JPH06108187A - Nitrogen-added high strength titanium alloy - Google Patents

Nitrogen-added high strength titanium alloy

Info

Publication number
JPH06108187A
JPH06108187A JP25945892A JP25945892A JPH06108187A JP H06108187 A JPH06108187 A JP H06108187A JP 25945892 A JP25945892 A JP 25945892A JP 25945892 A JP25945892 A JP 25945892A JP H06108187 A JPH06108187 A JP H06108187A
Authority
JP
Japan
Prior art keywords
strength
titanium alloy
amount
ductility
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25945892A
Other languages
Japanese (ja)
Inventor
Misao Ishikawa
操 石川
Takahiro Fujita
高弘 藤田
Masakazu Niikura
正和 新倉
Chiaki Ouchi
千秋 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25945892A priority Critical patent/JPH06108187A/en
Publication of JPH06108187A publication Critical patent/JPH06108187A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a titanium alloy to obtain high ductility while maintaining a high strength by means of a single heat treatment without using complicated heat treatment, to reduce hot deformation resistance, and to give superior hot workability. CONSTITUTION:The nitrogen-added high strength titanium alloy having a composition where N, Al, and O are contained and they satisfy the relations of 0.06<=N<=0.20, by weight%, 2.0<=Al<=6.0, and 8.2<=Al+20XO+40XN<=14.6 and further either or both of V and Mo and one or more elements among Fe, Cr, and Mn are contained and they satisfy the relations of 6.2<=V+Mo+2X(Fe+Cr+Mn)<=12.1 and 1.0<=Mo and which has the balance Ti with inevitable impurities, is provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、熱間鍛造時の製造性
に優れた窒素添加高強度チタン合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nitrogen-added high strength titanium alloy which is excellent in manufacturability during hot forging.

【0002】[0002]

【従来技術】チタン材料の高強度化は、O(酸素),A
l,V等の元素を添加することによってなされ、現在種
々の組成の高強度チタン合金が存在する。日本において
はチタン合金は規格化されていないが、工業用純チタン
はJISによりO,Fe含有量によって規定されてい
る。そして、これらの含有量が多い程高強度化すること
が知られている。一方、米国においては、チタン合金を
含めた多数のチタン材料がASTM等に規格化されてい
る。しかし、N(窒素)は不可避不純物として規定され
ただけである。例えば、代表的チタン合金であるTi−
6Al−4VにおいてNは0.05wt%以下であり、
他の大部分のチタン合金も同様であり、Ti−5Al−
2.5Sn合金においてNが0.07wt%以下と若干
高く規定されているのみである。このようにNを積極的
に添加して高強度化を図った規格化されたチタン合金は
未だ存在しない。
2. Description of the Related Art The strength of titanium material is increased by O (oxygen), A
It is made by adding elements such as l and V, and currently there are high strength titanium alloys with various compositions. Titanium alloys are not standardized in Japan, but industrial pure titanium is specified by the O and Fe contents according to JIS. It is known that the higher the content of these, the higher the strength. On the other hand, in the United States, many titanium materials including titanium alloys are standardized in ASTM and the like. However, N (nitrogen) is only defined as an unavoidable impurity. For example, Ti- which is a typical titanium alloy
In 6Al-4V, N is 0.05 wt% or less,
The same is true for most other titanium alloys, such as Ti-5Al-
In the 2.5Sn alloy, N is only slightly specified to be 0.07 wt% or less. As described above, there is no standardized titanium alloy in which N is positively added to increase the strength.

【0003】特開平1−252747には、純チタンに
N,O,C等を積極的に添加して高強度化を試みている
が、強度の絶対値が高くない割には延性の低下が大き
く、代表的なチタン合金であるTi−6Al−4V合金
に比べて機械的性質上の有利な点があるとは考えられな
い。
Japanese Patent Laid-Open No. 1-252747 attempts to increase the strength by positively adding N, O, C, etc. to pure titanium. However, the ductility deteriorates even if the absolute value of the strength is not high. It cannot be considered that there is a large advantage in mechanical properties as compared with a typical titanium alloy, Ti-6Al-4V alloy.

