JPH08157987A - High strength and high ductility titanium alloy - Google Patents

High strength and high ductility titanium alloy

Info

Publication number
JPH08157987A
JPH08157987A JP29512894A JP29512894A JPH08157987A JP H08157987 A JPH08157987 A JP H08157987A JP 29512894 A JP29512894 A JP 29512894A JP 29512894 A JP29512894 A JP 29512894A JP H08157987 A JPH08157987 A JP H08157987A
Authority
JP
Japan
Prior art keywords
alloy
strength
ductility
less
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29512894A
Other languages
Japanese (ja)
Other versions
JP2608689B2 (en
Inventor
Hideaki Kashiwai
秀明 柏井
Naoya Kitazaki
直弥 北崎
Yoshihisa Kitagawa
喜久 北川
Kenji Koide
憲司 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Kobe Steel Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Kobe Steel Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Kobe Steel Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP29512894A priority Critical patent/JP2608689B2/en
Priority to US08/564,622 priority patent/US5759484A/en
Publication of JPH08157987A publication Critical patent/JPH08157987A/en
Application granted granted Critical
Publication of JP2608689B2 publication Critical patent/JP2608689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Forging (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE: To obtain a Ti alloy ensuring high strength only by annealing without carrying out soln. heat treatment and capable of attaining high ductility. CONSTITUTION: This Ti alloy consists of >6.75 to 8.00% Al, 3.5-4.5% V, 0.25-0.35% Fe, 0.15-0.25% O, <=0.10% C and <0.15%, preferably 0.03-0.15% N or >0.10 to 0.20% C and <=0.03% N and the balance Ti with inevitable impurities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、航空機をはじめ化学工
学機械や深海調査船等、様々な用途で適用されているT
i合金に関するものであり、特にアルミニウムと共に窒
素または炭素を添加することによってTi−6Al−4
V合金を改良し、高強度と高延性を達成したTi合金に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applicable to various applications such as aircraft, chemical engineering machines and deep sea research vessels.
i-alloy, especially Ti-6Al-4 by adding nitrogen or carbon with aluminum.
The present invention relates to a Ti alloy obtained by improving V alloy and achieving high strength and high ductility.

【0002】[0002]

【従来の技術】近年、航空機等の更なる軽量化が望まれ
ており、それに伴って、高強度で高延性のα+β型Ti
合金、特にTi−6Al−4V合金への要求が高まって
いる。しかしながら、Ti−6Al−4V合金では、焼
鈍処理で得られる引張強さはせいぜい1.1GPaが限
度である。一方、Ti合金の高強度化を達成するには、
α+β2相高温域の溶体化を含む溶体化時効処理または
溶体化過時効処理が行われるのが一般的であるが、同処
理を行なうと、処理後のTi合金材料に反り等が発生
し、矯正加工が必要になるという欠点がある。
2. Description of the Related Art In recent years, further weight reduction of aircraft and the like has been demanded, and along with this, α + β type Ti which has high strength and high ductility.
There is an increasing demand for alloys, especially Ti-6Al-4V alloys. However, in the Ti-6Al-4V alloy, the tensile strength obtained by the annealing treatment is limited to 1.1 GPa at most. On the other hand, in order to achieve high strength of Ti alloy,
In general, solution aging treatment or solution overaging treatment including solution treatment in the α + β2 phase high temperature region is performed. However, if the treatment is performed, the Ti alloy material after the treatment may be warped and straightened. There is a disadvantage that processing is required.

【0003】上記の様な反り等の発生を低減するという
観点から、例えば特開平5−59510号の様な技術も
提案されている。この技術は、所定の化学成分を有する
α+β型Ti合金素材を、(β変態点−150℃)〜β
変態点未満の範囲内の温度に加熱し、次いで、0.5〜
10℃/secの範囲の冷却速度で冷却して、素材に溶
体化処理を施し、このように溶体化処理を施した前記素
材に、400〜600℃の範囲の温度で時効処理を施す
ものである。しかしながらこの技術では、反り等の発生
が低減されるとは言うものの、溶体化処理および時効処
理の2段階のステップを必要とし、工程が複雑になると
いう問題がある。
[0003] From the viewpoint of reducing the occurrence of the above-mentioned warpage or the like, a technique as disclosed in Japanese Patent Laid-Open No. 5-59510 has been proposed. This technology converts an α + β-type Ti alloy material having a predetermined chemical component into (β transformation point −150 ° C.) to β
Heat to a temperature in the range below the transformation point, then 0.5 to
The material is subjected to a solution treatment by cooling at a cooling rate in a range of 10 ° C./sec, and the material subjected to the solution treatment is subjected to an aging treatment at a temperature in a range of 400 to 600 ° C. is there. However, with this technique, the occurrence of warpage and the like is reduced, but there is a problem that the process is complicated because it requires two steps of solution treatment and aging treatment.

