JPH05163543A - Heat-resistant titanium alloy - Google Patents

Heat-resistant titanium alloy

Info

Publication number
JPH05163543A
JPH05163543A JP33083791A JP33083791A JPH05163543A JP H05163543 A JPH05163543 A JP H05163543A JP 33083791 A JP33083791 A JP 33083791A JP 33083791 A JP33083791 A JP 33083791A JP H05163543 A JPH05163543 A JP H05163543A
Authority
JP
Japan
Prior art keywords
strength
creep
high temperature
titanium alloy
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33083791A
Other languages
Japanese (ja)
Inventor
Masakatsu Hosomi
政功 細見
Hisashi Maeda
尚志 前田
Minoru Okada
岡田  稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP33083791A priority Critical patent/JPH05163543A/en
Publication of JPH05163543A publication Critical patent/JPH05163543A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To provide a heat-resistant titanium alloy having higher creep strength than an Mo-added alloy and having well-balanced high-temp. strength, creep strength and fatigue strength without adding Mo to the alloy. CONSTITUTION:The heat-resistant titanium alloy contains, by weight, 5.0-7.0% Al, 2.0-5.0% Sn, 5.2-6.0% Zr, 0.10-1.50% Nb, 0.20-0.60% Si, 0.10-1.00% W, 0.02-0.10% C and the balance Ti with inevitable impurities. The ordinary-temp. tensile strength is controlled to >=1060MPa, the ordinary-temp. elongation to >=12%, the 600 deg.C tensile strength to >=630MPa, the 60% elongation to >=25%, the creep strain to <=0.15% (540 deg.C, 300MPa, 100hr) and the fatigue strength to >=4.0X10<7> (rupture cycle, 540 deg.C, 300MPa and R=0.1).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、Near−α型耐熱チタン
合金に関し、特に、高温強度およびクリープ特性に優れ
た耐熱チタン合金に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a near-α type heat resistant titanium alloy, and more particularly to a heat resistant titanium alloy excellent in high temperature strength and creep characteristics.

【0002】[0002]

【従来の技術】近年、その優れた耐食性と高い比強度の
ためにチタンおよびチタン合金の需要は急激な伸びを示
してきたが、特にチタン合金は軽量にしてより高強度で
あると言う特徴をさらに生かすため、今日でも、様々な
分野での応用、用途開発が試みられている。
2. Description of the Related Art In recent years, the demand for titanium and titanium alloys has been rapidly increasing due to their excellent corrosion resistance and high specific strength. In particular, titanium alloys are light in weight and have higher strength. In order to make the best use of it, even today, application and application development in various fields are being tried.

【0003】従来から使用されてきた高強度チタン合金
の代表的なものとして、Ti-6Al-4V合金を挙げることが
できるが、最近では高温環境用チタン合金構造材に対す
る要望が強くなり、米国においてこれに応えるためNear
−α型のTi-6Al-2Sn-4Zr-2Mo合金等の“高温用チタン合
金”が開発された。その後、米国、英国において次々と
新しいNear−α型の耐熱チタン合金が開発され、日本に
おいてもその開発が進行している。特開平1−242743号
公報、同2−19436 号公報、同2−22435 号公報参照。
ここに、Near−α型のチタン合金とは、少量のβ相を含
み大部分がα相からなるチタン合金を言い、上述のTi-6
Al-2Sn-4Zr-2Mo系合金がその代表例である。
A typical example of high strength titanium alloys that have been used in the past is Ti-6Al-4V alloy. Recently, however, there has been a strong demand for titanium alloy structural materials for high temperature environments, and in the United States. Near to meet this
“High temperature titanium alloys” such as α type Ti-6Al-2Sn-4Zr-2Mo alloys have been developed. After that, new Near-α type heat-resistant titanium alloys have been developed one after another in the United States and the United Kingdom, and their development is also progressing in Japan. See Japanese Patent Application Laid-Open Nos. 1-242743, 2-19436, and 2-22435.
Here, the Near-α type titanium alloy refers to a titanium alloy that contains a small amount of β phase and is mostly composed of the α phase, and the Ti-6
A typical example is an Al-2Sn-4Zr-2Mo alloy.

