Ti, Nb) Al phase, which comprises:
It is an intermetallic compound-based heat resistant alloy containing i of 25 to 60 atomic%, Nb of 2 to 25 atomic%, and Al of 40 to 55 atomic%.

【0007】また、前記組成に、必要に応じCr,S
i,Ni,Zr,Y,V,Mn,Ta,W,Hf,Mo
よりなる群から選ばれた1つ以上の金属を単独あるいは
複合して0.1〜10原子%含有させた金属間化合物基
耐熱合金である。
In addition, if necessary, Cr, S may be added to the above composition.
i, Ni, Zr, Y, V, Mn, Ta, W, Hf, Mo
It is an intermetallic compound base heat resistant alloy containing 0.1 to 10 atom% of one or more metals selected from the group consisting of single or composite.

【0008】[0008]

【作用】本発明の金属間化合物(Ti,Nb)Al基耐
熱合金は溶解法あるいは焼結法によって得られる。ま
た、溶解材、焼結材に対し恒温鍛造等の熱間加工を施す
ことにより組織を調整すれば特性は更に改善できる。
The intermetallic compound (Ti, Nb) Al-based heat resistant alloy of the present invention can be obtained by a melting method or a sintering method. Further, the characteristics can be further improved by adjusting the structure by subjecting the molten material and the sintered material to hot working such as isothermal forging.

【0009】本発明の金属間化合物(Ti,Nb)Al
基耐熱合金の組織は(Ti,Nb)Al相単相組織、あ
るいは(Ti,Nb)Al相を主相とする多相組織とな
る。この(Ti,Nb)Al相の結晶構造はTiAl相
と同じL10であり、TiAl相の結晶構造中における
Tiサイトの一部にNbが置換した構造となる。
The intermetallic compound (Ti, Nb) Al of the present invention
The structure of the base heat-resistant alloy is a (Ti, Nb) Al phase single phase structure or a multiphase structure having a (Ti, Nb) Al phase as a main phase. The crystal structure of this (Ti, Nb) Al phase is L1 0, which is the same as the TiAl phase, and is a structure in which a part of the Ti site in the crystal structure of the TiAl phase is replaced with Nb.

【0010】金属間化合物(Ti,Nb)Al基耐熱合
金においては必要に応じ次の元素を添加してもよい。 ・ 常温延性を更に改善させる場合:Cr,V,Mn ・ 耐酸化性を更に改善させる場合:Cr,Si,N
i,Zr,Y ・ 高温強度を更に改善させる場合:Ta,W,Zr,
Hf,Mo 以下、本発明に係る合金元素の限定理由を説明する。
If necessary, the following elements may be added to the intermetallic compound (Ti, Nb) Al-based heat resistant alloy.・ To improve room temperature ductility: Cr, V, Mn ・ To further improve oxidation resistance: Cr, Si, N
i, Zr, Y · To further improve high temperature strength: Ta, W, Zr,
Hf, Mo Hereinafter, the reasons for limiting the alloy elements according to the present invention will be described.

【0011】〇 Ti:25〜60原子% Ti濃度が25原子%未満の場合、多相組織である本発
明合金中において、金属間化合物NbAl3 相の割合が
増加する。このNbAl3 相は常温延性に乏しいため、
本発明合金の常温延性を低下させる要因となる。また、
Ti濃度が60原子%を超える場合、金属間化合物Ti
3 Al相の割合が増加する。このTi3 Al相は(T
i,Nb)Al相に較べ高温強度、耐酸化性が劣るた
め、本発明合金の高温強度、耐酸化性を低下させる要因
となる。
Ti: 25 to 60 atomic% When the Ti concentration is less than 25 atomic%, the proportion of the intermetallic compound NbAl 3 phase increases in the alloy of the present invention having a multiphase structure. Since this NbAl 3 phase has poor room temperature ductility,
It becomes a factor that lowers the room temperature ductility of the alloy of the present invention. Also,
When the Ti concentration exceeds 60 atomic%, the intermetallic compound Ti
3 The proportion of Al phase increases. This Ti 3 Al phase is (T
Since i, Nb) Al phase is inferior in high temperature strength and oxidation resistance as compared with Al phase, it becomes a factor of lowering high temperature strength and oxidation resistance of the alloy of the present invention.

【0012】〇 Nb:2〜25原子% Nb濃度が2原子%未満の場合、(Ti,Nb)Al相
におけるNbの置換量は少なくなるため、TiAl相の
特性改善は不十分である。Nb濃度が25原子%を超え
る場合、金属間化合物Nb2 Al相の割合が増加する。
このNb2 Al相は常温延性に乏しいため、本発明合金
の常温延性を低下させる要因となる。
Nb: 2 to 25 atomic% When the Nb concentration is less than 2 atomic%, the amount of Nb substituted in the (Ti, Nb) Al phase is small, so that the characteristic improvement of the TiAl phase is insufficient. When the Nb concentration exceeds 25 atomic%, the proportion of the intermetallic compound Nb 2 Al phase increases.
Since this Nb 2 Al phase is poor in room temperature ductility, it becomes a factor that lowers the room temperature ductility of the alloy of the present invention.

