JP5621571B2 - Α + β type titanium alloy having a low Young's modulus of less than 75 GPa and method for producing the same - Google Patents

Α + β type titanium alloy having a low Young's modulus of less than 75 GPa and method for producing the same Download PDF

Info

Publication number
JP5621571B2
JP5621571B2 JP2010278113A JP2010278113A JP5621571B2 JP 5621571 B2 JP5621571 B2 JP 5621571B2 JP 2010278113 A JP2010278113 A JP 2010278113A JP 2010278113 A JP2010278113 A JP 2010278113A JP 5621571 B2 JP5621571 B2 JP 5621571B2
Authority
JP
Japan
Prior art keywords
phase
less
modulus
titanium alloy
type titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010278113A
Other languages
Japanese (ja)
Other versions
JP2012126944A (en
Inventor
知徳 國枝
知徳 國枝
森 健一
健一 森
藤井 秀樹
秀樹 藤井
高橋一浩
一浩 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010278113A priority Critical patent/JP5621571B2/en
Publication of JP2012126944A publication Critical patent/JP2012126944A/en
Application granted granted Critical
Publication of JP5621571B2 publication Critical patent/JP5621571B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Description

本発明は、自動車または二輪車のサスペンションスプリング、エンジンバルブスプリングなどの自動車・二輪車用部品材料や眼鏡のフレーム材として適した、低ヤング率を有するα+β型チタン合金部材およびその製造方法に関する。   The present invention relates to an α + β-type titanium alloy member having a low Young's modulus and a manufacturing method thereof, which is suitable as a material for parts for automobiles and motorcycles, such as suspension springs and engine valve springs for automobiles and motorcycles, and a frame material for spectacles.

チタンの常温におけるヤング率は、α相が主である工業用純チタン、α型チタン合金、α相とβ相からなるα+β型チタン合金では、約100〜120GPa、β相が主であるβ型チタン合金では約70〜90GPaである。但し、β型チタン合金でもα+β二相域で時効熱処理しα相を析出させた場合には、上記のα型チタン合金やα+β型チタン合金と同様にヤング率は100〜120GPaに増加する。また、チタンはその合金部材毎に望まれるヤング率が異なることから、軽量化や耐食性などを目的にチタンが使用される部材毎に望まれるヤング率に合ったチタン合金が選択される。   The Young's modulus of titanium at room temperature is about 100 to 120 GPa in the case of industrial pure titanium, α-type titanium alloy, α + β-type titanium alloy consisting of α-phase and β-phase, and β-type mainly containing β-phase. For titanium alloys, it is about 70-90 GPa. However, even in a β-type titanium alloy, when an α-phase is precipitated by aging heat treatment in the α + β two-phase region, the Young's modulus increases to 100 to 120 GPa as in the case of the α-type titanium alloy and α + β-type titanium alloy. Further, since the desired Young's modulus of titanium differs for each alloy member, a titanium alloy that matches the desired Young's modulus is selected for each member in which titanium is used for the purpose of weight reduction and corrosion resistance.

一般に、自動車または二輪車のサスペンションスプリング、エンジンバルブスプリング等では、その機能として、該スプリングに一定荷重が加えられた際のスプリング全体の伸縮量(変位量)を一定量確保するために、該スプリングの巻き数を調整する。この場合、材料が低ヤング率であるほど、巻き数が少なくて済み、スプリング全体の軽量化が可能である。チタン合金等は、鉄鋼材料に比べ、比重が6割以下程度と小さいだけでなく、ヤング率が5〜6割程度であるがゆえに、巻き数を大幅に減らし、スプリング全体として軽量化に寄与する特長がある。また、サスペンションスプリング、エンジンバルブスプリングだけでなく、軽量化及び柔軟性が求められる部品等、例えば眼鏡のフレーム材、眼鏡のつる材としても、適している。   In general, suspension springs, engine valve springs, and the like of automobiles or motorcycles function as springs in order to ensure a certain amount of expansion / contraction (displacement) of the entire spring when a constant load is applied to the spring. Adjust the number of turns. In this case, the lower the Young's modulus of the material, the fewer the number of turns, and the lighter the spring can be. Titanium alloys, etc. not only have a specific gravity of about 60% or less compared to steel materials, but also have a Young's modulus of about 50-60%, so the number of turns is greatly reduced and the spring as a whole contributes to weight reduction. There are features. Moreover, it is suitable not only for suspension springs and engine valve springs, but also as parts for which weight reduction and flexibility are required, such as frame materials for eyeglasses and vines for eyeglasses.

一般に、チタン材料において低ヤング率が望まれる場合、β型チタン合金が使用される。代表的なβ型チタン合金として、Ti−15V−3Cr−3Sn−3Al、Ti―22V−4Al、Ti−15Mo―5Zr−3Al、Ti−10V−2Fe−3Al、Ti−3Al−8V−6Cr−4Mo−4Zr、特許文献1のTi−1.5Al−4.5Fe−6.8Mo、特許文献2のTi−15Mo−3Alなどがある。さらに、ヤング率が低いチタン合金として、特許文献3に10〜35質量%Zrと8〜14質量%Crを含有したものが、特許文献4に13〜28原子%Nb、0.1〜10原子%Snを含有したものが、特許文献5に30〜60質量%のVa族(バナジウム族)を含有したものが、特許文献6に0.3〜3質量%のO、NまたはCの一種以上、1.8%以下のAlを含み、Mo当量=Mo+0.67×V+0.44×W+0.28×Nb+0.22×Ta+2.9×Fe+1.6×Cr+1.1×Ni+1.4×Co+0.77×Cu−AlからなるMo当量が3以上11以下含有したものが記載されている。   In general, when a low Young's modulus is desired in a titanium material, a β-type titanium alloy is used. Typical β-type titanium alloys include Ti-15V-3Cr-3Sn-3Al, Ti-22V-4Al, Ti-15Mo-5Zr-3Al, Ti-10V-2Fe-3Al, Ti-3Al-8V-6Cr-4Mo. -4Zr, Ti-1.5Al-4.5Fe-6.8Mo of Patent Document 1, and Ti-15Mo-3Al of Patent Document 2. Further, as a titanium alloy having a low Young's modulus, Patent Document 3 containing 10 to 35 mass% Zr and 8 to 14 mass% Cr is disclosed in Patent Document 4 as 13 to 28 atomic% Nb and 0.1 to 10 atoms. One containing at least% Sn is one containing at least 30 to 60 mass% Va group (vanadium group) in Patent Document 5 and one or more of 0.3 to 3 mass% O, N or C in Patent Document 6 , Containing 1.8% or less of Al, Mo equivalent = Mo + 0.67 × V + 0.44 × W + 0.28 × Nb + 0.22 × Ta + 2.9 × Fe + 1.6 × Cr + 1.1 × Ni + 1.4 × Co + 0.77 × The thing containing Mo equivalent which consists of Cu-Al 3-11 is described.

また、β安定化元素であるV、Mo、Nbの含有量が少なくてすむα+β型チタン合金においてもβ型チタン合金並みの低ヤング率を発現させる合金がある。特許文献7に、4.4〜5.5質量%Al、1.4〜2.1質量%Fe、1.5〜4.5質量%Moを含有し、不純物としてSiが0.1%未満、Cが0.01%未満に抑制された高強度α+β型チタン合金ではあって、熱間圧延した線材を810℃以上940℃以下の温度から水冷することによって、ヤング率が75GPa以上100GPa未満であるα+β型チタン合金の製造方法が記載されている。   In addition, there is an alloy that exhibits a low Young's modulus comparable to that of a β-type titanium alloy even in an α + β-type titanium alloy that requires less content of V, Mo, and Nb as β-stabilizing elements. Patent Document 7 contains 4.4 to 5.5 mass% Al, 1.4 to 2.1 mass% Fe, 1.5 to 4.5 mass% Mo, and Si is less than 0.1% as an impurity , C is less than 0.01% high-strength α + β type titanium alloy, and the Young's modulus is 75 GPa or more and less than 100 GPa by water-cooling the hot-rolled wire from a temperature of 810 ° C. or more and 940 ° C. or less. A method for producing an α + β type titanium alloy is described.

