JP2013001946A - Titanium alloy member having bidirectional shape-memory characteristic, and manufacturing method therefor - Google Patents

Titanium alloy member having bidirectional shape-memory characteristic, and manufacturing method therefor Download PDF

Info

Publication number
JP2013001946A
JP2013001946A JP2011133357A JP2011133357A JP2013001946A JP 2013001946 A JP2013001946 A JP 2013001946A JP 2011133357 A JP2011133357 A JP 2011133357A JP 2011133357 A JP2011133357 A JP 2011133357A JP 2013001946 A JP2013001946 A JP 2013001946A
Authority
JP
Japan
Prior art keywords
phase
shape memory
less
titanium alloy
memory characteristics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011133357A
Other languages
Japanese (ja)
Other versions
JP5605316B2 (en
Inventor
Tomonori Kunieda
知徳 國枝
Kazuhiro Takahashi
一浩 高橋
Hideki Fujii
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2011133357A priority Critical patent/JP5605316B2/en
Publication of JP2013001946A publication Critical patent/JP2013001946A/en
Application granted granted Critical
Publication of JP5605316B2 publication Critical patent/JP5605316B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Materials For Medical Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a titanium alloy member having bidirectional shape-memory characteristics.SOLUTION: The titanium alloy member having bidirectional shape-memory characteristics contains 4.0 to <5.5% Al, 1.1 to <3.1% Fe, 1.0 to <4.0% Cr, 0.5 to <5.5% Mo. The contents of adding elements are characterized in that in the formula where Mo equivalent=2.9×[%Fe]+1.6×[%Cr]+[%Mo]-[%Al], Mo equivalent contains 4.5 to <9.4%, while restraining Si to be <0.1% and C to be <0.01%, and including the balance composed of Ti with inevitable impurities. Furthermore, a pro-eutectoid α-phase in an optical microscope structure is 45% or lower, by cooling with cooling speed of water-cooling or more in the temperature range of β single-phase zone upper limit from the β transformation point-100°C.

Description

本発明は、航空機や二輪および四輪の自動車のファスナーとして適した、温度によって、変形方向が逆の、二方向の形状記憶特性を有するチタン合金部材及びその製造方法に関する。   The present invention relates to a titanium alloy member suitable for use as a fastener for aircrafts, two-wheeled vehicles and four-wheeled vehicles, having a shape memory characteristic in two directions whose deformation direction is reversed depending on temperature, and a method for manufacturing the same.

形状記憶合金は、加工後に熱を加えることにより、加工前の形状に戻る特殊な合金であり、航空宇宙分野のほか、自動車や家電のアクチュエータ、歯列矯正ワイヤ、医療用具、携帯電話のアンテナ、めがねフレームなどに広く使用されている。   Shape memory alloy is a special alloy that returns to the shape before processing by applying heat after processing. In addition to the aerospace field, actuators for automobiles and home appliances, orthodontic wires, medical tools, mobile phone antennas, Widely used in eyeglass frames.

機能材料として現実、実用化されている形状記憶合金の1つに、チタンとニッケルの原子比が1:1である合金(ニチノール)があり、高強度、耐熱性、耐摩耗性、耐食性に優れている。このニチノールは、強加工、拘束加熱、トレーニング、拘束時効などの特別な処理を施すことにより、温度の変化だけで、高温、低温の形状が繰り返し可逆変化を有する、変形方向が逆の二方向形状記憶特性を発現することができる。   One shape memory alloy that is practically used as a functional material is an alloy having a 1: 1 atomic ratio of titanium to nickel (Nitinol), which has excellent strength, heat resistance, wear resistance, and corrosion resistance. ing. Nitinol is a two-way shape with a reversible deformation direction that undergoes reversible changes at high and low temperatures only by changing the temperature by applying special treatments such as strong processing, restraint heating, training, and restraint aging. Memory characteristics can be developed.

それに対し、チタン合金においても、形状記憶特性を有する合金が知られている。代表的な形状記憶特性を有する合金としては、Ti−10V−2Fe−3Al、Ti−15.4V−4Al、チタンとジルコニウムの両方または少なくとも1つの元素にニオブとタンタルを合計で10〜20元素%、かつ錫を3〜6元素%含有した合金(特許文献1)、チタンに10〜15質量%のモリブデンおよび5%以下のアルミニウムを含有させた合金(特許文献2)、Ti−Sc−X合金であって、1at%≦Sc≦30at%、1at%≦X≦15at%(但し、X=V,Nb,Mo,Taの内の一種若しくは数種の組み合わせ)からなる合金(特許文献3)、チタンに8重量%モリブデン及び5重量%錫にアルミニウムとジルコニウムと錫が合計で10質量%含有させた合金(非特許文献1)が知られている。   In contrast, titanium alloys having shape memory characteristics are also known. Examples of alloys having typical shape memory characteristics include Ti-10V-2Fe-3Al, Ti-15.4V-4Al, both titanium and zirconium, or at least one element containing niobium and tantalum in a total of 10 to 20 element%. And an alloy containing 3 to 6 elemental tin (Patent Document 1), an alloy containing 10 to 15 mass% molybdenum and 5% or less of aluminum in titanium (Patent Document 2), Ti-Sc-X alloy 1 at% ≦ Sc ≦ 30 at%, 1 at% ≦ X ≦ 15 at% (provided that X = V, Nb, Mo, Ta, or some combination thereof) (Patent Document 3), An alloy (Non-Patent Document 1) is known in which 8% by weight molybdenum in titanium and 5% by weight tin contain a total of 10% by mass of aluminum, zirconium, and tin.

特許第3521253号公報Japanese Patent No. 3512253 特許第1258024号公報Japanese Patent No. 1258024 特許第4220772号公報Japanese Patent No. 4220772

SIXTH WORLD CONFERENCE ON TITANIUM 1988 P.1069SIXTH WORLD CONFERENCE ON TITANIUM 1988 P.1069

形状記憶特性を有するチタン合金は、形状記憶特性を発現させるためβ相を安定化させる必要があり、Nb、V、Moといった比較的高価なβ安定化元素を多量に添加している。また、その形状記憶特性はほとんどの場合、一方向のみであり、二方向の形状記憶特性を有していない。   A titanium alloy having shape memory characteristics needs to stabilize the β phase in order to develop shape memory characteristics, and a relatively expensive β stabilizing element such as Nb, V, or Mo is added in a large amount. Further, in most cases, the shape memory characteristic is only in one direction and does not have the shape memory characteristic in two directions.