【0004】特開平2−173234や特開平3−27
42381には、Al,V,Mo,Fe等の合金元素を
添加した高強度チタン合金が提案されているが、Nは不
可避不純物と考えられ、その量はASTM規格等で規格
されている0.05wt%以下であると考えられる。従
ってNを積極的に添加して高強度化したチタン合金では
ない。また、これらの合金の特徴は、800℃以下の温
度で変形抵抗が小さく加工性(超塑性伸び)が優れてい
ることであり、最適な熱間加工温度は800℃以下であ
ると考えられる。しかし加工時の歪速度が非常に小さい
超塑性加工とは異なり、歪速度の大きい熱間鍛造では、
800℃以下の加工温度においてチタン材料自体の弾性
率が大きく反発力が高くなりハネ等が発生するため、製
造性が良いとは言えない。
JP-A-2-173234 and JP-A-3-27
A high-strength titanium alloy to which alloy elements such as Al, V, Mo, and Fe have been added has been proposed for 42381, but N is considered to be an unavoidable impurity, and its amount is specified by the ASTM standard or the like. It is considered to be less than 05 wt%. Therefore, it is not a titanium alloy in which N is positively added to increase the strength. Further, the characteristics of these alloys are that the deformation resistance is small and the workability (superplastic elongation) is excellent at a temperature of 800 ° C. or lower, and it is considered that the optimum hot working temperature is 800 ° C. or lower. However, unlike superplastic processing, which has a very low strain rate during processing, in hot forging with a high strain rate,
At a processing temperature of 800 ° C. or lower, the titanium material itself has a large elastic modulus and a high repulsive force, resulting in splashes and the like, so that it cannot be said that the productivity is good.

【0005】一方、文献 Titanium A Te
chnical Guide(ASM INTERNA
TIONAL,Metals Park,1988 P
62〜P68に述べられているように、チタン合金を高
強度化する方法として、熱処理(溶体化時効処理)によ
る方法がある。しかし、溶体化時効処理は、熱処理を2
回しなければならないこと、また溶体化後の冷却速度に
よって得られる強度が変化するため大型部材では高強度
が得にくいこと等の欠点がある。
On the other hand, the document Titanium A Te
chnical Guide (ASM INTERNA
TIONAL, Metals Park, 1988 P
As described in 62-P68, as a method for strengthening a titanium alloy, there is a method by heat treatment (solution treatment aging treatment). However, the solution aging treatment requires a heat treatment of 2
There are drawbacks such as that it has to be rotated, and that the strength obtained depends on the cooling rate after solution heat treatment, so that it is difficult to obtain high strength with a large member.

【0006】[0006]

【発明が解決しようとする課題】この発明はかかる事情
に鑑みてなされたものであって、複雑な熱処理を用い
ず、一回の熱処理(焼鈍)で高強度を維持しつつ優れた
延性を得ることができ、かつ熱間変形抵抗が低く優れた
熱間加工性を有する窒素添加高強度チタン合金を提供す
ることを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances and provides excellent ductility while maintaining high strength by a single heat treatment (annealing) without using a complicated heat treatment. An object of the present invention is to provide a nitrogen-added high-strength titanium alloy that can be processed and has low hot deformation resistance and excellent hot workability.

【0007】[0007]

【課題を解決するための手段及び作用】この発明は、
N、Al、Oを含有し、これらが重量%で、 0.06≦N≦0.20 2.0≦Al≦6.0 8.2≦Al+20×O+40×N≦14.6 の関係を満足し、さらに、V,Moのうち1種以上、F
e,Cr,Mnのうち1種以上含有し、これらが重量%
で、 6.2≦V+Mo+2×(Fe+Cr+Mn)≦12.1 1.0≦Mo の関係を満足し、残部がTi及び不可避的不純物からな
ることを特徴とする窒素添加高強度チタン合金を提供す
る。
Means and Actions for Solving the Problems
Contains N, Al, and O, and these are in weight%, and satisfy the relationship of 0.06 ≦ N ≦ 0.20 2.0 ≦ Al ≦ 6.0 8.2 ≦ Al + 20 × O + 40 × N ≦ 14.6 In addition, one or more of V and Mo, F
Contains one or more of e, Cr, and Mn, and these are wt%
Then, a nitrogen-added high-strength titanium alloy characterized by satisfying the relation of 6.2 ≦ V + Mo + 2 × (Fe + Cr + Mn) ≦ 12.1 1.0 ≦ Mo, and the balance being Ti and inevitable impurities is provided.

