JPH05255780A - High strength titanium alloy having uniform and fine structure - Google Patents

High strength titanium alloy having uniform and fine structure

Info

Publication number
JPH05255780A
JPH05255780A JP34716391A JP34716391A JPH05255780A JP H05255780 A JPH05255780 A JP H05255780A JP 34716391 A JP34716391 A JP 34716391A JP 34716391 A JP34716391 A JP 34716391A JP H05255780 A JPH05255780 A JP H05255780A
Authority
JP
Japan
Prior art keywords
weight
added
titanium alloy
type
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP34716391A
Other languages
Japanese (ja)
Inventor
Kinichi Kimura
欽一 木村
Hirobumi Yoshimura
博文 吉村
Yoichi Ikematsu
陽一 池松
Toshihiro Hanamura
年裕 花村
Jinichi Takamura
仁一 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34716391A priority Critical patent/JPH05255780A/en
Publication of JPH05255780A publication Critical patent/JPH05255780A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a titanium allay having a uniform and fine structure in which strength at ordinary temps. and high temps. is improved in an alpha type, alpha+beta type and beta type titanium alloy. CONSTITUTION:This alloy is a high strength titanium alloy having a uniform and fine structure characterized by adding, by weight, 0.1 to 3.0% Fe and 0.001 to 0.5% of one or >= two kinds among P, As, Sb, Bi, S, Se, Te and B to an alphatype, alpha+beta type and beta type titanium alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はα型、α+β型およびβ
型チタン合金において、常温および高温における強度を
向上させた均一微細組織をなすチタン合金に関するもの
である。
The present invention relates to α type, α + β type and β type
The present invention relates to a titanium alloy having a uniform microstructure with improved strength at room temperature and high temperature.

【0002】[0002]

【従来の技術】チタン合金は比強度が高く耐食性に優
れ、かつ耐熱性も備えていることから、航空機用部材を
はじめ多くの構造材料分野で使用されており、近時その
用途は拡大しつつある。このように注目されているチタ
ン合金には、その金属組織が六方晶のα相からなるα
型、α相と体心立方晶のβ相からなるα+β型、および
β相からなるβ型の3種類がある。
2. Description of the Related Art Titanium alloys are used in many structural material fields including aircraft parts because of their high specific strength, excellent corrosion resistance, and heat resistance. is there. In such a titanium alloy, which has been receiving attention in this way, its metallographic structure is composed of a hexagonal α phase α
Type, α + β type composed of α phase and body-centered cubic β phase, and β type composed of β phase.

【0003】α型合金にはTi−5Al−2.5Sn,
Ti−5.5Alなどがある。純チタンにくらべて強度
が高くβ変態点以下では常に安定であるため、高温にお
ける熱安定性および耐クリープ性に優れており、航空機
のエンジンケースなどに使用される。α+β型合金には
Ti−6Al−4V,Ti−3Al−2.5V,Ti−
6Al−2Sn−4Zr−2MoおよびTi−6Al−
2Sn−4Zr−6Mo合金などがある。これらは二相
合金であるため加工性および溶接性などの部材製造性
と、強度および耐疲労性などの製品特性の両面で優れた
特性を有するバランスのとれた材料であり、各種構造部
材に使用される。β型合金にはTi−15V−3Cr−
3Sn−3Al,Ti−3Al−8V−6Cr−4Mo
−4Zrなどがある。これらは常温までβ相を残留させ
ることができるので冷間加工性に優れ、また熱処理によ
り高強度が得られるため、近年盛んに開発され各種分野
で使用されるようになってきた。
For the α-type alloy, Ti-5Al-2.5Sn,
Ti-5.5Al and the like. Since it has higher strength than pure titanium and is always stable below the β transformation point, it has excellent thermal stability and creep resistance at high temperatures, and is used for aircraft engine cases and the like. For α + β type alloy, Ti-6Al-4V, Ti-3Al-2.5V, Ti-
6Al-2Sn-4Zr-2Mo and Ti-6Al-
2Sn-4Zr-6Mo alloy and the like. Since these are two-phase alloys, they are well-balanced materials that have excellent characteristics in terms of both workability and weldability, and other product characteristics such as strength and fatigue resistance. To be done. Ti-15V-3Cr- for β-type alloys
3Sn-3Al, Ti-3Al-8V-6Cr-4Mo
-4Zr, etc. Since these can retain the β phase even at room temperature, they have excellent cold workability, and high strength can be obtained by heat treatment. Therefore, they have been actively developed in recent years and have come to be used in various fields.

【0004】これらチタン合金はさらなる高強度化、ま
た耐熱用途においては高温環境における耐熱強度、さら
に疲労強度の向上などから金属組織が均一微細であるこ
とが要求される。近時、用途の拡大に伴って従来の使用
環境よりも常温から高温にいたるまで高強度を有する材
料が望まれるようになってきた。チタン合金はその用途
に応じて鋳造ままの状態で使用される場合、または鋳造
後に板、線、管、形材など各種形状に成形加工して供給
される場合などがある。しかし、鋳造まま材では、粗大
な鋳造組織のため強度、延性等が乏しいという問題があ
り、また微細組織を得るためにβ変態点(例えば、Ti
−3Al−2.5Vでは930℃、Ti−6Al−4V
では990℃)以下の低温領域でかつ高加工率の加工を
行わねばならず、そのため熱間加工性のあまり良くない
チタン合金では割れの発生という問題があった。
These titanium alloys are required to have a uniform and fine metal structure in order to further increase the strength and, in heat resistant applications, improve the heat resistant strength in a high temperature environment and the fatigue strength. Recently, with the expansion of applications, there has been a demand for a material having high strength from room temperature to high temperature compared with the conventional use environment. Titanium alloys may be used in the as-cast state depending on the application, or may be supplied after being molded into various shapes such as plates, wires, pipes and shapes after casting. However, the as-cast material has a problem that strength and ductility are poor due to the coarse cast structure, and the β transformation point (for example, Ti
-3 ° C with -3Al-2.5V, Ti-6Al-4V
In this case, it is necessary to carry out processing at a high working rate in a low temperature region of 990 ° C. or lower, and therefore, there is a problem that cracks occur in a titanium alloy having poor hot workability.