チタンとジルコニウムの両方または少なくとも1つの元素にニオブとタンタルを合計で10〜20元素%、かつ錫を3〜6元素%含有した合金では(特許文献1参照)、ニオブやタンタルを多量に含んでおり、コストが非常に高くなる。   An alloy containing 10 to 20 element% in total of niobium and tantalum in both titanium and zirconium or at least one element and 3 to 6 element% in tin (see Patent Document 1) contains a large amount of niobium and tantalum. And the cost is very high.

また、チタンに10〜15質量%のモリブデンおよび5%以下のアルミニウムを添加した合金でも(特許文献2参照)、モリブデンを10%以上含んでおり、コストが非常に高い。また、モリブデンは多量に添加すると偏析しやすいため、溶解が非常に難しい。   Further, even an alloy in which 10 to 15% by mass of molybdenum and 5% or less of aluminum are added to titanium (see Patent Document 2) contains 10% or more of molybdenum, and the cost is very high. Moreover, since molybdenum is easily segregated when added in a large amount, it is very difficult to dissolve.

また、Ti−Sc−X合金であって、1at%≦Sc≦30at%、1at%≦X≦15at%(但し、X=V,Nb,Mo,Taの内の一種若しくは数種の組み合わせ)からなる合金では(特許文献3参照)、Scは非常に高価で希少な金属であることから、%単位の合金元素として添加することは工業的に難しいと考えられる。
また、チタンに8重量%モリブデン及び5重量%錫にアルミニウムとジルコニウムと錫が合計で10質量%含有させた合金は(非特許文献1参照)、温度によって変形方向が逆の二方向性の形状記憶特性を有しているが、アルミニウムとジルコニウムと錫を合計で10質量%も含んでいるため、加工性が非常に悪い。
Further, it is a Ti—Sc—X alloy, from 1 at% ≦ Sc ≦ 30 at%, 1 at% ≦ X ≦ 15 at% (provided that X = V, Nb, Mo, Ta, or a combination of several). In such an alloy (see Patent Document 3), since Sc is a very expensive and rare metal, it is considered industrially difficult to add it as an alloy element in% units.
An alloy in which 8% by weight molybdenum in titanium and 10% by weight of aluminum, zirconium and tin in total in 5% by weight tin (see Non-Patent Document 1) has a bi-directional shape whose deformation direction is reversed depending on the temperature. Although it has memory characteristics, it contains a total of 10% by mass of aluminum, zirconium, and tin, so the workability is very poor.

本発明は、二方向の形状記憶特性を有し、コストが安く、加工性などの点で製造が容易なチタン合金部材を提供することを目的とする。   An object of the present invention is to provide a titanium alloy member that has two-way shape memory characteristics, is inexpensive, and is easy to manufacture in terms of workability.

本発明者は、比較的安価な元素であるFeを活用し、合金組成をMo当量からなる式にて調整することにより、温度によって変形方向が逆の二方向の形状記憶特性を有するチタン合金について、鋭意研究を重ねた。その結果、各元素の含有量をある所定内とすることで、二方向の形状記憶特性を発現することを見出した。   The present inventor uses a relatively inexpensive element Fe, and adjusts the alloy composition with a formula consisting of Mo equivalents, thereby obtaining a titanium alloy having two-way shape memory characteristics whose deformation direction is reversed depending on the temperature. , Earnest research. As a result, it has been found that by setting the content of each element within a predetermined range, shape memory characteristics in two directions are expressed.

上記課題を解決するために本発明の要旨は、以下の通りである。
(1)質量%で4.0%以上5.5%未満のAl、1.1%以上3.1%未満のFe、1.0%以上4.0%未満のCr、0.5%以上5.5%未満のMoを含有し、下記式で表されるMo当量が4.5以上9.4%未満であり、且つ、Si:0.1%未満、C :0.01%未満に抑制し、残部Ti及び不可避的不純物からなることを特徴とする、二方向の形状記憶特性を有するチタン合金部材。
Mo当量=2.9×[%Fe]+1.6×[%Cr]+[%Mo]−[%Al]
(2)光学顕微鏡組織で、α相が45面積%以下であり、残部がβ相またはβ相とマルテンサイト相、及び不可避的な相であることを特徴とする、前記(1)に記載の二方向の形状記憶特性を有するチタン合金部材。
(3)最終焼鈍工程において、β変態点−100℃からβ単相域上限までの温度範囲内から水冷以上の冷却速度で冷却することを特徴とする、前記(1)又は(2)に記載の二方向の形状記憶特性を有するチタン合金部材の製造方法。
In order to solve the above problems, the gist of the present invention is as follows.
(1) 4.0% or more and less than 5.5% Al, 1.1% or more and less than 3.1% Fe, 1.0% or more and less than 4.0% Cr, 0.5% or more by mass% It contains less than 5.5% Mo, the Mo equivalent represented by the following formula is 4.5 or more and less than 9.4%, and Si: less than 0.1%, C: less than 0.01% Titanium alloy member having shape memory characteristics in two directions, characterized by comprising a balance Ti and inevitable impurities.
Mo equivalent = 2.9 × [% Fe] + 1.6 × [% Cr] + [% Mo] − [% Al]
(2) The optical microscope structure, wherein the α phase is 45 area% or less, and the remainder is a β phase or a β phase and a martensite phase, and an inevitable phase, as described in (1) above A titanium alloy member having shape memory characteristics in two directions.
(3) In the final annealing step, cooling is performed at a cooling rate equal to or higher than water cooling from within a temperature range from a β transformation point of −100 ° C. to an upper limit of a β single phase region, as described in (1) or (2) above The manufacturing method of the titanium alloy member which has the shape memory characteristic of two directions of these.

本発明によって、一般的な形状記憶チタン合金よりも安価であり、かつ、二方向の形状記憶特性を有するチタン合金を提供できるため、産業上の効果は計り知れない。   Since the present invention can provide a titanium alloy that is less expensive than a general shape memory titanium alloy and has shape memory characteristics in two directions, industrial effects are immeasurable.

本発明材であって、水冷した試料の光学顕微鏡組織写真である。It is an optical microscope structure | tissue photograph of this invention material and a water-cooled sample. 化学成分は本発明に含まれるが、二方向の形状記憶特性が本発明に含まれない、空冷した試料の光学顕微鏡組織写真である。Chemical components are included in the present invention, but are optical micrographs of air-cooled samples that do not include bi-directional shape memory properties in the present invention. 曲げ試験による形状記憶特性結果の一例を示す図である。It is a figure which shows an example of the shape memory characteristic result by a bending test.

