JP6696202B2 - α + β type titanium alloy member and manufacturing method thereof - Google Patents

α + β type titanium alloy member and manufacturing method thereof Download PDF

Info

Publication number
JP6696202B2
JP6696202B2 JP2016025469A JP2016025469A JP6696202B2 JP 6696202 B2 JP6696202 B2 JP 6696202B2 JP 2016025469 A JP2016025469 A JP 2016025469A JP 2016025469 A JP2016025469 A JP 2016025469A JP 6696202 B2 JP6696202 B2 JP 6696202B2
Authority
JP
Japan
Prior art keywords
less
grains
alloy
titanium alloy
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016025469A
Other languages
Japanese (ja)
Other versions
JP2017145429A (en
Inventor
吉紹 立澤
吉紹 立澤
知徳 國枝
知徳 國枝
一浩 ▲高▼橋
一浩 ▲高▼橋
藤井 秀樹
秀樹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016025469A priority Critical patent/JP6696202B2/en
Publication of JP2017145429A publication Critical patent/JP2017145429A/en
Application granted granted Critical
Publication of JP6696202B2 publication Critical patent/JP6696202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明はα+β型チタン合金部材およびその製造方法に関する。   The present invention relates to an α + β type titanium alloy member and a method for manufacturing the same.

チタン合金は、軽量かつ高強度であり、耐食性にも優れることから、様々な分野で活用されている。特に、最汎用合金であるTi−6Al−4V合金(6質量%Alおよび4質量%含有Ti合金)は、以前から航空宇宙分野で活用されており、近年では自動車分野などへも適用され始めている。   Titanium alloys are used in various fields because they are lightweight, have high strength, and have excellent corrosion resistance. In particular, Ti-6Al-4V alloy (Ti alloy containing 6 mass% Al and 4 mass%), which is the most general-purpose alloy, has been used in the aerospace field for a long time, and in recent years, it has also begun to be applied to the automobile field and the like. ..

その一方で、Ti−6Al−4V合金などのチタン合金は、加工性や切削性に乏しく加工が難しいとともに複雑な形状を有する部品は削り出しにより製造せざるを得ないため、歩留りが低いことに起因して製造コストが高いという問題がある。   On the other hand, titanium alloys such as Ti-6Al-4V alloys are poor in workability and machinability and difficult to process, and parts having a complicated shape have to be manufactured by shaving, resulting in low yield. Due to this, there is a problem that the manufacturing cost is high.

この問題を解決する方法の一つとして、相変態に起因する変態超塑性現象、または結晶粒が微細であることに起因する微細結晶粒(構造)超塑性現象を活用した超塑性加工法が知られる。   One of the methods to solve this problem is the superplastic processing method that utilizes the transformation superplasticity phenomenon caused by the phase transformation or the fine crystal grain (structure) superplasticity phenomenon caused by the fine crystal grains. Be done.

超塑性とは、材料をある特定の条件下で加工した際に、低流動応力を維持したままネッキングを生じることなく、金属材料では数100〜数1000%に及ぶ破断伸びを示す性質である。超塑性加工法は、この性質を利用して複雑な形状を有する部品を精密に塑性加工する。   Superplasticity is a property in which a metal material exhibits a breaking elongation of several 100 to several 1000% without necking while maintaining a low flow stress when the material is processed under a specific condition. The superplastic working method utilizes this property to precisely plastically work a part having a complicated shape.

しかし、超塑性加工法によりTi−6Al−4V合金を加工するには、一般に約900℃以上の高温、および1×10−3−1以下の低歪速度の加工条件を選択する必要がある。このため、超塑性加工に用いる金型の寿命が短くなることや生産性が低いことなど、いまだに多くの問題がある。 However, in order to process a Ti-6Al-4V alloy by a superplastic working method, it is generally necessary to select a working condition of a high temperature of about 900 ° C. or higher and a low strain rate of 1 × 10 −3 s −1 or lower. .. Therefore, there are still many problems such as shortening the life of the mold used for superplastic working and low productivity.

また、超塑性加工に供する素材は、5〜10μmの微細等軸組織を有する必要もあるが、Ti−6Al−4V合金ではこの微細等軸組織を得ることが難しいことも生産性を低下させる要因の一つになっている。   Further, the material to be subjected to superplastic working also needs to have a fine equiaxed structure of 5 to 10 μm, but it is difficult to obtain this fine equiaxed structure in the Ti-6Al-4V alloy, which is a factor that reduces productivity. Has become one of.

さらに、Ti−6Al−4V合金では、β相安定化元素として高価なVを用いており、材料コストが高いという問題もある。   Further, in the Ti-6Al-4V alloy, since expensive V is used as the β-phase stabilizing element, there is a problem that the material cost is high.