【0004】[0004]

【発明が解決しようとする課題】ところで、近年、航空
機の高速度化を図るためにも航空機エンジンの高性能化
が求められており、それに応えるべく、上記Near−α型
チタン合金が注目され、かかるNear−α型チタン合金の
耐用温度の上昇が強く望まれている。すなわち、航空機
エンジンにチタン合金を適用するには、従来合金では高
温強度、高温クリープ強度、高サイクル疲労強度のバラ
ンスが不充分であり、耐用温度の更なる上昇を実現する
には上記性質のより優れたバランスを有するチタン合金
が必要であることが判明した。
By the way, in recent years, there has been a demand for higher performance of aircraft engines in order to increase the speed of aircraft, and in order to meet the demand, the Near-α type titanium alloys have attracted attention, It is strongly desired to raise the service temperature of such Near-α type titanium alloy. That is, in order to apply a titanium alloy to an aircraft engine, the conventional alloy has an insufficient balance of high temperature strength, high temperature creep strength and high cycle fatigue strength. It has been found that a titanium alloy having a good balance is needed.

【0005】一方、米国における耐熱チタン合金開発の
流れから、Ti-6Al-2Sn-4Zr-6Mo、Ti-6Al-2Sn-4Zr-2Mo、
Ti-5Al-5Sn-2Zr-2Mo-0.1Si、Ti-6Al-2Sn-4Zr-2Mo-0.1S
i、そしてTi-5Al-5Sn-2Zr-4Mo-0.1SiS のようなMoを2
〜6%含む合金が開発されてきた。これらはいずれもNe
ar−α型チタン合金であるが、しかし、このような多量
のMoを含有する合金は高温において短時間強度 (高温強
度) および疲労強度には優れるが、むしろ長時間にわた
るクリープ強度特性は劣ることが報告されている。
On the other hand, from the flow of development of heat-resistant titanium alloys in the United States, Ti-6Al-2Sn-4Zr-6Mo, Ti-6Al-2Sn-4Zr-2Mo,
Ti-5Al-5Sn-2Zr-2Mo-0.1Si, Ti-6Al-2Sn-4Zr-2Mo-0.1S
i, and Mo such as Ti-5Al-5Sn-2Zr-4Mo-0.1SiS 2
Alloys containing ~ 6% have been developed. These are all Ne
Although it is an ar-α type titanium alloy, such an alloy containing a large amount of Mo has excellent short-term strength (high-temperature strength) and fatigue strength at high temperatures, but rather has poor creep strength characteristics over a long period of time. Has been reported.

【0006】そこで日本においては、疲労強度をある程
度犠牲にしてもクリープ強度を高めるために、Mo含有量
を0.3 %程度に抑えたチタン合金 (特開平2−19436 号
公報参照) が開発された。しかし、Moが入っている限
り、高温クリープ強度は充分とはいえず、疲労強度も低
いため、実用的上問題があった。
Therefore, in Japan, in order to increase the creep strength even if the fatigue strength is sacrificed to some extent, a titanium alloy having a Mo content suppressed to about 0.3% (see Japanese Patent Laid-Open No. 2-19436) was developed. However, as long as Mo is contained, the high temperature creep strength cannot be said to be sufficient and the fatigue strength is also low, so there was a practical problem.

【0007】ここに、本発明の目的は、従来合金よりも
高温強度および高温クリープ強度に優れ、高サイクル疲
労強度を備えた耐熱チタン合金を提供することにある。
さらに、本発明の具体的な目的は、Moを添加せずとも疲
労強度に劣らず、かつMo添加材よりクリープ強度に優れ
る、常温引張強度1060MPa 以上、常温伸び12%以上、60
0 ℃引張強度630MPa以上、600 ℃伸び25%以上、クリー
プ歪量0.15%以下(540℃,300MPa,100Hr)、そして疲労強
度4.0 ×107(破断サイクル、540 ℃、300MPa, R=0.1)
以上を満足する耐熱チタン合金を提供することである。
It is an object of the present invention to provide a heat-resistant titanium alloy which is superior in high temperature strength and high temperature creep strength to conventional alloys and has high cycle fatigue strength.
Further, a specific object of the present invention is not inferior in fatigue strength even if Mo is not added, and is superior in creep strength to a Mo-added material, normal temperature tensile strength 1060 MPa or higher, normal temperature elongation 12% or higher, 60
Tensile strength at 0 ℃ 630MPa or more, elongation at 600 ℃ 25% or more, creep strain amount 0.15% or less (540 ℃, 300MPa, 100Hr), and fatigue strength 4.0 × 10 7 (breaking cycle, 540 ℃, 300MPa, R = 0.1)
It is to provide a heat-resistant titanium alloy satisfying the above.

