JPH10306335A - Alpha plus beta titanium alloy bar and wire rod, and its production - Google Patents

Alpha plus beta titanium alloy bar and wire rod, and its production

Info

Publication number
JPH10306335A
JPH10306335A JP11212397A JP11212397A JPH10306335A JP H10306335 A JPH10306335 A JP H10306335A JP 11212397 A JP11212397 A JP 11212397A JP 11212397 A JP11212397 A JP 11212397A JP H10306335 A JPH10306335 A JP H10306335A
Authority
JP
Japan
Prior art keywords
grains
equiaxed
less
rolling
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11212397A
Other languages
Japanese (ja)
Inventor
Shinji Mitao
眞司 三田尾
Takahiro Fujita
高弘 藤田
Chiaki Ouchi
千秋 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP11212397A priority Critical patent/JPH10306335A/en
Publication of JPH10306335A publication Critical patent/JPH10306335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alpha plus beta titanium alloy bar and wire rod which are produced by means of a refining - rolling process and have a structural form composed essentially of equiaxed α-grains and equiaxed β-grains and in which the average grain size of the equiaxed α-grains and that of the equiaxed β-grains are regulated to <=1 μm, respectively. SOLUTION: The bar and wire rod have a β-transformation point temp. (Tβ ) of 860 to 920 deg.C and also have a composition consisting of, by weight, 3-5% Al, <=0.2% O, <=0.1% N, <=0.1% C, 2-7% V, 1.0-3.5%, in total, of one or >=2 elements selected from the group consisting of Nb, Mo, and W, 0.5-3.0%, in total, of one or >=2 elements selected from the group consisting of Cr, Mn, Fe, Co, and Ni, and the balance Ti with inevitable impurities. Moreover, the bar and wire rod have a structural form composed essentially of equiaxed α-grains and euiaxed β-transformed structures, and the equiaxed α-grains and the equiaxed β-transformed structures are superfine grains having <=1 μm average grain size, respectively.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、等軸α粒と等軸β
変態組織(以下「β粒」と称する)、それぞれの平均粒
径が1μm以下の超微細粒である熱間加工性および強
度、延性に優れたチタン合金棒線材およびその製造方法
に関する。
The present invention relates to an equiaxed α-grain and an equiaxed β
The present invention relates to a titanium alloy rod or wire having a transformed structure (hereinafter referred to as “β grain”), an ultrafine grain having an average particle diameter of 1 μm or less, and excellent in hot workability, strength and ductility, and a method for producing the same.

【0002】[0002]

【従来の技術】金属材料の強度と延性のバランスを改善
し、疲労特性を向上させる手段として、その材料を構成
する結晶粒を微細化することは、よく知られた冶金的手
法である。一般に軽量で良好な耐食性を有するチタン合
金においても、結晶粒微細化が、強度と延性のバランス
を改善し、疲労特性を向上する手段として有効であるの
は同様である。さらに熱間加工性および超塑性の向上に
対しても結晶粒微細化は有効であり、微細結晶粒を有す
ることにより優れた超塑性を示す合金およびその製造方
法に関して、すでにいくつかの特許文献あるいは報告が
ある。
2. Description of the Related Art As a means for improving the balance between strength and ductility of a metal material and improving fatigue characteristics, it is a well-known metallurgical technique to refine crystal grains constituting the material. In general, even for a titanium alloy which is lightweight and has good corrosion resistance, refinement of crystal grains is effective as a means for improving the balance between strength and ductility and improving fatigue characteristics. Further, grain refinement is also effective for improving hot workability and superplasticity, and alloys showing excellent superplasticity by having fine crystal grains and a method for producing the same have already been disclosed in several patent documents or There are reports.

【0003】例えば、特公平8-19502 号公報(先行文献
1)には、重量%で、Al:5.5〜6.75%、V:
3.5〜4.5%、O:0.2%以下、Fe:0.15
〜3.0%、Cr:0.15〜3.0%、Mo:0.8
5〜3.15%を含有するチタン合金に対し、(β変態
点−200℃)以上、β変態点未満の温度で加熱し、引
き続きβ変態点未満の温度で圧下比を3以上とする圧下
を施すことにより、α晶の平均粒径が6μm以下になる
こと、特公平8-19503 号公報(先行文献2)には、重量
%で、Al:5.5〜6.75%、V:3.5〜4.5
%、O:0.2%以下、Cr:0.85〜3.15%、
Mo:0.85〜3.15%を含有するチタン合金に対
し、同様にβ変態点未満の温度で加熱し、引き続きβ変
態点未満の温度で圧下比を3以上とする圧下を施すこと
により、α晶の平均粒径が6μm以下になること、ま
た、特公平8-23053 号公報(先行文献3)には、Al:
3.0〜5.0%、V:2.1〜3.7%、Mo:0.
85〜3.15%、O:0.15%以下、さらに、F
e,Ni,CoおよびCrのうちの1種または2種以上
を含有し、且つ、0.85%≦Fe%+Ni%+Co%
+0.9×Cr%≦3.15%および7%≦2×Fe%
+2×Ni%+2×Co%+1.8×Cr%+1.5×
V%+Mo%≦13%の条件を満足するチタン合金に対
し、(β変態点−250℃)以上、β変態点未満の温度
で加熱し、次いで、加熱したチタン合金材に対して、5
0%以上の圧下量で熱間加工を施すことにより、α粒の
平均粒径が5μm以下となることが記載されている。
For example, Japanese Patent Publication No. 8-19502 (Prior Art Document 1) discloses that, by weight%, Al: 5.5 to 6.75%, V:
3.5-4.5%, O: 0.2% or less, Fe: 0.15
To 3.0%, Cr: 0.15 to 3.0%, Mo: 0.8
A titanium alloy containing 5 to 3.15% is heated at a temperature equal to or higher than (β transformation point -200 ° C.) and lower than β transformation point, and is subsequently reduced at a temperature lower than β transformation point to a reduction ratio of 3 or more. The average particle size of the α-crystal is reduced to 6 μm or less. According to Japanese Patent Publication No. Hei 8-19503 (prior art document 2), Al: 5.5 to 6.75% by weight, V: 3.5-4.5
%, O: 0.2% or less, Cr: 0.85 to 3.15%,
Similarly, a titanium alloy containing 0.85 to 3.15% of Mo is heated at a temperature lower than the β transformation point, and subsequently subjected to reduction at a temperature lower than the β transformation point to reduce the reduction ratio to 3 or more. , The average grain size of the α-crystal is 6 μm or less, and Japanese Patent Publication No. 8-23053 (Prior Document 3) discloses that Al:
3.0-5.0%, V: 2.1-3.7%, Mo: 0.
85 to 3.15%, O: 0.15% or less, and F
e, one, two or more of Ni, Co and Cr, and 0.85% ≦ Fe% + Ni% + Co%
+ 0.9 × Cr% ≦ 3.15% and 7% ≦ 2 × Fe%
+ 2 × Ni% + 2 × Co% + 1.8 × Cr% + 1.5 ×
A titanium alloy satisfying the condition of V% + Mo% ≦ 13% is heated at a temperature of (β transformation point−250 ° C.) or more and less than the β transformation point, and then 5% with respect to the heated titanium alloy material.
It is described that by performing hot working at a rolling reduction of 0% or more, the average particle size of α grains becomes 5 μm or less.

【0004】また、先行文献4(Materials Science an
d Engineering A誌、A203(1995),L1〜L4頁)に
は、Ti−6Al−4V,Ti−3Al−5V−5M
o,Ti−6.5Al−3.6Mo−0.6Fe−2C
r−0.3Siの3種類の合金について、再結晶の生じ
ない中間温度域(500℃以下)での低加工度の加工
と、焼鈍を交互に繰り返し、真歪(ε)にして0.9〜
1(圧下率に換算すると、60〜63%)の総圧下を加
えることにより、1μm以下の結晶粒組織を得ることが
できるという報告がある。そして、β安定化元素が多い
ほど、微細粒組織が得られると述べられている。
[0004] Also, Prior Art 4 (Materials Science an
d Engineering A, A203 (1995), pages L1 to L4) include Ti-6Al-4V, Ti-3Al-5V-5M.
o, Ti-6.5Al-3.6Mo-0.6Fe-2C
With respect to the three alloys of r-0.3Si, processing with low workability in an intermediate temperature range (500 ° C. or less) where recrystallization does not occur and annealing are alternately repeated to obtain a true strain (ε) of 0.9. ~
There is a report that a grain structure of 1 μm or less can be obtained by applying a total reduction of 1 (converted to a reduction ratio of 60 to 63%). It is stated that the finer the grain, the more the β-stabilizing element is.