特許文献1には、質量%で、Al:4.4%以上5.5%未満、Fe:1.4%以上2.1%未満、Mo:1.5%以上5.5%未満を含有し、不純物であるSi:0.1%未満およびC:0.01%未満、残部がTiおよび不純物からなる化学組成を有するチタン合金であって、Ti−6Al−4V合金と同等以上の室温強度、室温延性および疲労強度を有するとともに熱間加工性および冷間加工性に優れるα+β型チタン合金が開示されている。   Patent Document 1 contains, by mass%, Al: 4.4% or more and less than 5.5%, Fe: 1.4% or more and less than 2.1%, Mo: 1.5% or more and less than 5.5%. However, it is a titanium alloy having a chemical composition of Si: less than 0.1% and C: less than 0.01% with the balance being Ti and impurities, and has room temperature strength equal to or higher than Ti-6Al-4V alloy. , An α + β type titanium alloy having room temperature ductility and fatigue strength as well as excellent hot workability and cold workability is disclosed.

特許文献2には、質量%で、Al:3.0%以上5.0%以下、V:2.1%以上3.7%以下、Mo:0.85%以上3.15%以下、O:0.15%以下、さらに、Fe、Ni、CoおよびCrのうちの1種または2種以上を含有し、かつ、0.85%≦Fe+Ni+Co+0.9×Cr≦3.15%、および、7%≦2×Fe+2×Ni+2×Co+1.8×Cr≦13%を満足し、残部Tiおよび不純物からなり、Ti−6Al−4V合金よりも低温で超塑性を発現する高強度チタン合金が開示されている。   In Patent Document 2, Al: 3.0% or more and 5.0% or less, V: 2.1% or more and 3.7% or less, Mo: 0.85% or more and 3.15% or less, and O in mass%. : 0.15% or less, further containing one or more of Fe, Ni, Co and Cr, and 0.85% ≦ Fe + Ni + Co + 0.9 × Cr ≦ 3.15%, and 7 % High-strength titanium alloy satisfying% ≦ 2 × Fe + 2 × Ni + 2 × Co + 1.8 × Cr ≦ 13%, consisting of balance Ti and impurities, and exhibiting superplasticity at a lower temperature than Ti-6Al-4V alloy is disclosed. There is.

特開2005−320618号公報JP, 2005-320618, A 特開平3−274238号公報JP-A-3-274238

CAMP−ISIJ,Vol.26,(2013),1065頁CAMP-ISIJ, Vol. 26, (2013), p. 1065 CAMP−ISIJ,Vol.26,(2013),440頁CAMP-ISIJ, Vol. 26, (2013), p. 440

特許文献1に開示された発明は、Ti−6Al−4V合金と同等以上の室温強度、室温延性および疲労強度を有するとともに熱間加工性および冷間加工性に優れるα+β型チタン合金を提供することを目的とするが、このα+β型チタン合金の超塑性に関する開示はない。   The invention disclosed in Patent Document 1 provides an α + β-type titanium alloy having room temperature strength, room temperature ductility and fatigue strength equal to or higher than Ti-6Al-4V alloy and having excellent hot workability and cold workability. However, there is no disclosure regarding superplasticity of the α + β type titanium alloy.

特許文献2により開示されたチタン合金は、Ti−6Al−4V合金と同様にβ相安定化元素として高価なVを2.1〜3.7質量%含有しており、材料コストが高い。また、このチタン合金を製造するには、超塑性特性を発現させるために、50%以上の圧下量で熱間加工を行った後に(β変態点−250℃)以上β変態点未満の温度で熱処理を行うという複雑な加工熱処理を行う必要があり、この点からも製造コストが嵩む。   The titanium alloy disclosed in Patent Document 2 contains expensive V as a β-phase stabilizing element in an amount of 2.1 to 3.7% by mass similarly to the Ti-6Al-4V alloy, and the material cost is high. Further, in order to produce this titanium alloy, in order to develop superplasticity characteristics, after hot working with a reduction amount of 50% or more (β transformation point −250 ° C.) or more and at a temperature of less than β transformation point. It is necessary to perform a complicated work heat treatment of performing heat treatment, which also increases the manufacturing cost.