特許第2859102号公報Japanese Patent No. 2859102 特開2004−183058号公報JP 2004-183058 A 特開2004−353039号公報JP 2004-353039 A 特開2005−113227号公報JP 2005-113227 A 特許第3375083号公報Japanese Patent No. 3375083 特開2004−162171号公報JP 2004-162171 A 特開2007−314834号公報JP 2007-314834 A

β型チタン合金に代表される低ヤング率を有するTi−15V−3Cr−3Sn−3Al、Ti−22V−4Al、Ti−15Mo−5Zr−3Al、Ti−10V−2Fe−3Al、Ti−15Mo−3Al(特許文献1参照)は、いずれもVに代表されるVa族やMoといった比較的高価な添加元素を10%以上も含有しており、そのため、価格や密度が高めな傾向がある。   Ti-15V-3Cr-3Sn-3Al, Ti-22V-4Al, Ti-15Mo-5Zr-3Al, Ti-10V-2Fe-3Al, Ti-15Mo-3Al having low Young's modulus represented by β-type titanium alloy All of them (see Patent Document 1) contain 10% or more of relatively expensive additive elements such as Va group represented by V and Mo, and therefore tend to be high in price and density.

また、Moの添加量を比較的低減した準安定β型チタン合金であるTi−1.5Al−4.5Fe−6.8Mo(特許文献2参照)では、Mo当量が16%以上と高く、β相が非常に安定である。一般に、低ヤング率は不安定なβ相もしくはα''マルテンサイト相において発現することが知られており、本合金のヤング率は一般的なβ型チタン合金と同等であると考えられる。   Further, Ti-1.5Al-4.5Fe-6.8Mo (see Patent Document 2), which is a metastable β-type titanium alloy in which the amount of Mo added is relatively reduced, has a high Mo equivalent of 16% or more. The phase is very stable. In general, it is known that a low Young's modulus appears in an unstable β phase or α ″ martensite phase, and the Young's modulus of this alloy is considered to be equivalent to that of a general β-type titanium alloy.

また、10〜35質量%Zrと8〜14質量%Crを含有したもの(特許文献3参照)、13〜28原子%Nb、0.1〜10原子%Snを含有したもの(特許文献4参照)、30〜60質量%のVa族(バナジウム族)を含有したもの(特許文献5参照)は、何れも低ヤング率を得られ、さらに冷間加工によりさらなる低ヤング率化の可能な合金系である。しかしながら、Vに代表されるVa族やMoといった比較的高価な添加元素を10%以上も含有しており、且つ密度が高い元素を多量に含有しているためチタン合金そのものの密度が高くなっている。   Moreover, what contained 10-35 mass% Zr and 8-14 mass% Cr (refer patent document 3), 13-28 atomic% Nb, and 0.1-10 atomic% Sn (refer patent document 4) ), Those containing 30 to 60% by mass of the Va group (vanadium group) (see Patent Document 5) can obtain a low Young's modulus, and can further reduce the Young's modulus by cold working. It is. However, the titanium alloy itself has a high density because it contains 10% or more of relatively expensive additive elements such as Va group represented by V and Mo, and a large amount of high-density elements. Yes.

また、0.3〜3質量%のO、NまたはCの一種以上を含有し、且つ、1.8%以下のAlを含み、Mo当量=Mo+0.67×V+0.44×W+0.28×Nb+0.22×Ta+2.9×Fe+1.6×Cr+1.1×Ni+1.4×Co+0.77×Cu−AlからなるMo当量が3以上11以下含有したもの(特許文献6参照)は、侵入型元素であるO、NまたはCを0.3%以上も含んでいることから、加工性の低下が懸念される。また、α安定化元素であるOは同じα安定化元素であるAlに比べ凝固偏析しやすいため、大型インゴットを製造時に、材質のバラツキが懸念される。   Further, it contains 0.3 to 3% by mass of one or more of O, N, or C and contains 1.8% or less of Al, and Mo equivalent = Mo + 0.67 × V + 0.44 × W + 0.28 × Nb + 0 .22 × Ta + 2.9 × Fe + 1.6 × Cr + 1.1 × Ni + 1.4 × Co + 0.77 × Cu—Al containing Mo equivalent 3 to 11 (see Patent Document 6) is an interstitial element Since some O, N, or C is contained 0.3% or more, there is a concern that the workability is lowered. Further, O, which is an α-stabilizing element, is more likely to solidify and segregate than Al, which is the same α-stabilizing element, so there is a concern about variations in materials when manufacturing a large ingot.

一方、α+β型チタン合金ではV、Mo、Nbの添加量が少なく、これらは、合金組成から推測するとβ型チタン合金よりは廉価であると考えられる。4.4〜5.5質量%Al、1.4〜2.1質量%Fe、1.5〜4.5質量%Moを含有し、不純物としてSiが0.1%未満、Cが0.01%未満に抑制された高強度α+β型チタン合金では、850℃以上940℃以下の温度から水冷するものは(特許文献7参照)、ヤング率が75GPa以上100GPa未満と、α+β型チタン合金としては低ヤング率が得られる。しかしながら、これは一般的なβ型チタン合金とほぼ同程度である。   On the other hand, in the α + β type titanium alloy, the added amounts of V, Mo, and Nb are small, and these are considered to be cheaper than the β type titanium alloy when estimated from the alloy composition. 4.4-5.5 mass% Al, 1.4-2.1 mass% Fe, 1.5-4.5 mass% Mo is contained, Si is less than 0.1% as an impurity, and C is 0.00. Among high-strength α + β type titanium alloys suppressed to less than 01%, those that are water-cooled from a temperature of 850 ° C. or higher and 940 ° C. or lower (see Patent Document 7) have Young's modulus of 75 GPa or more and less than 100 GPa. Low Young's modulus is obtained. However, this is almost the same as a general β-type titanium alloy.

そこで本発明は、比較的安価な合金組成からなるα+β型チタン合金を用いて、低ヤング率β型チタン合金に匹敵する、75GPa未満のヤング率、さらに好ましくは70GPa未満のヤング率を有するα+β型チタン合金部材及びその製造方法を提供することを目的とする。   Therefore, the present invention uses an α + β type titanium alloy having a relatively inexpensive alloy composition, and has an Young's modulus of less than 75 GPa, more preferably an Young's modulus of less than 70 GPa, comparable to a low Young's modulus β type titanium alloy. It aims at providing a titanium alloy member and its manufacturing method.

上記課題を解決するために本発明の要旨は、以下の通りである。
(1)質量%で、4.4%以上5.5%未満のAl、1.4%以上2.3%未満のFe、1.5%以上5.0%未満のMoを含有し、不純物としてSiが0.1%未満、Cが0.01%未満に抑制され、残部Ti及び不可避的不純物からなるチタン合金であって、ミクロ組織において、β相もしくはマルテンサイト相内の合金成分が、Mo当量=[%Mo]+2.9×[%Fe]+1.1×[%Ni]+1.6×[%Cr]+1.6×[%Mn]―[%Al]からなる式において、Mo当量が3.85%以上、10.00%未満であり、当該Mo当量範囲にあるβ相もしくはマルテンサイト相の1相ないし2相の合計の面積率が55%以上、99%未満であり、ヤング率が75GPa未満であることを特徴とするα+β型チタン合金。
(2)前記Feの一部を、質量%で0.15%未満のNi、0.25%未満のCr、0.25%未満のMnの1種または2種以上で代替したことを特徴とする、上記(1)に記載のα+β型チタン合金。
(3)溶体化処理後に冷間加工を施されてなることを特徴とする上記(1)又は(2)に記載のα+β型チタン合金。
(4)850℃を超え950℃以下の温度から水冷以上の冷却速度で冷却する溶体化熱処理を施した後、冷間加工を施すことを特徴とする、上記(1)〜(3)の何れか1項に記載のα+β型チタン合金の製造方法。
In order to solve the above problems, the gist of the present invention is as follows.
(1) By mass%, containing 4.4% or more and less than 5.5% Al, 1.4% or more and less than 2.3% Fe, 1.5% or more and less than 5.0% Mo, impurities As below, Si is suppressed to less than 0.1%, C is suppressed to less than 0.01%, the balance is Ti and an inevitable impurity titanium alloy, the alloy component in the β phase or martensite phase in the microstructure, Mo equivalent = [% Mo] + 2.9 × [% Fe] + 1.1 × [% Ni] + 1.6 × [% Cr] + 1.6 × [% Mn] − [% Al] The equivalent area is 3.85% or more and less than 10.00%, and the total area ratio of one phase or two phases of β phase or martensite phase in the Mo equivalent range is 55% or more and less than 99%, An α + β type titanium alloy having a Young's modulus of less than 75 GPa.
(2) A part of the Fe is replaced by one or more of Ni of less than 0.15% by mass, Cr of less than 0.25%, and Mn of less than 0.25%. The α + β type titanium alloy according to (1) above.
(3) The α + β type titanium alloy according to the above (1) or (2), which is cold worked after solution treatment.
(4) Any one of the above (1) to (3), characterized in that after a solution heat treatment is performed at a cooling rate higher than 850 ° C. and lower than 950 ° C. at a cooling rate of water cooling or higher, cold working is performed. A method for producing an α + β-type titanium alloy according to claim 1.