【0005】さらに、先行文献5(日本金属学会誌、第
56巻、第11号(1992)、1352〜1359
頁)は、Ti−6Al−4V合金について、通常の溶製
材−圧延プロセスでは達成可能な微細結晶粒径に限界が
あることから、それ以外の方法、すなわち水素雰囲気中
での水素吸蔵焼鈍、水素化物析出焼鈍、熱間加工、真空
中での脱水素兼再結晶焼鈍を含む工程により平均粒径約
1μmの微細粒組織を有するTi合金が得られることが
報告されている。
Further, Reference Document 5 (Journal of the Japan Institute of Metals, Vol. 56, No. 11 (1992), 1351-2359)
Page) describes that, for the Ti-6Al-4V alloy, there is a limit to the fine crystal grain size that can be achieved by the normal ingot-rolling process, so other methods, namely, hydrogen storage annealing in a hydrogen atmosphere, hydrogen absorption, It is reported that a Ti alloy having a fine grain structure with an average grain size of about 1 μm can be obtained by a process including a carbide precipitation annealing, hot working, and dehydrogenation / recrystallization annealing in a vacuum.

【0006】[0006]

【発明が解決しようとする課題】通常の溶製材−圧延プ
ロセスにおいて達成可能な微細結晶粒径は、合金成分、
最終製品までの製造プロセス等に依存して限界がある。
上記先行文献1〜3は、通常の溶製材−圧延プロセスで
Ti合金を得ているが、α晶の平均粒径5〜6μm以下
と規定されているものの、達成可能な微細粒径について
は記載がない。先行技術が開示するところの知見のみに
よって、α粒、β粒それぞれの結晶粒径が1μm以下で
ある超微細粒組織を得ることはできない。実施例におい
ても、得られているα粒径は全て1.9μm以上であ
る。
The fine grain size achievable in a normal ingot-rolling process depends on the alloy component,
There are limitations depending on the manufacturing process up to the final product.
Although the above-mentioned prior art documents 1 to 3 obtain a Ti alloy by a normal ingot-rolling process, the average grain size of α crystals is specified to be 5 to 6 μm or less, but the achievable fine grain size is described. There is no. It is not possible to obtain an ultrafine grain structure in which each of the α grains and the β grains has a crystal grain size of 1 μm or less based only on the knowledge disclosed in the prior art. Also in the examples, all the obtained α particle sizes are 1.9 μm or more.

【0007】また、α粒とβ粒の組織形態を規定する場
合、α粒径を規定するだけでは不十分である。なぜな
ら、β変態点直下のようにα粒の量自体が少ない場合
に、β粒のサイズが粗大になる一方で、α粒のサイズだ
けは小さくなる可能性があるからであるが、その点に言
及する記載はない。
[0007] Further, when defining the microstructure of α grains and β grains, it is not sufficient to simply define the α grain size. This is because, when the amount of α grains itself is small, such as immediately below the β transformation point, the size of β grains may become coarse while only the size of α grains may become small. There is no mention to mention.

【0008】さらに、先行文献4に示された組成の合金
では、再結晶の生じない中間温度域(500℃以下)で
の低加工度の加工と、焼鈍を交互に繰り返し、真歪
(ε)にして0.9〜1(圧下率に換算すると、60〜
63%)の総圧下を加えるという、複雑な製造プロセス
を経なければ1μm以下の微細粒から成るチタン合金が
得られず、経済的観点からの不利は否めない。
[0008] Further, in the alloy having the composition shown in the prior art document 4, processing with low workability in an intermediate temperature range (500 ° C or less) where recrystallization does not occur and annealing are alternately repeated to obtain a true strain (ε). 0.9 to 1 (converted to rolling reduction, 60 to
Unless a complicated manufacturing process is applied, that is, a total reduction of 63%), a titanium alloy consisting of fine grains of 1 μm or less cannot be obtained, and the disadvantage from an economic viewpoint cannot be denied.

【0009】また先行文献5に示された組成の合金で
は、水素雰囲気中での水素吸蔵焼鈍、水素化物析出焼
鈍、熱間加工、真空中での脱水素兼再結晶焼鈍という複
雑な製造プロセスを経なければ1μm以下の微細粒から
成るチタン合金が得られず、経済的観点からの不利は否
めない。
[0009] In addition, the alloy having the composition shown in the prior art document 5 requires a complicated manufacturing process of hydrogen storage annealing in a hydrogen atmosphere, hydride precipitation annealing, hot working, dehydrogenation and recrystallization annealing in vacuum. Otherwise, a titanium alloy consisting of fine particles of 1 μm or less cannot be obtained, and the disadvantage from an economic viewpoint cannot be denied.

【0010】本発明は、経済的観点から有利な通常の溶
製材−圧延プロセスにより平均粒径が1μm以下の超微
細粒のチタン合金を製造する方法およびそのチタン合金
を提供することを目的とするものである。
It is an object of the present invention to provide a method for producing an ultrafine-grained titanium alloy having an average particle size of 1 μm or less by a usual ingot-rolling process which is advantageous from an economic viewpoint, and an object of the present invention. Things.

【0011】[0011]

【発明が解決しようとする手段】上記目的を解決するた
めに、本発明者は、合金成分およびβ変態点温度
(Tβ)という合金成分に関する検討と、圧延および熱
処理条件という製造条件に関する検討を行い、両者を組
み合わせることにより、目的達成可能な条件を見出し、
本発明を完成した。
In order to solve the above-mentioned object, the present inventors have studied the alloy components and the alloy components such as the β transformation point temperature (T β ) and the manufacturing conditions such as the rolling and heat treatment conditions. By combining them, we find conditions that can achieve the purpose,
The present invention has been completed.

【0012】即ち、本発明は、(1)β変態点温度(T
β)が860℃以上920℃以下であり、重量%で、A
l:3〜5%、O:0.2%以下、N,C:それぞれ
0.1%以下、V:2〜7%、さらに、Nb,Mo,W
から成るグループのうち1種または2種以上合計で1.
0〜3.5重量%、及びCr,Mn,Fe,Co,Ni
から成るグループのうち1種または2種以上合計で0.
5〜3.0重量%を含み、残部、Tiおよび不可避不純
物から成り、基本的に等軸α粒と等軸β変態組織から成
る組織形態を有し、等軸α粒と等軸β変態組織、それぞ
れの平均粒径が1μm以下である(α+β)型チタン合
金棒線材、(2)β変態点温度(Tβ)が860℃以上
920℃以下であり、重量%で、Al:3〜5%、O:
0.2%以下、N,C:それぞれ0.1%以下、V:2
〜7%、さらに、Nb,Mo,Wから成るグループのう
ち1種または2種以上合計で1.0〜3.5重量%、及
びCr,Mn,Fe,Co,Niから成るグループのう
ち1種または2種以上合計で0.5〜3.0重量%を含
み、残部、Tiおよび不可避不純物から成る合金素材に
対し、(Tβ−250)(℃)以上、(Tβ−25)
(℃)以下に加熱後加工を開始し、(Tβ−100)
(℃)以下で加工を終了する、総断面減少率95%以上
の熱間加工の工程と、ひき続いて(Tβ−100)
(℃)以下で、かつP=(T+273)(20+log
t)/1000(T:熱処理温度(℃)、t:熱処理時
間(時間))で表されるパラメータPが19.2〜2
0.0を満たす条件における熱処理を含む工程とを行っ
て、基本的に等軸α粒と等軸β変態組織から成る組織形
態を有し、等軸α粒と等軸β変態組織、それぞれの平均
粒径を1μm以下とすることを特徴とする(α+β)型
チタン合金棒線材の製造方法である。
That is, the present invention provides (1) β transformation temperature (T
β ) is 860 ° C. or more and 920 ° C. or less, and A
l: 3 to 5%, O: 0.2% or less, N and C: each 0.1% or less, V: 2 to 7%, further Nb, Mo, W
One or more of the group consisting of
0-3.5% by weight, and Cr, Mn, Fe, Co, Ni
One or more of the group consisting of
5 to 3.0% by weight, the balance being composed of Ti and unavoidable impurities, and having a structural form basically consisting of equiaxed α grains and an equiaxed β transformation structure. (Α + β) type titanium alloy rod or wire having an average particle diameter of 1 μm or less, (2) β transformation point temperature (T β ) of 860 ° C. or more and 920 ° C. or less, and Al: 3 to 5% by weight. %, O:
0.2% or less, N and C: each 0.1% or less, V: 2
-7%, one or more of the group consisting of Nb, Mo, W, 1.0-3.5% by weight in total, and one of the group consisting of Cr, Mn, Fe, Co, Ni. comprises 0.5 to 3.0 wt% in total species or two or more, the remainder, to the alloy material consisting of Ti and inevitable impurities, (T β -250) (℃ ) above, (T beta -25)
Start processing after heating to (° C) or less, (T β- 100)
(° C) or less, the hot working step with a total cross-sectional reduction rate of 95% or more, followed by ( Tβ- 100)
(° C.) or less and P = (T + 273) (20 + log
t) / 1000 (T: heat treatment temperature (° C.), t: heat treatment time (hour))
Performing a process including a heat treatment under conditions satisfying 0.0, and having a structure morphology consisting essentially of equiaxed α grains and an equiaxed β transformation structure, A method for producing an (α + β) type titanium alloy rod or wire, wherein the average particle size is 1 μm or less.