【0005】[0005]

【発明が解決しようとする課題】本発明はα型、α+β
型およびβ型チタン合金において、常温および高温にお
ける強度を向上させた均一微細組織をなすチタン合金を
提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention is of α type, α + β
It is an object of the present invention to provide a titanium alloy having a uniform fine structure with improved strength at room temperature and high temperature, in the β-type and β-type titanium alloys.

【0006】[0006]

【課題を解決するための手段】本発明者は、チタン合金
にFeを添加し、かつP,As,Sb,Bi,S,S
e,Te,Bの1種または2種以上を複合添加するとそ
の複合効果によって鋳造まま材および熱間加工材におい
て強度が向上し、かつ均一微細組織を得ることを知見し
た。特に、鋳造ままで均一微細組織が得られるので、そ
の後の加工工程においても従来のα+β域加工のような
加工温度範囲の制限が緩和できることが特徴である。本
発明はこのような知見に基づくもので、その要旨は次の
通りである。
The present inventor has added Fe to a titanium alloy and has added P, As, Sb, Bi, S, S.
It was found that when one or more of e, Te, and B are added in combination, the combined effect improves the strength in the as-cast material and the hot-worked material and obtains a uniform fine structure. In particular, since a uniform fine structure can be obtained as it is cast, it is characterized in that the restriction of the processing temperature range, which is the case in the conventional α + β region processing, can be relaxed even in the subsequent processing steps. The present invention is based on such knowledge, and the summary thereof is as follows.

【0007】(1)α型、α+β型あるいはβ型チタン
合金において、重量%にてFeを0.1〜3%添加し、
かつP,As,Sb,Bi,S,Se,Te,Bの1種
または2種以上を重量%にて合計0.001〜0.5%
添加したことを特徴とする均一微細組織をなす高強度チ
タン合金。 (2)重量%にてAl:0.2〜7%を含有し、残部が
Tiおよび不可避的不純物からなるα型チタン合金にお
いて、重量%にてFeを0.1〜3%添加し、かつP,
As,Sb,Bi,S,Se,Te,Bの1種または2
種以上を重量%にて合計0.001〜0.5%添加した
ことを特徴とする均一微細組織をなす高強度チタン合
金。 (3)重量%にてAl:0.2〜7%およびSn:1〜
6%を含有し、残部がTiおよび不可避的不純物からな
るα型チタン合金において、重量%にてFeを0.1〜
3%添加し、かつP,As,Sb,Bi,S,Se,T
e,Bの1種または2種以上を重量%にて合計0.00
1〜0.5%添加したことを特徴とする均一微細組織を
なす高強度チタン合金。 (4)重量%にてV:0.2〜7%を含有し、残部がT
iおよび不可避的不純物からなるα+β型チタン合金に
おいて、重量%にてFeを0.1〜3%添加し、かつ
P,As,Sb,Bi,S,Se,Te,Bの1種また
は2種以上を重量%にて合計0.001〜0.5%添加
したことを特徴とする均一微細組織をなす高強度チタン
合金。 (5)重量%にてAl:0.2〜7%およびV:0.2
〜12%を含有し、残部がTiおよび不可避的不純物か
らなるα+β型チタン合金において、重量%にてFeを
0.1〜3%添加し、かつP,As,Sb,Bi,S,
Se,Te,Bの1種または2種以上を重量%にて合計
0.001〜0.5%添加したことを特徴とする均一微
細組織をなす高強度チタン合金。 (6)重量%にてAl:0.2〜7%と、V:0.2〜
12%またはMo:1〜7%とを含有し、さらにSn:
1〜6%、Zr:3〜8%、Cu:0.1〜3%の1種
または2種以上を含有し、残部がTiおよび不可避的不
純物からなるα+β型チタン合金において、重量%にて
Feを0.1〜3%添加し、かつP,As,Sb,B
i,S,Se,Te,Bの1種または2種以上を重量%
にて合計0.001〜0.5%添加したことを特徴とす
る均一微細組織をなす高強度チタン合金。 (7)重量%にてV,Mo,Crの1種または2種以上
を合計9〜27%含有し、さらにAl:0.2〜4%、
Sn:1〜6%、Zr:3〜8%の1種または2種以上
を含有し、残部がTiおよび不可避的不純物からなるβ
型チタン合金において、重量%にてFeを0.1〜3%
添加し、かつP,As,Sb,Bi,S,Se,Te,
Bの1種または2種以上を重量%にて合計0.001〜
0.5%添加したことを特徴とする均一微細組織をなす
高強度チタン合金。
(1) In an α-type, α + β-type or β-type titanium alloy, 0.1 to 3% by weight of Fe is added, and
And, the total of 0.001 to 0.5% by weight% of one or more of P, As, Sb, Bi, S, Se, Te and B.
A high-strength titanium alloy having a uniform microstructure characterized by being added. (2) In an α-type titanium alloy containing Al: 0.2 to 7% by weight and the balance of Ti and unavoidable impurities, 0.1 to 3% of Fe is added by weight, and P,
1 or 2 of As, Sb, Bi, S, Se, Te, B
A high-strength titanium alloy having a uniform microstructure, characterized in that a total of 0.001 to 0.5% by weight of the seeds is added. (3) Al: 0.2 to 7% and Sn: 1 to 1 by weight%
In an α-type titanium alloy containing 6% and the balance of Ti and unavoidable impurities, 0.1% by weight of Fe is 0.1% by weight.
3% added, and P, As, Sb, Bi, S, Se, T
One or two or more of e and B in total of 0.00 by weight%
A high-strength titanium alloy having a uniform microstructure characterized by being added in an amount of 1 to 0.5%. (4) V: 0.2 to 7% by weight, with the balance being T
In an α + β type titanium alloy consisting of i and unavoidable impurities, 0.1 to 3% of Fe is added by weight%, and one or two of P, As, Sb, Bi, S, Se, Te and B is added. A high-strength titanium alloy having a uniform microstructure, which is characterized by adding 0.001 to 0.5% by weight in total. (5) Al: 0.2 to 7% and V: 0.2% by weight
.About.12%, with the balance being Ti and unavoidable impurities, an .alpha. +. Beta.-type titanium alloy containing 0.1 to 3% of Fe by weight% and adding P, As, Sb, Bi, S,
A high-strength titanium alloy having a uniform microstructure, characterized in that one or more of Se, Te, and B are added in a total amount of 0.001 to 0.5% by weight. (6) Al: 0.2 to 7% by weight% and V: 0.2 to
12% or Mo: 1 to 7%, and Sn:
1 to 6%, Zr: 3 to 8%, Cu: 0.1 to 3% of one or more kinds, and the balance is an α + β type titanium alloy composed of Ti and unavoidable impurities. 0.1 to 3% of Fe is added, and P, As, Sb and B are added.
Weight percentage of one or more of i, S, Se, Te, B
A high-strength titanium alloy having a uniform microstructure characterized by being added in a total amount of 0.001 to 0.5%. (7) A total of 9 to 27% of 1 or 2 or more of V, Mo and Cr is contained by weight%, and Al: 0.2 to 4%,
Β containing 1: 1 or 2 or more of Sn: 1 to 6% and Zr: 3 to 8%, with the balance being Ti and inevitable impurities
Type titanium alloy, Fe is 0.1 to 3% by weight.
And P, As, Sb, Bi, S, Se, Te,
0.001 to 1 in total of 1 or 2 or more of B in% by weight.
A high-strength titanium alloy having a uniform microstructure characterized by being added at 0.5%.