【0004】また引張り強さが1.1GPaを超えるT
i合金としては、nearβ系のα+β型Ti合金やβ
型Ti合金が考えられるが、本発明者らが調査したとこ
ろ、従来のnearβ系α+β型Ti合金やβ型Ti合
金では、高速変形下での延性に劣ることがわかった。尚
高速変形下での延性に関し、本発明者らが検討したとこ
ろによると、Ti合金のMo当量(Mo当量=Mo+
0.67V+2.9Fe+1.6Cr+0.28Nb+
0.22Ta)が4.0以下で高速変形下での延性に優
れることがわかった。
In addition, T having a tensile strength exceeding 1.1 GPa
As the i alloy, a near β type α + β type Ti alloy or β
Although a type Ti alloy is conceivable, the present inventors have investigated and found that the conventional near β-based α + β type Ti alloy and β type Ti alloy are inferior in ductility under high-speed deformation. According to a study conducted by the present inventors regarding ductility under high-speed deformation, the Mo equivalent of the Ti alloy (Mo equivalent = Mo +
0.67V + 2.9Fe + 1.6Cr + 0.28Nb +
It was found that 0.22 Ta) was 4.0 or less and the ductility under high-speed deformation was excellent.

【0005】一方、特開平6−108187号には、高
強度で高延性のTi合金を開発するという観点から、比
較的多めのN(0.06〜0.20%)を含有すると共
に、1%以上のMoを必須成分として含有する「窒素添
加高強度Ti合金」について開示されている。しかしな
がらこの合金には、Moを添加することによって、Mo
当量が4.0以上を有し、高速変形下での延性に劣ると
いう欠点がある。
On the other hand, from the viewpoint of developing a high-strength and high-ductility Ti alloy, Japanese Patent Application Laid-Open No. 6-108187 discloses that a relatively large amount of N (0.06 to 0.20%) A "nitrogen-added high-strength Ti alloy" containing at least Mo as an essential component is disclosed. However, by adding Mo to this alloy, Mo is added.
There is a drawback that the equivalent weight is 4.0 or more and the ductility under high-speed deformation is poor.

【0006】[0006]

【発明が解決しようとする課題】本発明はこうした技術
的背景の下になされたものであって、その目的は、溶体
化処理を施さずとも焼鈍処理だけで高強度が得られ、し
かも高延性を達成することのできるTi合金を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made under such a technical background. It is an object of the present invention to obtain high strength by only annealing treatment without performing solution treatment, and to obtain high ductility. To provide a Ti alloy capable of achieving the following.

【0007】[0007]

【課題を解決するための手段】上記目的を達成すること
のできた本発明のTi合金は、Al:6.75超〜8.
00%,V:3.5〜4.5%,Fe:0.25〜0.
35%,O:0.15〜0.25%,C:0.10%以
下,N:0.15%以下を夫々含有し、残部がTiおよ
び不可避不純物からなる点に要旨を有するものである。
Means for Solving the Problems The Ti alloy of the present invention, which has achieved the above object, has an Al content of more than 6.75 to 8.
00%, V: 3.5-4.5%, Fe: 0.25-0.
It contains 35%, O: 0.15 to 0.25%, C: 0.10% or less, and N: 0.15% or less, and has a gist in that the balance consists of Ti and unavoidable impurities. .

【0008】また上記の合金において、Nの好ましい含
有量は0.03〜0.15%であり、この範囲ではNに
よる作用が最大限に発揮される。
In the above alloy, the preferable content of N is 0.03 to 0.15%, and the effect of N is maximized in this range.

【0009】更に、Al:6.75超〜8.00%,
V:3.5〜4.5%,Fe:0.25〜0.35%,
O:0.15〜0.25%,C:0.10超〜0.20
%,N:0.03%以下を夫々含有し、残部がTiおよ
び不可避不純物からなるTi合金によっても本発明の目
的が達成される。
Further, Al: more than 6.75 to 8.00%,
V: 3.5-4.5%, Fe: 0.25-0.35%,
O: 0.15 to 0.25%, C: more than 0.10 to 0.20
% And N: 0.03% or less, respectively, and the balance of Ti and the unavoidable impurities also achieves the object of the present invention.

