JP3076696B2 - α + β type titanium alloy - Google Patents

α + β type titanium alloy

Info

Publication number
JP3076696B2
JP3076696B2 JP05214492A JP21449293A JP3076696B2 JP 3076696 B2 JP3076696 B2 JP 3076696B2 JP 05214492 A JP05214492 A JP 05214492A JP 21449293 A JP21449293 A JP 21449293A JP 3076696 B2 JP3076696 B2 JP 3076696B2
Authority
JP
Japan
Prior art keywords
less
test
added
titanium alloy
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05214492A
Other languages
Japanese (ja)
Other versions
JPH0762474A (en
Inventor
秀樹 藤井
一浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP05214492A priority Critical patent/JP3076696B2/en
Publication of JPH0762474A publication Critical patent/JPH0762474A/en
Application granted granted Critical
Publication of JP3076696B2 publication Critical patent/JP3076696B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はα+β型チタン合金に関
する。
The present invention relates to an α + β type titanium alloy.

【0002】[0002]

【従来の技術】軽量、高強度の特性を有するチタン合金
は、宇宙・航空機分野で多用されてきた。特にTi−6
Al−4Vに代表されるα+β型チタン合金は、強度、
延性、靭性などの機械的性質がバランス良く備わってお
り、チタン合金の中でも特に多用されてきた。この優れ
た材質特性を有するα+β型チタン合金をさらに自動車
部品などに適用しようとする研究開発が近年盛んに行わ
れているが、既存のα+β型チタン合金の多くは、Ti
−6Al−4Vにおけるように、高価なVを合金元素と
して使用したAl−V系チタン合金であり、その結果、
合金の価格が著しく高くなるという欠点があった。ま
た、Ti−6Al−4Vは熱間および冷間での加工性に
劣り、その結果製造コストがさらに高くなるという欠点
をも有していた。
2. Description of the Related Art Titanium alloys having characteristics of light weight and high strength have been widely used in the space and aircraft fields. Especially Ti-6
Α + β type titanium alloy represented by Al-4V has strength,
It has well-balanced mechanical properties such as ductility and toughness, and has been used particularly frequently among titanium alloys. In recent years, research and development to apply the α + β type titanium alloy having excellent material properties to automobile parts and the like have been actively conducted. However, most of the existing α + β type titanium alloys are Ti
-6Al-4V is an Al-V titanium alloy using expensive V as an alloy element, as a result,
There was a disadvantage that the price of the alloy was significantly increased. Further, Ti-6Al-4V is inferior in hot and cold workability, and has a disadvantage that the production cost is further increased.