【0013】[0013]

【発明の実施の形態】まず、本発明に係るTi合金は、
β変態点温度(Tβ)が860℃以上920℃以下であ
る必要がある。β変態点温度(Tβ)が860℃より低
いと、β相の平均粒径を1μm以下に抑えることができ
ない。また、β変態点温度(Tβ)が920℃より高い
と、等軸組織を得るための熱処理における結晶粒成長が
抑えられず、等軸α粒と等軸β粒それぞれの平均粒径が
1μm以下の超微細粒組織を得ることができない。した
がって、β変態点温度(Tβ)は860℃以上920℃
以下でなければならない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a Ti alloy according to the present invention
The β transformation point temperature (T β ) needs to be 860 ° C or more and 920 ° C or less. If the β transformation point (T β ) is lower than 860 ° C., the average particle size of the β phase cannot be suppressed to 1 μm or less. If the β transformation point temperature (T β ) is higher than 920 ° C., crystal grain growth in heat treatment for obtaining an equiaxed structure cannot be suppressed, and the average grain size of each of the equiaxed α grains and the equiaxed β grains is 1 μm. The following ultrafine grain structure cannot be obtained. Therefore, the β transformation point temperature (T β ) is 860 ° C. or more and 920 ° C.
Must be:

【0014】次に、合金成分に関する条件の限定理由に
ついて説明する。なお、上述のように本発明に係るTi
合金は、β変態点温度(Tβ)が860℃以上920℃
以下である必要があり、以下に説明する合金元素は、各
々の限定範囲内で、かつ、β変態点温度(Tβ)が86
0℃以上920℃以下であるという条件を満たすように
添加される。
Next, the reasons for limiting the conditions relating to the alloy components will be described. As described above, the Ti according to the present invention
The alloy has a β transformation point temperature (T β ) of 860 ° C or more and 920 ° C
The alloying elements described below must be within the respective limited ranges and have a β transformation point temperature (T β ) of 86.
It is added so as to satisfy the condition of 0 ° C. or more and 920 ° C. or less.

【0015】Alは、α/β相平衡において、α相を安
定化する元素であり、β変態点温度(Tβ)を上昇させ
る。3%より少ないと、十分な強度が得られず、また、
5%より多いと、常温における疲労寿命強度が低下し、
実用上、好ましくない。したがって、3〜5%に規制す
る。
Al is an element that stabilizes the α phase in the α / β phase equilibrium and raises the β transformation point temperature (T β ). If it is less than 3%, sufficient strength cannot be obtained, and
If it exceeds 5%, the fatigue life strength at room temperature decreases,
It is not preferable in practical use. Therefore, it is restricted to 3 to 5%.

【0016】O、N、Cもα/β相平衡において、α相
を安定化する元素であり、β変態点温度(Tβ)を上昇
させる。但し、含有量がO:0.2%、N:0.1%、
C:0.1%より多いと、圧延加工性が低下し、割れの
ない健全な製品を得るのが困難になるばかりでなく、製
品としての延性、靭性が著しく低下する。したがって、
それぞれ、O:0.2%、N:0.1%、C:0.1%
以下に規制する。
O, N, and C are also elements that stabilize the α phase in the α / β phase equilibrium and increase the β transformation point temperature (T β ). However, the content is O: 0.2%, N: 0.1%,
C: If it is more than 0.1%, the rolling processability is reduced, and not only is it difficult to obtain a sound product without cracks, but also the ductility and toughness of the product are significantly reduced. Therefore,
O: 0.2%, N: 0.1%, C: 0.1%, respectively
It is regulated as follows.

【0017】Vは、α/β相平衡において、β相を安定
化する元素であり、β変態点温度(Tβ)を下降させ
る。当該合金中における拡散係数は、Nb,Mo,Wほ
ど小さくないが、後述するCr,Mn,Fe,Co,N
iとは異なり、Tiとの間に、延性、靭性を損ねる金属
間化合物を形成することなく、強度を上昇させる効果が
ある。添加量が2%より少ないと、強度上昇の効果が明
瞭ではなく、また、7%より多いと、β相が安定化しす
ぎ、β粒径を1μm以下に抑えることができない。した
がって、V量は、2〜7%に限定される。
V is an element that stabilizes the β phase in the α / β phase equilibrium and lowers the β transformation point temperature (T β ). The diffusion coefficient in the alloy is not as small as Nb, Mo, and W, but Cr, Mn, Fe, Co, N
Unlike i, there is an effect of increasing strength without forming an intermetallic compound that impairs ductility and toughness with Ti. If the amount is less than 2%, the effect of increasing the strength is not clear, and if it is more than 7%, the β phase is too stabilized, and the β particle size cannot be suppressed to 1 μm or less. Therefore, the amount of V is limited to 2 to 7%.

【0018】Nb,Mo,Wも、同じく、いずれも、α
/β相平衡において、β相を安定化する元素であり、β
変態点温度(Tβ)を下降させる。さらに、これらの元
素は、当該合金中における拡散係数が非常に小さいた
め、結晶粒成長を遅滞させる効果があり、本発明が目標
とするところの、等軸α粒と等軸β粒それぞれの平均粒
径が1μm以下の超微細粒組織の達成には、不可欠な元
素である。これらの元素の添加量が、合計で1%より少
ないと、結晶粒成長を遅滞させる効果が十分に得られ
ず、また、合計で3.5%より多く添加しても、結晶粒
成長を遅滞させる効果が飽和してしまい、一方で低比重
であるというTi合金の大きな特長を損ねるばかりでな
く、いずれも高価であるため経済的なデメリットも大き
い。したがって、Nb,Mo,Wの添加量は、1種ある
いは2種以上合計で1重量%以上、3.5重量%以下に
限定する。
Nb, Mo, and W are also α
Is an element that stabilizes the β phase in the / β phase equilibrium.
The transformation point temperature ( ) is decreased. Further, since these elements have a very small diffusion coefficient in the alloy, they have the effect of delaying the crystal grain growth, and the average of the equiaxed α grains and the equiaxed β grains, which is the target of the present invention, is It is an indispensable element for achieving an ultrafine grain structure having a grain size of 1 μm or less. If the total amount of these elements is less than 1%, the effect of delaying the crystal grain growth cannot be sufficiently obtained, and if the total amount exceeds 3.5%, the crystal grain growth is delayed. The effect of saturating the Ti alloy is saturated, and on the other hand, not only does the great feature of the Ti alloy that it has a low specific gravity is impaired, but also all are expensive, so there are great economical disadvantages. Therefore, the added amount of Nb, Mo, and W is limited to 1% by weight or more and 3.5% by weight or less in total of one or more kinds.

【0019】Cr,Mn,Fe,Co,Niも、同じ
く、α/β相平衡において、β相を安定化する元素であ
り、β変態点温度(Tβ)を下降させる。特に、Mn,
Fe,Co,Niは、当該合金中における拡散係数が大
きく、結晶粒成長の抑制の観点からは不利であるが、N
b,Mo,Wとの複合添加により、結晶粒成長を抑えつ
つ、かつ高温変形応力を低下させて、熱間加工や超塑性
成形を容易にするといった効果があり、さらに、常温に
おける材料の強度上昇に寄与する。添加量が合計で0.
5重量%より少ないと、所望の効果が明瞭ではなく、ま
た、合計で3重量%より多く添加すると、Tiとの金属
間化合物の形成が顕著になり、延性、靭性を損ねる。し
たがって、添加する場合には、合計で0.5〜3.0重
量%に限定する。
Cr, Mn, Fe, Co, and Ni are also elements that stabilize the β phase in the α / β phase equilibrium, and lower the β transformation point temperature (T β ). In particular, Mn,
Fe, Co, and Ni have a large diffusion coefficient in the alloy and are disadvantageous from the viewpoint of suppressing crystal grain growth.
The combined addition with b, Mo, and W has the effect of suppressing crystal grain growth and reducing high-temperature deformation stress, facilitating hot working and superplastic forming. Further, the strength of the material at room temperature Contribute to the rise. The total amount added is 0.
If it is less than 5% by weight, the desired effect is not clear, and if it is more than 3% by weight in total, formation of an intermetallic compound with Ti becomes remarkable, and ductility and toughness are impaired. Therefore, when added, the total content is limited to 0.5 to 3.0% by weight.

【0020】さらに、β変態点温度にはあまり大きく影
響しない、Sn,Zrに関しては、β変態点温度が本発
明の限定範囲内であり、特に機械的性質に悪影響を及ぼ
さない範囲であれば、添加しても差し支えない。
Further, with respect to Sn and Zr, which do not significantly affect the β transformation point temperature, if the β transformation point temperature is within the limitation range of the present invention, and particularly within a range that does not adversely affect the mechanical properties, It can be added.

【0021】また、Si,Bは、Tiとの間に、微細な
化合物相を形成し、結晶粒成長抑制の効果が期待される
が、添加量が多いと機械的性質、特に延性、靭性を損ね
る。これらの元素に関しても、β変態点温度が本発明の
限定範囲内であり、特に機械的性質に悪影響を及ぼさな
い範囲であれば、添加しても差し支えない。
Further, Si and B form a fine compound phase with Ti, and are expected to have an effect of suppressing the growth of crystal grains. However, if the added amount is large, the mechanical properties, particularly ductility and toughness, are reduced. Spoil. Regarding these elements, the β transformation point may be added as long as the β transformation point temperature is within the limitation range of the present invention, and as long as the mechanical properties are not adversely affected.