本発明によって、比較的安価な合金組成からなるα+β型チタン合金を用いて、低ヤング率β型チタン合金に匹敵する、75GPa未満のヤング率を有するα+β型チタン合金部材を提供できるため、産業上の効果は計り知れない。   According to the present invention, an α + β type titanium alloy member having a Young's modulus of less than 75 GPa comparable to a low Young's modulus β type titanium alloy can be provided by using an α + β type titanium alloy having a relatively inexpensive alloy composition. The effect of is immeasurable.

なお、本発明は、特に低いヤング率を有するチタン合金製の眼鏡フレームやサスペンションスプリング用チタン合金として適している。   The present invention is particularly suitable as a spectacle frame made of a titanium alloy having a low Young's modulus or a titanium alloy for suspension springs.

初析α相粒を説明する光学顕微鏡観察写真を示す図であり、(a)は900℃から水冷した試料に10%の冷間加工を施したもの、(b)はβ相ないしマルテンサイトをより識別しやすくするために(a)の試料を550℃4時間のデコレーション熱処理したものである。ここで、初析α相とは、溶体化のためのα+β二相域での熱処理時に析出したα相である。熱処理後に水冷で冷却することで溶体化処理を終了するが、その時に観察されるα相は、熱処理時に析出したα相、即ち初析α相である。It is a figure which shows the optical microscope observation photograph explaining a pro-eutectoid alpha phase grain, (a) what carried out cold processing of 10% to the sample cooled by water from 900 degreeC, (b) is a beta phase thru | or a martensite. In order to make the identification easier, the sample of (a) was subjected to a decoration heat treatment at 550 ° C. for 4 hours. Here, the pro-eutectoid α phase is an α phase precipitated during heat treatment in the α + β two-phase region for solution treatment. The solution treatment is terminated by cooling with water cooling after the heat treatment. The α phase observed at that time is an α phase precipitated during the heat treatment, that is, a pro-eutectoid α phase.

本発明者らは、低ヤング率β型チタン合金に匹敵する、75GPa未満のヤング率を有するα+β型チタン合金部材とその製造方法について、鋭意研究を重ねた。その結果、比較的安価なチタン合金成分系としてTi−Al−Fe系をベースとして、そこにMoを添加したTi−Al−Fe−Mo系のα+β型チタン合金において、各元素の含有量をある所定内とし、かつ、溶体化熱処理により得られるβ相もしくはマルテンサイト相内の合金元素量やミクロ組織を所定内に制御することにより低いヤング率を得られることを見出した。   The inventors of the present invention have made extensive studies on an α + β type titanium alloy member having a Young's modulus of less than 75 GPa, which is comparable to a low Young's modulus β type titanium alloy, and a manufacturing method thereof. As a result, the Ti-Al-Fe-Mo-based α + β-type titanium alloy based on the Ti-Al-Fe system as a relatively inexpensive titanium alloy component system with Mo added thereto has a content of each element. It has been found that a low Young's modulus can be obtained by controlling the alloy element amount and microstructure in the β phase or martensite phase obtained by solution heat treatment within a predetermined range.

以下に、本発明について詳しく説明する。   The present invention is described in detail below.

本発明の材料指標について説明する。チタン合金において、α+β型チタン合金は低ヤング率を発現するβ型チタン合金に比べ、ヤング率は高くなる。その一方で、β相を安定化させるβ共析型β安定化元素であるFe、Ni、Cr、Mn、全率固溶型β安定化元素であるV、Mo等の置換型固溶元素の添加量を低減できるため、β型チタン合金に比べ安価に製造することができる。そこで本発明では、β型チタン合金に比べ比較的安価に製造可能なα+β型チタン合金において、ヤング率をβ型低ヤング率チタン合金に匹敵する75GPa未満とした。さらに好ましくは、70GPa未満を指標とした。   The material index of the present invention will be described. In the titanium alloy, the α + β type titanium alloy has a higher Young's modulus than the β type titanium alloy that exhibits a low Young's modulus. On the other hand, substitutional solid solution elements such as Fe, Ni, Cr, Mn which are β eutectoid β stabilization elements which stabilize the β phase, and V, Mo which are all solid solution β stabilization elements. Since the amount added can be reduced, it can be manufactured at a lower cost than a β-type titanium alloy. Therefore, in the present invention, in an α + β-type titanium alloy that can be manufactured at a relatively low cost compared to a β-type titanium alloy, the Young's modulus is set to less than 75 GPa, which is comparable to a β-type low Young's modulus titanium alloy. More preferably, the index is less than 70 GPa.

[Alの添加量]
Alはα安定化元素であり、固溶強化によって強度を高める作用がある。さらに、Alはβ相内のω相の生成を抑制することによりヤング率の上昇を抑制することから4.4%以上とした。しかしながら、添加量を多くすると、β安定化元素の添加量を多くする必要があること、さらに、高温、室温での延性低下を避けるため、上限を5.5%未満とした。
[Al addition amount]
Al is an α-stabilizing element and has an effect of increasing strength by solid solution strengthening. Furthermore, since Al suppresses the increase in Young's modulus by suppressing the formation of the ω phase in the β phase, it is set to 4.4% or more. However, if the amount added is increased, the amount of β-stabilizing element needs to be increased, and in order to avoid a decrease in ductility at high temperature and room temperature, the upper limit was made less than 5.5%.

[Feの含有量]
Feは比較的安価なβ安定化元素であり、さらに固溶強化により強度を高める作用がある。比較的高価なβ安定化元素の添加量を低減し、コスト上昇を抑制するため下限を1.4%とした。しかしながら、添加量が多くなり過ぎると、凝固時に偏析しやすいため数百kg以上の大型インゴットでは偏析が顕著になることから、上限を2.3%とした。
[Fe content]
Fe is a relatively inexpensive β-stabilizing element and has the effect of increasing strength by solid solution strengthening. The lower limit was made 1.4% in order to reduce the addition amount of the relatively expensive β-stabilizing element and suppress the cost increase. However, if the amount added is too large, segregation is likely to occur during solidification, and segregation becomes noticeable in large ingots of several hundred kg or more. Therefore, the upper limit was set to 2.3%.

[Moの含有量]
ヤング率を低くするためには、ヤング率の低いβ相もしくはマルテンサイト相を室温で多く残存させる必要がある。上述したようにFeのみでβ相やマルテンサイト相を室温で安定させようとすると、Feの添加量が必要以上に多くなり、偏析の問題がある。MoはFeと同様にβ安定化元素であり、β相を室温で安定させる効果があり、且つ、Moは凝固時にFeと逆偏析を示すため、溶解時に材料を均質化しやすくなる。前記AlおよびFeの成分範囲において、多量のβ相もしくはマルテンサイト相を室温でも安定化させるためには、Moを1.5%以上添加する必要がある。しかし、Moは比較的高価な元素であるため、添加量が多くなるとコストが高くなってしまう。さらに、Moを多量に添加すると凝固時の偏析が顕著となることから、上限を5.0%とした。
[Mo content]
In order to lower the Young's modulus, it is necessary to leave a large amount of β phase or martensite phase having a low Young's modulus at room temperature. As described above, when the β phase or the martensite phase is stabilized only at Fe at room temperature, the amount of Fe added becomes larger than necessary, which causes a problem of segregation. Mo, like Fe, is a β-stabilizing element and has the effect of stabilizing the β-phase at room temperature. Since Mo exhibits reverse segregation with Fe during solidification, it becomes easier to homogenize the material during melting. In the Al and Fe component ranges, in order to stabilize a large amount of β phase or martensite phase even at room temperature, it is necessary to add 1.5% or more of Mo. However, since Mo is a relatively expensive element, the cost increases as the amount added increases. Furthermore, when Mo is added in a large amount, segregation during solidification becomes remarkable, so the upper limit was made 5.0%.