本発明は、従来の技術が有するこのような課題に鑑みてなされたものであり、高価な元素であるVを使用せず、複雑な加工熱処理が不要で単純な熱処理や熱間加工などの加工熱処理により、Ti−6Al−4V合金と同等以上の室温強度を有し、かつ、比較的低温で高歪速度でもくびれを生じず、数100%以上の塑性伸びを得られる超塑性特性を発現可能なα+β型チタン合金部材とその製造方法を提供することを目的とする。   The present invention has been made in view of such problems of the conventional technique, and does not use expensive element V, does not require complicated thermomechanical treatment, and performs simple heat treatment or hot working. By heat treatment, it has room temperature strength equal to or higher than that of Ti-6Al-4V alloy, and does not cause constriction even at high strain rate at relatively low temperature, and can develop superplastic properties that can obtain plastic elongation of several 100% or more. Another object of the present invention is to provide an α + β type titanium alloy member and a method for manufacturing the same.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、
(A)特許文献1により開示された化学組成を有するチタン合金(代表組成:Ti−5Al−2Fe−3Mo合金)をβ変態点以上の温度域に加熱および保持した後に高速冷却すると、極めて微細な針状組織となり、この微細な針状組織は、一般に超塑性特性を発現する条件とされる微細等軸組織とは異なるにもかかわらず、その後の加工中に微細等軸組織に変化して超塑性特性を発現すること、および、
(B)このTi−5Al−2Fe−3Mo合金の超塑性特性は、Ti−6Al−4V合金よりも低温かつ高歪速度で発現すること
を知見し、これらの知見A,Bに基づいてさらに検討を重ねて、本発明を完成した。本発明は以下に列記の通りである。
The present inventors, as a result of repeated studies to solve the above problems,
(A) When a titanium alloy (representative composition: Ti-5Al-2Fe-3Mo alloy) having the chemical composition disclosed in Patent Document 1 is heated and held in a temperature range above the β transformation point and then cooled at high speed, it becomes extremely fine. It becomes a needle-shaped structure, and this fine needle-shaped structure changes to a fine equiaxed structure during the subsequent processing, although it is different from the fine equiaxed structure that is generally regarded as a condition for developing superplasticity. Exhibiting plastic properties, and
(B) It was found that the superplasticity characteristics of this Ti-5Al-2Fe-3Mo alloy are expressed at a lower temperature and a higher strain rate than the Ti-6Al-4V alloy, and further investigation based on these findings A and B. By repeating the above, the present invention was completed. The present invention is as listed below.

(1)化学組成が、質量%で、Al:4.4%以上5.5%未満、Fe:1.4%以上2.1%未満、Mo:1.5%以上5.5%未満、残部:Tiおよび不純物からなり、前記不純物のうちのSi:0.1%未満およびC:0.01%未満であり、かつ、前記不純物の総量:0.3%未満であり、
金属組織が、針状マルテンサイト粒および針状α粒の短軸方向の幅が平均3μm以下である微細針状組織、および、等軸α粒の平均粒径が5μm以下である微細等軸状組織のいずれか一方または両方である、α+β型チタン合金部材。
(1) Chemical composition, in mass%, Al: 4.4% or more and less than 5.5%, Fe: 1.4% or more and less than 2.1%, Mo: 1.5% or more and less than 5.5%, The balance: Ti and impurities, of which Si: less than 0.1% and C: less than 0.01%, and the total amount of impurities: less than 0.3%,
The metal structure has a fine needle-like structure in which the widths of acicular martensite grains and acicular α grains in the short axis direction are 3 μm or less on average, and fine equiaxed grains in which equiaxed α grains have an average particle size of 5 μm or less. An α + β type titanium alloy member having one or both of the tissues.

(2)超塑性加工用である、1項に記載のα+β型チタン合金部材。   (2) The α + β type titanium alloy member according to item 1, which is for superplastic working.

(3)粒界α相の体積率が1%以下であり、かつ、粒界α相の短軸方向の幅が平均3μm以下である、1または2項に記載のα+β型チタン合金部材。   (3) The α + β type titanium alloy member according to item 1 or 2, wherein the volume ratio of the grain boundary α phase is 1% or less, and the width of the grain boundary α phase in the short axis direction is 3 μm or less on average.

(4)質量%で、Al:4.4%以上5.5%未満、Fe:1.4%以上2.1%未満、Mo:1.5%以上5.5%未満、残部:Tiおよび不純物からなり、前記不純物のうちのSi:0.1%未満およびC:0.01%未満であり、かつ、前記不純物の総量:0.3%未満である化学組成を有する素材を、β変態点以上の温度域から、β変態点での冷却速度が50〜100℃/秒となるように冷却する、1〜3項のいずれかに記載の、α+β型チタン合金部材の製造方法。   (4) In mass%, Al: 4.4% or more and less than 5.5%, Fe: 1.4% or more and less than 2.1%, Mo: 1.5% or more and less than 5.5%, balance: Ti and A material having a chemical composition of impurities, Si: less than 0.1% and C: less than 0.01%, and a total amount of the impurities: less than 0.3%, is β-transformed. The method for producing an α + β-type titanium alloy member according to any one of items 1 to 3, wherein the cooling rate at a β transformation point is 50 to 100 ° C./sec from a temperature range equal to or higher than the point.

本発明により、高価な添加元素であるVを使用せず、複雑な加工熱処理が不要でありながら、Ti−6Al−4V合金と同等以上の室温強度を有し、かつ、Ti−6Al−4V合金において超塑性を得られる通常の条件(加工温度900℃以上、歪速度1×10−3−1以下)よりも低い加工温度および高い歪速度で超塑性特性を発現するα+β型チタン合金部材が提供される。 ADVANTAGE OF THE INVENTION According to this invention, although it does not use V which is an expensive additive element and does not require complicated thermomechanical processing, it has room temperature strength equivalent to or more than Ti-6Al-4V alloy, and Ti-6Al-4V alloy. The α + β type titanium alloy member that exhibits superplasticity characteristics at a working temperature lower than the usual conditions (working temperature 900 ° C. or more, strain rate 1 × 10 −3 s −1 or less) and a high strain rate that can obtain superplasticity in Provided.