以下に、本発明について詳しく説明する。以降、添加元素の含有量は「質量%」で示す。   The present invention is described in detail below. Hereinafter, the content of the additive element is indicated by “mass%”.

本発明の材料指標について説明する。チタン合金において、β相を主とするβ型チタン合金において形状記憶特性を発現する。β相を確保する方法として従来は、共析型β安定化元素であるFe、Ni、Cr、Mn、全率固溶型β安定化元素であるV、Mo等の置換型固溶元素を多量に添加している。しかし、Ti材料においてβ相を室温で確保するためには、Mo当量において8%近く添加する必要がある。Moは比較的高価な元素であるため、Moのみでβ相を確保しようとすると合金コストが非常に高くなってしまう。そこで、本発明者はβ相安定化元素の添加量指針であるMo当量を維持できる上、比較的安価な元素であるFeを添加することを指針とした。且つ、形状記憶特性はβ相の加工誘起マルテンサイト変態により生じることから、β相量を確保する一方で、β相そのものの安定度をある程度低下させ、マルテンサイト変態させ易くする必要がある。   The material index of the present invention will be described. Titanium alloys exhibit shape memory characteristics in β-type titanium alloys mainly composed of β-phase. As a method for securing the β phase, a large amount of substitutional solid solution elements such as eutectoid β stabilization elements Fe, Ni, Cr, Mn, and all-solid solution β stabilization elements V, Mo, etc. It has been added to. However, in order to ensure the β phase at room temperature in the Ti material, it is necessary to add nearly 8% in terms of Mo equivalent. Since Mo is a relatively expensive element, an attempt to secure a β phase with only Mo results in an extremely high alloy cost. Accordingly, the present inventor can maintain the Mo equivalent, which is a guideline for the addition amount of the β-phase stabilizing element, and add Fe, which is a relatively inexpensive element, as a guideline. In addition, since the shape memory characteristic is caused by the β-phase processing-induced martensitic transformation, it is necessary to secure the amount of β-phase while reducing the stability of the β-phase itself to some extent to facilitate martensitic transformation.

後述するように、本発明において、鋭意検討を進めた結果、二方向の形状記憶特性を得るに必要なβ相量を確保するために、Mo当量において4.5%以上必要であり、かつ、マルテンサイト変態させるβ相自体の安定度を適度にするためにMo当量を9.4%未満にする必要があることを見出した。また、形状記憶特性は上述したように、一般的にβ相により発現する一方で、α相は寄与せず、逆に塑性変形して、形状記憶特性の発現にとって支障となることから、α相の光学顕微鏡組織における面積率を45%以下にすることが必要であることを見出した。   As will be described later, in the present invention, as a result of earnest investigation, in order to ensure the β phase amount necessary to obtain the shape memory characteristics in two directions, 4.5% or more in Mo equivalent is necessary, and It has been found that the Mo equivalent needs to be less than 9.4% in order to make the stability of the β phase itself undergoing martensitic transformation moderate. In addition, as described above, the shape memory characteristics are generally expressed by the β phase, but the α phase does not contribute, and conversely plastic deformation, which hinders the expression of the shape memory characteristics. It was found that the area ratio in the optical microscopic structure of the product should be 45% or less.

[添加元素量の指標]
形状記憶特性を発現させるためには、多量のβ相を室温で安定にさせる必要がある。それに対して、β安定化元素の添加量を多くしすぎると、合金コストの上昇や、添加元素の凝固時の偏析、さらにはβ相が安定化になりすぎ形状記憶特性を発現しなくなるため、添加元素を適量添加する必要がある。本発明では添加元素の添加量を、β相安定度の指標として一般に用いられる、下記に示すMo当量により調整することとした。
Mo当量=2.9×[%Fe]+1.6×[%Cr]+[%Mo]−[%Al]
[Indicator of additive element content]
In order to develop shape memory characteristics, it is necessary to stabilize a large amount of β phase at room temperature. On the other hand, if the amount of β-stabilizing element added is too large, the alloy cost will increase, segregation during solidification of the additive element, and the β phase will be too stable to express shape memory characteristics. It is necessary to add an appropriate amount of additive elements. In the present invention, the addition amount of the additive element is adjusted by the Mo equivalent shown below, which is generally used as an indicator of β-phase stability.
Mo equivalent = 2.9 × [% Fe] + 1.6 × [% Cr] + [% Mo] − [% Al]

[Mo当量の指標]
チタン合金では、α+β高温領域またはβ単相領域での加熱後、冷却することによりβ相を多量に残留させることができる。一般的にチタン合金において形状記憶特性はβ相が加工時に加工誘起マルテンサイト変態により変形したものが、熱処理により逆変態しβ相に戻ることにより生じる。したがって、β相量を一定量以上確保する一方で、加工誘起マルテンサイト変態を生じさせ易くするために、β相自体の安定度をある程度低下させる必要がある。しかしながら、上述のMo当量が低過ぎると、必要なβ相量を確保できないばかりか、冷却時にβ相の大部分がマルテンサイト相を生成してしまうため、好ましくない。冷却時にβ相を残留させるために熱処理温度を下げすぎると、α相の面積率が上昇する。後述するように、二方向の形状記憶特性を発現させるためにはα相の面積率を45%以下にする必要がある。このため、本発明の成分系の近傍およびその範囲内における実験室レベルの100g真空アーク溶解試料20チャージを用いた検討試験において、β相安定化の指標であるMo当量の下限を4.5%以上とする必要があることが判明した。しかし、逆にMo当量が高くなりすぎると、β相が安定になりすぎ、変形時に加工誘起マルテンサイト変態が生じなくなり、二方向の形状記憶特性を発現しない。前記検討試験では、Mo当量の上限を9.4%とする必要のあることが判明した。
[Indicator of Mo equivalent]
In a titanium alloy, a large amount of β phase can be left by cooling after heating in the α + β high temperature region or β single phase region. In general, in a titanium alloy, shape memory characteristics are caused by a β-phase deformed by processing-induced martensite transformation during processing, and reverse transformation by heat treatment to return to the β-phase. Therefore, it is necessary to reduce the stability of the β phase itself to some extent in order to secure the β phase amount to a certain amount or more and to easily cause the processing-induced martensitic transformation. However, if the above-mentioned Mo equivalent is too low, the necessary β phase amount cannot be ensured, and the majority of the β phase generates a martensite phase during cooling, which is not preferable. If the heat treatment temperature is lowered too much to leave the β phase during cooling, the area ratio of the α phase will increase. As will be described later, the area ratio of the α phase needs to be 45% or less in order to develop the shape memory characteristics in two directions. For this reason, in the examination using the laboratory-level 100 g vacuum arc melting sample 20 charge in the vicinity of and within the component system of the present invention, the lower limit of the Mo equivalent which is an indicator of β-phase stabilization is 4.5%. It became clear that it was necessary to do it above. On the other hand, if the Mo equivalent becomes too high, the β phase becomes too stable, and the processing-induced martensitic transformation does not occur at the time of deformation, and the shape memory characteristics in two directions are not exhibited. In the examination test, it was found that the upper limit of Mo equivalent needs to be 9.4%.