【0010】[0010]

【作用】上記Ti−6Al−4V合金中のO,C,N,
Fe等の元素については、米国において不純物としてそ
の上限が規格化されており(AMS 4928L)、夫
々O:0.20%以下,C:0.10%以下,N:0.
05%以下,Fe:0.30%以下とされている。しか
しながら、本発明者らが検討したところ、上記規格通り
に含有させても必ずしも希望する特性が得られるとは限
らないことがわかった。そこで本発明者らは、前記Ti
−6Al−4V系合金の特性を改善して高強度且つ高延
性を達成するという観点から、Al,O,C,N,Fe
等の元素の最適な含有量について更に検討を重ねた。
In the above Ti-6Al-4V alloy, O, C, N,
The upper limit of elements such as Fe is standardized as impurities in the United States (AMS 4928L). O: 0.20% or less, C: 0.10% or less, N: 0.
It is set to not more than 05% and Fe: 0.30% or less. However, the present inventors have studied and found that even if they are contained according to the above-mentioned standard, desired characteristics are not always obtained. Therefore, the present inventors
From the viewpoint of improving the properties of -6Al-4V alloy to achieve high strength and high ductility, Al, O, C, N, Fe
Further studies were conducted on the optimum content of elements such as.

【0011】従来Ti合金にNを添加すると、強度は上
がるが延性が著しく劣化すると言われてきた。例えば、
特公平5−72452号には、純TiにNを添加するこ
とによって、強度は上昇するが延性が劣化することが報
告されている。しかしながら、本発明者らが詳細に検討
したところによると、Al,O,CおよびFeをバラン
ス良く添加すれば、図1に示す様にNを0.15%以下
(好ましくは、0.03〜0.15%)添加することに
よって、高強度且つ高延性が達成されることを見いだ
し、本発明を完成した。またCに関しても、Al,O,
NおよびFeをバランス良く添加すれば、図2に示す様
にCを0.10超〜0.20%添加することによって、
高強度且つ高延性が達成されることを見いだした。即
ち、本発明のTi合金は、α安定化元素であるAlを多
量に添加すると共に、OおよびNまたはCを添加し、更
にβ安定化元素であるFeをバランス良く添加したもの
である。まず本発明のTi合金における化学成分限定理
由は、下記の通りである。
It has been conventionally said that when N is added to a Ti alloy, the strength is increased but the ductility is remarkably deteriorated. For example,
Japanese Patent Publication No. 5-72452 reports that the addition of N to pure Ti increases the strength but deteriorates the ductility. However, the present inventors have studied in detail that, when Al, O, C and Fe are added in a well-balanced manner, N is 0.15% or less as shown in FIG. 0.15%), it was found that high strength and high ductility were achieved, and the present invention was completed. As for C, Al, O,
If N and Fe are added in a well-balanced manner, as shown in FIG. 2, by adding C in excess of 0.10 to 0.20%,
It has been found that high strength and high ductility are achieved. That is, the Ti alloy of the present invention is obtained by adding a large amount of Al as an α-stabilizing element, adding O, N or C, and further adding Fe as a β-stabilizing element in a well-balanced manner. First, the reasons for limiting the chemical components in the Ti alloy of the present invention are as follows.