【0008】[0008]

【課題を解決するための手段】本発明者らは、かかる課
題を解決すべく、種々検討を重ね次のような知見を得
て、本発明に至った。 Moを添加しなくても、Zrを従来の合金より多量(5.2%
以上) に添加すると、疲労強度の低下を防げる。
Means for Solving the Problems The inventors of the present invention have made various investigations in order to solve the above problems, and have obtained the following findings to achieve the present invention. Larger amount of Zr than conventional alloys without adding Mo (5.2%
The above can prevent the fatigue strength from decreasing.

【0009】あまり多量にZrを添加すると、Moを添加
しないのにやはりクリープ強度が低下してしまう。 Zr添加に伴うクリープ強度の低下はW、Cを適当量添
加することで改善できる。
If Zr is added in a too large amount, the creep strength is lowered even though Mo is not added. The decrease in creep strength due to the addition of Zr can be improved by adding W and C in appropriate amounts.

【0010】Moを添加せず、Zr量を従来より高くし、
W、Cを適当量加えることにより、高温強度、クリープ
強度、そして疲労強度のバランスの優れた耐熱チタン合
金が得られる。 さらに、0.50%以下のTa、1.00%以下のCuまたはHfの
うち一種または二種含有させることにより、より高いバ
ランスのチタン合金を得ることができる。
Without adding Mo, the amount of Zr was made higher than before,
By adding an appropriate amount of W and C, a heat resistant titanium alloy having an excellent balance of high temperature strength, creep strength and fatigue strength can be obtained. Further, by adding one or two of 0.50% or less of Ta and 1.00% or less of Cu or Hf, a titanium alloy having a higher balance can be obtained.

【0011】よって、本発明の要旨とするところは、重
量%で、Al:5.0〜7.0 %、 Sn:2.0〜5.0 %、 Z
r:5.2〜6.0 %、Nb:0.10 〜1.50%、 Si:0.20 〜0.60
%、 W:0.10 〜1.00%、C:0.02 〜0.10%、残部Tiお
よび不可避的不純物からなる耐熱チタン合金である。本
発明の実施態様によれば、さらに、Hf:1.00 %以下、T
a:0.50 %以下、Cu:1.00 %以下のうちの一種または二
種以上を含んでもよい。
Therefore, the gist of the present invention is that, in weight%, Al: 5.0 to 7.0%, Sn: 2.0 to 5.0%, Z:
r: 5.2 to 6.0%, Nb: 0.10 to 1.50%, Si: 0.20 to 0.60
%, W: 0.10 to 1.00%, C: 0.02 to 0.10%, the balance Ti and unavoidable impurities. According to an embodiment of the present invention, further, Hf: 1.00% or less, T
One or two or more of a: 0.50% or less and Cu: 1.00% or less may be contained.

【0012】[0012]

【作用】次に、本発明において合金組成を上述のように
限定した理由について詳述する。 Al:Alはα相安定化元素であり、αトランザス温度を上
昇させ、固溶効果により高温強度、クリープ強度向上に
寄与する。5.0 %未満では、α相安定化効果および固溶
硬化が十分ではなく、必要とする高温強度、クリープ強
度が得られない。また、添加量が7.0 %を越えると、Ti
とAlとの金属間化合物であるTi3Al が析出し、脆化す
る。そのため、本発明においてAl含有量は5.0 〜7.0 %
に設定する。
Next, the reason why the alloy composition is limited as described above in the present invention will be described in detail. Al: Al is an α-phase stabilizing element that raises the α-transus temperature and contributes to the high temperature strength and creep strength improvement due to the solid solution effect. If it is less than 5.0%, the α-phase stabilizing effect and solid solution hardening are insufficient, and the required high temperature strength and creep strength cannot be obtained. Also, if the addition amount exceeds 7.0%, Ti
Ti 3 Al, which is an intermetallic compound of Al and Al, precipitates and becomes brittle. Therefore, in the present invention, the Al content is 5.0 to 7.0%.
Set to.