[Alの添加量]
Alはα安定化元素であり、β相を安定にするためには極力添加量を少なくする必要がある。しかしながら、Alはβ相内のω相の生成を抑制することから4.0%以上とした。しかしながら、添加量を多くすると、β安定化元素の添加量も多くなること、また、冷間加工性が劣化することから、上限を5.5%とした。
[Al addition amount]
Al is an α stabilizing element, and it is necessary to reduce the addition amount as much as possible in order to stabilize the β phase. However, since Al suppresses the generation of the ω phase in the β phase, the content is set to 4.0% or more. However, when the addition amount is increased, the addition amount of the β-stabilizing element is also increased, and the cold workability deteriorates, so the upper limit was set to 5.5%.

[Fe、Cr、Moの添加量]
β相を室温で安定化させ、且つ、二方向の形状記憶特性を発現させるためには、β安定化元素の添加量を適切な範囲に制限する必要がある。β安定化元素としては、汎用合金のTi−6Al−4Vに代表されるようにVが有名であるが、Vは人体に毒性を示す元素であり、特に医療用に用いるのに適さない。そこで、本発明ではβ安定化元素として、Vを用いず、Fe、Cr、Moを用いることとした。Feは、β安定化置換型固溶元素であり、添加量にしたがって室温でのβ相の安定化度が増していく。比較的高価な添加元素を極力低減するためには1.1%以上の添加が必要である。しかしながら、凝固時に偏析しやすいため、添加量を多くするとその影響が顕著にあらわれる。そのため、添加量の上限を3.1%とした。CrはMoに比べ、β安定化能が高い元素であり、添加量をより少なくすることができる。そのため、0.5%以上のCrを含有させる。しかしながら、Crは凝固時に偏析しやすいため、添加の上限を4.0%とした。Moは0.5%以上添加することで、本発明の低度なβ安定化能を確保することができる。一方、Moは凝固時に偏析しやすく部位による特性のばらつきを招くとともに、比較的高価な元素であることから、上限を5.5%とした。
[Fe, Cr, Mo addition amount]
In order to stabilize the β phase at room temperature and to exhibit the shape memory characteristics in two directions, it is necessary to limit the addition amount of the β stabilizing element to an appropriate range. As a β-stabilizing element, V is famous as represented by Ti-6Al-4V, a general-purpose alloy, but V is an element that is toxic to the human body and is not particularly suitable for medical use. Therefore, in the present invention, Fe, Cr, and Mo are used as β stabilizing elements without using V. Fe is a β-stabilized substitutional solid solution element, and the degree of stabilization of the β phase at room temperature increases according to the amount added. In order to reduce the relatively expensive additive elements as much as possible, addition of 1.1% or more is necessary. However, since it is easy to segregate at the time of solidification, the effect becomes remarkable when the addition amount is increased. Therefore, the upper limit of the addition amount is 3.1%. Cr is an element having a higher β-stabilizing ability than Mo and can be added in a smaller amount. Therefore, 0.5% or more of Cr is contained. However, since Cr is easily segregated during solidification, the upper limit of addition is set to 4.0%. By adding 0.5% or more of Mo, the low β stabilizing ability of the present invention can be secured. On the other hand, Mo is easily segregated at the time of solidification, causing variations in characteristics depending on the site, and is a relatively expensive element, so the upper limit was set to 5.5%.

[SiとCの含有量]
不純物元素として、SiとCは多量に含有すると室温延性、冷間加工性、熱間加工性を低下させてしまう場合があり、Siは0.1%未満、Cは0.01%未満であれば、問題ないレベルであることを見出し、各々の上限とした。なお、Si、Cは不可避的不純物であとして含有が避けられないことから、実質的な含有量の下限値は、通常、Siで0.005%以上、Cで0.0005%以上である。
[Content of Si and C]
As a large amount of impurity elements Si and C, room temperature ductility, cold workability, and hot workability may be deteriorated. Si should be less than 0.1% and C should be less than 0.01%. For example, it was found that there was no problem level, and the upper limit was set for each. Since Si and C are unavoidable inclusions, the lower limit of the substantial content is usually 0.005% or more for Si and 0.0005% or more for C.

[α相粒の面積率]
二方向の形状記憶特性は、β相の残留量によって変化する。たとえば、工業生産条件から外れるような、α単相域の比較的低温で長時間焼鈍した場合は、β相が50%を大きく下回ることがあり、その状態で部材を変形させると、α相が塑性変形(不可逆変形)してしまい、これに力学的に拘束され、部材全体として二方向の形状記憶特性は発現しない。
[Area ratio of α phase grains]
The shape memory characteristics in two directions vary depending on the residual amount of β phase. For example, when annealing is performed for a long time at a relatively low temperature in the α single-phase region that deviates from the industrial production conditions, the β phase may be much lower than 50%. It is plastically deformed (irreversible deformation) and is mechanically constrained by this, and the shape memory characteristics in two directions are not exhibited as a whole member.