【0008】請求項1の発明はα型、α+β型およびβ
型の各種チタン合金に、FeおよびP,As,Sb,B
i,S,Se,Te,Bを添加することにより均一微細
組織とし、強度を向上させるものである。α型合金の代
表例としてTi−5Al−2.5Sn、α+β型合金の
代表例としてTi−6Al−4VおよびTi−3Al−
2.5V、β型合金の代表例としてTi−15V−3C
r−3Sn−3Alを選び、Feと、PおよびAs,S
b,Bi,S,Se,Te,Bとの複合添加した材料を
溶製して棒材を製造し、引張強度および組織を調べた。
その結果、PおよびAs,Sb,Bi,S,Se,T
e,Bの元素はTiと化合物を形成し、これとFeとも
関連してマトリックスの強化とともに複合化合物として
微細分散し、均一微細な鋳造組織が得られることを知見
した。そして、この組織の細粒化およびFe,P等の固
溶強化が伴って、高強度化が図られると同時に加工性が
向上する。そしてその効果は、Feを0.1重量%以上
添加し、かつPなどの元素の1種または2種以上を合計
0.001重量%以上添加したときに現れ、Feを3重
量%を超えて、かつPなどの元素の1種または2種以上
を合計0.5重量%を超えて添加した場合は、組織の微
細化効果が顕著でなくなるとともに、延性が低下する。
また、Feが0.1重量%未満添加の場合、またはPな
どの元素の1種または2種以上が合計0.001重量%
未満添加の場合、およびFeが0.1重量%未満かつP
などの元素の1種または2種以上が合計0.001重量
%未満添加の場合は組織の均一細粒効果が認められにく
い。従って請求項1の発明では、チタン合金においてF
eを0.1〜3重量%添加し、かつP,As,Sb,B
i,S,Se,Te,Bの1種または2種以上を重量%
にて合計0.001〜0.5%添加させることとした。
なお、不可避的不純物がASTM規格等を超えて多く含
有しているチタン合金についても、本発明の効果は顕著
である。例えば酸素が重量%にて0.5%程度含有され
ても、本発明によるチタン合金は均一微細組織をなし且
つ高強度を有するものである。
The invention of claim 1 is α type, α + β type and β type
Type titanium alloy, Fe and P, As, Sb, B
By adding i, S, Se, Te and B, a uniform fine structure is obtained and the strength is improved. Ti-5Al-2.5Sn is a typical example of α-type alloy, and Ti-6Al-4V and Ti-3Al- is a typical example of α + β-type alloy.
Ti-15V-3C as a typical example of 2.5V, β type alloy
r-3Sn-3Al is selected, Fe, P and As, S
b, Bi, S, Se, Te, and B were added together to produce a bar, and a bar was manufactured. The tensile strength and the structure were examined.
As a result, P and As, Sb, Bi, S, Se, T
It has been found that the elements e and B form a compound with Ti and, together with Fe, finely disperse as a composite compound together with strengthening of the matrix and a uniform fine cast structure can be obtained. Further, with the refinement of the structure and the solid solution strengthening of Fe, P, etc., the strength is increased and at the same time the workability is improved. The effect is exhibited when Fe is added in an amount of 0.1% by weight or more and one or more elements such as P are added in a total amount of 0.001% by weight or more, and Fe is added in an amount of more than 3% by weight. In addition, when one or more elements such as P are added in a total amount of more than 0.5% by weight, the effect of refining the structure is not remarkable and the ductility is reduced.
When Fe is added in an amount of less than 0.1% by weight, or one or more elements such as P are added in a total amount of 0.001% by weight.
Less than 0.1% by weight of Fe and P
When one or more of these elements are added in a total amount of less than 0.001% by weight, it is difficult to recognize the uniform fine grain effect of the structure. Therefore, in the invention of claim 1, in the titanium alloy, F
0.1 to 3% by weight of e, and P, As, Sb, B
Weight percentage of one or more of i, S, Se, Te, B
It was decided to add 0.001 to 0.5% in total.
The effect of the present invention is remarkable also for a titanium alloy containing a large amount of unavoidable impurities in excess of the ASTM standard. For example, even if oxygen is contained in an amount of about 0.5% by weight, the titanium alloy according to the present invention has a uniform fine structure and high strength.