【0008】本願発明者らが、上記課題を解決するため
検討を重ねた結果、室温において大きな強度上昇をもた
らし実質的に熱間加工時の変形抵抗を低下させる元素と
してNが有効であることを見出した。Nはβ変態点を大
きく上昇させる効果があり、このためN添加チタン合金
のα+β域の上限温度が上昇する。α+β型チタン合金
の熱間加工は通常α+β域で行なわれるため、上限温度
すなわちβ変態点の上昇は実質的に加工温度の上昇を意
味し、温度上昇分だけ材料は軟化し熱間変形抵抗は低下
する。
The inventors of the present invention have conducted extensive studies to solve the above-mentioned problems, and as a result, found that N is effective as an element that causes a large increase in strength at room temperature and substantially reduces the deformation resistance during hot working. I found it. N has the effect of greatly increasing the β transformation point, and therefore the upper limit temperature of the α + β region of the N-added titanium alloy increases. Since hot working of α + β type titanium alloys is usually performed in the α + β range, an increase in the upper limit temperature, that is, the β transformation point substantially means an increase in the working temperature, and the material is softened by the temperature increase and the hot deformation resistance is descend.

【0009】この発明は、本願発明者らのこのような知
見に基づき、Nを一定量添加すると共に、以下の点を考
慮しつつ上記N添加の効果を損なわない他の合金元素の
組成を選定し、完成されたものである。
Based on such findings of the inventors of the present invention, the present invention selects a composition of another alloying element that does not impair the effect of the above N addition while adding the N in a fixed amount and taking the following points into consideration. It has been completed.

【0010】1)焼鈍熱処理後にTi−6Al−4V合
金以上の強度が得られること。このためには、N単独添
加では強度不足のため、他の強化元素であるAl,O,
V,Mo,Fe,Cr,Mnを複合添加する。
1) Strength higher than Ti-6Al-4V alloy can be obtained after annealing heat treatment. To this end, since the strength is insufficient when N is added alone, other strengthening elements such as Al, O,
V, Mo, Fe, Cr, Mn are added together.

【0011】2)強度上昇による極端な延性劣化が起こ
らないこと。このために、α相とβ相の混合組織となる
ように、α安定化元素(N,Al,O)だけでなく、こ
れらと共に適量β安定化元素(V,Mo,Fe,Cr,
Mn)を添加する。さらに、これにより結晶粒の微細化
を図り延性を向上させる。 3)β変態点を900℃以上にすること。このために、
α安定化元素とβ安定化元素のバランスを考慮する。
2) Extreme deterioration of ductility due to increase in strength does not occur. Therefore, not only the α-stabilizing element (N, Al, O) but also an appropriate amount of the β-stabilizing element (V, Mo, Fe, Cr, so as to form a mixed structure of α-phase and β-phase)
Mn) is added. Further, this makes the crystal grains finer and improves the ductility. 3) The β transformation point must be 900 ° C or higher. For this,
Consider the balance between α and β stabilizing elements.

【0012】なお、Nを添加する場合にTiNのような
高融点の化合物を用いると、溶解時に溶け残りが生じる
恐れがある。従って、N添加用の溶解原料として低融点
のフェロ窒化クロム、窒化マンガンを使用することが好
ましい。以下、本発明について詳細に説明する。先ず各
元素添加量の限定理由について述べる。
When N is added, if a high melting point compound such as TiN is used, undissolved residue may occur during melting. Therefore, it is preferable to use low melting point chromium ferronitride or manganese nitride as a dissolution raw material for N addition. Hereinafter, the present invention will be described in detail. First, the reasons for limiting the amount of each element added will be described.

【0013】Nは強度上昇やβ変態点上昇に非常に有効
な元素であるが、過度に添加した場合には延性や靱性の
極端な低下をもたらす。そして、N量が0.06重量%
よりも少ないとその効果が現われず、延性や靱性の低下
は0.20重量%を超えると大きくなる。このためNの
含有量を0.06重量%以上0.20重量%以下に規定
する。
N is a very effective element for increasing the strength and increasing the β transformation point, but if added excessively, it causes an extreme decrease in ductility and toughness. And the amount of N is 0.06% by weight
If the amount is less than that, the effect will not be exhibited, and the decrease in ductility and toughness will increase if the amount exceeds 0.20% by weight. Therefore, the N content is specified to be 0.06% by weight or more and 0.20% by weight or less.