【0003】この欠点を補うべく、高価なVを安価で熱
間加工性を向上させるFeで代替したAl−Fe系チタ
ン合金が検討され、例えば1984年、Deutsche Gesellsch
aftfur Metallkunde E.V.発行の「Titanium Science an
d Technology 」1335頁に記載のTi−5Al−2.5
Feや、1993年発行の「Advanced Materials & Pro
cesses」誌43頁記載のTi−6Al−1.7Fe−
0.1Siのように、自動車のエンジン部品などの往復
・回転運動部品に要求される疲労特性がTi−6Al−
4Vと同等以上で、Ti−6Al−4Vよりも優れた熱
間加工性を有する合金が考案された。しかし、これらの
合金は、Ti−6Al−4Vに比べて熱間加工性が優れ
ているものの、熱間での変形抵抗がやや小さい程度で、
格段に優れているとは言えず、また冷間加工性も不十分
で、さらに優れた加工性の付与が望まれていた。
In order to make up for this drawback, Al-Fe based titanium alloys in which expensive V is replaced by Fe which is inexpensive and improves hot workability have been studied. For example, in 1984, Deutsche Gesellsch
`` Titanium Science an published by aftfur Metallkunde EV
d Technology "on page 1335.
Fe and “Advanced Materials & Pro” published in 1993.
cesses ", p. 43, Ti-6Al-1.7Fe-
Like 0.1Si, the fatigue characteristics required for reciprocating / rotating parts such as automobile engine parts are Ti-6Al-
An alloy having a hot workability equal to or higher than 4V and superior to Ti-6Al-4V has been devised. However, these alloys have better hot workability than Ti-6Al-4V, but have a slightly lower hot deformation resistance.
It cannot be said that it is particularly excellent, and the cold workability is insufficient, and it has been desired to provide more excellent workability.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来のAl
−Fe系チタン合金と同等の疲労強度と、それよりも高
い熱間あるいは冷間加工性を有するチタン合金を提供し
ようとするものである。
SUMMARY OF THE INVENTION The present invention relates to a conventional Al
An object of the present invention is to provide a titanium alloy having the same fatigue strength as that of an Fe-based titanium alloy and a higher hot or cold workability.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の本発明は、(1)質量%で、1.4%以上2.1%未
満のFe、4.4%以上5.5%未満のAl、残部チタ
ンおよび不純物からなるα+β型チタン合金であり、
(2)前項(1)の合金のFeの一部を、質量%で、
0.15%未満のNi、0.25%未満のCr、0.2
5%未満のMnの1種以上で代替したα+β型チタン合
金であり、(3)質量%で、0.05%以上0.25%
未満のSiをさらに含有した前項(1)および(2)記
載のα+β型チタン合金である。ここで、不純物とは、
精錬、溶解、展伸、熱処理などの工程で除去できない、
あるいはこれら工程で混入する少量の元素のことであ
り、0.1%以下のC,N,H、0.3%以下のOなど
がこれに相当する。
[MEANS FOR SOLVING THE PROBLEMS]
The present invention provides (1)In mass%,1.4% or more and not 2.1%
Full Fe, Al of 4.4% or more and less than 5.5%, and residual titanium
Α + β type titanium alloy consisting of
(2) A part of Fe of the alloy according to the above (1) isIn mass%,
Less than 0.15% Ni, less than 0.25% Cr, 0.2
Α + β-type titanium alloy replaced by at least one of Mn of less than 5%
Gold, (3)In mass%,0.05% or more and 0.25%
(1) and (2), which further contain less than
Α + β type titanium alloy described above. Here, the impurity is
It cannot be removed in processes such as refining, melting, spreading and heat treatment.
Or a small amount of elements mixed in these processes
0.1% or less of C, N, H, 0.3% or less of O, etc.
Corresponds to this.

【0006】[0006]

【作用】本発明者らは、チタン合金の加工性および疲労
特性におよぼすAl,Feの影響について、鋭意研究を
重ねた結果、AlあるいはFeの添加量が増すにつれ、
室温では引張り強さは増すものの、疲労強度は、ある特
定の添加量以上では、添加量の影響はほとんど受けない
ことを見いだした。すなわち、ある特定量以上のAlを
添加すると、Alの添加量が増すに従って室温引張り温
度は増加するが、疲労強度はほとんど上昇しなくなる。
また、Feがある特定量を超えると、Feの添加量が増
すに従って引張り強度は増加するが、疲労強度はほとん
ど上昇しなくなる。
The present inventors have conducted intensive studies on the effects of Al and Fe on the workability and fatigue properties of titanium alloys. As a result, as the addition amount of Al or Fe increases,
At room temperature, the tensile strength increased, but the fatigue strength was found to be hardly affected by the amount added above a certain amount. That is, when a certain amount or more of Al is added, the room temperature tensile temperature increases as the amount of Al added increases, but the fatigue strength hardly increases.
When Fe exceeds a certain amount, the tensile strength increases as the amount of Fe added increases, but the fatigue strength hardly increases.

【0007】この理由は以下の通りである。Alはα相
を強化するが、一方で平滑な局所的すべりを誘発し、こ
の部分で疲労亀裂が発生しやすくなり早期破断に至る。
そのため、引張り強度が上昇しても疲労強度はあまり上
昇しない。特に、数%未満のFeを含むチタン合金にお
いては、上記の局所的すべりの発生は5.5%以上のA
lを含有する合金で頻繁に発生する。
The reason is as follows. Al strengthens the α phase, but on the other hand induces a smooth local slip, where fatigue cracks tend to occur, leading to early fracture.
Therefore, even if the tensile strength increases, the fatigue strength does not increase much. In particular, in a titanium alloy containing less than a few% of Fe, the occurrence of the local slip is 5.5% or more of A
Occurs frequently in alloys containing l.