【0009】請求項2の発明はTi−5.5Alを代表
とするα型チタン合金を対象としたものである。Alは
α相の安定化と固溶強化のために含有させ、その効果が
0.2重量%以上で現れ、7重量%を超えるとTi3
l金属間化合物が析出して加工性が劣化するので、0.
2〜7重量%含有させることとした。また請求項1と同
様の理由でFeを0.1〜3重量%添加し、かつP,A
s,Sb,Bi,S,Se,Te,Bの1種または2種
以上を重量%にて合計0.001〜0.5%添加させる
こととした。
The invention of claim 2 is directed to an α-type titanium alloy represented by Ti-5.5Al. Al is contained for stabilizing the α phase and strengthening the solid solution, and the effect is exhibited at 0.2% by weight or more. When it exceeds 7% by weight, Ti 3 A
Since the intermetallic compound precipitates and the workability deteriorates,
It was decided to contain 2 to 7% by weight. For the same reason as in claim 1, 0.1 to 3% by weight of Fe is added, and P and A are added.
One or two or more of s, Sb, Bi, S, Se, Te, and B are added in a total amount of 0.001 to 0.5% by weight.

【0010】請求項3の発明はTi−5Al−2.5S
nを代表とするα型チタン合金を対象としたものであ
る。Alは請求項2と同様な理由で0.2〜7重量%含
有させることとした。Snは固溶強化のために含有さ
せ、その効果が1重量%以上で現れ、6重量%を超える
とその効果は飽和するので1〜6重量%含有させること
とした。また請求項1と同様の理由でFeを0.1〜3
重量%添加し、かつP,As,Sb,Bi,S,Se,
Te,Bの1種または2種以上を重量%にて合計0.0
01〜0.5%添加させることとした。
The invention of claim 3 is Ti-5Al-2.5S.
The object is an α-type titanium alloy represented by n. For the same reason as in claim 2, Al is included in an amount of 0.2 to 7% by weight. Sn is included for solid solution strengthening, and its effect appears at 1% by weight or more. If it exceeds 6% by weight, the effect is saturated, so 1 to 6% by weight is included. Further, Fe is 0.1 to 3 for the same reason as in claim 1.
% By weight, and P, As, Sb, Bi, S, Se,
One or two or more of Te and B in total by weight of 0.0
It was decided to add 01 to 0.5%.

【0011】請求項4の発明はTi−2.5Vなどのα
+β型チタン合金を対象としたものである。Vはβ相安
定化と固溶強化および加工性向上のために含有させ、そ
の効果が0.2重量%以上で現れ、Vのみ含有する場合
7重量%を超えるとα相が不安定化するので0.2〜7
重量%含有させることとした。また請求項1と同様の理
由でFeを0.1〜3重量%添加し、かつP,As,S
b,Bi,S,Se,Te,Bの1種または2種以上を
重量%にて合計0.001〜0.5%添加させることと
した。
[0011] The invention of claim 4 is α such as Ti-2.5V
It is intended for + β type titanium alloys. V is contained for stabilizing the β phase, strengthening the solid solution, and improving workability, and the effect appears at 0.2% by weight or more. When V is contained alone, the α phase becomes unstable if it exceeds 7% by weight. So 0.2-7
It has been decided to contain it by weight%. For the same reason as in claim 1, 0.1 to 3% by weight of Fe is added, and P, As and S are added.
One or two or more of b, Bi, S, Se, Te, and B are added in a total amount of 0.001 to 0.5% by weight.

【0012】請求項5の発明はTi−6Al−4V,T
i−3Al−2.5Vなどのα+β型チタン合金を対象
としたものである。Alは請求項2と同様α相の安定化
と固溶強化のために0.2〜7重量%含有させることと
した。Vはβ相安定化と固溶強化および加工性向上のた
めに含有させ、その効果が0.2重量%以上で現れ、1
2重量%を超えるとα相が不安定化するので0.2〜1
2重量%含有させることとした。また請求項1と同様の
理由でFeを0.1〜3重量%添加し、かつP,As,
Sb,Bi,S,Se,Te,Bの1種または2種以上
を重量%にて合計0.001〜0.5%添加させること
とした。
The invention of claim 5 is Ti-6Al-4V, T
It is intended for α + β type titanium alloys such as i-3Al-2.5V. As in claim 2, Al is contained in an amount of 0.2 to 7% by weight for stabilizing the α phase and strengthening the solid solution. V is included for stabilizing the β phase, strengthening the solid solution and improving the workability, and the effect appears at 0.2% by weight or more.
If it exceeds 2% by weight, the α phase becomes unstable, so 0.2 to 1
It was decided to contain 2% by weight. For the same reason as in claim 1, 0.1 to 3% by weight of Fe is added, and P, As,
One or two or more kinds of Sb, Bi, S, Se, Te and B are added in a total amount of 0.001 to 0.5% by weight.