[SiとCの含有量]
不純物元素として、SiとCは多量に含有すると、室温延性、冷間加工性、熱間加工性を低下させてしまう場合があり、Siは0.1%未満、Cは0.01%未満であれば、問題ないレベルであることを見出し、各々の上限とした。なお、Si、Cは不可避的不純物として含有が避けられないことから、実質的な含有量の下限値は、通常、Siで0.005%以上、Cで0.0005%以上である。
[Content of Si and C]
If Si and C are contained in large amounts as impurity elements, the room temperature ductility, cold workability, and hot workability may be deteriorated. Si is less than 0.1%, and C is less than 0.01%. If there was, it was found that there was no problem and was set as the upper limit of each. Since Si and C are inevitable to be contained as inevitable impurities, the lower limit value of the substantial content is usually 0.005% or more for Si and 0.0005% or more for C.

[Ni,Cr,Mnの含有量]
本発明においては必要に応じて、Feの一部を、0.15%未満のNi、0.25%未満のCr、0.25%未満のMnの1種または2種以上で代替する。これは、Feの一部をFeと同様の働きをする安価な元素で置換するものである。
[Contents of Ni, Cr, Mn]
In the present invention, if necessary, a part of Fe is replaced with one or more of Ni of less than 0.15%, Cr of less than 0.25%, and Mn of less than 0.25%. In this method, a part of Fe is replaced with an inexpensive element having the same function as Fe.

ここで、Ni、Cr、Mnの添加量の上限をそれぞれ、0.15%未満、0.25%未満、0.25%未満としたのは、これらの元素は、上記上限を超えて添加すると、平衡相である金属間化合物(Ti2Ni、TiCr2、TiMn)が生成し、疲労強度、および室温延性が劣化するからである。なお、Ni、Cr、Mn、Feの総量は、1.4%以上、2.3%未満とする必要がある。これは、1.4%未満であると、後述する冷間加工後のミクロ組織を得るためには、同じβ安定化元素である上述のMoの添加量を多くする必要がありコスト上昇を招くこと、2.3%以上とすると、大型インゴット製造時の偏析が顕著となるためである。 Here, the upper limit of the addition amount of Ni, Cr, and Mn is set to less than 0.15%, less than 0.25%, and less than 0.25%, respectively, when these elements are added exceeding the upper limit. This is because an intermetallic compound (Ti 2 Ni, TiCr 2 , TiMn) which is an equilibrium phase is generated, and fatigue strength and room temperature ductility deteriorate. The total amount of Ni, Cr, Mn, and Fe needs to be 1.4% or more and less than 2.3%. If this is less than 1.4%, in order to obtain a microstructure after cold working to be described later, it is necessary to increase the amount of addition of the above-mentioned Mo, which is the same β-stabilizing element, leading to an increase in cost. If 2.3% or more, segregation during the production of a large ingot becomes remarkable.

[不可避的不純物]
代表的な不純物として、O,N,Hが上げられる。JIS H 4600の60種(Ti−6Al−4V)同様に、各々、Oは0.2%以下、Nが0.05%以下、Hは0.015%を上限とすることが好ましい。さらに、室温延性や冷間加工性をよりよくするために、Oは0.15%以下、Nは0.02%以下、Hは0.01%以下とすることがより好ましい。
[Inevitable impurities]
Typical impurities include O, N, and H. Similarly to 60 types of JIS H 4600 (Ti-6Al-4V), it is preferable that O is 0.2% or less, N is 0.05% or less, and H is 0.015%. Further, in order to improve room temperature ductility and cold workability, it is more preferable that O is 0.15% or less, N is 0.02% or less, and H is 0.01% or less.

[ミクロ組織]
ヤング率は合金成分のみでは決定せず、β相やマルテンサイト相の面積率等ミクロ組織によって大きく変化する。例えば、上記合金成分においても、特許文献7に記載されているように750℃で1時間の焼鈍した場合には、β相やマルテンサイト相の面積率が約20%となりヤング率は約115GPaと通常のα+β型チタン合金と変わらない値となる。低ヤング率を得るには、下記式で記述されるMo当量が3.85%以上10.00%以下であるβ相、そのようなβ相から溶体化処理後の水冷や加工誘起変態によって生じるマルテンサイト相、或いは、熱弾性マルテンサイト的な性質を有する双晶界面が必要となることが分かった。ミクロ組織において、上記Mo当量範囲内となるβ相もしくはマルテンサイト相であって、且つ、それらの合計の面積率が55%以上であれば、最終製品のチタン合金として75GPa未満の低ヤング率が得られることから、これを下限とした。一方で、β相もしくはマルテンサイト相単相にすると、熱処理時にβ相が非常に粗大化してしまい、疲労特性や延性を著しく低下させることから、上限を99%とした。なお、上記範囲のMo当量であるβ相やマルテンサイト相以外の結晶としては、α相及び不可避的不純物相が観察される。不可避的不純物相とは、例えば微細なω相などが挙げられる。
Mo当量=[%Mo]+2.9×[%Fe]+1.1×[%Ni]+1.6×[%Cr]+1.6×[%Mn]―[%Al]
[Microstructure]
The Young's modulus is not determined only by the alloy components, but varies greatly depending on the microstructure such as the area ratio of the β phase and martensite phase. For example, also in the above alloy components, when annealed at 750 ° C. for 1 hour as described in Patent Document 7, the area ratio of the β phase and the martensite phase is about 20%, and the Young's modulus is about 115 GPa. The value is the same as that of a normal α + β type titanium alloy. To obtain a low Young's modulus, the Mo equivalent described by the following formula is 3.85% or more and 10.00% or less, and is generated from such β phase by water cooling or solution-induced transformation after solution treatment. It was found that a twin interface having a martensitic phase or a thermoelastic martensitic property is required. If the microstructure is a β phase or martensite phase within the Mo equivalent range, and the total area ratio thereof is 55% or more, the titanium alloy of the final product has a low Young's modulus of less than 75 GPa. Since it was obtained, this was made the lower limit. On the other hand, if the β phase or martensite single phase is used, the β phase becomes very coarse during the heat treatment, and the fatigue characteristics and ductility are remarkably reduced, so the upper limit was made 99%. In addition, an α phase and an inevitable impurity phase are observed as crystals other than the β phase and martensite phase, which are Mo equivalents in the above range. Examples of the inevitable impurity phase include a fine ω phase.
Mo equivalent = [% Mo] + 2.9 × [% Fe] + 1.1 × [% Ni] + 1.6 × [% Cr] + 1.6 × [% Mn] − [% Al]