【0008】一方、Alを含むチタン合金では、Fe量
を増加させるとβ相の割合が増加し相対的にα相の割合
が減少する。Alはα相に濃化する元素であるので、α
相が減少するとα相中にAlが濃化し、局所的すべりを
誘発するため、引張り強度が上昇しても、疲労特性は向
上しない。このような現象は、Feの添加量が2.1%
を超えると顕著になる。
On the other hand, in a titanium alloy containing Al, when the amount of Fe is increased, the ratio of the β phase increases and the ratio of the α phase relatively decreases. Since Al is an element that is concentrated in the α phase, α
When the phase is reduced, Al is concentrated in the α phase and local slip is induced. Therefore, even if the tensile strength is increased, the fatigue properties are not improved. Such a phenomenon occurs when the amount of Fe added is 2.1%.
It becomes remarkable when it exceeds.

【0009】このように、疲労特性の観点からは、5.
5%以上のAlおよび2.1%以上のFeを添加するこ
とは、必要以上の合金元素を添加していることになる。
これに加え、Alは熱間のおよび冷間の加工性を劣化さ
せることが一般に知られており、熱間および冷間の加工
性を向上させるにはAlの添加量は少ない方が望まし
い。またFeも添加量が少ない方が室温引張り強度が低
下する分、延性が増し、冷間加工性が向上する。
[0009] As described above, from the viewpoint of fatigue characteristics, it is necessary to set 5.
The addition of 5% or more of Al and 2.1% or more of Fe means that more alloy elements are added than necessary.
In addition, it is generally known that Al deteriorates hot and cold workability, and it is desirable that the amount of Al added is small in order to improve hot and cold workability. In addition, the lower the amount of Fe added, the lower the room temperature tensile strength, the higher the ductility, and the better the cold workability.

【0010】しかし、Alの添加量が4.6%未満ある
いはFeの添加量が1.4%未満であると、局所的なす
べりはほとんど起こらない一方で、室温引張り強度が小
さくなるためすべり変形が容易に起こり、その結果、疲
労特性が低下する。以上の理由により、1.4%以上
2.1%未満のFe、4.6%以上5.5%未満のAl
を添加すると、従来のAl−Fe系チタン合金と同等の
疲労強度と、それよりも高い熱間および冷間加工性を有
するチタン合金を製造することができる。
However, when the amount of Al added is less than 4.6 % or the amount of Fe added is less than 1.4%, local slip hardly occurs, but the tensile strength at room temperature becomes small, so that slip deformation occurs. Readily occur, resulting in reduced fatigue properties. For the above reasons, 1.4% or more and less than 2.1% of Fe, 4.6 % or more and less than 5.5% of Al
, It is possible to produce a titanium alloy having the same fatigue strength as that of a conventional Al-Fe-based titanium alloy and higher hot and cold workability.

【0011】さて、本発明2では、本発明1に記載した
合金のFeの一部を、0.15%未満のNi、0.25
%未満のCr、0.25%未満のMnの1種以上で代替
することとした。これは、Feの一部をFeと同様に安
価でかつ少量であるならばFeと同様の働きをする元素
で置換したものである。ここで、Ni,Cr,Mnの添
加量の上限を各々0.15%,0.25%,0.25%
未満としたのは、これらの元素は、標記上限値以上添加
すると、平衡相である金属間化合物相(Ti2Ni,T
iCr2 ,TiMn)を容易に生成し、疲労強度および
冷間加工性の極端な低下を招く理由による。また、N
i,Cr,Mn,Feの総量は、1.4%以上2.1%
未満でなくてはならない。
In the present invention 2, a part of Fe of the alloy described in the present invention 1 is reduced to less than 0.15% of Ni, 0.25%.
% Or less of Mn and less than 0.25% of Mn. In this method, a part of Fe is replaced with an element which is inexpensive and has a function similar to that of Fe if the amount is small. Here, the upper limits of the added amounts of Ni, Cr, and Mn are 0.15%, 0.25%, and 0.25%, respectively.
The reason is that if these elements are added at or above the indicated upper limit, the intermetallic compound phase (Ti2Ni, T
iCr2, TiMn) is easily formed, which causes an extreme decrease in fatigue strength and cold workability. Also, N
The total amount of i, Cr, Mn, and Fe is 1.4% or more and 2.1%
Must be less than.