【0012】Al:6.75超〜8.00% Alは、固溶型α安定化元素であり、AlをTiに添加
すると、β変態点は上がり、6%の添加によって約10
0℃上昇する。このようにAlはTi合金の低温相であ
るα相を安定化し、主としてα相中に固溶してα相を強
化するし、Ti合金の強度を上げるのに有効な合金元素
である。通常Alを6%よりも多く添加すると、熱処理
条件によってα2 相(Ti3 Al相)という規則相を生
じ、脆化の原因になると言われている。しかしながら、
本発明ではβ安定化元素として、Vに加えFeを所定量
添加することによって、Alを6.75%よりも多く添
加したTi合金においても、靭性を確保したまま強度向
上が達成されたのである。但し、Alの含有量が8.0
0%を超えると、延性および靭性が著しく劣化し、目標
とする材料特性を得ることができなくなるので、その含
有量は8.00%以下とする必要がある。
Al: more than 6.75 to 8.00% Al is a solid solution type α stabilizing element. When Al is added to Ti, the β transformation point rises, and when 6% is added, it becomes about 10%.
Increase by 0 ° C. As described above, Al is an effective alloying element for stabilizing the α phase, which is a low-temperature phase of the Ti alloy, mainly for solid solution in the α phase to strengthen the α phase, and to increase the strength of the Ti alloy. Usually, when Al is added in an amount of more than 6%, it is said that an ordered phase called an α 2 phase (Ti 3 Al phase) is generated depending on the heat treatment conditions, which causes embrittlement. However,
In the present invention, by adding a predetermined amount of Fe in addition to V as a β-stabilizing element, even in a Ti alloy to which more than 6.75% of Al is added, improvement in strength is achieved while maintaining toughness. . However, the content of Al is 8.0.
If it exceeds 0%, the ductility and toughness are significantly deteriorated and the target material properties cannot be obtained. Therefore, the content must be 8.00% or less.

【0013】V:3.5〜4.5% Vは、全率固溶型のβ安定化元素であり、Vの添加によ
ってβ変態点が下がり、ほぼ4%の添加によって、室温
でβ相が安定なα+β型合金となる。このようにVは、
高温相のβ相を安定化し、塑性加工が容易なβ相を存在
させて、熱間加工性を良くする効果を有する。この様な
効果は、その含有量が3.5%から発揮されるが、4.
5%を超えると、却って延性を劣化させる。
V: 3.5-4.5% V is a β-stabilizing element in the form of a complete solid solution. The addition of V lowers the β transformation point. Is a stable α + β type alloy. Thus, V is
This has the effect of stabilizing the β phase of the high temperature phase and allowing the β phase that is easily plastically worked to exist to improve the hot workability. Such an effect is exhibited when the content is 3.5%,
If it exceeds 5%, the ductility is rather deteriorated.

【0014】Fe:0.25〜0.35% Feは、β共析型のβ安定化元素であり、Vと同様にβ
変態点を低下させてβ相領域を広げる効果を有する。ま
た微量の添加によって、強度を向上させることができ
る。このような効果を発揮させるためには、0.25%
以上添加する必要があるが、0.35%を超えると、延
性が著しく劣化する。
Fe: 0.25 to 0.35% Fe is a β-eutectoid type β-stabilizing element.
It has the effect of lowering the transformation point and widening the β phase region. Also, the strength can be improved by adding a small amount. 0.25%
It is necessary to add the above, but if it exceeds 0.35%, the ductility is remarkably deteriorated.

【0015】O:0.15〜0.25% Oは、その含有量を調節することによって、所定の強度
レベルを得ることができる。Oは侵入型のα安定化元素
で、β変態点を上げるが、微量の添加によって強度向上
に寄与する効果を発揮する。このような効果を発揮させ
るためには、0.15%以上添加する必要があるが、
0.25%を超えると、延性が劣化する。
O: 0.15 to 0.25% O can obtain a predetermined strength level by adjusting its content. O is an interstitial α-stabilizing element which raises the β transformation point, but exerts an effect of improving the strength by adding a small amount. In order to exert such effects, it is necessary to add 0.15% or more,
If it exceeds 0.25%, ductility deteriorates.

【0016】C:0.10%以下または0.10超〜
0.20% Cは、侵入固溶型の元素であり、微量の添加によって強
度向上に寄与することができる。しかしながら、Nの添
加量が0.15%以下(特に、0.03〜0.15%)
のときは、Cの過剰添加は延性を著しく劣化させるの
で、0.10%以下とすべきである。尚Nの添加量を
0.03%以下に制限したときには、Cの添加量を0.
10超〜0.20%とすることによって、却って高強度
且つ高延性を得ることができ、このときはCの添加量が
0.20%を超えると延性が劣化することになる。
C: 0.10% or less or more than 0.10%
0.20% C is an element of an interstitial solid solution type, and can contribute to improvement in strength by adding a small amount. However, the addition amount of N is 0.15% or less (particularly, 0.03 to 0.15%).
In this case, the excessive addition of C significantly deteriorates the ductility, so the content should be 0.10% or less. When the amount of N added was limited to 0.03% or less, the amount of C added was set to 0.
By setting the content to more than 10 to 0.20%, high strength and high ductility can be obtained, and in this case, if the added amount of C exceeds 0.20%, the ductility is deteriorated.