【0013】Sn:Snは中性型元素であり、Alと同様の固
溶硬化能があり、高温強度を向上させ、耐クリープ特性
を改善し得る。添加量が2.0 %未満では、その効果が充
分ではない。一方、添加量が5.0 %を越えると、密度が
大きくなること、および脆化相(Ti3Al) が析出するため
望ましくない。したがって、Sn含有量は2.0 〜5.0 %に
設定する。
Sn: Sn is a neutral type element, has the same solid solution hardening ability as Al, and can improve high temperature strength and creep resistance. If the added amount is less than 2.0%, the effect is not sufficient. On the other hand, if the addition amount exceeds 5.0%, the density becomes large and the embrittlement phase (Ti 3 Al) precipitates, which is not desirable. Therefore, the Sn content is set to 2.0 to 5.0%.

【0014】Zr:Zrは中性型元素であり、α相、β相の
両方に固溶し硬化する。さらに添加元素であるSiと結び
ついて、Ti、ZrとSiとの間に微細な金属間化合物を形成
し、従来より高目に添加すると、Mo未添加による低い疲
労強度を大きく向上させることができる。添加量が5.2
%未満ではその効果は充分ではない。添加量が6.0%を
越えると、クリープ強度の低下をもたらす。したがっ
て、Zr含有量は5.2〜6.0 %に設定する。
Zr: Zr is a neutral type element, which is solid-solved in both α phase and β phase and hardens. Furthermore, by combining with Si, which is an additional element, to form a fine intermetallic compound between Ti, Zr, and Si, and adding a higher amount than before, it is possible to greatly improve the low fatigue strength due to no addition of Mo. .. Addition amount is 5.2
If it is less than%, the effect is not sufficient. If the amount added exceeds 6.0%, the creep strength will be reduced. Therefore, the Zr content is set to 5.2 to 6.0%.

【0015】Nb:Nbはβ相安定化元素であり、高温強度
と疲労強度のバランスを向上させる。耐酸化性にも効果
のある添加元素である。そのような効果を発揮するため
には0.10%以上の添加を必要とする。しかし、添加量が
1.50%を越えるとβ相比率の増加により高温強度、クリ
ープ強度が低下する。したがって、Nb含有量は0.10〜1.
50%に設定する。
Nb: Nb is a β-phase stabilizing element and improves the balance between high temperature strength and fatigue strength. It is an additive element that is also effective in oxidation resistance. In order to exert such effects, 0.10% or more addition is required. However, if the addition amount is
If it exceeds 1.50%, the high temperature strength and creep strength decrease due to the increase of the β phase ratio. Therefore, the Nb content is 0.10 to 1.
Set to 50%.

【0016】Si:Siは高温強度および耐クリープ性の向
上をもたらす元素である。また、TiやZrと結びついて非
常に微細な金属間化合物を析出させ、高温強度を向上さ
せる。多量の添加は金属間化合物の増加あるいは粗大化
をもたらし、脆化する。したがって、Si含有量は0.20〜
0.60%に設定する。
Si: Si is an element that brings about improvement in high temperature strength and creep resistance. It also combines with Ti and Zr to precipitate very fine intermetallic compounds and improve high temperature strength. Addition of a large amount causes an increase or coarsening of intermetallic compounds, resulting in embrittlement. Therefore, the Si content is 0.20 ~
Set it to 0.60%.

【0017】W:Wはβ相安定化元素であり、0.10%以
上添加することで高温クリープ強度と高温強度を向上さ
せる。ただし、1.00%を超えた多量の添加は密度上昇、
β相の過度の増加による高温強度、クリープ強度の低下
をもたらす。したがって、W添加量は0.10〜1.00%に設
定する。
W: W is a β-phase stabilizing element, and improves its high temperature creep strength and high temperature strength by adding 0.10% or more. However, a large amount of addition exceeding 1.00% increases the density,
It causes a decrease in high temperature strength and creep strength due to excessive increase of β phase. Therefore, the W addition amount is set to 0.10 to 1.00%.