【0012】この理由はFeを単独で添加した場合と同
じで、1.4%未満であると、室温引張り強度が小さく
なるためすべり変形が容易に起こり、その結果、疲労特
性が低下するからであり、2.1%未満の総量ですでに
十分な疲労強度を有しており、これ以上添加しても疲労
強度はあまり向上せず、これ以上の添加は無駄であるか
らである。そればかりか、室温引張り強度の上昇分だけ
延性が低下し、その結果、冷間加工性が低下する。
The reason for this is the same as in the case where Fe alone is added. If it is less than 1.4%, the tensile deformation at room temperature becomes small, so that slip deformation easily occurs, and as a result, the fatigue characteristics are reduced. The reason is that, when the total amount is less than 2.1%, sufficient fatigue strength has already been obtained, and even if it is further added, the fatigue strength is not so much improved, and further addition is useless. In addition, ductility is reduced by an increase in room temperature tensile strength, and as a result, cold workability is reduced.

【0013】さて、本発明3では、0.05%以上0.
25%未満のSiを本発明1および2の合金にさらに添
加することとした。一般に、少量のSiはチタン合金の
クリープ特性を向上させることが知られており、本発明
1および2に記載した合金のクリープ特性もSiの添加
により改善される。但し、その効果は0.05%以上添
加しないと現れないし、0.25%以上添加するとTi
とSiの化合物相がα相とβ相の界面に析出し、疲労特
性や冷間加工性を著しく低下させる。
According to the third aspect of the present invention, 0.05% or more of 0.1% or more is used.
Less than 25% of Si was added to the alloys of Inventions 1 and 2. In general, it is known that a small amount of Si improves the creep characteristics of a titanium alloy, and the creep characteristics of the alloys described in Inventions 1 and 2 are also improved by the addition of Si. However, the effect does not appear unless 0.05% or more is added, and if 0.25% or more is added, Ti
And a compound phase of Si precipitate at the interface between the α phase and the β phase, and the fatigue properties and cold workability are significantly reduced.

【0014】[0014]

【実施例】表1に示す成分の鋳塊を、プラズマ溶解炉を
用いて約5kg製造し、これをさらに900℃で加熱し、
直径12mmの線材に圧延し、750℃で1時間の大気焼
鈍を行い、空冷した。この線材から切り出した試験片を
用いて、室温引張り試験、冷延試験、高温高速引張り試
験、回転曲げ疲労試験、クリープ試験を行った。
EXAMPLE An ingot having the components shown in Table 1 was produced in an amount of about 5 kg using a plasma melting furnace, which was further heated at 900 ° C.
It was rolled into a wire having a diameter of 12 mm, air-annealed at 750 ° C. for 1 hour, and air-cooled. Using a test piece cut from this wire, a room temperature tensile test, a cold rolling test, a high temperature high speed tensile test, a rotating bending fatigue test, and a creep test were performed.