【0017】N:0.15%以下 Nは侵入固溶型のα安定化元素であり、微量の添加によ
ってβ変態点が上がり、また強度向上に寄与することが
できる。しかしながら、Nの含有量が0.15%を超え
ると、延性が低下する。またNによる上記効果を有効に
発揮させるという観点からすれば、Cの添加量が0.1
0%以下のときは、Nは0.03%以上添加することが
好ましく、より好ましくは0.06%以上添加するのが
良い。尚Cの添加量を0.10超〜0.20%としたと
きには、上記の如くNの添加量を0.03%以下に制限
する必要があり、これによって高強度且つ高延性を得る
ことができる。
N: 0.15% or less N is an interstitial solid solution type α-stabilizing element, and can be added to a small amount to increase the β transformation point and contribute to improvement in strength. However, if the N content exceeds 0.15%, the ductility decreases. From the viewpoint of effectively exerting the above effect of N, the addition amount of C is 0.1
When it is 0% or less, N is preferably added at 0.03% or more, more preferably 0.06% or more. When the addition amount of C is more than 0.10 to 0.20%, it is necessary to limit the addition amount of N to 0.03% or less as described above, thereby obtaining high strength and high ductility. it can.

【0018】純Tiにおいては、N添加は同量のOと比
較して、同程度かそれ以上に強度を向上させる作用があ
ることが報告されているが(例えば、「W.L.Finday and
J.A.Snyder:Trans.AIME.188 Feb(1950),p277」 や「R.I.J
affee, H.B.Ogden and D.J.Maykuth: Trans. AIME. 188
Oct (1950), p1261」 等)、本発明はこの様なNの作用
をTi合金に応用したものである。また前記特開平6−
108187号に開示されたTi合金は、AMS規格値
よりも多めのNを含有させてNの添加効果を発揮させる
趣旨の下でなされたものといえるが、前述の如くこの合
金はMoを必須成分として含むものであり、しかもMo
当量が4.0以上であり、高速変形下での延性に劣ると
いう欠点を有するものである。
In pure Ti, it has been reported that the addition of N has an effect of improving the strength to the same degree or more as compared with the same amount of O (for example, "WLFinday and
JASnyder: Trans.AIME.188 Feb (1950), p277 '' and `` RIJ
affee, HBOgden and DJMaykuth: Trans.AIME. 188
Oct (1950), p1261 "etc.), the present invention applies such an action of N to a Ti alloy. Further, the above-mentioned JP-A-6-
The Ti alloy disclosed in Japanese Patent No. 108187 can be said to have been made under the intent of containing N more than the AMS standard value and exerting the effect of adding N. As described above, this alloy contains Mo as an essential component. And Mo
It has a drawback that the equivalent weight is 4.0 or more and the ductility under high-speed deformation is poor.

【0019】以下本発明を実施例によって更に詳細に説
明するが、下記実施例は本発明を限定する性質のもので
はなく、前・後記の趣旨に徴して設計変更することはい
ずれも本発明の技術的範囲に含まれるものである。
The present invention will be described in more detail with reference to the following examples, but the following examples are not intended to limit the present invention, and any modification of the design of the present invention can be made without departing from the spirit of the preceding and following paragraphs. It is included in the technical scope.

【0020】[0020]

【実施例】下記表1に示す化学成分組成を有するインゴ
ットをβ領域で鍛造し、鍛造組織を完全に破壊した後、
900℃以上のα+β領域の温度で十分な加工を施し
た。加工後は、705℃で焼鈍した後、室温にて引張試
験を行ない、各機械的性質(引張強さ、0.2%耐力、
伸び、絞り)を測定した。このとき、引張試験片の作成
および引張試験の実施は、ASTM E8に準処して行
なった。引張試験結果を、下記表2に示す。
EXAMPLE An ingot having the chemical composition shown in Table 1 below was forged in the β region and the forged structure was completely destroyed.
Sufficient processing was performed at a temperature in the α + β region of 900 ° C. or more. After processing, after annealing at 705 ° C., a tensile test is performed at room temperature, and each mechanical property (tensile strength, 0.2% proof stress,
Elongation, drawing) were measured. At this time, the preparation of the tensile test piece and the execution of the tensile test were performed according to ASTM E8. The results of the tensile test are shown in Table 2 below.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】これらの結果から、次の様に考察できる。
まず合金No.1は、AMS規格で作製したTi−6A
l−4V合金であるが、焼鈍処理だけでは引張強さは
1.1GPaを超えなかった。また合金No.2も、A
MS規格で作製したTi−6Al−4V合金であり、こ
の合金は合金No.1に比べ、Al,Fe,Oを規格限
界値に近い量まで添加したものであるが、引張強さで
1.1GPaを超えることはなかった。
From these results, the following can be considered.
First, alloy No. 1 is Ti-6A manufactured according to AMS standard
Although it is a 1-4V alloy, the tensile strength did not exceed 1.1 GPa only by annealing. Alloy No. 2 also A
This is a Ti-6Al-4V alloy manufactured according to the MS standard. Compared with No. 1, Al, Fe, and O were added to an amount close to the specification limit value, but the tensile strength did not exceed 1.1 GPa.