本発明に係るα+β型チタン合金部材は、低温での超塑性の発現による金型の高寿命化、生産コストの低下、高歪速度での超塑性発現による生産性の向上、さらには安価汎用元素の活用による素材コストの低減など、その産業上の効果は計り知れないほど大きい。   The α + β type titanium alloy member according to the present invention has a long life of the die due to manifestation of superplasticity at a low temperature, a reduction in production cost, an improvement in productivity due to manifestation of superplasticity at a high strain rate, and an inexpensive general-purpose element. The effects on the industry, such as the reduction of material costs by utilizing, are immeasurable.

図1は、本発明に係るα+β型チタン合金部材の光学顕微鏡写真の一例であり、微細針状組織を示す。FIG. 1 is an example of an optical microscope photograph of an α + β type titanium alloy member according to the present invention, showing a fine needle-like structure. 図2は、本発明に係るα+β型チタン合金部材の光学顕微鏡写真の一例であり、微細針状組織および微細等軸状組織の混合組織を示す。FIG. 2 is an example of an optical micrograph of an α + β type titanium alloy member according to the present invention, showing a mixed structure of a fine needle-like structure and a fine equiaxed structure.

以下、本発明を詳しく説明する。以降の説明では、化学組成または濃度に関する「%」は特に断りがない限り「質量%」を意味する。   Hereinafter, the present invention will be described in detail. In the following description, “%” relating to chemical composition or concentration means “mass%” unless otherwise specified.

1.本発明に係るα+β型チタン合金部材 1. Α + β type titanium alloy member according to the present invention

(1−1)化学組成 (1-1) Chemical composition

(1−1−1)Al:4.4%以上5.5%未満
Alは、固溶強化能が高いα相安定化元素であり、Al含有量が増加すると室温での引張強度が上昇する。Alは、安価な元素であるが、その固溶強化能は大きく、室温でTi−6Al−4V合金と同等以上の引張強度(1000MPa以上)を得るために、Al含有量は、4.4%以上であり、好ましくは4.7%以上であり、さらに好ましくは4.8%以上である。
(1-1-1) Al: 4.4% or more and less than 5.5% Al is an α-phase stabilizing element having a high solid solution strengthening ability, and as the Al content increases, the tensile strength at room temperature increases. .. Although Al is an inexpensive element, its solid solution strengthening ability is large, and in order to obtain a tensile strength (1000 MPa or more) equal to or higher than that of Ti-6Al-4V alloy at room temperature, the Al content is 4.4%. It is above, preferably at least 4.7%, more preferably at least 4.8%.

一方、Alを過剰に含有すると、高温および室温での延性や冷間加工性が低下する。室温延性および冷間加工性が低下する理由は、Alが積層欠陥エネルギーを上げ、双晶変形を抑制するためであり、Al含有量が5.5%以上になると、双晶変形の抑制が顕著になる。そこで、Al含有量は、5.5%未満であり、好ましくは5.3%以下であり、さらに好ましくは5.1%以下である。   On the other hand, if Al is contained excessively, ductility and cold workability at high temperature and room temperature are deteriorated. The reason that the room temperature ductility and the cold workability are lowered is that Al raises the stacking fault energy and suppresses twin crystal deformation. When the Al content is 5.5% or more, twin crystal deformation is significantly suppressed. become. Therefore, the Al content is less than 5.5%, preferably 5.3% or less, and more preferably 5.1% or less.

(1−1−2)Fe:1.4%以上2.1%未満
Feは、比較的安価なβ相安定化置換型固溶元素であり、Fe含有量にしたがって引張強度が上昇する。また、Feは高いβ相安定化能を示す元素であるため、その含有量を少なくすることが可能である。室温で1000MPa以上の引張強度を得るために、Fe含有量は、1.4%以上であり、好ましくは1.6%以上であり、さらに好ましくは1.8%以上である。
(1-1-2) Fe: 1.4% or more and less than 2.1% Fe is a relatively inexpensive β-phase stabilizing substitution type solid solution element, and the tensile strength increases according to the Fe content. Further, since Fe is an element showing a high β-phase stabilizing ability, it is possible to reduce the content thereof. In order to obtain a tensile strength of 1000 MPa or more at room temperature, the Fe content is 1.4% or more, preferably 1.6% or more, more preferably 1.8% or more.

一方、Feは、Ti中で凝固偏析し易く、数百kg以上の大型インゴットでは2.1%以上含有するとFeの偏析が顕著になる。このため、Fe含有量は、2.1%未満であり、好ましくは2.0%以下である。   On the other hand, Fe is liable to be solidified and segregated in Ti, and in a large ingot of several hundred kg or more, when the content of Fe is 2.1% or more, the segregation of Fe becomes remarkable. Therefore, the Fe content is less than 2.1%, preferably 2.0% or less.