【0015】冷間加工性は、試料中にポロシティが発生
する限界冷間圧延率で、熱間加工性は、900℃におけ
る絞り値で、疲労特性は、繰り返し数1×107 回でも
破断しなかった強度を疲労強度と定義して、またクリー
プ特性は400℃にて540MPa の荷重を300時間加
えた時の歪量で、各々評価した。なお、試験はいずれも
大気中で、室温引張り試験は、歪速度1×10−4
-1、高温高速引張り試験は、歪速度5s-1で行った。
また、冷間圧延は直径180mmのハイスロールを用いて
1パスあたり5%の圧下率で行った。表2は、表1に示
した試料の各種試験結果である。
The cold workability is a limit cold rolling rate at which porosity is generated in a sample, the hot workability is a reduction value at 900 ° C., and the fatigue property is that the material breaks even after 1 × 10 7 repetitions. The strength that did not exist was defined as fatigue strength, and the creep properties were evaluated by the amount of strain when a load of 540 MPa was applied at 400 ° C. for 300 hours. All tests were performed in air, and the room temperature tensile test was performed at a strain rate of 1 × 10 −4.
The s -1 high-speed high-speed tensile test was performed at a strain rate of 5 s -1 .
The cold rolling was performed using a high-speed roll of 180 mm in diameter at a rolling reduction of 5% per pass. Table 2 shows various test results of the samples shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】試験番号1および2は、「従来の技術」の
項で説明した、代表的なAl−Fe系チタン合金に近い
組成で、従来例に相当する。両者とも990MPa 以上の
高い室温引張り強度と500MPa 以上の高い疲労強度を
有しているが、圧下率10%以下の冷間圧延しかでき
ず、試験番号2は熱間高速引張り試験における絞り値も
70%未満と低い値で、熱間加工性も不十分である。
Test Nos. 1 and 2 have compositions similar to typical Al-Fe-based titanium alloys described in the section of "Prior Art" and correspond to conventional examples. Both have a high room temperature tensile strength of 990 MPa or more and a high fatigue strength of 500 MPa or more, but can only perform cold rolling at a rolling reduction of 10% or less. %, The hot workability is insufficient.

【0019】これに対し、本発明1の実施例である試験
番号3,5,6,8は、いずれも室温引張り強度は99
0MPa 以下と低い値であるが、疲労強度は500MPa 以
上の高い値を示しており、従来合金(試験番号1,2)
と同等である。これは、AlとFeの添加量を特定する
ことにより、疲労亀裂発生の原因となる局所的すべりを
抑制したことによるものである。
On the other hand, Test Nos. 3, 5, 6, and 8, which are Examples of the present invention 1, all have a room temperature tensile strength of 99.
Although it is a low value of 0 MPa or less, the fatigue strength shows a high value of 500 MPa or more.
Is equivalent to This is because local slip, which causes fatigue cracking, was suppressed by specifying the amounts of Al and Fe to be added.

【0020】加えて、これらの試料はいずれも15%以
上の限界冷延率、70%以上の熱間絞りを有しており、
高い冷間および熱間加工性をも合わせ持っている。これ
は、Alの添加量を特定することによる、熱間および冷
間加工性の改善効果と、室温引張り強度を低く設計した
分、延性が増し、冷間加工性が向上した効果によるもの
である。
In addition, each of these samples has a critical cold rolling reduction of 15% or more and a hot drawing of 70% or more.
It also has high cold and hot workability. This is due to the effect of improving the hot and cold workability by specifying the amount of Al added, and the effect of increasing the ductility and improving the cold workability by designing the low room temperature tensile strength. .

【0021】しかし、一方、比較例である試験番号4,
7は疲労強度は500MPa 以下と低い値になっており、
試験番号9は冷間および熱間加工性に劣っている。これ
は、試験番号4,7では、Al,Feの添加量が本発明
1の範囲より低かったため、室温引張り強度が小さくな
り、容易にすべり変形が起こり、その結果、疲労特性が
低下したものであり、試験番号9は、Alの添加量が本
発明1の範囲より多かったため、熱間および冷間加工性
が低下したものである。
However, on the other hand, Test No. 4 which is a comparative example,
7 has a low fatigue strength of 500 MPa or less,
Test No. 9 is inferior in cold and hot workability. This is because, in Test Nos. 4 and 7, the amounts of Al and Fe added were lower than the ranges of the present invention 1, so that the room temperature tensile strength was reduced and slip deformation was easily caused, and as a result, the fatigue properties were reduced. In Test No. 9, the hot and cold workability was reduced because the amount of Al added was larger than the range of the first invention.