【0024】合金No.8は、本発明で規定する範囲よ
りもN含有量を多くして作製したTi合金(比較例)で
あるが、引張強さは大きくなったものの、延性(伸びお
よび絞り)が著しく劣化していた。合金No.9は、本
発明で規定する範囲よりもFe含有量を少なくして作製
したTi合金(比較例)であるが、この合金では延性
(伸びおよび絞り)は良好であるものの、引張強さが
1.1GPaを下回っていた。合金No.10は、本発
明で規定する範囲よりもAl含有量を多くして作製した
Ti合金(比較例)であるが、伸びがTi−6Al−4
Vの規格値である10%を下回っていた。
Alloy No. 8 is a Ti alloy (Comparative Example) produced with a higher N content than the range specified in the present invention, but the tensile strength was increased, but the ductility (elongation and drawing) was significantly deteriorated. Was. Alloy No. Reference numeral 9 denotes a Ti alloy (Comparative Example) produced with a Fe content lower than the range specified in the present invention. In this alloy, although the ductility (elongation and reduction) is good, the tensile strength is 1%. .1 GPa. Alloy No. 10 is a Ti alloy (Comparative Example) produced by increasing the Al content beyond the range specified in the present invention, but having an elongation of Ti-6Al-4.
V was below the standard value of 10%.

【0025】これらに対し、合金No.3〜7のもの
は、本発明で規定する要件を満足する実施例であり、い
ずれも引張強さは1.1GPaを超え、且つ伸びもTi
−6Al−4Vの規格値である10%を大きく上回って
いることがわかる。また合金No.11および12のも
のは、合金No.3〜7の実施例に比べてC含有量を増
やし且つNの添加量を少なくした実施例であるが、いず
れも引張り強さは1.1GPaを超え、且つ伸びもTi
−6Al−4Vの規格値である10%を大きく上回って
いることがわかる。尚合金No.13および14のもの
は、C含有量を本発明で規定する範囲(0.20%)よ
りも多くして作成した比較例であるが、強度は1.1G
Paを上回るものの、伸びが10%を大きく下回ってい
た。
On the other hand, alloy No. Examples 3 to 7 are examples satisfying the requirements defined in the present invention, and all have tensile strengths exceeding 1.1 GPa and elongations of Ti
It can be seen that it greatly exceeds the standard value of 10% of -6Al-4V. Alloy No. 11 and 12 are alloy Nos. In these examples, the C content was increased and the amount of N added was reduced as compared with the examples 3 to 7, but the tensile strength exceeded 1.1 GPa and the elongation was Ti.
It can be seen that it greatly exceeds the standard value of 10% of -6Al-4V. Alloy No. Samples Nos. 13 and 14 are comparative examples prepared by making the C content higher than the range (0.20%) specified in the present invention, but the strength is 1.1 G.
Although it exceeded Pa, the elongation was much less than 10%.

【0026】[0026]

【発明の効果】本発明は以上の様に構成されており、溶
体化処理を施さずとも高強度が得られ、しかも高延性が
達成できるTi合金が実現できた。またこのTi合金
は、焼入れ等による材料の反りに対する矯正加工の必要
がなくなるので、加工しろを多くとる必要がなく、歩留
りが良いという効果も得られる。そしてこの様なTi合
金は、Ti合金の適用範囲を更に拡大するものと期待さ
れる。
EFFECTS OF THE INVENTION The present invention is constructed as described above, and it is possible to realize a Ti alloy which can obtain high strength and high ductility without being subjected to solution treatment. In addition, since the Ti alloy does not need to perform a correction process for the warpage of the material due to quenching or the like, there is no need to take a large amount of working margin, and an effect that the yield is good can be obtained. Such a Ti alloy is expected to further expand the application range of the Ti alloy.