まず、β相の残留量の指標を検討した。その結果、初析α相粒の面積率を用いることが適切であることを見出した。但し、この初析α相とは高温熱処理時に生成しているα相であり、二方向の形状記憶特性を得るためにはβ相粒内にα相が析出していない、或いは、その析出量が面積率で非常に少ないことが前提である。これに対して、冷却中にβ相粒内に微細なα相が多く析出した場合、硝フッ酸水溶液(硝酸濃度が約12%、フッ酸濃度が約1.5%)で室温にてエッチングした光学顕微鏡試料を100〜1000倍で光学顕微鏡観察するとβ相粒内が黒色を呈しており、さらに、針状のα相が観察される。このような針状のα相が観察されると、初析α相の面積率が小さくても、初析α相の面積率にこの針状のα相の面積率も加えてα相の面積率としたとき、α相の面積率が45%を明瞭に超えると、二方向の形状記憶特性は発現しなくなってしまう。   First, the index of the residual amount of β phase was examined. As a result, it was found that it is appropriate to use the area ratio of pro-eutectoid α phase grains. However, the pro-eutectoid α phase is an α phase generated during high-temperature heat treatment, and in order to obtain shape memory characteristics in two directions, no α phase is precipitated in the β phase grains, or the amount of precipitation It is assumed that there is very little area ratio. On the other hand, if a lot of fine α-phase is precipitated in the β-phase grains during cooling, it is etched at room temperature with a nitric hydrofluoric acid aqueous solution (nitric acid concentration is about 12%, hydrofluoric acid concentration is about 1.5%). When the obtained optical microscope sample is observed with an optical microscope at a magnification of 100 to 1000, the inside of the β-phase grains is black, and further, an acicular α-phase is observed. When such an acicular α-phase is observed, even if the area ratio of the pro-eutect α phase is small, the area ratio of the α-phase is obtained by adding the area ratio of the acicular α-phase to the area ratio of the pro-eutect α phase. When the area ratio of the α phase clearly exceeds 45%, the shape memory characteristics in the two directions are not expressed.

前記の実験室レベルの100g真空アーク溶解試料20チャージを用いた検討試験において、α相の面積率が45%を超えると、部材に与えられた変形によって、金属組織内のα相が塑性変形を生じて、部材を力学的に拘束し、二方向性形状記憶特性は発現しなくなる。したがって、本発明の目的を達成するために、α相の面積率は45%以下であることが必要である。   In the examination using the laboratory-level 100 g vacuum arc melting sample 20 charge, when the α phase area ratio exceeds 45%, the α phase in the metal structure is plastically deformed due to the deformation applied to the member. As a result, the member is mechanically restrained, and the bidirectional shape memory characteristic is not developed. Therefore, in order to achieve the object of the present invention, the area ratio of the α phase needs to be 45% or less.

二方向性形状記憶が実用的に意味のある、両方向に5%以上の二方向性形状記憶変形能を示すためには、α相の面積率は35%以下であることが望ましい。   In order to exhibit a bi-directional shape memory deformability of 5% or more in both directions, where bi-directional shape memory is practically meaningful, the area ratio of the α phase is desirably 35% or less.

図1のように、β相粒内に微細なα相がほとんど析出していない場合には、初析α相面積率がα相面積率と等しくなる。そこで、初析α相粒の面積率の測定方法について説明する。この初析α相は、板厚断面の全厚埋め込み研磨試料を前記硝フッ酸水溶液でエッチングした光学顕微鏡写真で容易に判別できる。図1に光学顕微鏡写真の例を示す。図1は、本発明の請求項1の例として900℃から水冷した試料である。なお、図1ではエッチングに硝酸濃度が約12%、フッ酸濃度が約1.5%の硝フッ酸水溶液を用いた。図1にて実線矢印で示した粒径約5μmの白抜けしている(母相のβ相よりもコントラストの薄い)部分が、結晶粒がα相である。一般的な画像解析装置を用いて、1000倍の観察測定視野(板面方向88μm×板厚方向71μm)を全厚埋め込み研磨試料の各部位からランダムに合計25視野観察し、それぞれの視野における初析α相粒が占有する総面積率を計測し、その値の平均値をα相粒の面積率とした。   As shown in FIG. 1, when a fine α-phase is hardly precipitated in β-phase grains, the pro-eutectoid α-phase area ratio becomes equal to the α-phase area ratio. Therefore, a method for measuring the area ratio of pro-eutectoid α phase grains will be described. This pro-eutectoid α phase can be easily discriminated from an optical micrograph obtained by etching a full thickness embedded polishing sample of a plate thickness section with the aqueous fluoric acid solution. FIG. 1 shows an example of an optical micrograph. FIG. 1 shows a sample cooled with water from 900 ° C. as an example of claim 1 of the present invention. In FIG. 1, a nitric hydrofluoric acid aqueous solution having a nitric acid concentration of about 12% and a hydrofluoric acid concentration of about 1.5% was used for etching. In FIG. 1, a white portion having a particle size of about 5 μm indicated by a solid line arrow (a contrast is lower than the β phase of the parent phase) is an α phase crystal grain. Using a general image analyzer, a 1000-times observation field of view (plate surface direction 88 μm × plate thickness direction 71 μm) was randomly observed from each part of the full-thickness embedded polishing sample in total 25 fields. The total area ratio occupied by the deposited α-phase grains was measured, and the average of the values was defined as the area ratio of the α-phase grains.

なお、本発明では図1のように、β相粒内に微細なα相がほとんど析出していないため、硝フッ酸水溶液でエッチングした断面組織にてβ相粒が黒く見えないそのため、初析α相面積率がα相面積率と等しくなる。一方、本発明に該当しない、図2に示す900℃から空冷した断面組織では、β相粒内に微細なα相が析出しているため、硝フッ酸水溶液でエッチングするとβ相粒が光学顕微鏡で黒く見え、さらに、針状のα相の析出がみえる。α相面積率は、初析α相面積率にこの針状のα相の面積率も加えた値となるので、初析α相の面積率と合わせて、α相の面積率は45%を明瞭に超える。   In the present invention, as shown in FIG. 1, since the fine α-phase is hardly precipitated in the β-phase grains, the β-phase grains do not appear black in the cross-sectional structure etched with the aqueous hydrofluoric acid solution. The α phase area ratio becomes equal to the α phase area ratio. On the other hand, in the cross-sectional structure air-cooled from 900 ° C. shown in FIG. It appears black, and acicular α-phase is precipitated. Since the area ratio of the α phase is the value obtained by adding the area ratio of the acicular α phase to the area ratio of the pro-eutectoid α phase, the area ratio of the α phase is 45% together with the area ratio of the pro-eutect α phase. Clearly exceeded.

[β相とマルテンサイト組織]
上述したように、形状記憶特性を発現させるためにはβ相をある程度不安定にする必要がある。そのため、合金組成ないし熱処理温度によりβ相のマルテンサイト変態温度(Ms温度)が室温付近になるようにする必要がある。但し、マルテンサイト単相となると形状記憶特性は発現しなくなる。そのため、合金成分系ないし熱処理条件により、初析α相以外の相は、β相単相ないしβ相とマルテンサイト相の2相とする必要がある。なお、β相もしくはマルテンサイト相の有無は光学顕微鏡ないしX線回折により容易に判別することができる。
[Β-phase and martensite structure]
As described above, it is necessary to make the β phase unstable to some extent in order to develop shape memory characteristics. For this reason, the β-phase martensitic transformation temperature (Ms temperature) needs to be close to room temperature depending on the alloy composition or the heat treatment temperature. However, when it becomes a martensite single phase, the shape memory characteristic does not appear. Therefore, depending on the alloy component system or heat treatment conditions, the phases other than the pro-eutectoid α phase must be a β phase single phase or a β phase and a martensite phase. The presence or absence of a β phase or a martensite phase can be easily determined by an optical microscope or X-ray diffraction.