【0018】C:Cは、O (酸素) と同様にα相安定化
元素であり、さらに室温から高温に至るまで強度の上昇
に寄与し、高温クリープ強度も向上する。含有量が0.02
%以上の添加でその効果はあらわれる。しかし、添加量
が0.10%を越えると脆化するので添加量は0.02〜0.10%
に設定する。
C: C, like O (oxygen), is an α-phase stabilizing element, and further contributes to the increase in strength from room temperature to high temperature and also improves the high temperature creep strength. Content 0.02
The effect appears when the content is more than 100%. However, if the added amount exceeds 0.10%, embrittlement occurs, so the added amount is 0.02-0.10%.
Set to.

【0019】さらに、本発明にあっては、Hf、Ta、Cuを
少なくとも1種添加することで高温強度、クリープ強
度、そして疲労強度のバランスをさらに一層向上させる
ことができる。以下、それぞれの元素の限定理由につい
て述べる。
Further, in the present invention, the balance of high temperature strength, creep strength and fatigue strength can be further improved by adding at least one of Hf, Ta and Cu. The reasons for limiting each element will be described below.

【0020】Hf:Hfは過度のα相安定化を防ぎ、かつ高
温強度に寄与することができる。しかし、添加量が1.0
%を越えると、Ti、ZrとSiとの金属間化合物の析出能が
過大になり、粗大な析出物を形成し、延性の低下をもた
らす。したがってHfの含有量は1.00%以下に設定する。
Hf: Hf can prevent excessive α-phase stabilization and contribute to high temperature strength. However, the addition amount is 1.0
If it exceeds 0.1%, the precipitation ability of the intermetallic compound of Ti, Zr and Si becomes excessively large, and a coarse precipitate is formed, resulting in a decrease in ductility. Therefore, the Hf content is set to 1.00% or less.

【0021】Ta:Taはβ相安定化元素であり、高温強
度、疲労強度のバランスをより向上させる。しかし、多
量の添加は溶け残り、偏析、密度上昇、β相増加による
高温強度、高温クリープの低下をもたらす。これらの点
から添加量は0.50%以下に設定する。
Ta: Ta is a β-phase stabilizing element and further improves the balance between high temperature strength and fatigue strength. However, addition of a large amount causes undissolved residue, segregation, increase in density, and decrease in high temperature strength and high temperature creep due to increase in β phase. From these points, the addition amount is set to 0.50% or less.

【0022】Cu:Cuはβ相共析型の安定化元素である。
0.2 %程度の微量の添加で疲労特性が向上するが、添加
量が1.00%を越えると金属間化合物が析出し脆化する。
したがって添加量は1.00%以下に設定する。次に、本発
明の作用効果をその実施例によってさらに具体的に説明
する。
Cu: Cu is a β-phase eutectoid stabilizing element.
Fatigue properties are improved by the addition of a trace amount of about 0.2%, but if the addition amount exceeds 1.00%, intermetallic compounds precipitate and become brittle.
Therefore, the addition amount is set to 1.00% or less. Next, the function and effect of the present invention will be described more specifically by way of its examples.

【0023】[0023]

【実施例】表1に示す成分のTi合金インゴットをプラズ
マアーク溶解により溶製し、直径60mm×長さ300 mml の
大きさのインゴットとした。得られたインゴットをβ変
態点以上、β変態点+50℃以下の温度域で直径20mmにま
で鍛造した後、1050℃に1時間加熱後油焼入れする溶体
化処理を施し、次いで625 ℃に2時間加熱して空冷する
時効処理を行った。
Example A Ti alloy ingot having the components shown in Table 1 was melted by plasma arc melting to obtain an ingot having a diameter of 60 mm and a length of 300 mml. The obtained ingot is forged to a diameter of 20 mm in the temperature range of β transformation point to β transformation point + 50 ° C or less, heated to 1050 ° C for 1 hour, and then oil-quenched for solution treatment, and then to 625 ° C for 2 hours. An aging treatment of heating and air cooling was performed.