【0014】AlはNと同様にα安定化元素であり強度
上昇やβ変態点上昇に有効な元素であり、NやOと共に
添加することにより大きな強度上昇を得ることができ
る。さらにα+β二相混合組織の形成にも重要な役割を
はたす。しかし、Al量が2.0重量%より少ないと高
強度が得られず、6.0重量%を超えると延性、靱性の
劣化が著しくなる。このためAl量を2.0重量%以
上、6.0重量%以下に規定する。
Al, like N, is an α-stabilizing element and is an element effective for increasing strength and increasing β transformation point, and a large increase in strength can be obtained by adding it together with N and O. Furthermore, it also plays an important role in the formation of α + β two-phase mixed tissue. However, if the amount of Al is less than 2.0% by weight, high strength cannot be obtained, and if it exceeds 6.0% by weight, ductility and toughness are significantly deteriorated. Therefore, the amount of Al is specified to be 2.0% by weight or more and 6.0% by weight or less.

【0015】さらにα安定化元素量と強度・延性との関
係について様々な実験結果をまとめることにより、Al
+20×O+40×Nで表わされるα安定化元素量(α
s)が8.2より小さいと強度が十分に高くなく、1
4.6を超えると延性の低下が顕著になることが判明し
た。従って、Al+20×O+40×Nの値を8.2以
上、14.6以下に限定した。
Further, by collecting various experimental results on the relationship between the amount of α-stabilizing element and the strength / ductility, Al
The amount of α stabilizing element represented by + 20 × O + 40 × N (α
If s) is less than 8.2, the strength is not sufficiently high and 1
It was found that if it exceeds 4.6, the decrease in ductility becomes remarkable. Therefore, the value of Al + 20 × O + 40 × N is limited to 8.2 or more and 14.6 or less.

【0016】微細なα+β二相組織を得るためには、β
安定化元素を適量添加する必要がある。この場合に、N
添加による高強度化を効果的に達成するためには、β安
定化元素としてβ全率固溶型のV,Moのうち少なくと
も1種及び共析型のFe,Cr,Mnのうち少なくとも
1種を添加することが必要である。共析型β安定化元素
は加工性の良好なβ相を安定化させる効果が大きいた
め、高強度化したときの延性、靱性の低下防止に重要な
役割をはたす。しかし、共析型元素はTiとの間で脆い
金属間化合物をつくりやすいため多量には添加できな
い。このため、Tiとの間で脆い金属間化合物を形成し
にくいV,Moと複合添加してβ相の安定化をはかるこ
とが必要となる。このようなβ安定化元素添加の効果を
実験結果からまとめるとV+Mo+2×(Fe+Cr+
Mn)の値が6.2より小さいと延性が劣化してしま
い、12.1より大きいとβ変態点が低下しすぎてしま
うことが判明した。従って、V+Mo+2×(Fe+C
r+Mn)の値を6.2以上12.1以下に規定する。
To obtain a fine α + β two-phase structure, β
It is necessary to add an appropriate amount of stabilizing element. In this case, N
In order to effectively achieve the high strength by the addition, at least one of β and all solid solution type V and Mo and at least one of eutectoid Fe, Cr and Mn are used as β stabilizing elements. It is necessary to add Since the eutectoid β-stabilizing element has a large effect of stabilizing the β phase having good workability, it plays an important role in preventing deterioration of ductility and toughness when strengthened. However, eutectoid elements cannot easily be added in large amounts because they tend to form brittle intermetallic compounds with Ti. For this reason, it is necessary to stabilize the β-phase by adding V and Mo, which hardly form a brittle intermetallic compound with Ti, in combination. Summarizing the effects of such β-stabilizing element addition from the experimental results, V + Mo + 2 × (Fe + Cr +
It was found that when the value of Mn) is less than 6.2, the ductility deteriorates, and when it is more than 12.1, the β transformation point is lowered too much. Therefore, V + Mo + 2 × (Fe + C
The value of r + Mn) is specified to be 6.2 or more and 12.1 or less.

【0017】Moはα+β二相組織の微細化に大きな効
果がある元素である。従って、高強度を維持しつつ十分
な延性を得るためにはMoを添加して合金のミクロ組織
を微細化することが効果的である。しかし、Mo量が
1.0重量%より少ないとその効果を実質に得ることが
できない。従ってMo量を1.0重量%以上に規定す
る。
Mo is an element which has a great effect on the refinement of the α + β two-phase structure. Therefore, in order to obtain sufficient ductility while maintaining high strength, it is effective to add Mo to refine the microstructure of the alloy. However, if the amount of Mo is less than 1.0% by weight, the effect cannot be substantially obtained. Therefore, the Mo amount is specified to be 1.0% by weight or more.