【0022】以上、限定した合金成分と、以下に説明す
る製造条件を組み合わせることにより、本発明が得よう
とするところの、基本的に等軸α粒と等軸β粒から成る
組織形態を有し、等軸α粒と等軸β粒それぞれの平均粒
径が1μm以下の超微細粒組織から成る、チタン合金棒
材を得ることができる。
As described above, by combining the limited alloy components and the manufacturing conditions described below, the structure morphology consisting essentially of equiaxed α grains and equiaxed β grains, which the present invention aims to obtain, is obtained. Then, a titanium alloy rod having an ultrafine grain structure in which the average particle diameter of each of the equiaxed α grains and the equiaxed β grains is 1 μm or less can be obtained.

【0023】圧延加熱温度は、上述のβ変態点温度(T
β)に対して、(Tβ−250)(℃)以上、(Tβ
25)(℃)以下の温度範囲である必要がある。当該合
金に対して、加熱温度が(Tβ−250)(℃)より低
いと、圧延荷重が高くなり、また材料に割れが生じやす
くなるなど、実生産上、不利になる。また、(Tβ−2
5)(℃)より高いと、その温度におけるβ相の相比が
高く、圧延後の組織として、圧延方向に伸長した微細な
α粒とβ粒から成る組織が得られない。その結果、それ
を熱処理して得られる組織において、特にβ径を1μm
以下に抑えることができない。したがって、圧延加熱温
度は、(Tβ−250)(℃)以上、(Tβ−25)
(℃)以下の温度範囲に限定する。
The rolling heating temperature is the above β transformation point temperature (T
β ), (T β -250) (° C.) or more, (T β
25) The temperature must be within (° C.) or lower. With respect to the alloy, the heating temperature is (T beta -250) below (° C.), the rolling load becomes high, and the like cracks in the material tends to occur, the actual production, which is disadvantageous. Also, (T β −2
5) If the temperature is higher than (° C.), the phase ratio of the β phase at that temperature is high, and as a structure after rolling, a structure composed of fine α grains and β grains elongated in the rolling direction cannot be obtained. As a result, in the structure obtained by heat treatment, the β diameter is particularly 1 μm.
It cannot be suppressed below. Therefore, rolling heating temperature, (T β -250) (℃ ) above, (T beta -25)
(° C.) Limit to the following temperature range.

【0024】熱間加工は、(Tβ−100)(℃)以下
で終了しなければならない。当該合金に対して、熱間加
工の終了温度が(Tβ−100)(℃)より高いと、そ
の温度において直ちに再結晶、粒成長が生じ、等軸α粒
と等軸β粒それぞれの平均粒径が1μm以下の超微細粒
組織を得ることができない。
Hot working must be completed at (T β -100) (° C.) or less. With respect to the alloy, the end temperature of the hot working is higher than (T β -100) (℃) , its immediate recrystallization at temperatures cause grain growth, the average respectively equiaxed α grains and equiaxed beta grain An ultrafine grain structure having a grain size of 1 μm or less cannot be obtained.

【0025】また、熱間加工は、総断面減少率95%以
上の強加工である必要がある。総断面減少率が95%よ
り小さいと、等軸組織とするための再結晶のための歪の
蓄積が不十分であり、加工後の熱処理によって、等軸化
が進行しないか、あるいは、等軸化が進行したとして
も、等軸α粒と等軸β粒それぞれの平均粒径が1μm以
下の超微細粒組織を得ることができない。
Further, the hot working needs to be a strong working with a reduction ratio of total cross section of 95% or more. If the total cross-sectional reduction rate is less than 95%, the accumulation of strain for recrystallization to form an equiaxed structure is insufficient, and the heat treatment after processing does not progress the equiaxing, or Even if the formation proceeds, it is not possible to obtain an ultrafine grain structure in which the average grain size of each of the equiaxed α grains and the equiaxed β grains is 1 μm or less.

【0026】なお、板材の場合、特に板面に平行な断面
における組織が扁平に粗くなる傾向があり、次工程の熱
処理を経ても、等軸α粒と等軸β粒それぞれの平均粒径
が1μm以下の超微細粒組織を得ることは困難である。
圧延後形態は、基本的に棒材あるいは線材である。
In the case of a plate material, the structure particularly in a cross section parallel to the plate surface tends to become flat and coarse, and even after the heat treatment in the next step, the average particle size of each of the equiaxed α grains and the equiaxed β grains is reduced. It is difficult to obtain an ultrafine grain structure of 1 μm or less.
The form after rolling is basically a rod or a wire.

【0027】引き続き、(Tβ−100)(℃)以下
で、かつP=(T+273)(20+log t)/100
0(T:熱処理温度(℃)、t:熱処理時間(時間))
で表されるパラメータPが19.2〜20.0を満たす
条件において、組織の等軸化を目的とした熱処理を施
す。(Tβ−100)(℃)より高い熱処理温度では、
通常の工業的な熱処理時間では、等軸α粒と等軸β粒そ
れぞれの平均粒径が1μm以下の超微細粒組織を得るこ
とができない。また、P=(T+273)(20+log
t)/1000で表されるパラメータPが、19.2よ
り小さい条件では、組織の等軸化が十分に進まず、特に
圧延と平行な方向に対して線分法で粒径を測定した場
合、β粒径を1μm以下とすることができない。また、
パラメータPが20.0より大きい条件では、結晶粒成
長が抑えられず、等軸α粒と等軸β粒それぞれの平均粒
径が1μm以下の超微細粒組織を得ることができない。
例えば、熱処理温度を700℃とすると、熱処理時間
は、約35分〜3時間30分の範囲内となり、この範囲
よりも短時間の場合は等軸化が十分に進行せず、またこ
の範囲よりも長時間の場合は結晶粒成長が進行してしま
い、等軸α粒と等軸β粒それぞれの平均粒径が1μm以
下の超微細粒組織を得ることができない。
Subsequently, it is not more than (T β -100) (° C.) and P = (T + 273) (20 + log t) / 100
0 (T: heat treatment temperature (° C.), t: heat treatment time (hour))
Is performed under the condition that the parameter P represented by the following expression satisfies 19.2 to 20.0. In (T β -100) (℃) higher than the heat treatment temperature,
With an ordinary industrial heat treatment time, it is not possible to obtain an ultrafine grain structure in which each of the equiaxed α grains and the equiaxed β grains has an average grain size of 1 μm or less. Also, P = (T + 273) (20 + log
Under the condition that the parameter P expressed by t) / 1000 is smaller than 19.2, the equiaxing of the structure does not proceed sufficiently, especially when the particle size is measured by the line segment method in the direction parallel to the rolling. , Β particle size cannot be less than 1 μm. Also,
Under the condition where the parameter P is larger than 20.0, crystal grain growth cannot be suppressed, and it is not possible to obtain an ultrafine grain structure in which the average grain size of each of the equiaxed α grains and the equiaxed β grains is 1 μm or less.
For example, when the heat treatment temperature is 700 ° C., the heat treatment time is in the range of about 35 minutes to 3 hours and 30 minutes. If the heat treatment time is shorter than this range, the equiaxing does not proceed sufficiently. However, if the time is too long, the crystal grain growth proceeds, and it is not possible to obtain an ultrafine grain structure in which the average grain diameter of each of the equiaxed α grains and the equiaxed β grains is 1 μm or less.

【0028】さらに、熱処理に引き続き、析出強化によ
る強化等を目的に、時効処理を行う場合があるが、組織
が前段の熱処理により得られた形態、即ち、基本的に等
軸α粒と等軸β粒から成り、等軸α粒と等軸β粒それぞ
れの平均粒径が1μm以下の超微細粒組織を逸脱しない
限りは、時効処理等の熱処理を行っても差し支えない。
Further, after the heat treatment, aging treatment may be performed for the purpose of strengthening by precipitation strengthening, etc., but the structure is obtained by the heat treatment in the previous stage, that is, basically, equiaxed α grains and equiaxed α grains are formed. Heat treatment such as aging treatment may be performed as long as the average particle size of the equiaxed α grains and the equiaxed β grains does not deviate from the ultrafine grain structure of 1 μm or less.

【0029】以上、限定した合金成分と製造条件を組み
合わせることにより、基本的に等軸α粒と等軸β粒から
成る組織形態を有し、等軸α粒と等軸β粒それぞれの平
均粒径が1μm以下の超微細粒組織から成る(α+β)
型チタン合金棒材を得ることができる。
As described above, by combining the limited alloy components and the production conditions, the microstructure basically has a structure of equiaxed α grains and equiaxed β grains, and the average grain size of the equiaxed α grains and the equiaxed β grains respectively. Consisting of an ultrafine grain structure with a diameter of 1 μm or less (α + β)
A shaped titanium alloy bar can be obtained.