【0013】〇 Al:40〜55原子% Al濃度が40原子%未満の場合、Ti3 Al相の割合
が増加し、55原子%を超える場合、NbAl3 相の割
合が増加し、各々上述した理由で本発明合金の特性を低
下させる要因となる。
Al: 40 to 55 atomic% When the Al concentration is less than 40 atomic%, the proportion of the Ti 3 Al phase increases, and when it exceeds 55 atomic%, the proportion of the NbAl 3 phase increases. For this reason, it becomes a factor that deteriorates the properties of the alloy of the present invention.

【0014】〇 Cr,Si,Ni,Zr,Y,V,M
n,Ta,W,Hf,Moの単独及び複合添加量:0.
1〜10原子% 添加量が0.1原子%以下の場合、上述した本発明合金
の特性改善には不十分である。また、添加量が10原子
%を超える場合、Alと結合し低融点の金属間化合物相
を、あるいはAl,Nbと結合しラーベス相と云われる
非常に脆い3元系金属間化合物相を生成するため、各々
本発明合金の高温強度、常温延性を低下させる要因とな
る。
〇Cr, Si, Ni, Zr, Y, V, M
n, Ta, W, Hf, Mo alone or in combination: 0.
1 to 10 atomic% When the added amount is 0.1 atomic% or less, it is not sufficient to improve the properties of the alloy of the present invention described above. When the amount added exceeds 10 atomic%, a low melting point intermetallic compound phase is formed by combining with Al, or an extremely brittle ternary intermetallic compound phase called a Laves phase is formed by combining with Al and Nb. Therefore, they are factors that reduce the high temperature strength and the room temperature ductility of the alloy of the present invention.

【0015】[0015]

【実施例】純度99.99%のTi、純度99.9%の
Nb、純度99.99%のAlを原料とし、高周波溶解
により作製した45原子%Ti−10原子%Nb−45
原子%Al合金から、ねじ部M10、平行部5mm径×
22mm長さの引張試験片及び20mm角×2mm厚さ
の酸化試験片を切り出し、引張試験及び酸化試験を行っ
た。その結果は表1に示す通りであった。
[Examples] 45 atomic% Ti-10 atomic% Nb-45 prepared by high frequency melting using Ti of 99.99% purity, Nb of 99.9% purity and Al of 99.99% purity as raw materials.
From atomic% Al alloy, screw part M10, parallel part 5mm diameter ×
A 22 mm long tensile test piece and a 20 mm square × 2 mm thick oxidation test piece were cut out and subjected to a tensile test and an oxidation test. The results are shown in Table 1.

【0016】比較のため、同一条件で作製した51.5
原子%Ti−47原子%Al−1.5原子%Mn合金
(特公昭62−215号公報)の引張試験及び酸化試験
を行った。その結果は表2に示す通りであった。
For comparison, 51.5 manufactured under the same conditions
A tensile test and an oxidation test of an atomic% Ti-47 atomic% Al-1.5 atomic% Mn alloy (Japanese Patent Publication No. 62-215) were conducted. The results are shown in Table 2.

【0017】前記の表1と表2に示す結果の比較から明
らかなように、本発明の合金は従来のMn添加により常
温延性が改善されたTiAlと比較した場合、常温延性
はほぼ同等であるものの、高温強度及び耐酸化性は著し
く優れていることが分かる。
As is clear from the comparison of the results shown in Tables 1 and 2, the alloy of the present invention has almost the same room temperature ductility when compared with TiAl whose conventional room temperature ductility is improved by the addition of Mn. However, it can be seen that the high temperature strength and the oxidation resistance are remarkably excellent.

【0018】同様な条件で作製した45原子%Ti−1
0原子%Nb−40原子%Al−5原子%Cr合金の引
張試験及び酸化試験結果を表3に示す。表3と表1、表
2に示す結果の比較から明らかなように、Cr添加によ
り常温延性及び耐酸化性は更に改善することが分かる。
45 atomic% Ti-1 produced under similar conditions
Table 3 shows the tensile test and oxidation test results of the 0 atomic% Nb-40 atomic% Al-5 atomic% Cr alloy. As is clear from the comparison of the results shown in Table 3, Table 1 and Table 2, it is understood that the addition of Cr further improves the room temperature ductility and the oxidation resistance.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【0019】[0019]