【0013】請求項6の発明はTi−6Al−2Sn−
4Zr−2Mo,Ti−6Al−6V−2Sn,Ti−
6Al−2Sn−4Zr−6Moなどのα+β型チタン
合金を対象としたものである。Alは請求項2と同様α
相の安定化と固溶強化のために0.2〜7重量%含有さ
せることとした。VまたはMoはβ相安定化と固溶強化
および加工性向上のために含有させ、その効果はVは
0.2重量%以上、Moは1重量%以上で現れるが、V
は12重量%を超えた場合、Moが7重量%を超えた場
合はα相が不安定化するので、Vを0.2〜12重量%
含有させるかまたはMoを1〜7重量%含有させること
とした。Sn,Zr,Cuは何れも固溶強化に有効な元
素であり、Snは1重量%以上、Zrは3重量%以上、
Cuは0.1重量%以上で効果が現れる。しかし、Sn
が6重量%を超えた場合、Zrが8重量%を超えた場合
効果が飽和し、Cuが3重量%を超えた場合は共析化合
物が析出して加工性が劣化する。従って、Sn:1〜6
重量%、Zr:3〜8重量%、Cu:0.1〜3重量%
の1種または2種以上を含有させることとした。また請
求項1と同様の理由でFeを0.1〜3重量%添加し、
かつP,As,Sb,Bi,S,Se,Te,Bの1種
または2種以上を重量%にて合計0.001〜0.5%
添加させることとした。
The invention of claim 6 is Ti-6Al-2Sn-
4Zr-2Mo, Ti-6Al-6V-2Sn, Ti-
It is intended for α + β type titanium alloys such as 6Al-2Sn-4Zr-6Mo. Al is α as in claim 2.
In order to stabilize the phase and strengthen the solid solution, 0.2 to 7% by weight is included. V or Mo is contained for stabilizing the β phase, strengthening the solid solution, and improving the workability. The effect is that V is 0.2% by weight or more and Mo is 1% by weight or more.
Is more than 12% by weight, and if Mo is more than 7% by weight, the α phase becomes unstable, so V is 0.2 to 12% by weight.
The content of Mo is determined to be 1 to 7% by weight. Sn, Zr, and Cu are all effective elements for solid solution strengthening, Sn is 1 wt% or more, Zr is 3 wt% or more,
Cu has an effect when it is 0.1% by weight or more. However, Sn
When the content of Zr exceeds 6% by weight, the effect is saturated when Zr exceeds 8% by weight, and the eutectoid compound precipitates and the workability deteriorates when Cu exceeds 3% by weight. Therefore, Sn: 1-6
% By weight, Zr: 3-8% by weight, Cu: 0.1-3% by weight
1 type or 2 types or more of these were included. For the same reason as in claim 1, 0.1 to 3% by weight of Fe is added,
And, the total of 0.001 to 0.5% by weight% of one or more of P, As, Sb, Bi, S, Se, Te and B.
It was decided to add.

【0014】請求項7の発明はTi−13V−11Cr
−3Al,Ti−3Al−8V−6Cr−4Mo−4Z
r(βc合金),Ti−11.5Mo−6Zr−4.5
Sn(βIII 合金),Ti−15V−3Cr−3Sn−
3Alなどのβ型チタン合金を対象としたものである。
V,Mo,Crはβ相安定化と固溶強化および加工性向
上のために含有させ、その効果はこれら各元素の1種ま
たは2種以上が合計9重量%以上で現れるが、27重量
%を超えるとこれら元素が偏析しやすくなり、疲労特性
をはじめとする製品特性の向上が期待できない、また比
重が増加してチタン合金の特徴である高比強度が損なわ
れるので、1種または2種以上を合計9〜27重量%含
有させることとした。Al,Sn,Zrは何れも固溶強
化に有効な元素である。AlおよびSnはさらにω相が
析出して材料の脆化を抑制する効果があって、その効果
はAlの場合は0.2重量%以上、Snの場合は1重量
%以上で現れ、Zrはさらにβ相を安定化させる効果が
あって、その効果は3重量%以上で現れる。しかしAl
が4重量%を超えるとβ相が不安定化し、Snが6重量
%を超えた場合およびZrが8重量%を超えた場合はそ
の効果が飽和する。従ってAl:0.2〜4重量%、S
n:1〜6重量%、Zr:3〜8重量%の1種または2
種以上を含有させることとした。また請求項1と同様の
理由でFeを0.1〜3重量%添加し、かつP,As,
Sb,Bi,S,Se,Te,Bの1種または2種以上
を重量%にて合計0.001〜0.5%添加させること
とした。
The invention of claim 7 is Ti-13V-11Cr.
-3Al, Ti-3Al-8V-6Cr-4Mo-4Z
r (βc alloy), Ti-11.5Mo-6Zr-4.5
Sn (βIII alloy), Ti-15V-3Cr-3Sn-
It is intended for β-type titanium alloys such as 3Al.
V, Mo, and Cr are contained for stabilizing the β phase, strengthening the solid solution, and improving the workability. The effect of one or more of these elements is 9 wt% or more, but 27 wt% If these values are exceeded, segregation of these elements is liable to occur and improvement in product properties such as fatigue properties cannot be expected, and the specific gravity increases and the high specific strength characteristic of titanium alloys is impaired. The above content is to be contained in a total of 9 to 27% by weight. Al, Sn and Zr are all effective elements for solid solution strengthening. Al and Sn further have the effect of suppressing the embrittlement of the material due to the precipitation of the ω phase. The effect appears when Al is 0.2 wt% or more and Sn is 1 wt% or more, and Zr is Further, it has an effect of stabilizing the β phase, and the effect appears at 3% by weight or more. But Al
Is more than 4% by weight, the β phase becomes unstable, and the effect is saturated when Sn exceeds 6% by weight and when Zr exceeds 8% by weight. Therefore, Al: 0.2 to 4% by weight, S
n: 1 to 6% by weight, Zr: 3 to 8% by weight, 1 or 2
It was decided to contain more than one seed. For the same reason as in claim 1, 0.1 to 3% by weight of Fe is added, and P, As,
One or two or more kinds of Sb, Bi, S, Se, Te and B are added in a total amount of 0.001 to 0.5% by weight.