【0030】[0030]

【実施例】【Example】

(実施例1)表1に示す組成の合金をアーク溶解により
溶製した。熱間鍛造を経た後、熱間圧延に供した。な
お、β変態温度(Tβ)は、熱間鍛造材から採取したサ
ンプルに対し、常温から1000℃までの電気抵抗測定
を連続的に行った結果得られる、温度−電気抵抗曲線の
屈曲、およびミクロ組織観察により評価した。
(Example 1) Alloys having the compositions shown in Table 1 were produced by arc melting. After hot forging, it was subjected to hot rolling. The β transformation temperature (T β ) is obtained by continuously measuring the electric resistance from room temperature to 1000 ° C. on a sample taken from a hot forged material, and is obtained by bending a temperature-electric resistance curve, and Evaluation was made by microstructure observation.

【0031】鍛造材から50mmφの丸棒を採取し、そ
れぞれ、表2に示すように、(Tβ−110)℃を目安
に加熱温度を設定した。加熱後、1パス当たりの断面減
少率5〜20%ずつのカリバー圧延に供し、10mmφ
(総断面減少率:96%)に仕上げた、仕上がり温度
は、表2中に示したとおりである。なお、合金番号B8
〜B10は、圧延加工性が不良であり、圧延中に多数の
割れを生じた。
From the forged material, 50 mmφ round bars were sampled, and as shown in Table 2, the heating temperature was set at (T β -110) ° C. as a guide. After heating, the plate is subjected to caliber rolling at a cross-sectional reduction rate of 5 to 20% per pass.
The finishing temperature after finishing (total cross-sectional reduction rate: 96%) is as shown in Table 2. The alloy number B8
No. to B10 had poor rolling workability and caused many cracks during rolling.

【0032】引き続き、700℃で1時間の熱処理を施
し、空冷した。この熱処理条件に対応するパラメータP
の値は、19.46である。圧延長手方向に平行な断面
について、ミクロ組織観察を行い、圧延方向に平行な方
向、および直角な方向について、線分法による結晶粒径
測定を行った。また、ASTM引張試験片(平行部径:
6.25mmφ、ゲージ長:25mm)を採取し、常温
における引張特性を評価した。引張試験における初期歪
み速度は、おおよそ、1×10-3-1である。また、8
mm径×12mm高さの円柱状圧縮試験片を採取し、7
00℃において歪み速度1×10-3-1で圧縮試験を行
い、圧縮変形抵抗を求めた。なお、合金番号B8〜B1
0については、割れのない健全部が十分な量だけ得られ
なかったので、引張および圧縮試験には供さなかった。
Subsequently, a heat treatment was carried out at 700 ° C. for 1 hour and air-cooled. Parameter P corresponding to this heat treatment condition
Is 19.46. The microstructure was observed for a cross section parallel to the rolling longitudinal direction, and the crystal grain size was measured by a line segment method in a direction parallel to the rolling direction and in a direction perpendicular to the rolling direction. The ASTM tensile test piece (parallel diameter:
6.25 mmφ, gauge length: 25 mm) were taken, and the tensile properties at room temperature were evaluated. The initial strain rate in the tensile test is approximately 1 × 10 −3 s −1 . Also, 8
A cylindrical compression test specimen having a diameter of 12 mm and a height of 12 mm was collected,
A compression test was performed at 00 ° C. at a strain rate of 1 × 10 −3 s −1 to determine the compression deformation resistance. In addition, alloy numbers B8 to B1
With respect to 0, since a sufficient amount of a sound part without cracks was not obtained, it was not subjected to the tensile and compression tests.

【0033】表3に結晶粒径測定結果を示す。本発明例
である合金番号A1〜A11においては、圧延と平行な
断面組織における、圧延と平行な方向および圧延と直角
な方向に対して線分法で測定したα粒、β粒、いずれも
が、1μm以下となっており、α粒、β粒それぞれの粒
径が1μm以下の等軸組織であることがわかる。
Table 3 shows the measurement results of the crystal grain size. In the alloy numbers A1 to A11 of the present invention, in the cross-sectional structure parallel to the rolling, α grains and β grains measured by a line segment method in a direction parallel to the rolling and in a direction perpendicular to the rolling are all included. 1 μm or less, and it can be seen that α-particles and β-particles have an equiaxed structure with a particle diameter of 1 μm or less.

【0034】これに対し、比較例(B1〜B7、B1
1,B12)においては、圧延と平行な方向および圧延
と直角な方向に対して線分法で測定したα粒、β粒の測
定値のいずれかが、1μmより大きな値となっている。
例えば、V添加量が多く、Tβが860℃より低い合金
番号B3では、α粒は圧延と平行な方向および圧延と直
角な方向に対して1μm以下であるが、圧延と平行な方
向に対するβ粒の測定値が2.38μmであり、1μm
よりも大きい。圧延と直角な方向に対するβ粒の測定値
が0.90μmであることから、β粒の等軸化が十分に
進んでいないことがわかる。
On the other hand, the comparative examples (B1 to B7, B1
In (1, B12), any of the measured values of α grains and β grains measured by the line segment method in the direction parallel to the rolling and the direction perpendicular to the rolling is a value larger than 1 μm.
For example, in alloy number B3 in which the amount of V added is large and T β is lower than 860 ° C., the α grains are 1 μm or less in a direction parallel to rolling and in a direction perpendicular to rolling, but β The measured value of the grain is 2.38 μm and 1 μm
Greater than. The measured value of β grains in the direction perpendicular to the rolling is 0.90 μm, which indicates that the β grains are not sufficiently equiaxed.

【0035】また、例えば、Nb,Mo,Wから成るグ
ループの元素添加量の少ない合金番号B5では、α粒、
β粒いずれの粒成長をも抑えることができず、α粒、β
粒いずれの測定値も1μmよりも大きな値となってい
る。
Further, for example, in the alloy number B5 of the group consisting of Nb, Mo and W with a small amount of element added, α
Being unable to suppress any grain growth of β grains, α grains, β grains
The measured value of each grain is a value larger than 1 μm.

【0036】圧延と平行な方向に対するα粒径、β粒径
の測定結果を、図1にまとめた。本発明例である。Tβ
が860℃以上920℃以下である、合金番号A1〜A
11においては、α粒、β粒、いずれもが1μm以下の
微細組織が得られている。それに対し、Tβが860℃
より低いか、あるいは、920℃より高い比較例では、
α粒あるいはβ粒のいずれか、あるいは両方が1μmよ
り大きい。なお、Tβが860℃以上920℃以下の範
囲内であっても、Nb,Mo,Wのグループの添加量が
少ない、合金番号B5は、粒成長が抑えられず、α粒、
β粒とも1μmよりも大きい。また、O,N,Cの添加
量の多い、合金番号B8〜B10は、微細組織は得られ
ているものの、前述のように、圧延時に多数の割れを生
じ、健全な製品を得ることができなかった。
FIG. 1 shows the measurement results of the α grain size and the β grain size in the direction parallel to the rolling. It is an example of the present invention. T β
Are 860 ° C or more and 920 ° C or less, alloy numbers A1 to A
In No. 11, a microstructure of 1 μm or less was obtained for both α grains and β grains. On the other hand, T β is 860 ° C
For comparative examples that are lower or higher than 920 ° C.
Either α grains or β grains or both are larger than 1 μm. Even when T β is in the range of 860 ° C. or more and 920 ° C. or less, alloy No. B5, in which the amount of addition of the group of Nb, Mo, and W is small, cannot suppress the grain growth,
Both β grains are larger than 1 μm. In addition, alloy numbers B8 to B10 with a large amount of added O, N, and C have a fine structure, but as described above, generate a large number of cracks during rolling, and can obtain a sound product. Did not.

【0037】表4には、常温における引張試験結果、お
よび700℃における圧縮変形抵抗を示す。等軸サブミ
クロン組織から成る、本発明例の合金番号A1〜A11
は、図2に示されているように、常温において良好な強
度−延性バランスを示す。さらに、サブミクロン組織の
形成により700℃における変形抵抗が低く、即ち、本
発明例である合金番号A1〜A11においては、常温に
おける良好な強度−延性バランスと、良好な熱間加工性
の両立が達成されていることがわかる。
Table 4 shows the results of the tensile test at room temperature and the compressive deformation resistance at 700 ° C. Alloy Nos. A1 to A11 of the present invention examples having an equiaxed submicron structure
Shows a good strength-ductility balance at room temperature, as shown in FIG. Furthermore, the deformation resistance at 700 ° C. is low due to the formation of a submicron structure. That is, in the alloy numbers A1 to A11 of the present invention, a good balance between strength and ductility at room temperature and a good balance between hot workability are obtained. It can be seen that this has been achieved.

【0038】これに対し、機械試験に供した合金番号B
1〜B7、B11、B12においては、全般的に延性、
特に絞りが低く、また、700℃における圧縮変形抵抗
が高いため、常温における良好な強度−延性バランス
と、良好な熱間加工性の両立が達成されていない。例え
ば、Cr,Mn,Fe,Co,Niから成るグループの
添加量が少ない合金番号B6は、比較的大きな常温延性
を示すが、常温の強度が低く、一方で700℃における
変形抵抗が高い。また、逆に、Cr,Mn,Fe,C
o,Niから成るグループの添加量の多い合金番号B7
は、常温の強度は比較的高く、かつ700℃における変
形抵抗は比較的低いが、常温における延性が低い。
On the other hand, the alloy number B used for the mechanical test
In 1 to B7, B11 and B12, generally ductility,
In particular, since the drawing is low and the compressive deformation resistance at 700 ° C. is high, a good balance between strength and ductility at room temperature and good hot workability have not been achieved at the same time. For example, alloy number B6, in which the amount of addition of the group consisting of Cr, Mn, Fe, Co, and Ni is small, exhibits relatively large ductility at room temperature, but has low strength at room temperature and high deformation resistance at 700 ° C. Conversely, Cr, Mn, Fe, C
Alloy No. B7 with a large addition amount of the group consisting of o and Ni
Has a relatively high strength at room temperature and a relatively low deformation resistance at 700 ° C., but a low ductility at room temperature.