【図面の簡単な説明】[Brief description of drawings]

【図1】Ti合金の機械的性質とN添加量の関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between the mechanical properties of a Ti alloy and the amount of N added.

【図2】Ti合金の機械的性質とC添加量の関係を示す
グラフである。
FIG. 2 is a graph showing the relationship between the mechanical properties of a Ti alloy and the amount of C added.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年11月7日[Submission date] November 7, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0020[Correction target item name] 0020

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0020】[0020]

【実施例】下記表1に示す化学成分組成を有するインゴ
ットをβ領域で鍛造し、鋳造組織を完全に破壊した後、
900℃以上のα+β領域の温度で十分な加工を施し
た。加工後は、705℃で焼鈍した後、室温にて引張試
験を行ない、各機械的性質(引張強さ、0.2%耐力、
伸び、絞り)を測定した。このとき、引張試験片の作成
および引張試験の実施は、ASTM E8に準処して行
なった。引張試験結果を、下記表2に示す。
EXAMPLE An ingot having the chemical composition shown in Table 1 below was forged in the β region, and the cast structure was completely destroyed.
Sufficient processing was performed at a temperature in the α + β region of 900 ° C. or more. After processing, after annealing at 705 ° C., a tensile test is performed at room temperature, and each mechanical property (tensile strength, 0.2% proof stress,
Elongation, drawing) were measured. At this time, the preparation of the tensile test piece and the execution of the tensile test were performed according to ASTM E8. The results of the tensile test are shown in Table 2 below.

フロントページの続き (72)発明者 北川 喜久 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 小出 憲司 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内Front Page Continuation (72) Inventor Yoshihisa Kitagawa 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Inside Kobe Research Institute of Kobe Steel, Ltd. (72) Kenji Koide 1 Takazukadai, Nishi-ku, Kobe-shi, Hyogo Prefecture 5th-5th Kobe Steel Works, Ltd. Kobe Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Al:6.75超〜8.00%(重量%
の意味、以下同じ),V:3.5〜4.5%,Fe:
0.25〜0.35%,O:0.15〜0.25%,
C:0.10%以下,N:0.15%以下を夫々含有
し、残部がTiおよび不可避不純物からなることを特徴
とする高強度高延性Ti合金。
1. Al: more than 6.75 to 8.00% (% by weight)
, V: 3.5 to 4.5%, Fe:
0.25 to 0.35%, O: 0.15 to 0.25%,
A high-strength, high-ductility Ti alloy containing C: 0.10% or less and N: 0.15% or less, with the balance being Ti and unavoidable impurities.
【請求項2】 Nの含有量が0.03〜0.15%であ
る請求項1に記載の高強度高延性Ti合金。
2. The high-strength and high-ductility Ti alloy according to claim 1, wherein the content of N is 0.03 to 0.15%.
【請求項3】 Al:6.75超〜8.00%,V:
3.5〜4.5%,Fe:0.25〜0.35%,O:
0.15〜0.25%,C:0.10超〜0.20%,
N:0.03%以下を夫々含有し、残部がTiおよび不
可避不純物からなることを特徴とする高強度高延性Ti
合金。
3. Al: more than 6.75 to 8.00%, V:
3.5-4.5%, Fe: 0.25-0.35%, O:
0.15 to 0.25%, C: more than 0.10 to 0.20%,
N: 0.03% or less, the balance being Ti and unavoidable impurities, characterized by high strength and high ductility Ti
alloy.
JP29512894A 1994-11-29 1994-11-29 High strength and high ductility Ti alloy Expired - Lifetime JP2608689B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29512894A JP2608689B2 (en) 1994-11-29 1994-11-29 High strength and high ductility Ti alloy
US08/564,622 US5759484A (en) 1994-11-29 1995-11-29 High strength and high ductility titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29512894A JP2608689B2 (en) 1994-11-29 1994-11-29 High strength and high ductility Ti alloy

Publications (2)

Publication Number Publication Date
JPH08157987A true JPH08157987A (en) 1996-06-18
JP2608689B2 JP2608689B2 (en) 1997-05-07

Family

ID=17816654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29512894A Expired - Lifetime JP2608689B2 (en) 1994-11-29 1994-11-29 High strength and high ductility Ti alloy