[ミクロ組織の測定方法]
チタン合金中のβ相もしくはマルテンサイト相の測定方法について説明する。β相もしくはマルテンサイト相は、断面の埋め込み研磨試料を硝フッ酸水溶液でエッチングした光学顕微鏡写真で容易に判別でき、更には約500〜550℃で4時間程度熱処理(デコレーション熱処理)を施した後に観察すると、より鮮明に識別できる。図1に光学顕微鏡観察写真の例を示す。図1(a)は、本発明の請求項1の例として930℃から水冷した試料に10%の冷間加工を施したもの、(b)はβ相ないしマルテンサイトをより識別しやすくするために(a)の試料を550℃4時間のデコレーション熱処理したものである。なお、図1ではエッチングに硝酸濃度が約12%、フッ酸濃度が約1.5%の硝フッ酸水溶液を用いている。図1(a)にて実線矢印で示した粒径約5μmの黒くなっている延伸した結晶粒が加工により延伸したβ相である。さらに、針状に観察される結晶粒がマルテンサイト相である。また、図1(b)に示すようにデコレーション熱処理を施すと、β相ないしマルテンサイト相内に微細なα相が析出し、熱処理前にβ相ないしマルテンサイト相であった場所が黒くなり、より鮮明に区別することが出来る。これらの写真から画像解析装置を用いて、観察測定視野におけるβ相ないしマルテンサイト相が占有する総面積率を計測し、その値をβ相ないしマルテンサイト相の合計の面積率とした。
[Measuring method of microstructure]
A method for measuring the β phase or martensite phase in the titanium alloy will be described. The β phase or the martensite phase can be easily identified by an optical micrograph obtained by etching a cross-section embedded polishing sample with a nitric hydrofluoric acid aqueous solution, and further after a heat treatment (decoration heat treatment) at about 500 to 550 ° C. for about 4 hours. When observed, it can be identified more clearly. FIG. 1 shows an example of an optical microscope observation photograph. FIG. 1 (a) shows an example of claim 1 of the present invention, in which a sample cooled by water from 930 ° C. is subjected to 10% cold working, and (b) shows that β-phase or martensite can be more easily identified. The sample of (a) was subjected to a decoration heat treatment at 550 ° C. for 4 hours. In FIG. 1, a nitric hydrofluoric acid aqueous solution having a nitric acid concentration of about 12% and a hydrofluoric acid concentration of about 1.5% is used for etching. In FIG. 1 (a), the stretched crystal grains which are black and have a grain size of about 5 μm indicated by solid arrows are β phases stretched by processing. Furthermore, the crystal grains observed in a needle shape are the martensite phase. In addition, when a decoration heat treatment is performed as shown in FIG. 1B, a fine α phase is precipitated in the β phase or the martensite phase, and the place where the β phase or the martensite phase was before the heat treatment becomes black, It can be distinguished more clearly. From these photographs, the total area ratio occupied by the β phase or martensite phase in the observation measurement visual field was measured using an image analyzer, and the value was defined as the total area ratio of the β phase or martensite phase.

[β相もしくはマルテンサイト相内の合金成分の測定方法]
β相もしくはマルテンサイト相とα相は、それぞれ濃化しやすい元素が異なることから、光学顕微鏡やSEMの観察で容易に判別することが出来る。そのため、組織観察によりβ相もしくはマルテンサイト相と判別された結晶粒をEDX(Energy Dispersive X-ray Spectrometry)分析することによりβ相もしくはマルテンサイト相の含有元素量を容易に測定可能である。また、EPMA(Electron Probe Micro Analyzer)を用いれば、より広範囲におけるβ相もしくはマルテンサイト相の含有元素量を測定することが出来る。
[Method for measuring alloy components in β phase or martensite phase]
Since the β-phase or martensite phase and the α-phase are different from each other in elements that are easily concentrated, they can be easily discriminated by observation with an optical microscope or SEM. Therefore, the amount of elements contained in the β phase or the martensite phase can be easily measured by performing EDX (Energy Dispersive X-ray Spectrometry) analysis on the crystal grains that are discriminated as the β phase or the martensite phase by the structure observation. Moreover, if EPMA (Electron Probe Micro Analyzer) is used, the amount of elements contained in a β phase or a martensite phase in a wider range can be measured.

[β相もしくはマルテンサイト相内の合金元素]
上述のとおり、チタン合金において、低ヤング率発現にはβ相もしくはマルテンサイト相に含まれる合金成分が大きく影響する。すなわちMo当量が3.85%以上、10.00%未満であり、当該Mo当量範囲にあるβ相もしくはマルテンサイト相の1相ないし2相の合計の面積率が55%以上であることが必要とされる。ここではその理由について説明する。
[Alloy elements in β phase or martensite phase]
As described above, in the titanium alloy, the alloy component contained in the β phase or the martensite phase greatly affects the expression of the low Young's modulus. That is, the Mo equivalent is 3.85% or more and less than 10.00%, and the total area ratio of one phase or two phases of the β phase or martensite phase in the Mo equivalent range is required to be 55% or more. It is said. Here, the reason will be described.

低ヤング率を実現するためのβ相、マルテンサイト相、及び双晶界面は、溶体化処理及びそれに引き続いて施される冷間加工によって導入することができる。しかしながら、β相やマルテンサイト相が多量に存在しても、上記Mo当量内にないβ相ないしマルテンサイト相であった場合、冷間加工を施しても、低ヤング率を得るために必要な、これらの組織が導入されず、75GPa未満の低ヤング率を得ることは出来ない。   The β phase, martensite phase, and twin interface to achieve a low Young's modulus can be introduced by solution treatment and subsequent cold working. However, even in the presence of a large amount of β phase or martensite phase, if it is β phase or martensite phase not within the Mo equivalent, it is necessary to obtain a low Young's modulus even if cold working is performed. These structures are not introduced, and a low Young's modulus of less than 75 GPa cannot be obtained.

また、低ヤング率を得るためには、さらに、β相もしくはマルテンサイト相を室温で不安定な状態にする必要があることが一般的に知られている。β相もしくはマルテンサイト相の室温における安定度は相内に含まれる元素、特にβ安定化元素の含有量により決まる。β安定化元素の量が少なくなるとマルテンサイト相が、多くなり過ぎるとβ相が安定になってしまい、後述する本発明の溶体化熱処理範囲や、冷間での加工を施しても低ヤング率が得られない。本発明ではβ相もしくはマルテンサイト相内の合金元素量を、前述のとおりMo当量において特定の範囲内に調整することで低ヤング率が得られることを見出した。また、このようなβ相が冷間加工によってマルテンサイト相に加工誘起変態しても、含有されるMo当量は変化しないことを確認した。即ち、冷間加工の前後で、β相もしくはマルテンサイト相に含有されるMo当量は変化しない。従って、最終製品のβ相もしくはマルテンサイト相に含有されるMo当量が3.85%以上、10.00%未満であれば、冷間加工前のβ相もしくはマルテンサイト相に含有されるMo当量が3.85%以上、10.00%未満であることになるから、その後の冷間加工によって低ヤング率を実現することができるのである。   In order to obtain a low Young's modulus, it is generally known that the β phase or the martensite phase needs to be in an unstable state at room temperature. The stability of the β phase or martensite phase at room temperature is determined by the content of elements contained in the phase, particularly the β stabilizing elements. If the amount of β-stabilizing element decreases, the martensite phase becomes too large, and if it increases too much, the β-phase becomes stable, and even if it is subjected to the solution heat treatment range of the present invention described later or cold processing, low Young's modulus Cannot be obtained. In the present invention, it has been found that a low Young's modulus can be obtained by adjusting the amount of alloy elements in the β phase or martensite phase to a specific range in the Mo equivalent as described above. Further, it was confirmed that even when such a β phase was transformed into a martensite phase by cold working, the contained Mo equivalent did not change. That is, the Mo equivalent contained in the β phase or the martensite phase does not change before and after cold working. Therefore, if the Mo equivalent contained in the β phase or martensite phase of the final product is 3.85% or more and less than 10.00%, the Mo equivalent contained in the β phase or martensite phase before cold working. Is 3.85% or more and less than 10.00%, and therefore, a low Young's modulus can be realized by subsequent cold working.

また上述のとおり、本発明のα+β型チタン合金は溶体化処理後に冷間加工を施されてなる。   Further, as described above, the α + β type titanium alloy of the present invention is subjected to cold working after solution treatment.