【0039】(実施例2)表1の合金番号A2(Tβ
881℃)をアーク溶解、熱間鍛造後、50mmφの丸
棒を採取し、表5に示すように、加熱温度を5水準に変
化させて、1パス当たりの断面減少率5〜20%ずつの
カリバー圧延に供し、15mmφ(総断面減少率:91
%)および10mmφ(総断面減少率:96%)に仕上
げた。仕上温度は表5中に示されているとおりである。
なお、加熱温度が(Tβ−25)℃より低い、600℃
のものは、圧延初期において割れを生じたため、圧延を
中止した。引き続き、700℃で1時間の熱処理を施
し、空冷した。この熱処理条件に対応するパラメータP
の値は、19.46である。圧延長手方向に平行な断面
について、ミクロ組織観察を行い、圧延方向に平行な方
向、および直角な方向について、線分法による結晶粒径
測定を行った。
(Example 2) Alloy number A2 (T β :
(881 ° C.) after arc melting and hot forging, a 50 mmφ round bar was sampled, and as shown in Table 5, the heating temperature was changed to five levels, and the cross-sectional reduction rate per pass was 5 to 20%. 15 mmφ (total cross-section reduction rate: 91 mm)
%) And 10 mmφ (total cross-sectional reduction rate: 96%). The finishing temperature is as shown in Table 5.
The heating temperature (T beta -25) lower than ° C., 600 ° C.
In the case of No. 1, rolling was stopped because cracks occurred in the early stage of rolling. Subsequently, a heat treatment was performed at 700 ° C. for 1 hour and air-cooled. Parameter P corresponding to this heat treatment condition
Is 19.46. The microstructure was observed for a cross section parallel to the rolling longitudinal direction, and the crystal grain size was measured by a line segment method in a direction parallel to the rolling direction and in a direction perpendicular to the rolling direction.

【0040】表6に結晶粒径測定結果を示す。このよう
に、圧延加熱温度を(Tβ−25)℃より高い860℃
とした、合金番号D1、D2、圧延における断面減少率
が95%よりも小さい合金番号D2〜D5では、いずれ
もβ粒の大きさが1μmを越えてしまい、α粒とβ粒そ
れぞれの平均粒径が1μm以下である超微細粒組織は得
られなかった。
Table 6 shows the results of measuring the crystal grain size. Thus, the rolling heating temperature is set to 860 ° C. higher than (T β− 25) ° C.
In alloy Nos. D1 and D2 and alloy Nos. D2 to D5 in which the cross-sectional reduction rate in rolling was smaller than 95%, the size of β grains exceeded 1 μm in all cases, and the average grain size of α grains and β grains respectively An ultrafine grain structure having a diameter of 1 μm or less was not obtained.

【0041】(実施例3)表1の合金番号A2(Tβ
881℃)をアーク溶解、熱間鍛造後、50mmφの丸
棒を採取し、840℃に加熱後、1パス当たりの断面減
少率5〜20%ずつのカリバー圧延に供し、表7に示す
ように仕上温度を変化させて、10mmφ(総断面減少
率:96%)に仕上げた。引き続き、700℃で1時間
の熱処理を施し、空冷した。この熱処理条件に対応する
パラメータPの値は、19.46である。圧延長手方向
に平行な断面について、ミクロ組織観察を行い、圧延方
向に平行な方向、および直角な方向について、線分法に
よる結晶粒径測定を行った。表7中に測定結果を示し
た。仕上温度が(Tβ−100)℃より高い、合金番号
F1では、α粒とβ粒それぞれの平均粒径が1μm以下
である超微細粒組織は得られなかった。
(Example 3) Alloy No. A2 (T β :
(881 ° C.) after arc melting and hot forging, collecting a 50 mmφ round bar, heating to 840 ° C., and subjecting to caliber rolling at a cross-sectional reduction rate of 5 to 20% per pass, as shown in Table 7. The finish temperature was changed to 10 mmφ (total cross-section reduction rate: 96%). Subsequently, a heat treatment was performed at 700 ° C. for 1 hour and air-cooled. The value of the parameter P corresponding to this heat treatment condition is 19.46. The microstructure was observed for a cross section parallel to the rolling longitudinal direction, and the crystal grain size was measured by a line segment method in a direction parallel to the rolling direction and in a direction perpendicular to the rolling direction. Table 7 shows the measurement results. With alloy number F1, in which the finishing temperature was higher than ( Tβ- 100) ° C., an ultrafine grain structure in which each of the α grains and the β grains had an average grain size of 1 μm or less was not obtained.

【0042】(実施例4)表1の合金番号A2(Tβ
881℃)をアーク溶解、熱間鍛造後、50mmφの丸
棒を採取し、840℃に加熱後、1パス当たりの断面減
少率5〜20%ずつのカリバー圧延に供し、10mmφ
(総断面減少率:96%)に仕上げた。仕上温度は、6
70℃であった。得られた丸棒を切断後、表8に示す熱
処理条件(温度、時間)で熱処理し、空冷した。表中に
は、パラメータPの値も記載した。圧延長手方向に平行
な断面について、ミクロ組織観察を行い、圧延方向に平
行な方向、および直角な方向について、線分法による結
晶粒径測定を行った。
(Example 4) Alloy number A2 (T β :
(881 ° C.) after arc melting and hot forging, collecting a 50 mmφ round bar, heating to 840 ° C., and subjecting the bar to caliber rolling at a cross-sectional reduction rate of 5 to 20% per pass, and 10 mm φ
(Total cross-section reduction rate: 96%). Finishing temperature is 6
70 ° C. After cutting the obtained round bar, it was heat-treated under the heat treatment conditions (temperature, time) shown in Table 8, and air-cooled. In the table, the value of the parameter P is also described. The microstructure was observed for a cross section parallel to the rolling longitudinal direction, and the crystal grain size was measured by a line segment method in a direction parallel to the rolling direction and in a direction perpendicular to the rolling direction.

【0043】表9に測定結果を示した。この結果からわ
かるように、パラメータP(P=(T+273)(20
+log t)/1000)の値が、19.2〜20.0の
範囲内にある合金番号G1〜G4、A2においては、α
粒とβ粒それぞれの平均粒径が1μm以下である超微細
粒組織が得られた。それに対し、P値が19.2より小
さい、合金番号H1、H3は、線分法により、圧延と直
角な方向に測定したβ粒の測定値は小さいものの、圧延
と平行な方向に測定したβ粒の測定値は大きく、等軸化
が十分に進んでいないことがわかる。また、P値が2
0.0よりも大きい、合金番号H2、H4、H5では、
熱処理中の結晶粒成長が抑えられず、α粒とβ粒それぞ
れの平均粒径が1μm以下である超微細粒組織は得られ
なかった。
Table 9 shows the measurement results. As can be seen from this result, the parameter P (P = (T + 273) (20
+ Log t) / 1000) for alloy numbers G1 to G4 and A2 in the range of 19.2 to 20.0, α
An ultrafine grain structure in which each of the grains and the β grains had an average grain size of 1 μm or less was obtained. On the other hand, alloy numbers H1 and H3, whose P values are smaller than 19.2, have β grains measured in a direction parallel to the rolling, although the measured values of β grains measured by a line segment method in a direction perpendicular to the rolling are small. The measured value of the grains is large, and it can be seen that the equiaxing is not sufficiently advanced. Also, if the P value is 2
For alloy numbers H2, H4, H5 greater than 0.0,
The crystal grain growth during the heat treatment was not suppressed, and an ultrafine grain structure in which the average grain size of each of the α grains and the β grains was 1 μm or less was not obtained.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】[0048]

【表5】 [Table 5]

【0049】[0049]

【表6】 [Table 6]

【0050】[0050]

【表7】 [Table 7]

【0051】[0051]

【表8】 [Table 8]

【0052】[0052]

【表9】 [Table 9]

【0053】[0053]

【発明の効果】以上、説明したように、本発明による合
金組成のチタン合金に対し、所定の製造方法により製造
したチタン合金棒線材は、α粒とβ粒それぞれの平均粒
径が1μm以下である超微細粒組織を有する。このよう
な超微細粒組織を持つチタン合金棒線材は、常温におけ
る良好な強度−延性バランスと良好な熱間加工性を有
し、製品としても、あるいは、超塑性加工や熱間鍛造の
素材としても好適である。
As described above, the titanium alloy rod or wire manufactured by the predetermined manufacturing method with respect to the titanium alloy having the alloy composition according to the present invention has an average grain diameter of each of α grains and β grains of 1 μm or less. It has a certain ultra-fine grain structure. Titanium alloy rod and wire having such an ultrafine grain structure has good strength-ductility balance at room temperature and good hot workability, and as a product, or as a material for superplastic working or hot forging. Are also suitable.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Tβと、圧延と平行な方向に沿って線分法によ
り測定したα粒、β粒それぞれの粒径の測定値との関係
を発明例および比較例について示した図。
FIG. 1 is a diagram showing the relationship between T β and measured values of the particle diameters of α grains and β grains measured by a line segment method along a direction parallel to rolling for invention examples and comparative examples.