[チタン合金の製造方法]
本発明のチタン合金は、上記チタン合金の組成を含有した上で、最終焼鈍工程において、β変態点−100℃よりも高温から水冷以上の冷却速度で冷却することにより、45%未満の初析α相と残部がβ相単相もしくβ相とマルテンサイト相及び不可避的な相とすることができる。β変態点温度については、示差熱分析計を用いて求めることができる。
[Production method of titanium alloy]
The titanium alloy of the present invention contains the composition of the above titanium alloy, and in the final annealing step, it is cooled at a cooling rate higher than β transformation point −100 ° C. to a cooling rate of water cooling or more, and less than 45% proeutectoid The α phase and the balance can be a β phase single phase, or a β phase, a martensite phase, and an inevitable phase. The β transformation temperature can be determined using a differential thermal analyzer.

表1に示す成分のチタン合金をアーク溶解し約100gインゴットを作成し、これらを900〜930℃に加熱し、厚み約3mmの板材に熱間鍛造した。さらにこの材料をβ変態点−100℃より高温で30分の大気焼鈍した後、水冷した場合の、構成組織および初析α相の面積率を表2に示す。この熱処理条件では、表2のNo.1〜6およびNo.8〜10のいずれのチタン合金においても、β変態点−100℃より高温から水冷している。一方、表2のNo.7はβ変態点−100℃より低温から水冷している。表1および表2において、本発明範囲から外れる数値にアンダーラインを付している。   Titanium alloys having the components shown in Table 1 were arc-melted to prepare about 100 g ingots, which were heated to 900 to 930 ° C. and hot forged into plate materials having a thickness of about 3 mm. Further, Table 2 shows the structural structure and the area ratio of the pro-eutectoid α phase when the material is air-cooled at a temperature higher than the β transformation point −100 ° C. for 30 minutes and then cooled with water. In this heat treatment condition, No. 1-6 and no. In any of the 8 to 10 titanium alloys, the water is cooled from a temperature higher than the β transformation point −100 ° C. On the other hand, no. 7 is water-cooled from a temperature lower than the β transformation point −100 ° C. In Tables 1 and 2, numerical values outside the scope of the present invention are underlined.

以下に各々の測定条件と試験条件を説明する。全厚断面の光学顕微鏡観察用の樹脂埋め込み研磨材料を硝フッ酸水溶液(硝酸濃度が約12%、フッ酸濃度が約1.5%)を用いて室温でエッチングした後に観察した。構成相の同定はX線回折より行った。β変態温度は、示差熱分析計を用い、各試料を徐々に昇温する試験で測定した。なお、β変態温度以上で実際に析出する相がβ相であることは、別途粉末にした試料をβ変態温度+30〜100℃の温度に保持し、X線回折装置を用いて確認した。   Each measurement condition and test condition will be described below. A resin-embedded polishing material for optical microscope observation of a full-thickness cross section was observed after etching at room temperature using a nitric hydrofluoric acid aqueous solution (nitric acid concentration: about 12%, hydrofluoric acid concentration: about 1.5%). The constituent phases were identified by X-ray diffraction. The β transformation temperature was measured by a test in which each sample was gradually heated using a differential thermal analyzer. In addition, it was confirmed using the X-ray-diffraction apparatus that the phase which actually precipitates more than (beta) transformation temperature is (beta) phase, hold | maintained the sample powdered separately at the temperature of (beta) transformation temperature + 30-100 degreeC.

表1の熱間鍛造した材料を表2に示す各々の温度にて大気焼鈍した後、水冷した場合の、β相の面積率を示す。以下に各々の測定条件と試験条件を説明する。β相の面積率は前記のエッチングした埋め込み試料を用いて、一般的な画像解析装置にて測定した。   Table 1 shows the area ratio of the β phase when the hot forged material in Table 1 is air-cooled at each temperature shown in Table 2 and then water-cooled. Each measurement condition and test condition will be described below. The area ratio of the β phase was measured with a general image analyzer using the etched embedded sample.

二方向の形状記憶特性の測定方法について説明する。本発明では二方向の形状記憶特性を有するかどうかを調べるために曲げ試験を行った。板状の試験片を切出した後、直径が5mmとなるように室温でU字型に曲げ加工を行った。その後、100〜500℃まで、50℃ごとに5分間加熱炉に保持した後、曲げ試験片の曲げ角を測定することにより、二方向の形状記憶特性を評価した。   A method for measuring the shape memory characteristics in two directions will be described. In the present invention, a bending test was conducted in order to examine whether or not the shape memory characteristics are in two directions. After cutting out the plate-like test piece, it was bent into a U-shape at room temperature so that the diameter was 5 mm. Then, after hold | maintaining to 100-500 degreeC for 5 minutes for every 50 degreeC, the shape memory characteristic of two directions was evaluated by measuring the bending angle of a bending test piece.

表2より、請求項1に記載の本発明の合金成分である実施例のNo.1〜5において、β変態点−100℃より高温で熱処理したものは、初析α相の面積率がいずれも45%未満となっている。また、表2に示すように、いずれも100−250℃の間で熱処理を施すことにより、形状記憶特性を示している。また、さらに高温の300−500℃で熱処理を施すことにより、曲げ方向と同一方向への形状記憶特性示しており、二方向の形状記憶特性を示している。   From Table 2, No. of the Example which is an alloy component of this invention of Claim 1 is shown. In 1 to 5, those subjected to heat treatment at a temperature higher than the β transformation point −100 ° C. all have an area ratio of the pro-eutectoid α phase of less than 45%. Moreover, as shown in Table 2, the shape memory characteristics are shown by performing heat treatment between 100-250 ° C. in all cases. In addition, by performing heat treatment at a higher temperature of 300 to 500 ° C., shape memory characteristics in the same direction as the bending direction are shown, and shape memory characteristics in two directions are shown.