[Mo当量の指標]
α+β型チタン合金では、α+βの2相高温域から水冷以上の速度で冷却することによりβ相を残留させる、もしくはα''マルテンサイト相やα’マルテンサイト相を生成することができる。しかしながら、上述のMo当量が低くなるとマルテンサイト相が安定化してしまい低ヤング率が得られない。マルテンサイト相を安定にしないためにはMo当量の下限を3.85%以上とする必要があることから、前述のとおりこれを下限とした。好ましくは、4.00%以上である。一方、β相内のMo当量を10.00%以上にすると、β相が安定に成り過ぎてしまいヤング率が上昇することから、本発明では前述のとおり10.00%を上限とした。β相を不安定にすることで低ヤング率が得られることから、好ましくは9.00%%未満である。
[Indicator of Mo equivalent]
In the α + β type titanium alloy, the β phase can be left or the α ″ martensite phase or the α ′ martensite phase can be generated by cooling from the α + β two-phase high temperature region at a rate higher than that of water cooling. However, when the Mo equivalent is lowered, the martensite phase is stabilized and a low Young's modulus cannot be obtained. In order not to stabilize the martensite phase, it is necessary to set the lower limit of the Mo equivalent to 3.85% or more. Preferably, it is 4.00% or more. On the other hand, if the Mo equivalent in the β phase is set to 10.00% or more, the β phase becomes too stable and the Young's modulus increases. Therefore, in the present invention, the upper limit is set to 10.00%. Since a low Young's modulus can be obtained by making the β phase unstable, it is preferably less than 9.00%.

[チタン合金の製造方法]
[溶体化熱処理:温度]
本発明のチタン合金は、上記チタン合金の組成を含有した上で、溶体化熱処理工程において、850℃以上、940℃未満の温度から水冷以上の冷却速度で冷却することとした。本発明では、上記のようにβ相もしくはマルテンサイト相内の含有元素量およびその範囲内にあるそれらの相の面積率を規定している。本発明合金のβ変態点温度は945〜960℃であり、850℃未満の温度で熱処理すると、本成分範囲内ではβ相内のMo当量が10.00%以上となってしまい例え後述の冷間加工を施してもヤング率が75GPa以上となり高くなることから、下限を850℃とした。好ましくは、880℃以上である。一方、β変態点を超える温度で熱処理を行うと上述したように金属組織が粗大化して疲労特性と延性を悪化させることがある。そのため、本発明では熱処理温度の上限をβ変態点直下となるよう950℃以下とした。
[Production method of titanium alloy]
[Solution heat treatment: Temperature]
The titanium alloy of the present invention contains the composition of the titanium alloy and is cooled at a cooling rate of water cooling or higher from a temperature of 850 ° C. or higher and lower than 940 ° C. in the solution heat treatment step. In the present invention, the amount of elements contained in the β phase or the martensite phase and the area ratio of those phases within the range are defined as described above. The β transformation point temperature of the alloy of the present invention is 945 to 960 ° C. When heat treatment is performed at a temperature lower than 850 ° C., the Mo equivalent in the β phase becomes 10.00% or more within the range of this component. Since the Young's modulus becomes 75 GPa or higher even when the inter-working is performed, the lower limit is set to 850 ° C. Preferably, it is 880 degreeC or more. On the other hand, if the heat treatment is performed at a temperature exceeding the β transformation point, the metal structure may be coarsened as described above to deteriorate fatigue characteristics and ductility. Therefore, in the present invention, the upper limit of the heat treatment temperature is set to 950 ° C. or lower so as to be directly below the β transformation point.

なお、熱処理時間は、被熱処理材の均熱が保たれればよく、被熱処理材の形状や炉の熱容量によっては1分程度の短時間でも構わない。   Note that the heat treatment time may be a short time of about 1 minute depending on the shape of the material to be heat-treated and the heat capacity of the furnace as long as the temperature of the material to be heat-treated is maintained.

[溶体化熱処理:冷却速度]
本発明では、上記温度で熱処理後、冷却速度は水冷以上としている。冷却速度が空冷となると冷却中にβ相粒内に微細なα相が析出するなどし、β相ないしマルテンサイト相の面積率は大きく減少する。また、β安定化元素がβ相へ拡散するため、β相内のMo当量が上昇する。さらにβ相の面積率が低くなるため、ヤング率は非常に高くなる。一方、水冷以上の冷却速で冷却すると、β相やマルテンサイト相内粒内にα相が析出せず、不安定な残留β相もしくはマルテンサイト相を室温で多量に残存させることができ、75GPa未満のヤング率を得られることから、冷却速度を水冷以上とした。
[Solution heat treatment: cooling rate]
In the present invention, after the heat treatment at the above temperature, the cooling rate is set to water cooling or higher. When the cooling rate is air cooling, a fine α phase is precipitated in the β phase grains during cooling, and the area ratio of the β phase or the martensite phase is greatly reduced. In addition, since the β-stabilizing element diffuses into the β phase, the Mo equivalent in the β phase increases. Furthermore, since the area ratio of the β phase is lowered, the Young's modulus is very high. On the other hand, when cooled at a cooling rate higher than water cooling, α phase does not precipitate in the inner grains of β phase and martensite phase, and unstable residual β phase or martensite phase can remain in a large amount at room temperature, and 75 GPa Since the Young's modulus of less than can be obtained, the cooling rate was set to water cooling or higher.

[冷間加工]
本発明では、溶体化処理後に冷間加工を施すことにより、75GPa未満の低ヤング率を得られることを特徴としている。これは、上述のように、β相の加工誘起マルテンサイト変態やβ相もしくはマルテンサイト相内に熱弾性マルテンサイト的な特徴を有する双晶界面が導入されることにより、ヤング率が低くなるためである。本発明の合金成分においても、上述のβ相もしくはマルテンサイト相内のMo当量を本発明の範囲内にすることで、溶体化処理後の冷間加工により、75GPa未満のヤング率を得ることが出来る。さらに好ましくは70GPa未満のヤング率である。なお、冷間加工については、例えば、伸線加工において0.5%以上の加工率(伸線加工の場合は加工前後の断面積の差を加工前の面積で割った割合)の冷間加工が施されるだけでも、ヤング率の低下に寄与するものである。
[Cold processing]
The present invention is characterized in that a low Young's modulus of less than 75 GPa can be obtained by performing cold working after solution treatment. This is because, as described above, the Young's modulus is lowered by introducing a twin interface having a thermoelastic martensitic characteristic into the β-phase or martensite phase, as well as the β-phase work-induced martensitic transformation. It is. Even in the alloy component of the present invention, the Young's modulus of less than 75 GPa can be obtained by cold working after solution treatment by setting the Mo equivalent in the β phase or martensite phase within the range of the present invention. I can do it. More preferably, the Young's modulus is less than 70 GPa. As for cold working, for example, cold working at a working rate of 0.5% or more in wire drawing (in the case of wire drawing, the ratio of the difference in cross-sectional area before and after processing divided by the area before processing). Even if it is applied, it contributes to a decrease in Young's modulus.

上記冷間加工としては、伸線加工以外にも、例えば、スウェージング加工、引抜加工、押出加工、圧延加工、プレス、曲げ、転造などを例示することができる。   Examples of the cold working include, besides wire drawing, swaging, drawing, extrusion, rolling, pressing, bending, rolling, and the like.

表1に示す成分のチタン合金を真空アーク溶解(VAR:Vacuum Arc Remelting)法によりチタン合金インゴットを作製し、これらを熱間鍛造および熱間圧延により製造した丸棒を素材とした。   Titanium alloy ingots were produced from the titanium alloys having the components shown in Table 1 by a vacuum arc melting (VAR) method, and round bars produced by hot forging and hot rolling were used as materials.

表1の熱間鍛造および熱間圧延した丸棒を本発明範囲の温度で1時間加熱した後水冷した。熱処理後の冷間加工については、丸棒を約3〜10%の加工率で伸線を施した。冷間加工前のβ相ないしマルテンサイト相内のMo当量、冷間加工後の、β相ないしマルテンサイト相内のMo当量、β相とマルテンサイト相の合計面積率及び冷間加工後のヤング率を表2に示す。尚、β相ないしマルテンサイト相内のMo当量は冷間加工の前後で不変であった。以下に、各々の測定条件と試験条件を説明する。β相ないしマルテンサイト相の面積率については、冷間加工前後の試験片の断面の埋め込み研磨試料を硝フッ酸水溶液(硝酸濃度が約12%、フッ酸濃度が約1.5%)を用いて室温でエッチングした後に観察し、画像解析により測定した。ヤング率はASTM E8Mサブサイズ(並行部の直径6.25mm、長さ25mm)用いて、歪ゲージを張り付けて測定したデータを用いて測定した。なお、ヤング率は耐力の半分までの応力までを直線近似し測定した。   The hot forged and hot rolled round bars in Table 1 were heated at a temperature within the range of the present invention for 1 hour and then cooled with water. For cold working after the heat treatment, the round bar was drawn at a working rate of about 3 to 10%. Mo equivalent in β phase or martensite phase before cold working, Mo equivalent in β phase or martensite phase after cold working, total area ratio of β phase and martensite phase, and Young after cold working The rates are shown in Table 2. The Mo equivalent in the β phase or martensite phase was unchanged before and after cold working. Below, each measurement condition and test condition are demonstrated. As for the area ratio of the β phase or martensite phase, a nitric hydrofluoric acid aqueous solution (nitric acid concentration is about 12%, hydrofluoric acid concentration is about 1.5%) is used for the embedded polishing sample of the cross section of the test piece before and after the cold working. The film was observed after etching at room temperature and measured by image analysis. The Young's modulus was measured using data measured by attaching a strain gauge using ASTM E8M subsize (parallel portion diameter 6.25 mm, length 25 mm). The Young's modulus was measured by approximating the stress up to half of the proof stress by linear approximation.