【0024】熱処理後の棒材から引張試験片、クリープ
試験片、疲労試験片を切り出し、各々の試験に供した。
常温および高温引張試験、クリープ試験、疲労試験の結
果を表1に示す。高温引張試験、クリープ試験および疲
労試験は大気中で実施した。
Tensile test pieces, creep test pieces and fatigue test pieces were cut out from the bar after the heat treatment and subjected to the respective tests.
Table 1 shows the results of the room temperature and high temperature tensile test, the creep test, and the fatigue test. The high temperature tensile test, creep test and fatigue test were performed in the atmosphere.

【0025】[0025]

【表1】 [Table 1]

【0026】表1に示す結果からも明らかなように、
本発明にかかるNo.1〜8 のチタン合金は、高温強度、ク
リープ強度、そして疲労強度のいずれもが、従来合金N
o.9に比べ優れる。この従来合金はMo:0.31 %も含んで
おり、クリープ歪量が0.243 %と他と比較して大幅に上
昇しているのが分かる。また、疲労強度もやや悪い。
As is clear from the results shown in Table 1,
No. 1 to 8 titanium alloys according to the present invention have high temperature strength, creep strength, and fatigue strength, and
Better than o.9. This conventional alloy also contains Mo: 0.31%, and it can be seen that the creep strain amount is 0.243%, which is significantly higher than other alloys. Also, the fatigue strength is rather poor.

【0027】比較例におけるMo添加した合金No.10 で
は、クリープ強度が低く、No.15 のZrが通常合金並みの
比較合金では疲労強度が低い。またWやCを含まないN
o.11 、No.13 の比較合金もクリープ強度が低い。
Alloy No. 10 containing Mo in the comparative example has a low creep strength, and No. 15 has a low fatigue strength in the comparative alloy having the same Zr as that of the normal alloy. N that does not include W or C
The creep strength of the o.11 and No. 13 comparative alloys is also low.

【0028】なお、表1において常温引張強度1060MPa
以上、常温伸び12%以上、600 ℃引張強度630MPa以上、
600 ℃伸び25%以上、クリープ歪量0.15%以下(540℃,3
00MPa,100Hr)、そして疲労強度4.0 ×107(破断サイク
ル、540 ℃、300MPa, R=0.1)以上を満足する合金を合
格とした。
In Table 1, the tensile strength at room temperature is 1060 MPa.
Above, room temperature elongation 12% or more, 600 ℃ tensile strength 630MPa or more,
600 ℃ elongation 25% or more, creep strain 0.15% or less (540 ℃, 3
An alloy satisfying at least 00 MPa, 100 Hr) and a fatigue strength of 4.0 × 10 7 (breaking cycle, 540 ° C., 300 MPa, R = 0.1) was accepted.

【0029】[0029]

【発明の効果】本発明によれば、室温から高温までの広
い範囲において、高い引張強度およびクリープ強度を得
ることができ、さらに高い疲労強度も得られる。上記効
果の結果として、本発明にかかる耐熱チタン合金はジェ
ットエンジン用コンプレッサーブレード・ディスクなど
の航空機部品、その他の耐熱構造材料に使用することが
可能となった。
According to the present invention, high tensile strength and creep strength can be obtained in a wide range from room temperature to high temperature, and further high fatigue strength can be obtained. As a result of the above effects, the heat resistant titanium alloy according to the present invention can be used for aircraft parts such as compressor blades and disks for jet engines, and other heat resistant structural materials.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 Al:5.0〜7.0 %、 Sn:2.0〜5.0 %、 Zr:5.2〜6.
0 %、 Nb:0.10 〜1.50%、 Si:0.20 〜0.60%、 W:0.10 〜
1.00%、 C:0.02 〜0.10%、 残部Tiおよび不可避的不純物からなる耐熱チタン合金。
1. In weight%, Al: 5.0-7.0%, Sn: 2.0-5.0%, Zr: 5.2-6.
0%, Nb: 0.10 to 1.50%, Si: 0.20 to 0.60%, W: 0.10 to
A heat-resistant titanium alloy consisting of 1.00%, C: 0.02 to 0.10%, the balance Ti and unavoidable impurities.
【請求項2】 さらに、Hf:1.00 %以下、Ta:0.50 %以
下、Cu:1.00 %以下のうちの一種または二種以上を含む
請求項1記載の耐熱チタン合金。
2. The heat-resistant titanium alloy according to claim 1, further comprising one or more of Hf: 1.00% or less, Ta: 0.50% or less, and Cu: 1.00% or less.
JP33083791A 1991-12-13 1991-12-13 Heat-resistant titanium alloy Withdrawn JPH05163543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33083791A JPH05163543A (en) 1991-12-13 1991-12-13 Heat-resistant titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33083791A JPH05163543A (en) 1991-12-13 1991-12-13 Heat-resistant titanium alloy