【0022】さて、表1において、試験番号10,1
2,14,16,18はFeの一部をNi,Cr,Mn
で代替した場合であり、本発明2の実施例である。表2
に示すように、これらは、いずれも500MPa 以上の高
い疲労強度、15%以上の高い限界冷延率、70%以上
の熱間絞りを有しており、疲労強度と冷間、熱間加工性
に優れた材料である。このようにFeの一部を少量のN
i,Cr,Mnで代替することができるが、Ni,C
r,Mnの各々の添加量が、0.15%,0.25%,
0.25%以上になると、試験番号11,13,15の
ように疲労強度および冷間加工性が低下する。
In Table 1, test numbers 10, 1
Nos. 2, 14, 16, and 18 represent a part of Fe as Ni, Cr, Mn.
This is an example of the second embodiment of the present invention. Table 2
As shown in Table 2, each of them has a high fatigue strength of 500 MPa or more, a high critical cold rolling reduction of 15% or more, and a hot drawing of 70% or more. It is an excellent material. In this way, a part of Fe
i, Cr, Mn can be substituted, but Ni, C
r and Mn are added in amounts of 0.15%, 0.25%,
When it is 0.25% or more, fatigue strength and cold workability are reduced as in Test Nos. 11, 13, and 15.

【0023】これは、標記上限値以上添加すると、平衡
相である金属間化合物相(Ti2 Ni,TiCr2 ,T
iMn)を生成し、疲労強度および冷間加工性の極端な
低下を招いたことによる。また、試験番号17は、室温
引張り強度はきわめて高いが、疲労強度は試験番号16
と同等である。このようにFe,Cr,Mn,Niの総
量が本発明2の上限値である2.1%を超えると、室温
引張り強度は上昇するものの疲労強度はあまり向上せ
ず、このような不必要な添加は無駄である。
This is because, when added above the indicated upper limit, the intermetallic compound phases (Ti 2 Ni, TiCr 2 , T
iMn), resulting in an extreme decrease in fatigue strength and cold workability. Test No. 17 has a very high tensile strength at room temperature, but has a fatigue strength of Test No. 16
Is equivalent to When the total amount of Fe, Cr, Mn, and Ni exceeds the upper limit of 2.1% of the present invention 2, the tensile strength at room temperature is increased, but the fatigue strength is not so much improved. The addition is useless.

【0024】そればかりか、室温引張り強度が上昇した
分延性が低下し、冷間加工性が著しく低下している。ま
た、試験番号19は、疲労強度は500MPa 以下と低い
値になっており、これは、Fe,Cr,Ni,Mnの総
量が本発明2の下限値より低かったため、室温引張り強
度が小さくなり、容易にすべり変形が起こり、その結
果、疲労特性が低下したものである。
In addition, the ductility at which the tensile strength at room temperature is increased is reduced, and the cold workability is significantly reduced. In Test No. 19, the fatigue strength was a low value of 500 MPa or less. This is because the total amount of Fe, Cr, Ni, and Mn was lower than the lower limit of the present invention 2, and the room temperature tensile strength was low. Sliding deformation easily occurs, and as a result, fatigue properties are reduced.

【0025】さて、試験番号21,22は試験番号3の
クリープ特性向上を狙いとして、Siを添加した本発明
3の実施例である。表2に示すように、試験番号3と比
べて、クリープ特性は向上しており、従来例でSiを
0.1%添加している試験番号2と同等の耐クリープ特
性を有している。
Test Nos. 21 and 22 are examples of the present invention 3 in which Si is added for the purpose of improving the creep characteristics of Test No. 3. As shown in Table 2, the creep characteristics are improved as compared with Test No. 3, and have the same creep resistance as Test No. 2 in which 0.1% of Si is added in the conventional example.