(1−1−3)Mo:1.5%以上5.5%未満
Moは、β相安定化置換型固溶元素であり、Feと同様に、室温強度を向上させるだけでなく、熱間加工性および冷間加工性を向上させる。冷間加工性を向上させるために、Mo含有量は、1.5%以上であり、好ましくは2.4%以上であり、さらに好ましくは2.9%以上である。
(1-1-3) Mo: 1.5% or more and less than 5.5% Mo is a β-phase stabilizing substitution type solid solution element, and like Fe, not only improves room temperature strength but also hot work. Improves workability and cold workability. In order to improve cold workability, the Mo content is 1.5% or more, preferably 2.4% or more, and more preferably 2.9% or more.

一方、Moを5.5%以上含有すると大型インゴットでの凝固偏析が問題になるため、Mo含有量は、5.5%未満であり、好ましくは4.9%以下であり、さらに好ましくは4.0%以下である。   On the other hand, if Mo is contained in an amount of 5.5% or more, solidification segregation in a large ingot becomes a problem, so the Mo content is less than 5.5%, preferably 4.9% or less, and more preferably 4 It is 0.0% or less.

(1−1−4)残部
上記以外の残部は、Tiおよび不純物であり、不純物のうちのSi:0.1%未満、C:0.01%未満であり、かつ、前記不純物の総量:0.3%未満である。
(1-1-4) Remainder The balance other than the above is Ti and impurities, and among the impurities, Si: less than 0.1%, C: less than 0.01%, and the total amount of the impurities: 0. It is less than 0.3%.

不純物としてのSiを0.1%以上含有し、不純物としてのCを0.01%以上含有すると、室温延性、熱間加工性および冷間加工性に悪影響を及ぼす。このため、Si含有量は0.1%未満であるとともにC含有量は0.01%未満である。   When 0.1% or more of Si as an impurity and 0.01% or more of C as an impurity are contained, room temperature ductility, hot workability and cold workability are adversely affected. Therefore, the Si content is less than 0.1% and the C content is less than 0.01%.

Si,C以外のその他の不純物元素は、本効果を阻害しない範囲であれば含有してもよい。その他の不純物元素としては、O、N、H、P、S、Cl、Mg、Cr、Ni、Sn等が例示される。   Other impurity elements other than Si and C may be contained as long as the effect is not impaired. Examples of other impurity elements include O, N, H, P, S, Cl, Mg, Cr, Ni and Sn.

さらに、SiおよびCを含めた不純物元素の総量は、室温延性、熱間加工性および冷間加工性を維持する観点から、0.3%未満である。   Further, the total amount of impurity elements including Si and C is less than 0.3% from the viewpoint of maintaining room temperature ductility, hot workability and cold workability.

(1−1−5)Mo当量
本発明では、β相安定度の指標であり、下記(1)式により求められるMo当量を、0.5〜7.0の範囲とすることが望ましい。
[Mo]eq=[Mo]+2.9[Fe]−[Al] ・・・・・(1)
(1-1-5) Mo Equivalent In the present invention, it is desirable that the Mo equivalent, which is an index of β-phase stability and calculated by the following equation (1), is in the range of 0.5 to 7.0.
[Mo] eq = [Mo] +2.9 [Fe]-[Al] (1)

Mo当量が0.5未満であると、焼入れ性が低く、加工熱処理の際に高温でβ→α相変態が生じ、針状α粒や等軸α粒が粗大化することがある。一方、Mo当量が7.0を超えると、β相分率が高くなり、室温での強度が1000MPa未満に低下するおそれがある。このため、Mo当量は0.5以上7.0以下であることが好ましい。   When the Mo equivalent is less than 0.5, the hardenability is low, and the β → α phase transformation may occur at the high temperature during the thermomechanical treatment, resulting in coarsening of needle-shaped α grains and equiaxed α grains. On the other hand, when the Mo equivalent exceeds 7.0, the β phase fraction increases, and the strength at room temperature may decrease to less than 1000 MPa. Therefore, the Mo equivalent is preferably 0.5 or more and 7.0 or less.

(1−2)金属組織 (1-2) Metallographic structure

図1は、本発明に係るα+β型チタン合金部材の光学顕微鏡写真の一例であり、微細針状組織を示す。図2は、本発明に係るα+β型チタン合金部材の光学顕微鏡写真の一例であり、微細針状組織および微細等軸状組織の混合組織を示す。   FIG. 1 is an example of an optical microscope photograph of an α + β type titanium alloy member according to the present invention, showing a fine needle-like structure. FIG. 2 is an example of an optical micrograph of an α + β type titanium alloy member according to the present invention, showing a mixed structure of a fine needle-like structure and a fine equiaxed structure.

金属組織は、針状マルテンサイト粒および針状α粒の短軸方向の幅が平均3μm以下である微細針状組織、および、等軸α粒の平均粒径が5μm以下である微細等軸状組織のいずれか一方または両方である。   The metal structure is a fine needle-shaped structure in which the widths of acicular martensite grains and acicular α grains in the short axis direction are 3 μm or less on average, and fine equiaxed grains in which equiaxed α grains have an average particle size of 5 μm or less. Either or both of the organizations.