【図2】引張強度と延性(絞り)との関係について、発
明例と比較例について示した図。
FIG. 2 is a diagram showing a relationship between tensile strength and ductility (drawing) for an invention example and a comparative example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 630 C22F 1/00 630K 683 683 684 684Z 693 693A 693B 694 694A ──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 630 C22F 1/00 630K 683 683 684 684Z 693 693A 693B 694 694A

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 β変態点温度(Tβ)が860℃以上9
20℃以下であり、重量%で、Al:3〜5%、O:
0.2%以下、N,C:それぞれ0.1%以下、V:2
〜7%、さらに、Nb,Mo,Wから成るグループのう
ち1種または2種以上合計で1.0〜3.5重量%、及
びCr,Mn,Fe,Co,Niから成るグループのう
ち1種または2種以上合計で0.5〜3.0重量%を含
み、残部、Tiおよび不可避不純物から成り、基本的に
等軸α粒と等軸β変態組織から成る組織形態を有し、等
軸α粒と等軸β変態組織、それぞれの平均粒径が1μm
以下であることを特徴とする(α+β)型チタン合金棒
線材。
1. The β transformation point temperature (T β ) is 860 ° C. or higher and 9
20 ° C. or less, Al: 3 to 5% by weight, O:
0.2% or less, N and C: each 0.1% or less, V: 2
-7%, one or more of the group consisting of Nb, Mo, W, 1.0-3.5% by weight in total, and one of the group consisting of Cr, Mn, Fe, Co, Ni. Containing 0.5 to 3.0% by weight of a kind or two or more kinds in total, consisting of a balance, Ti and unavoidable impurities, and having a structure form basically consisting of equiaxed α grains and equiaxed β transformation structure, etc. Α axis grain and equiaxed β transformation structure, each average grain size is 1μm
An (α + β) type titanium alloy rod or wire, characterized by the following.
【請求項2】 β変態点温度(Tβ)が860℃以上9
20℃以下であり、重量%で、Al:3〜5%、O:
0.2%以下、N,C:それぞれ0.1%以下、V:2
〜7%、さらに、Nb,Mo,Wから成るグループのう
ち1種または2種以上合計で1.0〜3.5重量%、及
びCr,Mn,Fe,Co,Niから成るグループのう
ち1種または2種以上合計で0.5〜3.0重量%を含
み、残部、Tiおよび不可避不純物から成る合金素材に
対し、 (Tβ−250)(℃)以上、(Tβ−25)(℃)以
下に加熱後加工を開始し、(Tβ−100)(℃)以下
で加工を終了する、総断面減少率95%以上の熱間加工
の工程と、 ひき続いて(Tβ−100)(℃)以下で、かつP=
(T+273)(20+log t)/1000(T:熱処
理温度(℃)、t:熱処理時間(時間))で表されるパ
ラメータPが19.2〜20.0を満たす条件における
熱処理を含む工程とを行って、 基本的に等軸α粒と等軸β変態組織から成る組織形態を
有し、等軸α粒と等軸β変態組織、それぞれの平均粒径
を1μm以下とすることを特徴とする(α+β)型チタ
ン合金棒線材の製造方法。
2. The β transformation point temperature (T β ) is at least 860 ° C.
20 ° C. or less, Al: 3 to 5% by weight, O:
0.2% or less, N and C: each 0.1% or less, V: 2
-7%, one or more of the group consisting of Nb, Mo, W, 1.0-3.5% by weight in total, and one of the group consisting of Cr, Mn, Fe, Co, Ni. comprises 0.5 to 3.0 wt% in total species or two or more, the remainder, to the alloy material consisting of Ti and inevitable impurities, (T β -250) (℃ ) above, (T β -25) ( ° C.) to start the heating after processing below, (T β -100) (ends the processing at ° C.) or less, and the processing between the total reduction of area of 95% or more thermal processes, it pulled followed by (T beta -100 ) (° C.) or less and P =
(T + 273) (20 + log t) / 1000 (T: heat treatment temperature (° C.), t: heat treatment time (hour)) and a step including heat treatment under the condition that parameter P satisfies 19.2 to 20.0. Performed, has a structure morphology consisting essentially of equiaxed α grains and equiaxed β transformation structure, wherein the average grain size of the equiaxed α grains and the equiaxed β transformation structure is 1 μm or less. A method for producing a (α + β) type titanium alloy rod or wire.
JP11212397A 1997-04-30 1997-04-30 Alpha plus beta titanium alloy bar and wire rod, and its production Pending JPH10306335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11212397A JPH10306335A (en) 1997-04-30 1997-04-30 Alpha plus beta titanium alloy bar and wire rod, and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11212397A JPH10306335A (en) 1997-04-30 1997-04-30 Alpha plus beta titanium alloy bar and wire rod, and its production

Publications (1)

Publication Number Publication Date
JPH10306335A true JPH10306335A (en) 1998-11-17

Family

ID=14578777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11212397A Pending JPH10306335A (en) 1997-04-30 1997-04-30 Alpha plus beta titanium alloy bar and wire rod, and its production

Country Status (1)

Country Link
JP (1) JPH10306335A (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1076104A1 (en) * 1999-08-12 2001-02-14 The Boeing Company Titanium alloy having enhanced notch toughness and method of producing same
WO2002070763A1 (en) * 2001-02-28 2002-09-12 Jfe Steel Corporation Titanium alloy bar and method for production thereof
WO2003095690A1 (en) * 2002-05-09 2003-11-20 Titanium Metals Corporation ALPHA-BETA Ti-Al-V-Mo-Fe ALLOY
US7878925B2 (en) 2005-02-23 2011-02-01 Jfe Steel Corporation Golf club head
JP2011068955A (en) * 2009-09-25 2011-04-07 Nhk Spring Co Ltd Nanocrystal titanium alloy and method for producing the same
EP2397569A1 (en) * 2009-02-13 2011-12-21 Sumitomo Metal Industries, Ltd. Titanium plate
WO2012070685A1 (en) * 2010-11-22 2012-05-31 日本発條株式会社 Titanium alloy containing nanocrystals, and process for producing same
CN103097559A (en) * 2010-09-23 2013-05-08 Ati资产公司 High strength and ductility alpha/beta titanium alloy
US8562763B2 (en) * 2004-04-09 2013-10-22 Nippon Steel & Sumitomo Metal Corporation High strength α+β type titanuim alloy
CN103484701A (en) * 2013-09-10 2014-01-01 西北工业大学 Method for refining cast titanium alloy crystalline grains
CN104046845A (en) * 2014-06-27 2014-09-17 张家港市佳威机械有限公司 Titanium alloy for casting
CN104313524A (en) * 2014-09-23 2015-01-28 西北有色金属研究院 TC4-DT titanium alloy rod processing method
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
CN105369061A (en) * 2014-08-11 2016-03-02 张忠世 Titanium alloy BT14 seamless tube and preparation method thereof
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
CN107916384A (en) * 2017-06-30 2018-04-17 陕西宏远航空锻造有限责任公司 One kind improves Ti80 titanium alloys even tissue refinement forging method using flat-die hammer
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
CN108580577A (en) * 2017-12-28 2018-09-28 西安西工大超晶科技发展有限责任公司 A kind of preparation method of the high-strength beta-titanium alloy silk material of spring
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
CN109720025A (en) * 2017-10-31 2019-05-07 丹阳市金长汽车部件有限公司 A kind of engine bearing
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
WO2020075667A1 (en) 2018-10-09 2020-04-16 日本製鉄株式会社 α+β TYPE TITANIUM ALLOY WIRE AND METHOD FOR PRODUCING α+β TYPE TITANIUM ALLOY WIRE
CN112195367A (en) * 2020-09-29 2021-01-08 中国科学院金属研究所 High-thermal-stability equiaxial nanocrystalline Ti6Al4V-Co alloy and preparation method thereof
JPWO2021038662A1 (en) * 2019-08-23 2021-03-04
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
CN114836650A (en) * 2022-04-27 2022-08-02 北京航空航天大学 Titanium alloy with complete equiaxed crystal structure and ultrahigh yield strength
CN115044802A (en) * 2021-03-08 2022-09-13 南京理工大学 Titanium alloy suitable for additive manufacturing