【0018】チタン合金中へのNの添加にはTiNのよ
うな高融点の化合物を使用することが考えられるが、こ
のような高融点化合物を添加すると溶け残ってチタン合
金中に介在物として残留する可能性がある。この可能性
を低減させるためには、より低融点の窒素化合物を使用
することが考えられる。この際に同時にFeやCr,M
n等も添加できれば極めて効率的である。これらのこと
を考慮すると、窒素の添加原料としてフェロ窒化クロム
や窒化マンガンを用いることが好ましい。実際に用いた
窒素化合物の組成はそれぞれ34.9重量%Fe,5
7.7重量%Cr,7.2重量%N及び93.4重量%
Mn,6.6重量%Nであるが、組成が多少変化しても
効果を失うものではない。
It is considered that a high melting point compound such as TiN is used for adding N to the titanium alloy. However, when such a high melting point compound is added, the compound remains unmelted and remains as an inclusion in the titanium alloy. there's a possibility that. To reduce this possibility, it is conceivable to use a lower melting nitrogen compound. At the same time, Fe, Cr, M
It is extremely efficient if n and the like can be added. Considering these points, it is preferable to use chromium ferronitride or manganese nitride as the raw material for adding nitrogen. The composition of the nitrogen compounds actually used was 34.9 wt% Fe and 5 respectively.
7.7 wt% Cr, 7.2 wt% N and 93.4 wt%
Mn is 6.6 wt% N, but the effect is not lost even if the composition changes a little.

【0019】以上のように本発明によれば、高強度化に
非常に有効なNを積極的に添加し、さらにα安定化元素
量、β安定化元素量を最適化することにより、(1)高
強度かつ高延性であり、かつ(2)β変態点が900℃
以上で熱間鍛造し易いチタン合金が提供される。
As described above, according to the present invention, N, which is very effective for strengthening, is positively added, and the α-stabilizing element amount and the β-stabilizing element amount are optimized to obtain (1 ) High strength and high ductility, and (2) β transformation point is 900 ° C.
As described above, the titanium alloy which is easily hot forged is provided.

【0020】従って、複雑な熱処理を用いず、一回の焼
鈍熱処理によっても高強度と十分な延性が得られる。ま
た熱間鍛造時にはβ変態点が900℃以上のため高温で
熱間加工ができ、低変形応力、高延性であるため製造性
に優れている。
Therefore, high strength and sufficient ductility can be obtained by a single annealing heat treatment without using a complicated heat treatment. Further, during hot forging, the β transformation point is 900 ° C. or higher, so that hot working can be performed at high temperature, and the low deformation stress and high ductility provide excellent manufacturability.

【0021】[0021]

【実施例】表1に示した種々のチタン合金を非消耗型ア
ルゴンアーク炉にて溶解し、β域(1100℃加熱)で
鍛造後、α+β域(850℃加熱)で10mm厚に熱間
圧延した。この圧延板に対し、720℃に加熱して1時
間保持後空冷するという条件の焼鈍処理を施こし、添加
元素が強度、延性、熱間加工性に及ぼす影響を試験する
ための供試材とした。表1中合金番号1〜14は本発明
の範囲に含まれる実施例であり、合金番号15〜24は
その範囲から外れる比較例である。また、合金番号2,
3,5〜7,9〜14,21,22,24はフェロ窒化
クロム又は窒化マンガンを溶解原料として使用した。な
お、表1のαsはAl+20×O+40×Nを示し、β
sはV+Mo+2×(Fe+Cr+Mn)を示す。
[Examples] Various titanium alloys shown in Table 1 were melted in a non-consumable argon arc furnace, forged in the β region (heating at 1100 ° C), and then hot rolled to a thickness of 10 mm in the α + β region (heating at 850 ° C). did. This rolled plate was annealed under the condition of heating at 720 ° C., holding for 1 hour, and then cooling in air, and used as a test material for testing the effect of additional elements on strength, ductility, and hot workability. did. In Table 1, alloy numbers 1 to 14 are examples included in the scope of the present invention, and alloy numbers 15 to 24 are comparative examples outside the range. Also, alloy number 2,
3,5,7,9,9,14,21,22,24 used ferro-chromium nitride or manganese nitride as a melting raw material. Note that αs in Table 1 indicates Al + 20 × O + 40 × N, and β
s represents V + Mo + 2 × (Fe + Cr + Mn).

【0022】[0022]

【表1】 これらの供試材を室温引張試験に供して室温での機械的
特性を評価し、さらにこれらのβ変態点及び熱間加工性
を把握した。
[Table 1] These test materials were subjected to a room temperature tensile test to evaluate the mechanical properties at room temperature, and to further understand their β transformation point and hot workability.