針状組織の場合、針状マルテンサイト粒および針状α粒の短軸方向の幅が平均3μmを超えると、高温保持後の加工中に針状α粒の分断が生じ難くなり、大きな伸びを得られない。したがって、針状マルテンサイト粒および針状α粒の短軸方向の幅は平均3μm以下である。   In the case of an acicular structure, if the width of the acicular martensite grains and acicular α grains in the minor axis direction exceeds 3 μm on average, the acicular α grains are less likely to be fragmented during processing after being kept at high temperature, resulting in a large elongation. I can't get it. Therefore, the width of the acicular martensite grains and acicular α grains in the short axis direction is 3 μm or less on average.

一方、等軸α粒の場合、周囲をβ相で覆われており、このβ粒が変形することにより、針状α粒よりも変形が容易である。このため、等軸α粒の場合、平均粒径が5μmまで許容される。したがって、等軸α粒の平均粒径は5μm以下である。   On the other hand, in the case of equiaxed α particles, the surroundings are covered with β phase, and the β particles are deformed, so that they are easier to deform than the acicular α particles. Therefore, in the case of equiaxed α grains, the average grain size is allowed up to 5 μm. Therefore, the average grain size of equiaxed α grains is 5 μm or less.

また、粒界α相が存在すると伸びが低下することがあり、粒界α相の体積率が1%を超えると加工時の伸びの低下が大きくなる。このため、粒界α相の体積率は1%以下であることが望ましい。   Further, the presence of the grain boundary α phase may reduce the elongation, and when the volume ratio of the grain boundary α phase exceeds 1%, the elongation at the time of processing is greatly reduced. Therefore, it is desirable that the volume ratio of the grain boundary α phase is 1% or less.

また、粒界α相の短軸方向の幅が平均3μmを超えると、同様に加工率の低下が顕著になることがあるため、粒界α相の短軸方向の幅は平均3μm以下であることが望ましい。   When the average width of the grain boundary α phase in the minor axis direction exceeds 3 μm, the workability may be significantly reduced. Therefore, the average width of the grain boundary α phase in the minor axis direction is 3 μm or less. Is desirable.

針状マルテンサイト粒および針状α粒(針状粒)の平均幅、等軸α粒(等軸粒)の平均粒径、粒界α相の短軸方向の平均幅は、いずれも、光学顕微鏡観察用の試験片を採取し、CもしくはT断面(長手方向に垂直な断面)を観察面とする埋め込み研磨試料を作製し、硝フッ酸水溶液(硝酸濃度:約12%、フッ酸濃度:約1.5%)を用いて室温でエッチングした後に、500倍の倍率で各視野からランダムに10カ所測定し、計20視野測定した際の平均値を算出することにより、求める。   The average width of the acicular martensite grains and the acicular α grains (acicular grains), the average grain size of the equiaxed α grains (equiaxial grains), and the average width of the grain boundary α phase in the minor axis direction are all optical values. A test piece for microscopic observation is taken, an embedded polishing sample having a C or T cross section (cross section perpendicular to the longitudinal direction) as an observation surface is prepared, and a nitric hydrofluoric acid aqueous solution (nitric acid concentration: about 12%, hydrofluoric acid concentration: (About 1.5%) at room temperature, then randomly measured at 10 locations from each visual field at a magnification of 500 times, and calculating an average value when measuring a total of 20 visual fields.

さらに、粒界α相が確認できた素材については、光学顕微鏡観察用の埋め込み試料から、500倍の倍率で画像解析することで面積率を測定し、3視野の平均値を粒界α相の面積率とする。   Furthermore, for the material in which the grain boundary α phase was confirmed, the area ratio was measured by performing image analysis at a magnification of 500 times from the embedded sample for optical microscope observation, and the average value of the three visual fields was calculated as the average value of the grain boundary α phase. Area ratio.

(1−3)形状
丸棒や角棒、さらには板が例示される。
(1-3) Shape A round bar, a square bar, and a plate are illustrated.

(1−4)超塑性の発現機構
超塑性は、上述したように、微細結晶粒超塑性と変態超塑性の2つに大別される。本発明に係るα+β型チタン合金部材において発現する超塑性は微細結晶粒超塑性である。以下、微細結晶粒超塑性の発現機構を説明する。
(1-4) Mechanism of Superplasticity Development As described above, superplasticity is roughly classified into two types: fine grain superplasticity and transformation superplasticity. The superplasticity developed in the α + β type titanium alloy member according to the present invention is fine grain superplasticity. Hereinafter, a mechanism of developing fine grain superplasticity will be described.

微細結晶粒超塑性は、加工前組織が微細等軸状組織を有する材料を約0.5T以上の一定温度で、比較的低歪速度で変形させる際に生じる現象である。微細等軸状組織については、組織が微細なほど超塑性が生じ易く、また微細組織を維持し易い二相合金の方が超塑性に適する。本発明に係るα+β型チタン合金では、α/β相比が1に近いほど超塑性を発現し易い。したがって、加工温度でα/β相比が1に近くなるように、合金の化学組成を設定することが好ましい。 Fine grain superplasticity is a phenomenon that occurs when a material having a fine equiaxed microstructure before processing is deformed at a relatively low strain rate at a constant temperature of about 0.5 Tm or higher. Regarding the fine equiaxed structure, a dual-phase alloy is more suitable for superplasticity as the structure becomes finer and superplasticity is more likely to occur. In the α + β type titanium alloy according to the present invention, the closer the α / β phase ratio is to 1, the more easily superplasticity is exhibited. Therefore, it is preferable to set the chemical composition of the alloy so that the α / β phase ratio becomes close to 1 at the processing temperature.