Publications (1)

Publication Number Publication Date
JPH05163543A true JPH05163543A (en) 1993-06-29

Family

ID=18237093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33083791A Withdrawn JPH05163543A (en) 1991-12-13 1991-12-13 Heat-resistant titanium alloy

Country Status (1)

Country Link
JP (1) JPH05163543A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6726784B2 (en) 1998-05-26 2004-04-27 Hideto Oyama α+β type titanium alloy, process for producing titanium alloy, process for coil rolling, and process for producing cold-rolled coil of titanium alloy
CN103014412A (en) * 2011-09-27 2013-04-03 什邡市明日宇航工业股份有限公司 Composite heat-resistant titanium alloy
CN103014413A (en) * 2011-09-27 2013-04-03 什邡市明日宇航工业股份有限公司 Composite reinforced heat-resistant titanium alloy
CN111349817A (en) * 2020-04-27 2020-06-30 中世钛业有限公司 Titanium alloy drill rod, preparation method and application thereof
CN113025844A (en) * 2021-03-01 2021-06-25 攀枝花学院 High-temperature titanium alloy and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6726784B2 (en) 1998-05-26 2004-04-27 Hideto Oyama α+β type titanium alloy, process for producing titanium alloy, process for coil rolling, and process for producing cold-rolled coil of titanium alloy
CN103014412A (en) * 2011-09-27 2013-04-03 什邡市明日宇航工业股份有限公司 Composite heat-resistant titanium alloy
CN103014413A (en) * 2011-09-27 2013-04-03 什邡市明日宇航工业股份有限公司 Composite reinforced heat-resistant titanium alloy
CN111349817A (en) * 2020-04-27 2020-06-30 中世钛业有限公司 Titanium alloy drill rod, preparation method and application thereof
CN113025844A (en) * 2021-03-01 2021-06-25 攀枝花学院 High-temperature titanium alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP3049767B2 (en) Ti alloy with excellent heat resistance
JP3395443B2 (en) High creep strength titanium alloy and its manufacturing method
JP3319195B2 (en) Toughening method of α + β type titanium alloy
JPH0127138B2 (en)
JPH0297634A (en) Ni base superalloy and its manufacture
US4386976A (en) Dispersion-strengthened nickel-base alloy
EP0269196B1 (en) Titanium - base alloy
JP3873313B2 (en) Method for producing high-strength titanium alloy
JP3303641B2 (en) Heat resistant titanium alloy
JPH1121642A (en) Titanium aluminide usable at high temperature
JP4768672B2 (en) Ni-base alloy excellent in structure stability and high-temperature strength and method for producing Ni-base alloy material
JP2569710B2 (en) Ti-A1 intermetallic compound type cast alloy having room temperature toughness
US5167732A (en) Nickel aluminide base single crystal alloys
JP3076696B2 (en) α + β type titanium alloy
JPH0931572A (en) Heat resistant titanium alloy excellent in high temperature fatigue strength
JPH0578769A (en) Heat resistant alloy on intermetallic
JPH05163542A (en) Heat-resistant titanium alloy
JPH05163543A (en) Heat-resistant titanium alloy
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
JP2737500B2 (en) Heat resistant titanium alloy
CA2009598C (en) Gamma titanium aluminum alloys modified by chromium and tungsten and method of preparation
US3482968A (en) Titanium base alloys of high strength at atmospheric and elevated temperatures
JPH1121645A (en) Ni-base superalloy having heat resistance, production of ni-base superalloy having heat resistance, and ni-base superalloy parts having heat resistance
JP2001234292A (en) LOW THERMAL EXPANSION Fe-BASE HEAT RESISTANT ALLOY, EXCELLENT IN HIGH TEMPERATURE STRENGTH
JP2002097537A (en) Co-ni based heat resistant alloy and manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311