表2のNo.A−1〜A−10は、本発明合金成分系からなり、熱処理温度、冷却速度とも本発明範囲内である。一方、表2のNo.A−11および12は熱処理温度、冷却速度とも本発明範囲内であるが、成分系が異なっている。表1および表2において、本発明範囲から外れる数値にはアンダーラインを付している。   No. in Table 2 A-1 to A-10 are composed of the alloy component system of the present invention, and both the heat treatment temperature and the cooling rate are within the scope of the present invention. On the other hand, no. A-11 and 12 are within the scope of the present invention in terms of heat treatment temperature and cooling rate, but the component systems are different. In Tables 1 and 2, numerical values outside the scope of the present invention are underlined.

表1、2より、請求項1に記載の合金成分範囲である実施例のNo.A−1〜A−6は、β相もしくはマルテンサイト相内のMo当量が本発明範囲内にあり、且つ、β相とマルテンサイト相の合計面積率が55%以上となっている。そのため、冷間加工後のヤング率も75GPa未満と十分に低い値を示している。   From Tables 1 and 2, No. of the example which is the alloy component range of Claim 1 is shown. In A-1 to A-6, the Mo equivalent in the β phase or the martensite phase is within the range of the present invention, and the total area ratio of the β phase and the martensite phase is 55% or more. For this reason, the Young's modulus after cold working also shows a sufficiently low value of less than 75 GPa.

また、表1、2より、請求項2に記載の合金成分範囲である実施例No.A−7〜A−10は、β相もしくはマルテンサイト相内のMo当量が本発明範囲内にあり、且つ、β相とマルテンサイト相の合計面積率が55%以上となっている。そのため、冷間加工後のヤング率も75GPa未満と十分に低い値を示している。   From Tables 1 and 2, Example No. which is the alloy component range of claim 2 is used. In A-7 to A-10, the Mo equivalent in the β phase or the martensite phase is within the range of the present invention, and the total area ratio of the β phase and the martensite phase is 55% or more. For this reason, the Young's modulus after cold working also shows a sufficiently low value of less than 75 GPa.

一方で、表1、2より、比較例のNo.A−11はMoの添加元素量が0.01%と非常に低く、900℃で熱処理後、水冷すると、β相もしくはマルテンサイト相内のMo当量は請求項内となっても、β相とマルテンサイト相の合計面積率が49%と小さくなり、冷間加工後のヤング率も80GPaと高い。   On the other hand, from Tables 1 and 2, the comparative example No. A-11 has a very low additive element content of Mo of 0.01%. After heat treatment at 900 ° C. and water cooling, the Mo equivalent in the β phase or martensite phase is within the claims, The total area ratio of the martensite phase is as small as 49%, and the Young's modulus after cold working is as high as 80 GPa.

また、表1、2より、比較例のNo.A−12はAl,Fe,Moとも添加元素量が本発明範囲から外れている。そのため、900℃で熱処理、水冷すると、β相もしくはマルテンサイト相内のMo当量は本発明範囲内となっても、β相とマルテンサイト相の合計面積率が48%と小さくなりヤング率も約85GPaと高い。   From Tables 1 and 2, the comparative example No. In A-12, the amounts of additive elements of Al, Fe, and Mo are not within the scope of the present invention. Therefore, when heat treatment at 900 ° C. and water cooling, even if the Mo equivalent in the β phase or the martensite phase is within the range of the present invention, the total area ratio of the β phase and the martensite phase is as small as 48%, and the Young's modulus is about It is as high as 85 GPa.

また、表3に、本発明の合金成分である表1のNo.1およびNo.4を用いて、種々の温度から水冷した後、冷間加工として約3〜10%の加工率で伸線を施した場合を示す。表3のNo.A−15〜17は表1のNo.1の合金成分であり、熱処理温度、冷却速度とも本発明範囲内である。一方、表3のNo.A−14およびA−18は同じく表1のNo.1の合金成分であるが、熱処理温度がそれぞれ840℃および1000℃となっている。また、表3のNo.A−20およびA−21は表1のNo.4の合金成分であり、熱処理温度、冷却速度ともの本発明範囲内である。一方、表3のA―19は表1のNo.4の合金成分であるが、熱処理温度が800℃と低くなっている。なお、表3において、本発明範囲から外れる数値にはアンダーラインを付している。   In Table 3, No. 1 in Table 1, which is an alloy component of the present invention. 1 and no. 4 shows a case in which wire cooling is performed at a processing rate of about 3 to 10% as a cold processing after water cooling from various temperatures. No. in Table 3 A-15 to 17 are Nos. 1 in Table 1. 1 and the heat treatment temperature and cooling rate are within the scope of the present invention. On the other hand, no. A-14 and A-18 are also No. 1 in Table 1. However, the heat treatment temperatures are 840 ° C. and 1000 ° C., respectively. In Table 3, No. A-20 and A-21 are No. in Table 1. 4 and the heat treatment temperature and the cooling rate are within the scope of the present invention. On the other hand, A-19 in Table 3 is No. in Table 1. 4 is an alloy component, but the heat treatment temperature is as low as 800 ° C. In Table 3, values outside the scope of the present invention are underlined.

表3より、850℃を超え950℃未満の温度で熱処理後、水冷ししている実施例のNo.A−15〜A−17、A−20および21は、β相ないしマルテンサイト相内のMo当量が本発明の範囲内にあり、且つ、β相とマルテンサイト相の合計の面積率が55%以上となっており、冷間加工後のヤング率はいずれも75GPa未満と十分に低い値を示している。   From Table 3, No. of the Example which is water-cooled after heat processing at the temperature exceeding 850 degreeC and less than 950 degreeC. A-15 to A-17, A-20 and 21 have a β-phase or martensite phase Mo equivalent within the scope of the present invention, and the total area ratio of the β-phase and martensite phase is 55%. The Young's modulus after cold working is a sufficiently low value of less than 75 GPa.

一方で、表3の比較例のNo.A−14およびA−19は、熱処理温度がそれぞれ840℃および800℃と低く、β相もしくはマルテンサイト相内のMo当量は10.00%以上と高い。また、β相とマルテンサイト相の合計の面積率も55%未満と低いため、冷間加工後のヤング率が90GPa以上と高い。   On the other hand, No. of the comparative example of Table 3. In A-14 and A-19, the heat treatment temperatures are as low as 840 ° C. and 800 ° C., respectively, and the Mo equivalent in the β phase or martensite phase is as high as 10.00% or more. Further, since the total area ratio of the β phase and the martensite phase is as low as less than 55%, the Young's modulus after cold working is as high as 90 GPa or more.

また、表3の比較例のNo.A−18は熱処理温度が1000℃と非常に高くなっておいる。そのため、β相もしくはマルテンサイト相内のMo当量が3.80と低く、またβ相とマルテンサイト相の合計の面積率が100%と単相になっている。また、冷間加工後のヤング率も93GPaと非常に高い。   Further, in the comparative example of Table 3, No. A-18 has an extremely high heat treatment temperature of 1000 ° C. Therefore, the Mo equivalent in the β phase or the martensite phase is as low as 3.80, and the total area ratio of the β phase and the martensite phase is 100%, which is a single phase. Also, the Young's modulus after cold working is as high as 93 GPa.