【0026】しかし、Si添加量が本発明3の範囲未満
であった試験番号20は、クリープ特性改善効果はほと
んど見られず、また、本発明3の範囲以上の量のSiを
添加した試験番号23は、TiとSiの化合物相がα相
とβ相の界面に析出し、疲労特性および冷間加工性を著
しく低下させている。また、試験番号24は、試験番号
16のクリープ特性向上のためSiを添加した例である
が、優れた疲労特性、冷間、熱間加工性を保持したま
ま、クリープ特性が向上している。
However, Test No. 20, in which the amount of Si added was less than the range of the present invention 3, showed almost no effect of improving the creep characteristics, and Test No. In No. 23, the compound phase of Ti and Si precipitates at the interface between the α phase and the β phase, and the fatigue properties and the cold workability are significantly reduced. Test No. 24 is an example in which Si was added to improve the creep properties of Test No. 16, but the creep properties were improved while maintaining excellent fatigue properties, cold workability, and hot workability.

【0027】[0027]

【発明の効果】本発明を適用することにより、従来のA
l−Fe系チタン合金と同等の疲労強度と耐クリープ特
性を有し、それと同等もしくはそれ以上の高い熱間ある
いは冷間加工性を有するチタン合金を製造することがで
きる。
According to the present invention, the conventional A
It is possible to produce a titanium alloy having the same fatigue strength and creep resistance as an l-Fe titanium alloy, and having a high hot or cold workability equivalent to or higher than that.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−308052(JP,A) 特開 平4−358036(JP,A) 特開 平5−209251(JP,A) 特開 平2−22435(JP,A) 特開 平4−202729(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 14/00 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-4-308052 (JP, A) JP-A-4-358036 (JP, A) JP-A-5-209251 (JP, A) JP-A-2- 22435 (JP, A) JP-A-4-202729 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 14/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%で、1.4%以上2.1%未満の
Fe、4.6%以上5.5%未満のAl、残部チタンお
よび不純物からなるα+β型チタン合金。
An α + β-type titanium alloy comprising 1.4% or more and less than 2.1% of Fe, 4.6 % or more and less than 5.5% of Al, the balance of titanium and impurities by mass% .
【請求項2】 Feの一部を、質量%で、0.15%未
満のNi、0.25%未満のCr、0.25%未満のM
nの1種以上で代替した請求項1記載のα+β型チタン
合金。
2. A part of Fe, in mass%, is less than 0.15% Ni, less than 0.25% Cr, less than 0.25% M.
2. The α + β titanium alloy according to claim 1, wherein at least one of n is substituted.
【請求項3】 質量%で、0.05%以上0.25%未
満のSiをさらに含有した請求項1または2記載のα+
β型チタン合金。
3. The α + according to claim 1, further comprising Si in an amount of 0.05% or more and less than 0.25% by mass%.
β type titanium alloy.
JP05214492A 1993-08-30 1993-08-30 α + β type titanium alloy Expired - Lifetime JP3076696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05214492A JP3076696B2 (en) 1993-08-30 1993-08-30 α + β type titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05214492A JP3076696B2 (en) 1993-08-30 1993-08-30 α + β type titanium alloy

Publications (2)

Publication Number Publication Date
JPH0762474A JPH0762474A (en) 1995-03-07
JP3076696B2 true JP3076696B2 (en) 2000-08-14

Family

ID=16656612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05214492A Expired - Lifetime JP3076696B2 (en) 1993-08-30 1993-08-30 α + β type titanium alloy

Country Status (1)