一方で、表2の比較例のNo.6は、Mo当量が低いため、光学顕微鏡組織がマルテンサイト単相となっており、表2で示すように二方向の形状記憶特性を有していない。   On the other hand, No. of the comparative example of Table 2. No. 6 has a low Mo equivalent, so that the optical microstructure is a martensite single phase and does not have shape memory characteristics in two directions as shown in Table 2.

また、表2の比較例のNo.7は、Mo当量は所定値内であるが、熱処理温度がβ変態点−100℃より低温となっており、初析α相の面積率が55%と高くなり、表2に示すように二方向の形状記憶特性を示さない。   Further, in the comparative example of Table 2, No. In No. 7, the Mo equivalent is within the predetermined value, but the heat treatment temperature is lower than the β transformation point −100 ° C., and the area ratio of the pro-eutectoid α phase is as high as 55%. Does not show shape memory characteristics of direction.

また、表2の比較例No.8はMo当量が2.9と非常に低くなっており、β相が冷却中にすべてマルテンサイト相に変態しており、表2に示すように二方向の形状記憶特性を示さない。   Further, Comparative Example No. 2 in Table 2 was used. No. 8 has a very low Mo equivalent of 2.9, and all β phases are transformed into a martensite phase during cooling, and as shown in Table 2, it does not exhibit a bi-directional shape memory characteristic.

また、表2の比較例No.9は、Mo当量が12.9と高くβ相が安定となりすぎており、表2に示すように二方向の形状記憶特性を有していない。   Further, Comparative Example No. 2 in Table 2 was used. No. 9 has a high Mo equivalent of 12.9 and the β phase is too stable, and does not have a bi-directional shape memory characteristic as shown in Table 2.

また、表2の比較例No.10は、Feの含有量が少なく、それに伴いMo当量もー2.2と非常に小さくなっている。そのため、表2に示すように二方向の形状記憶特性を示さない。   Further, Comparative Example No. 2 in Table 2 was used. No. 10 has a low Fe content, and accordingly, the Mo equivalent is -2.2, which is very small. Therefore, as shown in Table 2, the shape memory characteristics in two directions are not shown.

本発明の形状記憶特性を有するチタン合金は、その加熱条件を変えてやることにより、二方向の形状記憶特性を発現する。また、従来の形状記憶チタン合金よりも高価な添加元素であるNb、V、Mo等の添加元素量が少なく、コスト面でも非常に有利である。そのため、自動車または二輪車、更には構造用材料のファスナーとして利用することに適しており、これら部品材の軽量化に寄与する。   The titanium alloy having shape memory characteristics of the present invention exhibits two-way shape memory characteristics by changing the heating conditions. In addition, the amount of additive elements such as Nb, V, and Mo, which are more expensive additive elements than conventional shape memory titanium alloys, is small, which is very advantageous in terms of cost. Therefore, it is suitable for use as a fastener for automobiles or motorcycles, and structural materials, and contributes to weight reduction of these component materials.

Claims (3)

質量%で4.0%以上5.5%未満のAl、1.1%以上3.1%未満のFe、1.0%以上4.0%未満のCr、0.5%以上5.5%未満のMoを含有し、下記式で表されるMo当量が4.5以上9.4%未満であり、且つ、Siを0.1%未満、Cを0.01%未満に抑制し、残部Ti及び不可避的不純物からなることを特徴とする、二方向の形状記憶特性を有するチタン合金部材。
Mo当量=2.9×[%Fe]+1.6×[%Cr]+[%Mo]−[%Al]
4.0% or more and less than 5.5% Al, 1.1% or more and less than 3.1% Fe, 1.0% or more and less than 4.0% Cr, 0.5% or more and 5.5% by mass Containing less than% Mo, the Mo equivalent represented by the following formula being 4.5 or more and less than 9.4%, and suppressing Si to less than 0.1% and C to less than 0.01%, A titanium alloy member having a shape memory characteristic in two directions, characterized by comprising a balance Ti and inevitable impurities.
Mo equivalent = 2.9 × [% Fe] + 1.6 × [% Cr] + [% Mo] − [% Al]
光学顕微鏡組織で、α相が45面積%以下であり、残部がβ相またはβ相とマルテンサイト相、及び不可避的な相であることを特徴とする、請求項1に記載の二方向の形状記憶特性を有するチタン合金部材。   The bi-directional shape according to claim 1, characterized in that the α phase is 45 area% or less in the optical microscope structure, and the balance is the β phase or β phase and martensite phase, and the inevitable phase. Titanium alloy member with memory characteristics. 最終焼鈍工程において、β変態点−100℃からβ単相域上限までの温度範囲内から水冷以上の冷却速度で冷却することを特徴とする、請求項1又は2に記載の二方向の形状記憶特性を有するチタン合金部材の製造方法。   The two-way shape memory according to claim 1 or 2, wherein in the final annealing step, cooling is performed at a cooling rate equal to or higher than water cooling from within a temperature range from a β transformation point of -100 ° C to an upper limit of a β single phase region. A method for producing a titanium alloy member having characteristics.
JP2011133357A 2011-06-15 2011-06-15 Titanium alloy member having shape memory characteristics in two directions and manufacturing method thereof Active JP5605316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011133357A JP5605316B2 (en) 2011-06-15 2011-06-15 Titanium alloy member having shape memory characteristics in two directions and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011133357A JP5605316B2 (en) 2011-06-15 2011-06-15 Titanium alloy member having shape memory characteristics in two directions and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013001946A true JP2013001946A (en) 2013-01-07
JP5605316B2 JP5605316B2 (en) 2014-10-15