Country Status (1)

Country Link
JP (1) JP2608689B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012023620A1 (en) * 2010-08-20 2012-02-23 日本発條株式会社 High-strength titanium alloy member and process for production thereof
WO2012169305A1 (en) * 2011-06-07 2012-12-13 日本発條株式会社 Titanium alloy member and production method therefor
WO2012169304A1 (en) * 2011-06-09 2012-12-13 日本発條株式会社 Titanium alloy member and production method therefor
CN106702208A (en) * 2016-12-14 2017-05-24 张家港市广大机械锻造有限公司 High-temperature alloy with high tensile strength
JP2017522449A (en) * 2014-05-15 2017-08-10 ゼネラル・エレクトリック・カンパニイ Titanium alloy and manufacturing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10151019B2 (en) 2010-08-20 2018-12-11 Nhk Spring Co., Ltd. High-strength titanium alloy member and production method for same
JP2012041609A (en) * 2010-08-20 2012-03-01 Nhk Spring Co Ltd High-strength titanium alloy member and process for production thereof
WO2012023620A1 (en) * 2010-08-20 2012-02-23 日本発條株式会社 High-strength titanium alloy member and process for production thereof
EP2607507A1 (en) * 2010-08-20 2013-06-26 Nhk Spring Co., Ltd. High-strength titanium alloy member and process for production thereof
EP2607507A4 (en) * 2010-08-20 2015-09-23 Nhk Spring Co Ltd High-strength titanium alloy member and process for production thereof
WO2012169305A1 (en) * 2011-06-07 2012-12-13 日本発條株式会社 Titanium alloy member and production method therefor
JP2012251234A (en) * 2011-06-07 2012-12-20 Nhk Spring Co Ltd Titanium alloy member and method for producing the same
US10350681B2 (en) 2011-06-07 2019-07-16 Nhk Spring Co., Ltd. Titanium alloy member and production method therefor
WO2012169304A1 (en) * 2011-06-09 2012-12-13 日本発條株式会社 Titanium alloy member and production method therefor
US9920399B2 (en) 2011-06-09 2018-03-20 Nhk Spring Co., Ltd. Titanium alloy member and production method therefor
JP2012255192A (en) * 2011-06-09 2012-12-27 Nhk Spring Co Ltd Titanium alloy member, and production method therefor
JP2017522449A (en) * 2014-05-15 2017-08-10 ゼネラル・エレクトリック・カンパニイ Titanium alloy and manufacturing method thereof
CN106702208A (en) * 2016-12-14 2017-05-24 张家港市广大机械锻造有限公司 High-temperature alloy with high tensile strength

Also Published As

Publication number Publication date
JP2608689B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
JP3959766B2 (en) Treatment method of Ti alloy with excellent heat resistance
US5759484A (en) High strength and high ductility titanium alloy
JP3319195B2 (en) Toughening method of α + β type titanium alloy
EP1340825B1 (en) Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring
JP2606023B2 (en) Method for producing high strength and high toughness α + β type titanium alloy
JP2988246B2 (en) Method for producing (α + β) type titanium alloy superplastic formed member
JPH0754114A (en) Improved low-cost ti-6a1-4v varistick alloy
US11920231B2 (en) Creep resistant titanium alloys
JP2004010963A (en) HIGH STRENGTH Ti ALLOY AND ITS PRODUCTION METHOD
JP3873313B2 (en) Method for producing high-strength titanium alloy
JP3308090B2 (en) Fe-based super heat-resistant alloy
JP3076696B2 (en) α + β type titanium alloy
JP2022502568A (en) Titanium alloy with medium strength and high ductility
EP0593824A1 (en) Nickel aluminide base single crystal alloys and method
JPS63171862A (en) Manufacture of heat resistant ti-al alloy
KR102332018B1 (en) High temperature titanium alloy and method for manufacturing the same
JP2608689B2 (en) High strength and high ductility Ti alloy
KR102318721B1 (en) Beta titanium alloys with excellent mechanical properties and ductility
US2821475A (en) Titanium base alloys
JPS61147834A (en) Corrosion-resistant high-strength ni alloy
JP2608688B2 (en) High strength and high ductility Ti alloy
JPH05255780A (en) High strength titanium alloy having uniform and fine structure
JP2001152268A (en) High strength titanium alloy
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JPH11117020A (en) Production of heat resistant parts

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961217

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140213

Year of fee payment: 17

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term