【0023】室温引張試験は、平行部直径6.25m
m、ゲージ長25mmの引張試験片を用いて行なった。
熱間加工性の調査は、平行部直径6.0mm、長さ32
mmの引張試験片を用い、875℃に真空中で加熱して
歪速度10s-1で熱間引張試験を行ない減面率(RA)
で評価した。チタン合金のβ変態点は、圧延板から丸棒
状(直径3mm)の電気抵抗試験片を採取して、連続加
熱時の電気抵抗の変化からβ単相になる温度を求めて測
定した。これらの結果を表2に示す。なお、合金番号2
0及び24はβ変態点が900℃以下のため熱間加工性
を測定しなかった。
The room temperature tensile test was conducted with a parallel portion having a diameter of 6.25 m.
m and a gauge length of 25 mm were used.
The hot workability was investigated by measuring the diameter of the parallel part of 6.0 mm and the length of 32.
mm Tensile test piece was used to heat at 875 ° C. in vacuum and hot tensile test was performed at a strain rate of 10 s −1 to reduce the area (RA).
It was evaluated by. The β-transformation point of the titanium alloy was measured by collecting a round rod-shaped (diameter 3 mm) electrical resistance test piece from the rolled plate and determining the temperature at which the β-single phase occurs from the change in electrical resistance during continuous heating. The results are shown in Table 2. Alloy number 2
In 0 and 24, the β transformation point was 900 ° C. or lower, and thus hot workability was not measured.

【0024】[0024]

【表2】 [Table 2]

【0025】この表から明らかなように、合金番号1〜
14の実施例では、延性の劣化を伴わずにN添加による
高強度化が達成されており、さらに熱間加工性の低下も
ないことが確認された。
As is clear from this table, alloy numbers 1 to 1
In Example 14 it was confirmed that the increase in strength was achieved by the addition of N without deterioration in ductility, and there was no deterioration in hot workability.

【0026】これに対し、合金番号15はTi−6Al
−4V合金であり、本願発明例よりも低強度で熱間加工
性も劣っている。また、合金番号16は、Ti−6Al
−4V合金にNを0.10重量%添加した例であり、N
添加による強度上昇は認められるが、β安定化元素量
(βs)が不足していることやMoが添加されていない
ことによりミクロ組織が粗大なため、延性(El,R
A)や熱間加工性が劣化していることがわかる。合金番
号17,18はN量やα安定化元素量(αs)が不足し
ている例であり、いずれもN量が0.05重量%以下で
あるため強度が低く、また合金番号17ではαsが少な
いためβ変態点は900℃よりも低くなっている。合金
番号19はN量やαs量が多すぎる場合であり、N量が
0.25重量%であるため延性の低下が著しい。合金番
号20及び21は、Al量が不足している場合と多すぎ
る場合とを夫々示しており、Al量が1.5重量%の番
号20では強度が低く、β変態点も900℃以下になっ
ているのに対し、Al量が7.0重量%の番号21で
は、高強度だが低延性であることが確認される。合金番
号22はMo量が不足した例であり、Moが0.5重量
%ではミクロ組織の微細化がなされず延性が低い。番号
23と24はそれぞれβs量が不足している場合と多す
ぎる場合とを示している。βsが6.0の番号23では
十分な延性が得られず、βs量が14.0の番号24で
はβ変態点が900℃より低いことが確認される。
On the other hand, alloy No. 15 is Ti-6Al
-4V alloy, which is lower in strength and inferior in hot workability to the invention examples of the present application. Alloy No. 16 is Ti-6Al
-4V alloy is an example in which 0.10% by weight of N is added.
Although the strength increase due to the addition is recognized, the ductility (El, R) is increased because the microstructure is coarse due to the lack of the amount of β-stabilizing element (βs) and the addition of Mo.
It can be seen that A) and hot workability are deteriorated. Alloy Nos. 17 and 18 are examples in which the amount of N and the amount of α-stabilizing element (αs) are insufficient. In both cases, the amount of N is 0.05% by weight or less, so the strength is low. , The β transformation point is lower than 900 ° C. Alloy No. 19 is a case where the amount of N or the amount of αs is too large. Since the amount of N is 0.25% by weight, the ductility is remarkably reduced. Alloy Nos. 20 and 21 show the case where the Al amount is insufficient and the case where the Al amount is too large, respectively, and in the case of No. 20 having an Al amount of 1.5 wt%, the strength is low and the β transformation point is 900 ° C. or less. On the other hand, with No. 21 having an Al content of 7.0% by weight, it is confirmed that the strength is high but the ductility is low. Alloy No. 22 is an example in which the amount of Mo was insufficient, and when Mo was 0.5% by weight, the microstructure was not refined and the ductility was low. Numbers 23 and 24 respectively show the case where the βs amount is insufficient and the case where it is too large. It is confirmed that No. 23 having βs of 6.0 does not have sufficient ductility, and No. 24 having βs of 14.0 has a β transformation point lower than 900 ° C.