最近、例えば非特許文献1,2に、本発明に係るα+β型チタン合金系のTi−5Al−2Fe−3Mo合金において、特定の熱処理条件で熱処理を施すと、短軸方向の幅が数十nm〜数μmの針状マルテンサイト粒や針状α粒からなる微細針状組織を得られることが報告された。   Recently, for example, in Non-Patent Documents 1 and 2, when an α + β type titanium alloy-based Ti-5Al-2Fe-3Mo alloy according to the present invention is heat-treated under specific heat-treatment conditions, the width in the minor axis direction is several tens nm. It was reported that a fine acicular structure composed of acicular martensite grains and acicular α grains of ˜several μm can be obtained.

従来、超塑性特性の発現には、微細等軸状組織が必要であるとされてきた。しかし、この文献に記載されたTi−5Al−2Fe−3Mo合金、すなわち本発明に係るα+β型チタン合金の針状組織は極めて微細である。さらに、本発明に係るα+β型チタン合金に適した超塑性加工温度域である700〜900℃で数十分間保持しても、α+β二相域となるため、針状α粒(針状マルテンサイト粒も高温保持でα相に変態)の粒成長が抑制され、針状α粒の短軸方向の幅が平均3μm以下に維持される。このため、本発明に係るα+β型チタン合金の加工中に加工歪が導入されると、針状α粒の組織分断や動的再結晶を生じ、針状α粒が等軸α粒に変化することにより、α相を取り囲むβ相が連結して塑性流動性が向上し、大きな塑性伸びを得られる。   Heretofore, it has been considered that a fine equiaxed structure is required for the development of superplasticity. However, the Ti-5Al-2Fe-3Mo alloy described in this document, that is, the needle-like structure of the α + β-type titanium alloy according to the present invention is extremely fine. Furthermore, even if it is held for several tens of minutes at 700 to 900 ° C., which is the superplastic working temperature range suitable for the α + β type titanium alloy according to the present invention, the α + β two-phase range results, so that the needle-shaped α-grains (needle-shaped martensite) The grain growth of the site grains is also maintained at high temperature and transformed into the α phase), and the width of the acicular α grains in the minor axis direction is maintained at 3 μm or less on average. For this reason, when a processing strain is introduced during processing of the α + β type titanium alloy according to the present invention, needle-shaped α-grains undergo structural dissection or dynamic recrystallization, and the needle-shaped α-grains change to equiaxed α-grains. As a result, the β phase surrounding the α phase is connected to improve the plastic fluidity, and a large plastic elongation can be obtained.

このように、本発明に係るα+β型チタン合金は、加工中に、微細針状組織から微細等軸組織へと変化することにより、超塑性特性を発現する。本発明で規定する化学組成と、後述する加工熱処理条件とをともに満足することにより、上記微細針状組織を得ることができ、超塑性を発現できる。   As described above, the α + β-type titanium alloy according to the present invention exhibits superplasticity characteristics by changing from a fine acicular structure to a fine equiaxed structure during processing. By satisfying both the chemical composition defined in the present invention and the thermo-mechanical treatment conditions described later, the fine needle-like structure can be obtained and superplasticity can be exhibited.

このため、上記のような微細針状組織のみからなる組織であってもよいが、微細針状組織と微細等軸組織とが混合した混合組織であってもよい。旧β粒界に生じる粒界α相は、針状α粒よりも短軸方向の幅が太くなり易く、旧β粒界部分に連続して生じる。このため、組織分断が生じ難く、十分に分断されないと、α相に隣接するβ相に変形が集中し、延性限界に達したところでボイドが発生し、それが連結することにより破断に至ってしまい、大きな伸びが得られないことがある。   Therefore, it may be a structure composed of only the fine needle-shaped structure as described above, or may be a mixed structure in which the fine needle-shaped structure and the fine equiaxed structure are mixed. The grain boundary α phase generated in the old β grain boundary is apt to have a larger width in the minor axis direction than the acicular α grains, and is continuously formed in the old β grain boundary portion. Therefore, it is difficult to cause tissue division, if not sufficiently divided, the deformation is concentrated in the β phase adjacent to the α phase, a void occurs when the ductility limit is reached, leading to fracture by connecting it, You may not be able to get a big stretch.

なお、超塑性加工の実加工条件は、伸びが200%程度であるので、本発明では、200%以上の伸びが発現される場合を超塑性と定義する。   Since the actual working condition of superplastic working is elongation of about 200%, in the present invention, the case where elongation of 200% or more is expressed is defined as superplasticity.