【0015】本発明によるチタン合金は、鋳造まま材と
して、および鋳造材を熱間圧延や熱間押出また必要に応
じて冷間圧延等の加工を行い板、線、棒、形材などの各
種形状としても提供でき、またこれらに溶接施工を施し
た溶接構造材および溶接時の溶接材料としても提供可能
である。さらに粉末成形材としても提供可能である。特
に、鋳造ままでも微細組織を得ることができるので、そ
の後の加工工程において加工温度範囲の制限が緩和さ
れ、また熱処理条件なども同様に緩和でき、割れなど発
生することなく従来材よりも容易に加工できるなどの特
徴がある。さらに、本発明による材料を従来のような条
件範囲で加工−熱処理を行うとさらに均一微細な組織が
得られる。
The titanium alloy according to the present invention can be used as an as-cast material, or by subjecting the cast material to hot-rolling, hot-extrusion and, if necessary, cold-rolling, etc., to obtain various materials such as plates, wires, rods and shapes. It can be provided as a shape, and can also be provided as a welded structural material obtained by performing a welding process on these and a welding material at the time of welding. Further, it can be provided as a powder molding material. In particular, since it is possible to obtain a fine structure even in the as-cast state, restrictions on the processing temperature range can be relaxed in subsequent processing steps, and heat treatment conditions can also be relaxed in a similar manner. It has features such as processing. Furthermore, when the material according to the present invention is processed and heat-treated in the conventional condition range, a more uniform and finer structure can be obtained.

【0016】[0016]

【実施例】表1に示す成分の各種チタン合金を溶解、鋳
造した。そして1100℃に加熱後熱間押出により製造
した丸棒より直径10mmの引張試験片で、常温および4
00℃の高温引張試験を行い耐力を測定した。その結
果、表1に示すように本発明は何れも従来例に対して常
温および高温強度が優れたものであり、本発明例の鋳造
材組織は何れも従来例に比べて微細均一な組織であっ
た。その代表例として、表1の本発明例No.12および
比較として従来例のNo.54の鋳造まま材の金属組織を
図1および図2に示す。本発明による組織の微細化効果
が明瞭である。なお、PまたはOの添加量を過多にした
比較例のNo.42,44,46,47,51は、熱間押
出できたものの割れが発生した。
Example Various titanium alloys having the components shown in Table 1 were melted and cast. Then, after heating to 1100 ° C., a tensile test piece with a diameter of 10 mm was made from a round bar manufactured by hot extrusion at room temperature and 4
A high temperature tensile test at 00 ° C was performed to measure the proof stress. As a result, as shown in Table 1, all of the present inventions are excellent in room temperature and high temperature strength as compared with the conventional example, and the cast material structures of the present invention examples are all fine and uniform structures as compared with the conventional example. there were. As a representative example thereof, the invention example No. 12 and No. 12 of the conventional example as a comparison. The metallographic structure of the as-cast material 54 is shown in FIGS. 1 and 2. The effect of refining the structure according to the present invention is clear. In addition, No. of the comparative example in which the addition amount of P or O was excessive. Nos. 42, 44, 46, 47 and 51 were hot extruded but cracked.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】[0020]

【発明の効果】本発明により、α型、α+β型およびβ
型チタン合金材において、常温および高温強度に優れ、
かつ微細均一組織をなす材料が提供され、比強度が高く
かつ耐食性が良いチタン合金の特性が維持されるととも
に、従来よりも高温での使用が可能となる。また、鋳造
まま材料でも微細均一な組織をなす、強度、延性に優れ
た材料を提供することが可能となり、その工業的効果は
著しい。
According to the present invention, α type, α + β type and β type
Type titanium alloy material, excellent at room temperature and high temperature strength,
Further, a material having a fine uniform structure is provided, the characteristics of the titanium alloy having a high specific strength and good corrosion resistance are maintained, and it can be used at a higher temperature than before. Further, it becomes possible to provide a material having excellent strength and ductility, which has a fine and uniform structure even in the as-cast material, and its industrial effect is remarkable.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明材(表1のNo.12)の金属組織を示す
200倍拡大顕微鏡写真。
FIG. 1 is a 200 × magnified micrograph showing the metal structure of a material of the present invention (No. 12 in Table 1).