Country Link
JP (1) JP3076696B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108319A1 (en) 2011-02-10 2012-08-16 新日本製鐵株式会社 Abrasion-resistant titanium alloy member having excellent fatigue strength
WO2014027677A1 (en) 2012-08-15 2014-02-20 新日鐵住金株式会社 Resource-saving titanium alloy member having excellent strength and toughness, and method for manufacturing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100337426B1 (en) * 2000-07-01 2002-05-22 황해웅 Low Cost and High Strength α+ βTitanium Alloy and its Manufacture
JP4264411B2 (en) * 2004-04-09 2009-05-20 新日本製鐵株式会社 High strength α + β type titanium alloy
JP4517095B2 (en) * 2005-10-07 2010-08-04 新日本製鐵株式会社 High strength titanium alloy automotive engine valve
JP5196083B2 (en) 2011-02-24 2013-05-15 新日鐵住金株式会社 High-strength α + β-type titanium alloy hot-rolled sheet excellent in cold coil handling and manufacturing method thereof
TWI551367B (en) 2011-02-24 2016-10-01 Nippon Steel & Sumitomo Metal Corp Cold rolling and cold rolling Α + Β Type titanium alloy sheet and manufacturing method thereof
WO2013094647A1 (en) 2011-12-20 2013-06-27 新日鐵住金株式会社 α+β-TYPE TITANIUM ALLOY PLATE FOR WELDED PIPE, METHOD FOR PRODUCING SAME, AND α+β-TYPE TITANIUM-ALLOY WELDED PIPE PRODUCT
CN104136639B (en) * 2012-02-24 2016-11-23 新日铁住金株式会社 Golf club face titanium alloy
KR101387551B1 (en) * 2012-06-20 2014-04-24 한국기계연구원 High strength titanium alloy with excellent oxidation resistance and formability and method for manufacturing the same
US10760152B2 (en) 2014-11-28 2020-09-01 Nippon Steel Corporation Titanium alloy having high strength, high young's modulus, excellent fatigue properties, and excellent impact toughness
KR101963118B1 (en) * 2017-08-16 2019-03-29 한국기계연구원 Titanium alloy having high strength and high formability using transformation induced plasticity
CN113508183A (en) * 2019-03-06 2021-10-15 日本制铁株式会社 Bar material
EP4286551A4 (en) 2021-01-28 2024-03-06 Nippon Steel Corp Titanium alloy plate, titanium alloy coil, method for producing titanium alloy plate and method for producing titanium alloy coil
WO2022162814A1 (en) 2021-01-28 2022-08-04 日本製鉄株式会社 Titanium alloy thin plate, and method for producing titanium alloy thin plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108319A1 (en) 2011-02-10 2012-08-16 新日本製鐵株式会社 Abrasion-resistant titanium alloy member having excellent fatigue strength
WO2014027677A1 (en) 2012-08-15 2014-02-20 新日鐵住金株式会社 Resource-saving titanium alloy member having excellent strength and toughness, and method for manufacturing same
US9689062B2 (en) 2012-08-15 2017-06-27 Nippon Steel & Sumitomo Metal Corporation Resource saving-type titanium alloy member possessing improved strength and toughness and method for manufacturing the same

Also Published As

Publication number Publication date
JPH0762474A (en) 1995-03-07

Similar Documents

Publication Publication Date Title
JP3049767B2 (en) Ti alloy with excellent heat resistance
JP3076696B2 (en) α + β type titanium alloy
EP1340825B1 (en) Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring
WO2005098063A1 (en) HIGH-STRENGTH α+β-TYPE TITANIUM ALLOY
JP3308090B2 (en) Fe-based super heat-resistant alloy
AU2022224763B2 (en) Creep resistant titanium alloys
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
JP3873313B2 (en) Method for producing high-strength titanium alloy
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
JP2022037155A (en) High temperature titanium alloys
JP3303641B2 (en) Heat resistant titanium alloy
JP3076697B2 (en) α + β type titanium alloy
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP3306878B2 (en) α + β type Ti alloy
JP2968430B2 (en) High strength low thermal expansion alloy
JP2608689B2 (en) High strength and high ductility Ti alloy
JPH06108187A (en) Nitrogen-added high strength titanium alloy
JP2686140B2 (en) Alloy for high temperature bolt and method for producing the same
JP2608688B2 (en) High strength and high ductility Ti alloy
JP2005154850A (en) High strength beta-type titanium alloy
JP2001172751A (en) Fe-BASE HEAT-RESISTING ALLOY FOR ENGINE VALVE, WITH EXCELLENT COLD WORKABILITY AND HIGH TEMPERATURE STRENGTH
JP2004190060A (en) Heat-resistant alloy for engine valve
JP5533352B2 (en) β-type titanium alloy
JP3216837B2 (en) Iron-based super heat-resistant alloy for heat-resistant bolts
JPH10130790A (en) Heat resistant alloy excellent in cold workability and overaging characteristic

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080609

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350