【0027】図1は、引張強さ(TS)と伸び(El)
に及ぼすN量の影響を示している。この図から明らかな
ように、N量が0.06重量%以上、0.20重量%以
下の範囲において、優れた強度と延性とが同時に得られ
ることが確認された。
FIG. 1 shows tensile strength (TS) and elongation (El).
It shows the effect of the amount of N on. As is clear from this figure, it was confirmed that excellent strength and ductility can be obtained at the same time when the amount of N is 0.06% by weight or more and 0.20% by weight or less.

【0028】[0028]

【発明の効果】本願発明によれば、N添加により高強度
化をはかり、さらにα安定化元素量及びβ安定化元素量
を最適化したため、複雑な熱処理を用いず1回の熱処理
により高強度を維持しつつ高い延性を得ることができ、
かつ熱間変形抵抗が低く優れた熱間加工性を有する窒素
添加高強度チタン合金が提供される。
EFFECTS OF THE INVENTION According to the present invention, the strength is increased by adding N and the amounts of α-stabilizing element and β-stabilizing element are optimized. It is possible to obtain high ductility while maintaining
A nitrogen-added high-strength titanium alloy having low hot deformation resistance and excellent hot workability is provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】N量と強度(TS)及び延性(El)との関係
を実施例及び比較例について示した図。
FIG. 1 is a diagram showing the relationship between N content and strength (TS) and ductility (El) for Examples and Comparative Examples.

フロントページの続き (72)発明者 大内 千秋 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内Front page continuation (72) Inventor Chiaki Ouchi 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 N、Al、Oを含有し、これらが重量%
で、 0.06≦N≦0.20 2.0≦Al≦6.0 8.2≦Al+20×O+40×N≦14.6 の関係を満足し、 さらに、V,Moのうち1種以上、Fe,Cr,Mnの
うち1種以上含有し、これらが重量%で、 6.2≦V+Mo+2×(Fe+Cr+Mn)≦12.1 1.0≦Mo の関係を満足し、残部がTi及び不可避的不純物からな
ることを特徴とする窒素添加高強度チタン合金。
1. Containing N, Al, and O, and these are wt%.
Then, 0.06 ≦ N ≦ 0.20 2.0 ≦ Al ≦ 6.0 8.2 ≦ Al + 20 × O + 40 × N ≦ 14.6, and at least one of V and Mo, One or more of Fe, Cr, and Mn are contained, and the content of these is, by weight%, 6.2 ≦ V + Mo + 2 × (Fe + Cr + Mn) ≦ 12.1 1.0 ≦ Mo, and the balance is Ti and unavoidable impurities. A nitrogen-added high-strength titanium alloy, characterized in that
【請求項2】 前記Nは、溶解原料としてフェロ窒化ク
ロム、窒化マンガンを使用することにより添加されたも
のであることを特徴とする請求項1に記載の窒素添加高
強度チタン合金。
2. The nitrogen-added high-strength titanium alloy according to claim 1, wherein the N is added by using chromium ferronitride or manganese nitride as a melting raw material.
JP25945892A 1992-09-29 1992-09-29 Nitrogen-added high strength titanium alloy Pending JPH06108187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25945892A JPH06108187A (en) 1992-09-29 1992-09-29 Nitrogen-added high strength titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25945892A JPH06108187A (en) 1992-09-29 1992-09-29 Nitrogen-added high strength titanium alloy

Publications (1)

Publication Number Publication Date
JPH06108187A true JPH06108187A (en) 1994-04-19

Family

ID=17334351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25945892A Pending JPH06108187A (en) 1992-09-29 1992-09-29 Nitrogen-added high strength titanium alloy

Country Status (1)