【図2】従来材(表1のNo.54)の金属組織を示す2
00倍拡大顕微鏡写真。
FIG. 2 shows a metallographic structure of a conventional material (No. 54 in Table 1) 2
00x magnified micrograph.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 花村 年裕 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 (72)発明者 高村 仁一 神奈川県川崎市中原区井田1618番地 新日 本製鐵株式会社先端技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshihiro Hanamura 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Inside Nippon Steel Corporation Advanced Technology Research Institute (72) Inventor, Shinichi Takamura Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Address 1618 Nippon Steel Corporation Advanced Technology Research Center

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 α型、α+β型あるいはβ型チタン合金
において、重量%にてFeを0.1〜3%添加し、かつ
P,As,Sb,Bi,S,Se,Te,Bの1種また
は2種以上を重量%にて合計0.001〜0.5%添加
したことを特徴とする均一微細組織をなす高強度チタン
合金。
1. In an α-type, α + β-type or β-type titanium alloy, 0.1 to 3% by weight of Fe is added, and 1 of P, As, Sb, Bi, S, Se, Te and B is added. A high-strength titanium alloy having a uniform microstructure, characterized in that 0.001 to 0.5% by weight of a total of 0.001 to 0.5% is added.
【請求項2】 重量%にてAl:0.2〜7%を含有
し、残部がTiおよび不可避的不純物からなるα型チタ
ン合金において、重量%にてFeを0.1〜3%添加
し、かつP,As,Sb,Bi,S,Se,Te,Bの
1種または2種以上を重量%にて合計0.001〜0.
5%添加したことを特徴とする均一微細組織をなす高強
度チタン合金。
2. An α-type titanium alloy containing Al: 0.2 to 7% by weight and the balance of Ti and inevitable impurities, and 0.1 to 3% of Fe added by weight. , And one or two or more of P, As, Sb, Bi, S, Se, Te, and B in total by weight of 0.001 to 0.
A high-strength titanium alloy having a uniform microstructure characterized by being added at 5%.
【請求項3】 重量%にてAl:0.2〜7%およびS
n:1〜6%を含有し、残部がTiおよび不可避的不純
物からなるα型チタン合金において、重量%にてFeを
0.1〜3%添加し、かつP,As,Sb,Bi,S,
Se,Te,Bの1種または2種以上を重量%にて合計
0.001〜0.5%添加したことを特徴とする均一微
細組織をなす高強度チタン合金。
3. Al: 0.2 to 7% in weight percent and S
In an α-type titanium alloy containing 1: 1 to 6% of n and the balance of Ti and unavoidable impurities, 0.1 to 3% of Fe is added by weight%, and P, As, Sb, Bi and S are added. ,
A high-strength titanium alloy having a uniform microstructure, characterized in that one or more of Se, Te, and B are added in a total amount of 0.001 to 0.5% by weight.
【請求項4】 重量%にてV:0.2〜7%を含有し、
残部がTiおよび不可避的不純物からなるα+β型チタ
ン合金において、重量%にてFeを0.1〜3%添加
し、かつP,As,Sb,Bi,S,Se,Te,Bの
1種または2種以上を重量%にて合計0.001〜0.
5%添加したことを特徴とする均一微細組織をなす高強
度チタン合金。
4. V: 0.2 to 7% in weight%,
In an α + β titanium alloy with the balance being Ti and unavoidable impurities, 0.1 to 3% of Fe is added by weight%, and one of P, As, Sb, Bi, S, Se, Te, and B, or A total of two or more kinds by weight% is 0.001 to 0.
A high-strength titanium alloy having a uniform microstructure characterized by being added at 5%.
【請求項5】 重量%にてAl:0.2〜7%および
V:0.2〜12%を含有し、残部がTiおよび不可避
的不純物からなるα+β型チタン合金において、重量%
にてFeを0.1〜3%添加し、かつP,As,Sb,
Bi,S,Se,Te,Bの1種または2種以上を重量
%にて合計0.001〜0.5%添加したことを特徴と
する均一微細組織をなす高強度チタン合金。
5. An α + β type titanium alloy containing Al: 0.2 to 7% and V: 0.2 to 12% by weight, the balance being Ti and inevitable impurities.
At 0.1 to 3% of Fe, and P, As, Sb,
A high-strength titanium alloy having a uniform microstructure, characterized in that one or more of Bi, S, Se, Te, and B are added in a total amount of 0.001 to 0.5% by weight.
【請求項6】 重量%にてAl:0.2〜7%と、V:
0.2〜12%またはMo:1〜7%とを含有し、さら
にSn:1〜6%、Zr:3〜8%、Cu:0.1〜3
%の1種または2種以上を含有し、残部がTiおよび不
可避的不純物からなるα+β型チタン合金において、重
量%にてFeを0.1〜3%添加し、かつP,As,S
b,Bi,S,Se,Te,Bの1種または2種以上を
重量%にて合計0.001〜0.5%添加したことを特
徴とする均一微細組織をなす高強度チタン合金。
6. A weight ratio of Al: 0.2 to 7% and V:
0.2 to 12% or Mo: 1 to 7%, Sn: 1 to 6%, Zr: 3 to 8%, Cu: 0.1 to 3%
% In an α + β type titanium alloy containing at least one of Ti and unavoidable impurities, and 0.1% to 3% of Fe is added by weight% and P, As and S are added.
A high-strength titanium alloy having a uniform microstructure, wherein one or more of b, Bi, S, Se, Te, and B are added in a total amount of 0.001 to 0.5% by weight.
【請求項7】 重量%にてV,Mo,Crの1種または
2種以上を合計9〜27%含有し、さらにAl:0.2
〜4%、Sn:1〜6%、Zr:3〜8%の1種または
2種以上を含有し、残部がTiおよび不可避的不純物か
らなるβ型チタン合金において、重量%にてFeを0.
1〜3%添加し、かつP,As,Sb,Bi,S,S
e,Te,Bの1種または2種以上を重量%にて合計
0.001〜0.5%添加したことを特徴とする均一微
細組織をなす高強度チタン合金。
7. A total of 9 to 27% by weight of one or more of V, Mo and Cr, and further Al: 0.2.
.About.4%, Sn: 1 to 6%, Zr: 3 to 8%, and a balance of Ti and unavoidable impurities in the .beta.-type titanium alloy containing 0 or less Fe. .
1-3% added, and P, As, Sb, Bi, S, S
A high-strength titanium alloy having a uniform microstructure, wherein one or more of e, Te, and B are added in a total amount of 0.001 to 0.5% by weight.
JP34716391A 1991-12-27 1991-12-27 High strength titanium alloy having uniform and fine structure Withdrawn JPH05255780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34716391A JPH05255780A (en) 1991-12-27 1991-12-27 High strength titanium alloy having uniform and fine structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34716391A JPH05255780A (en) 1991-12-27 1991-12-27 High strength titanium alloy having uniform and fine structure