本発明のα+β型チタン合金は、従来の低ヤング率が得られるβ型チタン合金に比較して、高価な添加元素であるV、Mo等の添加元素量が少なく、且つ、非常に低いヤング率を有していることから、自動車または二輪車のサスペンションスプリング、エンジンバルブスプリングなどの自動車または二輪車用部品材料や眼鏡のフレーム材として利用することに適しており、これら部品材の軽量化に寄与する。   The α + β-type titanium alloy of the present invention has a small amount of additive elements such as V and Mo, which are expensive additive elements, and a very low Young's modulus compared to conventional β-type titanium alloys that can obtain a low Young's modulus. Therefore, it is suitable for use as a component material for automobiles or motorcycles, such as suspension springs and engine valve springs for automobiles or motorcycles, and as a frame material for spectacles, and contributes to weight reduction of these component materials.

Claims (4)

質量%で、4.4%以上5.5%未満のAl、1.4%以上2.3%未満のFe、1.5%以上5.0%未満のMoを含有し、不純物としてSiが0.1%未満、Cが0.01%未満に抑制され、残部Ti及び不可避的不純物からなるチタン合金であって、ミクロ組織において、β相もしくはマルテンサイト相内の合金成分が、Mo当量=[%Mo]+2.9×[%Fe]+1.1×[%Ni]+1.6×[%Cr]+1.6×[%Mn]―[%Al]からなる式において、Mo当量が3.85%以上、11.00%未満であり、当該Mo当量範囲にあるβ相もしくはマルテンサイト相の1相ないし2相の合計の面積率が55%以上、99%未満であり、ヤング率が75GPa未満であることを特徴とするα+β型チタン合金。   It contains 4.4% or more and less than 5.5% Al, 1.4% or more and less than 2.3% Fe, 1.5% or more and less than 5.0% Mo, and Si as an impurity. Less than 0.1%, C is suppressed to less than 0.01%, and is a titanium alloy composed of the balance Ti and inevitable impurities, and in the microstructure, the alloy component in the β phase or martensite phase is Mo equivalent = In the formula consisting of [% Mo] + 2.9 × [% Fe] + 1.1 × [% Ni] + 1.6 × [% Cr] + 1.6 × [% Mn] − [% Al], the Mo equivalent is 3 .85% or more and less than 11.00%, and the total area ratio of one or two phases of β phase or martensite phase in the Mo equivalent range is 55% or more and less than 99%, and Young's modulus is An α + β type titanium alloy characterized by being less than 75 GPa. 前記Feの一部を、質量%で0.15%未満のNi、0.25%未満のCr、0.25%未満のMnの1種または2種以上で代替したことを特徴とする、請求項1に記載のα+β型チタン合金。   A part of the Fe is replaced by one or more of Ni of less than 0.15% by mass, Cr of less than 0.25%, and Mn of less than 0.25%. Item 2. An α + β type titanium alloy according to item 1. 溶体化処理後に冷間加工を施されてなることを特徴とする請求項1又は2に記載のα+β型チタン合金。   The α + β type titanium alloy according to claim 1, wherein the α + β type titanium alloy is subjected to cold working after the solution treatment. 850℃を超え950℃以下の温度から水冷以上の冷却速度で冷却する溶体化熱処理を施した後、冷間加工を施すことを特徴とする、請求項1〜3の何れか1項に記載のα+β型チタン合金の製造方法。   4. The method according to claim 1, wherein a cold working is performed after a solution heat treatment is performed at a cooling rate higher than 850 ° C. and lower than 950 ° C. at a cooling rate equal to or higher than water cooling. Manufacturing method of α + β type titanium alloy.
JP2010278113A 2010-12-14 2010-12-14 Α + β type titanium alloy having a low Young's modulus of less than 75 GPa and method for producing the same Active JP5621571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010278113A JP5621571B2 (en) 2010-12-14 2010-12-14 Α + β type titanium alloy having a low Young's modulus of less than 75 GPa and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010278113A JP5621571B2 (en) 2010-12-14 2010-12-14 Α + β type titanium alloy having a low Young's modulus of less than 75 GPa and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012126944A JP2012126944A (en) 2012-07-05
JP5621571B2 true JP5621571B2 (en) 2014-11-12

Family

ID=46644307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010278113A Active JP5621571B2 (en) 2010-12-14 2010-12-14 Α + β type titanium alloy having a low Young's modulus of less than 75 GPa and method for producing the same

Country Status (1)

Country Link
JP (1) JP5621571B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5605316B2 (en) * 2011-06-15 2014-10-15 新日鐵住金株式会社 Titanium alloy member having shape memory characteristics in two directions and manufacturing method thereof
WO2016013566A1 (en) * 2014-07-25 2016-01-28 新日鐵住金株式会社 Titanium alloy member having shape change characteristics in same direction as working direction, and method for manufacturing same
JP6696202B2 (en) * 2016-02-15 2020-05-20 日本製鉄株式会社 α + β type titanium alloy member and manufacturing method thereof
JP7087476B2 (en) * 2017-03-15 2022-06-21 日本製鉄株式会社 α + β type titanium alloy extruded profile
JP7129057B2 (en) * 2018-03-30 2022-09-01 国立研究開発法人物質・材料研究機構 Method for producing Ti-based alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4517095B2 (en) * 2005-10-07 2010-08-04 新日本製鐵株式会社 High strength titanium alloy automotive engine valve
JP5272532B2 (en) * 2008-06-18 2013-08-28 大同特殊鋼株式会社 β-type titanium alloy
JP5353754B2 (en) * 2009-02-19 2013-11-27 新日鐵住金株式会社 Metastable β-type titanium alloy having low Young's modulus and method for producing the same
JP4837783B2 (en) * 2010-01-19 2011-12-14 新日本製鐵株式会社 Method for adjusting Young's modulus of α + β type titanium alloy member having a tensile strength of 1000 MPa class or more

Also Published As

Publication number Publication date
JP2012126944A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5594244B2 (en) Α + β type titanium alloy having a low Young's modulus of less than 75 GPa and method for producing the same
JP5353754B2 (en) Metastable β-type titanium alloy having low Young's modulus and method for producing the same
JP4493029B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
JP4493028B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
KR101418775B1 (en) Beta type titanium alloy with low elastic modulus and high strength
US12000021B2 (en) α+β type titanium alloy wire and manufacturing method of α+β type titanium alloy wire
JPWO2020101008A1 (en) Titanium alloy wire rod and titanium alloy wire rod manufacturing method
JP4939741B2 (en) near β type titanium alloy
JP4478123B2 (en) Α + β-type titanium alloy member having a tensile strength of 1000 MPa class or more and method for producing the same
JPH10306335A (en) Alpha plus beta titanium alloy bar and wire rod, and its production
CN112639144B (en) Copper alloy material, method for producing same, and member or component made of copper alloy material
US20070212251A1 (en) High Strength AlphaType Titanuim Alloy
JP5621571B2 (en) Α + β type titanium alloy having a low Young's modulus of less than 75 GPa and method for producing the same
JP5589861B2 (en) Α + β type titanium alloy member having high strength and low Young's modulus and method for producing the same
JP6696202B2 (en) α + β type titanium alloy member and manufacturing method thereof
JP4837783B2 (en) Method for adjusting Young's modulus of α + β type titanium alloy member having a tensile strength of 1000 MPa class or more
EP3012337A1 (en) Hot-forged ti-al-based alloy and method for producing same
JP3308090B2 (en) Fe-based super heat-resistant alloy
JP6269836B2 (en) Titanium alloy member having shape change characteristic in the same direction as the machining direction
JP5578041B2 (en) Titanium alloy member having shape memory characteristics in two directions and manufacturing method thereof
JP5144269B2 (en) High-strength Co-based alloy with improved workability and method for producing the same
JP5010309B2 (en) High strength titanium alloy material for cold forging
JP5228708B2 (en) Titanium alloy for heat-resistant members with excellent creep resistance and high-temperature fatigue strength
JP4263987B2 (en) High-strength β-type titanium alloy
JP2018053313A (en) α+β TYPE TITANIUM ALLOY BAR AND MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R151 Written notification of patent or utility model registration

Ref document number: 5621571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350