【発明の効果】本発明の金属間化合物(Ti,Nb)A
l基耐熱合金の主相である(Ti,Nb)Al相は、結
晶構造L10 のTiAl相中のTiサイトの一部にNb
が置換した構造をもつ。本発明合金はTiAlに較べる
と常温延性、高温強度及び耐酸化性のいずれも優れてい
る。また、V,Mn添加により常温延性が改善されたT
iAl基耐熱合金と比較した場合においても、高温強
度、耐酸化性は優れている。
EFFECT OF THE INVENTION Intermetallic compound (Ti, Nb) A of the present invention
is the main phase of l-base heat-resistant alloy (Ti, Nb) Al phase, Nb in a part of Ti site of TiAl phase of crystal structure L1 0
Has a substituted structure. Compared with TiAl, the alloy of the present invention is superior in room temperature ductility, high temperature strength and oxidation resistance. Also, the room temperature ductility is improved by adding V and Mn.
Even when compared with the iAl-based heat-resistant alloy, the high temperature strength and oxidation resistance are excellent.

【0020】以上の理由から、本発明合金は従来のTi
Al基耐熱合金に較べ、さらに高温用途に使用すること
ができる。
For the above reasons, the alloy of the present invention has a conventional Ti content.
It can be used for higher temperature applications than Al-based heat resistant alloys.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属間化合物(Ti,Nb)Alをベー
スとした合金であって、Tiを25〜60原子%、Nb
を2〜25原子%、Alを40〜55原子%含有する金
属間化合物基耐熱合金。
1. An alloy based on an intermetallic compound (Ti, Nb) Al, comprising 25 to 60 atomic% of Ti and Nb.
2 to 25 atomic% and Al 40 to 55 atomic%.
【請求項2】 請求項1の組成に、必要に応じCr,S
i,Ni,Zr,Y,V,Mn,Ta,W,Hf,Mo
よりなる群から選ばれた1つ以上の金属を単独あるいは
複合して0.1〜10原子%含有させた金属間化合物基
耐熱合金。
2. The composition of claim 1, if necessary, Cr, S
i, Ni, Zr, Y, V, Mn, Ta, W, Hf, Mo
An intermetallic compound-based heat-resistant alloy containing 0.1 to 10 atomic% of one or more metals selected from the group consisting of the following:
JP24542991A 1991-09-25 1991-09-25 Intermetallic compound-based heat-resistant alloy Expired - Lifetime JP3310680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24542991A JP3310680B2 (en) 1991-09-25 1991-09-25 Intermetallic compound-based heat-resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24542991A JP3310680B2 (en) 1991-09-25 1991-09-25 Intermetallic compound-based heat-resistant alloy

Publications (2)

Publication Number Publication Date
JPH0578769A true JPH0578769A (en) 1993-03-30
JP3310680B2 JP3310680B2 (en) 2002-08-05

Family

ID=17133529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24542991A Expired - Lifetime JP3310680B2 (en) 1991-09-25 1991-09-25 Intermetallic compound-based heat-resistant alloy

Country Status (1)