Country Link
JP (1) JPH06108187A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759484A (en) * 1994-11-29 1998-06-02 Director General Of The Technical Research And Developent Institute, Japan Defense Agency High strength and high ductility titanium alloy
WO2006041167A1 (en) * 2004-10-15 2006-04-20 Sumitomo Metal Industries, Ltd. NEAR-β TITANIUM ALLOY
JP2008106317A (en) * 2006-10-26 2008-05-08 Nippon Steel Corp beta-TYPE TITANIUM ALLOY
JP2012200753A (en) * 2011-03-24 2012-10-22 Osaka Univ COUPLING JOINT OF Ti ALLOYS, PROCESSING METHOD OF Ti ALLOYS AND STRUCTURE
JP2012251234A (en) * 2011-06-07 2012-12-20 Nhk Spring Co Ltd Titanium alloy member and method for producing the same
JP2013001946A (en) * 2011-06-15 2013-01-07 Nippon Steel & Sumitomo Metal Corp Titanium alloy member having bidirectional shape-memory characteristic, and manufacturing method therefor
CN112063889A (en) * 2020-09-29 2020-12-11 中国科学院金属研究所 High-thermal-stability equiaxial nanocrystalline Ti6Al4V-Cr alloy and preparation method thereof
US12104226B2 (en) 2021-05-19 2024-10-01 Karsten Manufacturing Corporation Beta enhanced titanium alloys and methods of manufacturing beta enhanced titanium alloys

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759484A (en) * 1994-11-29 1998-06-02 Director General Of The Technical Research And Developent Institute, Japan Defense Agency High strength and high ductility titanium alloy
WO2006041167A1 (en) * 2004-10-15 2006-04-20 Sumitomo Metal Industries, Ltd. NEAR-β TITANIUM ALLOY
JP2006111935A (en) * 2004-10-15 2006-04-27 Sumitomo Metal Ind Ltd NEAR beta-TYPE TITANIUM ALLOY
US7910052B2 (en) 2004-10-15 2011-03-22 Sumitomo Metal Industries, Ltd. Near β-type titanium alloy
JP2008106317A (en) * 2006-10-26 2008-05-08 Nippon Steel Corp beta-TYPE TITANIUM ALLOY
JP2012200753A (en) * 2011-03-24 2012-10-22 Osaka Univ COUPLING JOINT OF Ti ALLOYS, PROCESSING METHOD OF Ti ALLOYS AND STRUCTURE
JP2012251234A (en) * 2011-06-07 2012-12-20 Nhk Spring Co Ltd Titanium alloy member and method for producing the same
JP2013001946A (en) * 2011-06-15 2013-01-07 Nippon Steel & Sumitomo Metal Corp Titanium alloy member having bidirectional shape-memory characteristic, and manufacturing method therefor
CN112063889A (en) * 2020-09-29 2020-12-11 中国科学院金属研究所 High-thermal-stability equiaxial nanocrystalline Ti6Al4V-Cr alloy and preparation method thereof
US12104226B2 (en) 2021-05-19 2024-10-01 Karsten Manufacturing Corporation Beta enhanced titanium alloys and methods of manufacturing beta enhanced titanium alloys

Similar Documents

Publication Publication Date Title
JP2760004B2 (en) High-strength heat-resistant steel with excellent workability
US7767040B2 (en) Titanium alloy and automotive exhaust systems thereof
JP2606023B2 (en) Method for producing high strength and high toughness α + β type titanium alloy
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
EP0767245B1 (en) High-strength, high-ductility titanium alloy and process for preparing the same
JPH0572452B2 (en)
JP3076696B2 (en) α + β type titanium alloy
JPH08295969A (en) High strength titanium alloy suitable for superplastic forming and production of alloy sheet thereof
JP2586023B2 (en) Method for producing TiA1-based heat-resistant alloy
JPH06108187A (en) Nitrogen-added high strength titanium alloy
US4944914A (en) Titanium base alloy for superplastic forming
JP3052746B2 (en) High strength and high ductility titanium alloy
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JP2669004B2 (en) Β-type titanium alloy with excellent cold workability
JP2001152268A (en) High strength titanium alloy
JP2819906B2 (en) Ni-base alloy for tools with excellent room and high temperature strength
JP2936968B2 (en) High strength titanium alloy with excellent cold workability and weldability
JP3365190B2 (en) Post heat treatment method for α + β type titanium alloy welded members
JP2005154850A (en) High strength beta-type titanium alloy
JPH08157986A (en) High strength and high ductility titanium alloy
JP5533352B2 (en) β-type titanium alloy
JP2004183097A (en) Method for producing maraging steel and maraging steel
JP2002235133A (en) beta TYPE TITANIUM ALLOY
JPH08157987A (en) High strength and high ductility titanium alloy
JP4110518B2 (en) Cold rolled steel strip of maraging steel with high clean Mg content