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2172576A1 (en) * 1999-08-12 2010-04-07 The Boeing Company Titanium alloy having enhanced notch toughness and method of producing same
US6454882B1 (en) 1999-08-12 2002-09-24 The Boeing Company Titanium alloy having enhanced notch toughness
EP1076104A1 (en) * 1999-08-12 2001-02-14 The Boeing Company Titanium alloy having enhanced notch toughness and method of producing same
WO2002070763A1 (en) * 2001-02-28 2002-09-12 Jfe Steel Corporation Titanium alloy bar and method for production thereof
EP1382695A1 (en) * 2001-02-28 2004-01-21 JFE Steel Corporation Titanium alloy bar and method for production thereof
EP1382695A4 (en) * 2001-02-28 2004-08-11 Jfe Steel Corp Titanium alloy bar and method for production thereof
JP2005524774A (en) * 2002-05-09 2005-08-18 テイタニウム メタルス コーポレイシヨン α-β Ti-Al-V-Mo-Fe alloy
CN1297675C (en) * 2002-05-09 2007-01-31 钛金属公司 Alpha-beta Ti-Al-V-Mo-Fe alloy
WO2003095690A1 (en) * 2002-05-09 2003-11-20 Titanium Metals Corporation ALPHA-BETA Ti-Al-V-Mo-Fe ALLOY
US9796005B2 (en) 2003-05-09 2017-10-24 Ati Properties Llc Processing of titanium-aluminum-vanadium alloys and products made thereby
US8562763B2 (en) * 2004-04-09 2013-10-22 Nippon Steel & Sumitomo Metal Corporation High strength α+β type titanuim alloy
US10422027B2 (en) 2004-05-21 2019-09-24 Ati Properties Llc Metastable beta-titanium alloys and methods of processing the same by direct aging
US9523137B2 (en) 2004-05-21 2016-12-20 Ati Properties Llc Metastable β-titanium alloys and methods of processing the same by direct aging
US7878925B2 (en) 2005-02-23 2011-02-01 Jfe Steel Corporation Golf club head
EP2397569A1 (en) * 2009-02-13 2011-12-21 Sumitomo Metal Industries, Ltd. Titanium plate
EP2397569A4 (en) * 2009-02-13 2012-07-25 Sumitomo Metal Ind Titanium plate
TWI415796B (en) * 2009-02-13 2013-11-21 Nippon Steel & Sumitomo Metal Corp Titanium plate
CN102510908A (en) * 2009-09-25 2012-06-20 日本发条株式会社 Nanocrystal titanium alloy and production method for same
WO2011037127A3 (en) * 2009-09-25 2011-06-03 日本発條株式会社 Nanocrystal titanium alloy and production method for same
TWI485264B (en) * 2009-09-25 2015-05-21 Nhk Spring Co Ltd Nano-crystalline titanium alloy, and producing method thereof
JP2011068955A (en) * 2009-09-25 2011-04-07 Nhk Spring Co Ltd Nanocrystal titanium alloy and method for producing the same
US9260773B2 (en) 2009-09-25 2016-02-16 Nhk Spring Co., Ltd. Nanocrystal titanium alloy and production method for same
US10053758B2 (en) 2010-01-22 2018-08-21 Ati Properties Llc Production of high strength titanium
US9255316B2 (en) 2010-07-19 2016-02-09 Ati Properties, Inc. Processing of α+β titanium alloys
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US9765420B2 (en) 2010-07-19 2017-09-19 Ati Properties Llc Processing of α/β titanium alloys
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US9206497B2 (en) 2010-09-15 2015-12-08 Ati Properties, Inc. Methods for processing titanium alloys
US9624567B2 (en) 2010-09-15 2017-04-18 Ati Properties Llc Methods for processing titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
CN103097559A (en) * 2010-09-23 2013-05-08 Ati资产公司 High strength and ductility alpha/beta titanium alloy
WO2012070685A1 (en) * 2010-11-22 2012-05-31 日本発條株式会社 Titanium alloy containing nanocrystals, and process for producing same
US9624565B2 (en) 2010-11-22 2017-04-18 Nhk Spring Co., Ltd. Nanocrystal-containing titanium alloy and production method therefor
US9616480B2 (en) 2011-06-01 2017-04-11 Ati Properties Llc Thermo-mechanical processing of nickel-base alloys
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US9869003B2 (en) 2013-02-26 2018-01-16 Ati Properties Llc Methods for processing alloys
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US9192981B2 (en) 2013-03-11 2015-11-24 Ati Properties, Inc. Thermomechanical processing of high strength non-magnetic corrosion resistant material
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9777361B2 (en) 2013-03-15 2017-10-03 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US9050647B2 (en) 2013-03-15 2015-06-09 Ati Properties, Inc. Split-pass open-die forging for hard-to-forge, strain-path sensitive titanium-base and nickel-base alloys
CN103484701A (en) * 2013-09-10 2014-01-01 西北工业大学 Method for refining cast titanium alloy crystalline grains
CN103484701B (en) * 2013-09-10 2015-06-24 西北工业大学 Method for refining cast titanium alloy crystalline grains
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
CN104046845A (en) * 2014-06-27 2014-09-17 张家港市佳威机械有限公司 Titanium alloy for casting
CN105369061A (en) * 2014-08-11 2016-03-02 张忠世 Titanium alloy BT14 seamless tube and preparation method thereof
CN104313524A (en) * 2014-09-23 2015-01-28 西北有色金属研究院 TC4-DT titanium alloy rod processing method
US10094003B2 (en) 2015-01-12 2018-10-09 Ati Properties Llc Titanium alloy
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
CN107916384A (en) * 2017-06-30 2018-04-17 陕西宏远航空锻造有限责任公司 One kind improves Ti80 titanium alloys even tissue refinement forging method using flat-die hammer
CN109720025A (en) * 2017-10-31 2019-05-07 丹阳市金长汽车部件有限公司 A kind of engine bearing
CN108580577A (en) * 2017-12-28 2018-09-28 西安西工大超晶科技发展有限责任公司 A kind of preparation method of the high-strength beta-titanium alloy silk material of spring
KR20210053322A (en) 2018-10-09 2021-05-11 닛폰세이테츠 가부시키가이샤 Manufacturing method of α+β-type titanium alloy wire and α+β-type titanium alloy wire
WO2020075667A1 (en) 2018-10-09 2020-04-16 日本製鉄株式会社 α+β TYPE TITANIUM ALLOY WIRE AND METHOD FOR PRODUCING α+β TYPE TITANIUM ALLOY WIRE
US12000021B2 (en) 2018-10-09 2024-06-04 Nippon Steel Corporation α+β type titanium alloy wire and manufacturing method of α+β type titanium alloy wire
JPWO2021038662A1 (en) * 2019-08-23 2021-03-04
WO2021038662A1 (en) * 2019-08-23 2021-03-04 国立大学法人東京海洋大学 Titanium material, titanium product obtained by processing titanium material and method for producing titanium material
CN114341391A (en) * 2019-08-23 2022-04-12 国立大学法人东京海洋大学 Titanium material, titanium product produced by processing the titanium material and method for producing the titanium material
CN112195367A (en) * 2020-09-29 2021-01-08 中国科学院金属研究所 High-thermal-stability equiaxial nanocrystalline Ti6Al4V-Co alloy and preparation method thereof
CN115044802A (en) * 2021-03-08 2022-09-13 南京理工大学 Titanium alloy suitable for additive manufacturing
CN115044802B (en) * 2021-03-08 2023-06-02 南京理工大学 Titanium alloy suitable for additive manufacturing
CN114836650A (en) * 2022-04-27 2022-08-02 北京航空航天大学 Titanium alloy with complete equiaxed crystal structure and ultrahigh yield strength

Similar Documents

Publication Publication Date Title
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
US5124121A (en) Titanium base alloy for excellent formability
US12000021B2 (en) α+β type titanium alloy wire and manufacturing method of α+β type titanium alloy wire
US5028491A (en) Gamma titanium aluminum alloys modified by chromium and tantalum and method of preparation
JP6889418B2 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
WO2003052155A1 (en) Method for processing beta titanium alloys
JPH0823053B2 (en) High-strength titanium alloy with excellent workability, method for producing the alloy material, and superplastic forming method
US5256369A (en) Titanium base alloy for excellent formability and method of making thereof and method of superplastic forming thereof
US5045406A (en) Gamma titanium aluminum alloys modified by chromium and silicon and method of preparation
JP3873313B2 (en) Method for producing high-strength titanium alloy
JP2003055749A (en) BETA Ti ALLOY WITH HIGH STRENGTH AND LOW YOUNG&#39;S MODULUS, AND ITS MANUFACTURING METHOD
JP3076696B2 (en) α + β type titanium alloy
US5362441A (en) Ti-Al-V-Mo-O alloys with an iron group element
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
JPH0663049B2 (en) Titanium alloy with excellent superplastic workability
JP2012126944A (en) α-β TYPE TITANIUM ALLOY HAVING LOW YOUNG&#39;S MODULUS OF &lt;75 GPa, AND METHOD FOR PRODUCING THE SAME
JP2932918B2 (en) Manufacturing method of α + β type titanium alloy extruded material
US5417779A (en) High ductility processing for alpha-two titanium materials
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
US5304344A (en) Gamma titanium aluminum alloys modified by chromium and tungsten and method of preparation
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same
JP3447830B2 (en) Invar alloy wire and method of manufacturing the same
JP4263987B2 (en) High-strength β-type titanium alloy
JPH06293929A (en) Beta titanium alloy wire and its production