Country Link
JP (1) JP3310680B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012827A1 (en) * 1994-10-25 1996-05-02 Mitsubishi Jukogyo Kabushiki Kaisha TiAl INTERMETALLIC COMPOUND ALLOY AND PROCESS FOR PRODUCING THE ALLOY
EP0889143A1 (en) * 1997-07-05 1999-01-07 ROLLS-ROYCE plc Titanium aluminide alloys
DE102004056582A1 (en) * 2004-11-23 2006-06-01 Gkss-Forschungszentrum Geesthacht Gmbh Alloy based on titanium aluminides
JP2009144247A (en) * 2007-12-13 2009-07-02 Gkss-Forschungszentrum Geesthacht Gmbh Titanium aluminide alloy and working method thereof, and structural parts produced using the titanium aluminide alloy
CN102181748A (en) * 2011-05-26 2011-09-14 洛阳双瑞精铸钛业有限公司 Titanium-aluminum base alloy with excellent room temperature ductility and casting fluidity and preparation method of titanium-aluminum base alloy
CN103572102A (en) * 2013-11-05 2014-02-12 姚芸 High-temperature heat-resistant aluminum alloy
CN103710606A (en) * 2013-12-16 2014-04-09 北京工业大学 Novel beta-gamma TiAl intermetallic compound material containing Cr and high Nb content and preparation method of material
WO2014115921A1 (en) * 2013-01-23 2014-07-31 한국기계연구원 Titanium-aluminum alloy having enhanced high temperature strength and oxidation resistance
RU2621500C1 (en) * 2015-12-21 2017-06-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" INTERMETALLIC TiAl BASED ALLOY
RU2633135C1 (en) * 2016-11-11 2017-10-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Intermetallic tial-based alloy
WO2020086263A1 (en) * 2018-10-22 2020-04-30 Arconic Inc. New titanium aluminide alloys and methods for making the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996012827A1 (en) * 1994-10-25 1996-05-02 Mitsubishi Jukogyo Kabushiki Kaisha TiAl INTERMETALLIC COMPOUND ALLOY AND PROCESS FOR PRODUCING THE ALLOY
US6051084A (en) * 1994-10-25 2000-04-18 Mitsubishi Jukogyo Kabushiki Kaisha TiAl intermetallic compound-based alloys and methods for preparing same
EP0889143A1 (en) * 1997-07-05 1999-01-07 ROLLS-ROYCE plc Titanium aluminide alloys
US5997808A (en) * 1997-07-05 1999-12-07 Rolls-Royce Plc Titanium aluminide alloys
DE102004056582A1 (en) * 2004-11-23 2006-06-01 Gkss-Forschungszentrum Geesthacht Gmbh Alloy based on titanium aluminides
DE102004056582B4 (en) * 2004-11-23 2008-06-26 Gkss-Forschungszentrum Geesthacht Gmbh Alloy based on titanium aluminides
EP2145967A3 (en) * 2007-12-13 2010-04-21 Gkss-Forschungszentrum Geesthacht Gmbh Titanium aluminide alloys
EP2075349A3 (en) * 2007-12-13 2009-09-09 Gkss-Forschungszentrum Geesthacht Gmbh Titanium aluminide alloys
JP2009144247A (en) * 2007-12-13 2009-07-02 Gkss-Forschungszentrum Geesthacht Gmbh Titanium aluminide alloy and working method thereof, and structural parts produced using the titanium aluminide alloy
EP2423341A1 (en) * 2007-12-13 2012-02-29 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Titanium aluminide alloys
CN102181748A (en) * 2011-05-26 2011-09-14 洛阳双瑞精铸钛业有限公司 Titanium-aluminum base alloy with excellent room temperature ductility and casting fluidity and preparation method of titanium-aluminum base alloy
WO2014115921A1 (en) * 2013-01-23 2014-07-31 한국기계연구원 Titanium-aluminum alloy having enhanced high temperature strength and oxidation resistance
CN103572102A (en) * 2013-11-05 2014-02-12 姚芸 High-temperature heat-resistant aluminum alloy
CN103710606A (en) * 2013-12-16 2014-04-09 北京工业大学 Novel beta-gamma TiAl intermetallic compound material containing Cr and high Nb content and preparation method of material
CN103710606B (en) * 2013-12-16 2016-07-06 北京工业大学 A kind of containing Cr height Nb β-γ TiAl intermetallic compound material and preparation method thereof
RU2621500C1 (en) * 2015-12-21 2017-06-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" INTERMETALLIC TiAl BASED ALLOY
RU2633135C1 (en) * 2016-11-11 2017-10-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Intermetallic tial-based alloy
WO2020086263A1 (en) * 2018-10-22 2020-04-30 Arconic Inc. New titanium aluminide alloys and methods for making the same

Also Published As

Publication number Publication date
JP3310680B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
JP3049767B2 (en) Ti alloy with excellent heat resistance
US5286443A (en) High temperature alloy for machine components based on boron doped TiAl
JP3753143B2 (en) Ni-based super heat-resistant cast alloy and turbine wheel using the same
US4386976A (en) Dispersion-strengthened nickel-base alloy
JPH0754085A (en) Creep-resistant aluminized titanium alloy composition and investment casting made of said composition
JPWO2006059805A1 (en) Heat resistant superalloy
JP2678083B2 (en) Ti-Al lightweight heat resistant material
US6071470A (en) Refractory superalloys
JPH0225534A (en) Titanium-aluminum alloy
US4738822A (en) Titanium alloy for elevated temperature applications
US5932033A (en) Silicide composite with niobium-based metallic phase and silicon-modified laves-type phase
JPH0578769A (en) Heat resistant alloy on intermetallic
US5167732A (en) Nickel aluminide base single crystal alloys
JP3303641B2 (en) Heat resistant titanium alloy
JPS6115135B2 (en)
JP3076696B2 (en) α + β type titanium alloy
JPH01255632A (en) Ti-al intermetallic compound-type alloy having toughness at ordinary temperature
JPH0931572A (en) Heat resistant titanium alloy excellent in high temperature fatigue strength
JP2868185B2 (en) Al lower 3 Ti type low density heat resistant intermetallic alloy
JPH05320791A (en) Ti-al intermetallic compound alloy
JPH05163542A (en) Heat-resistant titanium alloy
JP3332615B2 (en) TiAl-based intermetallic compound-based alloy and method for producing the same
JPH0222435A (en) Heat-resistant titanium alloy
JPH03193851A (en) Production of tial-base alloy having extremely superfine structure
JPH05163543A (en) Heat-resistant titanium alloy

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020430

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 10