Publications (1)

Publication Number Publication Date
JPH05255780A true JPH05255780A (en) 1993-10-05

Family

ID=18388343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34716391A Withdrawn JPH05255780A (en) 1991-12-27 1991-12-27 High strength titanium alloy having uniform and fine structure

Country Status (1)

Country Link
JP (1) JPH05255780A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268517A (en) * 1994-03-30 1995-10-17 Agency Of Ind Science & Technol Light weight heat resistant material and its production
WO2006041166A1 (en) * 2004-10-15 2006-04-20 Sumitomo Metal Industries, Ltd. β-TITANIUM ALLOY
WO2006041167A1 (en) * 2004-10-15 2006-04-20 Sumitomo Metal Industries, Ltd. NEAR-β TITANIUM ALLOY
JP2006200008A (en) * 2005-01-21 2006-08-03 Daido Steel Co Ltd beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
JP2007231313A (en) * 2006-02-28 2007-09-13 Daido Steel Co Ltd beta-TYPE TITANIUM ALLOY
JP2008063598A (en) * 2006-09-05 2008-03-21 Sumitomo Metal Ind Ltd Titanium weld part
JP2008063659A (en) * 2006-08-09 2008-03-21 United Technol Corp <Utc> Process for casting boron modified titanium alloy based parts, process for making wrought titanium alloy based parts, and titanium alloy
JP2008133511A (en) * 2006-11-28 2008-06-12 Daido Castings:Kk Ti ALLOY FOR CASTING SUPERIOR IN FLUIDITY
CN106544543A (en) * 2016-10-25 2017-03-29 南京工业大学 A kind of titanium alloy with excellent hot-working character and preparation method thereof
CN109234569A (en) * 2018-10-12 2019-01-18 广州宇智科技有限公司 A kind of novel Burn-Resistant Titanium Alloy of the liquid complex oxide film type containing Li and B

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268517A (en) * 1994-03-30 1995-10-17 Agency Of Ind Science & Technol Light weight heat resistant material and its production
WO2006041166A1 (en) * 2004-10-15 2006-04-20 Sumitomo Metal Industries, Ltd. β-TITANIUM ALLOY
WO2006041167A1 (en) * 2004-10-15 2006-04-20 Sumitomo Metal Industries, Ltd. NEAR-β TITANIUM ALLOY
JP2006200008A (en) * 2005-01-21 2006-08-03 Daido Steel Co Ltd beta-TYPE TITANIUM ALLOY AND PARTS MADE FROM beta-TYPE TITANIUM ALLOY
JP2007231313A (en) * 2006-02-28 2007-09-13 Daido Steel Co Ltd beta-TYPE TITANIUM ALLOY
JP2008063659A (en) * 2006-08-09 2008-03-21 United Technol Corp <Utc> Process for casting boron modified titanium alloy based parts, process for making wrought titanium alloy based parts, and titanium alloy
JP2008063598A (en) * 2006-09-05 2008-03-21 Sumitomo Metal Ind Ltd Titanium weld part
JP2008133511A (en) * 2006-11-28 2008-06-12 Daido Castings:Kk Ti ALLOY FOR CASTING SUPERIOR IN FLUIDITY
CN106544543A (en) * 2016-10-25 2017-03-29 南京工业大学 A kind of titanium alloy with excellent hot-working character and preparation method thereof
CN109234569A (en) * 2018-10-12 2019-01-18 广州宇智科技有限公司 A kind of novel Burn-Resistant Titanium Alloy of the liquid complex oxide film type containing Li and B

Similar Documents

Publication Publication Date Title
JP2679109B2 (en) Intermetallic compound TiA-based light-weight heat-resistant alloy
US2754204A (en) Titanium base alloys
JP6104164B2 (en) High strength and ductile alpha / beta titanium alloy
JP3049767B2 (en) Ti alloy with excellent heat resistance
JPS63157831A (en) Heat-resisting aluminum alloy
US5084109A (en) Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
US4897127A (en) Rapidly solidified and heat-treated manganese and niobium-modified titanium aluminum alloys
JPS63286557A (en) Production of article from al base alloy
JP3873313B2 (en) Method for producing high-strength titanium alloy
JPH05279773A (en) High strength titanium alloy having fine and uniform structure
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
US4093474A (en) Method for preparing aluminum alloys possessing improved resistance weldability
JPS63171862A (en) Manufacture of heat resistant ti-al alloy
JPH02173234A (en) Titanium alloy excellent in superplastic workability
CA2009598C (en) Gamma titanium aluminum alloys modified by chromium and tungsten and method of preparation
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
US2779677A (en) Ti-sn-al alloys with alpha, beta and compound formers
US3061427A (en) Alloy of titanium
JPH032218B2 (en)
JP2608689B2 (en) High strength and high ductility Ti alloy
JPH01272743A (en) High tensile aluminum alloy having excellent heat resistance
JP2711296B2 (en) Heat resistant aluminum alloy
JPS63312938A (en) Heat resistant ti alloy
US3441407A (en) Titanium-base alloys

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311