Family

ID=47670833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011133357A Active JP5605316B2 (en) 2011-06-15 2011-06-15 Titanium alloy member having shape memory characteristics in two directions and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5605316B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140478A (en) * 2014-01-30 2015-08-03 東邦チタニウム株式会社 Titanium alloy and heat treatment method of the same
CN111041273A (en) * 2019-12-20 2020-04-21 洛阳双瑞精铸钛业有限公司 Low-cost forged titanium alloy material, preparation method and application thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559510A (en) * 1991-09-02 1993-03-09 Nkk Corp Manufacture of high strength and high toughness (alpha+beta) type titanium alloy
JPH06108187A (en) * 1992-09-29 1994-04-19 Nkk Corp Nitrogen-added high strength titanium alloy
US20030098099A1 (en) * 2001-10-22 2003-05-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd,) Alpha-beta type titanium alloy
JP2005320570A (en) * 2004-05-07 2005-11-17 Kobe Steel Ltd alpha-beta TITANIUM ALLOY WITH EXCELLENT MACHINABILITY
JP2007084864A (en) * 2005-09-21 2007-04-05 Kobe Steel Ltd alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY
JP2007534837A (en) * 2003-12-19 2007-11-29 テキサコ オヴォニック ハイドロゲン システムズ エルエルシー Hydrogen storage material with excellent reaction rate, capacity, and cycle stability
JP2012052219A (en) * 2010-08-03 2012-03-15 Kobe Steel Ltd α-β TITANIUM ALLOY EXTRUDED MATERIAL EXCELLENT IN FATIGUE STRENGTH, AND METHOD FOR PRODUCING THE α-β TITANIUM ALLOY EXTRUDED MATERIAL
JP2012107282A (en) * 2010-11-16 2012-06-07 Nippon Steel Corp Titanium alloy member having bidirectional shape memory characteristic and manufacturing method of the same
JP2012126944A (en) * 2010-12-14 2012-07-05 Nippon Steel Corp α-β TYPE TITANIUM ALLOY HAVING LOW YOUNG'S MODULUS OF <75 GPa, AND METHOD FOR PRODUCING THE SAME
JP2012149291A (en) * 2011-01-18 2012-08-09 Nippon Steel Corp α+β TYPE TITANIUM ALLOY MEMBER HAVING HIGH STRENGTH AND LOW YOUNG'S MODULUS, AND METHOD FOR PRODUCING THE SAME

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0559510A (en) * 1991-09-02 1993-03-09 Nkk Corp Manufacture of high strength and high toughness (alpha+beta) type titanium alloy
JPH06108187A (en) * 1992-09-29 1994-04-19 Nkk Corp Nitrogen-added high strength titanium alloy
US20030098099A1 (en) * 2001-10-22 2003-05-29 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd,) Alpha-beta type titanium alloy
JP2007534837A (en) * 2003-12-19 2007-11-29 テキサコ オヴォニック ハイドロゲン システムズ エルエルシー Hydrogen storage material with excellent reaction rate, capacity, and cycle stability
JP2005320570A (en) * 2004-05-07 2005-11-17 Kobe Steel Ltd alpha-beta TITANIUM ALLOY WITH EXCELLENT MACHINABILITY
JP2007084864A (en) * 2005-09-21 2007-04-05 Kobe Steel Ltd alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY
JP2012052219A (en) * 2010-08-03 2012-03-15 Kobe Steel Ltd α-β TITANIUM ALLOY EXTRUDED MATERIAL EXCELLENT IN FATIGUE STRENGTH, AND METHOD FOR PRODUCING THE α-β TITANIUM ALLOY EXTRUDED MATERIAL
JP2012107282A (en) * 2010-11-16 2012-06-07 Nippon Steel Corp Titanium alloy member having bidirectional shape memory characteristic and manufacturing method of the same
JP2012126944A (en) * 2010-12-14 2012-07-05 Nippon Steel Corp α-β TYPE TITANIUM ALLOY HAVING LOW YOUNG'S MODULUS OF <75 GPa, AND METHOD FOR PRODUCING THE SAME
JP2012149291A (en) * 2011-01-18 2012-08-09 Nippon Steel Corp α+β TYPE TITANIUM ALLOY MEMBER HAVING HIGH STRENGTH AND LOW YOUNG'S MODULUS, AND METHOD FOR PRODUCING THE SAME

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015140478A (en) * 2014-01-30 2015-08-03 東邦チタニウム株式会社 Titanium alloy and heat treatment method of the same
CN111041273A (en) * 2019-12-20 2020-04-21 洛阳双瑞精铸钛业有限公司 Low-cost forged titanium alloy material, preparation method and application thereof

Also Published As

Publication number Publication date
JP5605316B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
Hao et al. Effect of Zr and Sn on Young's modulus and superelasticity of Ti–Nb-based alloys
US7083687B2 (en) Super-elastic titanium alloy for medical uses
Ijaz et al. Superelastic properties of biomedical (Ti–Zr)–Mo–Sn alloys
Yang et al. Martensitic transformation and shape memory effect of Ti–V–Al lightweight high-temperature shape memory alloys
JP5353754B2 (en) Metastable β-type titanium alloy having low Young&#39;s modulus and method for producing the same
Zhang et al. Effects of Nb additions on the precipitate morphology and hardening behavior of Ni-rich Ni55Ti45 alloys
WO2009151031A1 (en) α-β TYPE TITANIUM ALLOY
JP5578041B2 (en) Titanium alloy member having shape memory characteristics in two directions and manufacturing method thereof
Zheng et al. Effect of Y addition on the martensitic transformation and shape memory effect of Ti–Ta high-temperature shape memory alloy
JP5594244B2 (en) Α + β type titanium alloy having a low Young&#39;s modulus of less than 75 GPa and method for producing the same
JP6269836B2 (en) Titanium alloy member having shape change characteristic in the same direction as the machining direction
JP4837783B2 (en) Method for adjusting Young&#39;s modulus of α + β type titanium alloy member having a tensile strength of 1000 MPa class or more
JP4478123B2 (en) Α + β-type titanium alloy member having a tensile strength of 1000 MPa class or more and method for producing the same
Qu et al. Martensitic transformation, shape memory effect and superelasticity of Ti–x Zr–(30–x) Nb–4Ta alloys
JP5589861B2 (en) Α + β type titanium alloy member having high strength and low Young&#39;s modulus and method for producing the same
JP6696202B2 (en) α + β type titanium alloy member and manufacturing method thereof
Chiu et al. Investigations of mechanical properties and deformation behaviors of the Cr modified Ti–Au shape memory alloys
JP5621571B2 (en) Α + β type titanium alloy having a low Young&#39;s modulus of less than 75 GPa and method for producing the same
JP5911072B2 (en) High temperature shape memory alloy and manufacturing method thereof
JP5605316B2 (en) Titanium alloy member having shape memory characteristics in two directions and manufacturing method thereof
JP2014152355A (en) High temperature shape memory alloy, superelastic alloy and methods of producing them
JP5831283B2 (en) Titanium alloy member whose shape is deformed in the same direction as the processing direction by heat treatment and its manufacturing method
Endoh et al. Effect of Zr Addition on Martensitic Transformation in TiMoSn Alloy
JP6213014B2 (en) β-type titanium alloy and method for producing the same
JP2018053313A (en) α+β TYPE TITANIUM ALLOY BAR AND MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140811

R151 Written notification of patent or utility model registration

Ref document number: 5605316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350