2.本発明に係る製造方法
本発明に係るα+β型チタン合金部材は、上述した化学組成を有する素材を、β変態点以上の温度域から、β変態点での冷却速度が50〜100℃/秒となるように冷却することにより、製造される。
2. Manufacturing Method According to the Present Invention The α + β-type titanium alloy member according to the present invention is made of a material having the above-described chemical composition from a temperature range equal to or higher than the β transformation point and a cooling rate at the β transformation point of 50 to 100 ° C./sec. It is manufactured by cooling so that

(2−1)加工熱処理条件
本発明の効果を得られる加工熱処理の一例を以下に述べる。
(2-1) Thermomechanical treatment conditions An example of the thermomechanical treatment that can achieve the effects of the present invention will be described below.

本発明では、比較的単純な加工熱処理により非常に微細な組織を得られる。例えば、β変態点以上へ加熱し、試験片全体の組織をβ相へ変態させた後、水冷などの高速冷却(β変態点での冷却速度は50〜100℃/秒)を行うことにより、微細針状組織とすることができる。   In the present invention, a very fine structure can be obtained by a relatively simple thermomechanical treatment. For example, by heating to a β transformation point or higher, transforming the entire structure of the test piece into a β phase, and then performing high-speed cooling such as water cooling (cooling rate at the β transformation point is 50 to 100 ° C./sec), It can be a fine needle-like structure.

この方法では、熱処理前の加工量によらずに微細な組織を得ることができる。もしくは、β域加熱圧延後に同様に高速冷却することにより、微細針状組織および微細等軸組織の混合組織を得ることができる。   With this method, a fine structure can be obtained regardless of the amount of processing before heat treatment. Alternatively, a mixed structure of a fine needle-like structure and a fine equiaxed structure can be obtained by similarly high-speed cooling after the β region heating and rolling.

(2−2)加工条件の範囲
本発明で、超塑性特性が得られる加工条件は、概ね、加工温度:700℃以上(好ましくは700〜900℃)、歪速度:1×10−2−1以下(好ましくは1×10−4〜1×10−2−1)であり、Ti−6Al−4V合金などのチタン合金において超塑性を得られる通常の条件(加工温度900℃、歪速度1×10−3−1以下)と比較すると、より低い加工温度およびより高い歪速度で超塑性を発現することができる。
(2-2) Range of processing conditions In the present invention, the processing conditions under which superplastic characteristics are obtained are generally: processing temperature: 700 ° C or higher (preferably 700 to 900 ° C), strain rate: 1 x 10 -2 s −. It is 1 or less (preferably 1 × 10 −4 to 1 × 10 −2 s −1 ), and normal conditions for obtaining superplasticity in a titanium alloy such as Ti-6Al-4V alloy (processing temperature 900 ° C., strain rate 1 × 10 −3 s −1 or less), superplasticity can be exhibited at a lower processing temperature and a higher strain rate.

このため、本発明によれば、低温での超塑性の発現による金型の高寿命化、生産コストの低下、さらには、高歪速度での超塑性発現による生産性の向上が図られる。   Therefore, according to the present invention, it is possible to extend the life of the mold by expressing superplasticity at a low temperature, reduce the production cost, and further improve the productivity by expressing superplasticity at a high strain rate.

本発明を、実施例を参照しながらさらに具体的に説明する。   The present invention will be described more specifically with reference to Examples.

表1に示す化学組成No.1〜11を有するチタン合金No.1〜11をプラズマ溶解した鋳塊をβ域加熱鍛造した後、β域加熱圧延を行い、直径20mmの丸棒とした。   Chemical composition No. shown in Table 1. Titanium alloy Nos. 1 to 11 The ingots in which 1 to 11 were plasma-melted were subjected to β-region heating forging, and then β-region heating rolling was performed to obtain a round bar having a diameter of 20 mm.

得られた素材をそのまま、もしくは、β変態点以上の1050℃まで加熱および30分間保持し、β変態点での冷却速度:70℃/秒で高速冷却した後、平行部の直径3mm、長さ6mmの試験片を作製した。   The obtained material as it is, or after being heated to 1050 ° C. above the β transformation point and held for 30 minutes, is rapidly cooled at a cooling rate at the β transformation point: 70 ° C./sec, and then the parallel portion has a diameter of 3 mm and a length. A 6 mm test piece was prepared.

なお、引張試験片の採取時に、その部位近傍から光学顕微鏡観察用の試験片を採取し、C断面(長手方向に垂直な断面)を観察面とする埋め込み研磨試料を作製し、硝フッ酸水溶液(硝酸濃度:約12%、フッ酸濃度:約1.5%)を用いて室温でエッチングした後に観察した。   In addition, at the time of collecting the tensile test piece, a test piece for optical microscope observation was taken from the vicinity of the site, and an embedded polishing sample having a C cross section (cross section perpendicular to the longitudinal direction) as an observation surface was prepared. It was observed after etching at room temperature using (nitric acid concentration: about 12%, hydrofluoric acid concentration: about 1.5%).

この際、金属組織の形態を確認するとともに、針状マルテンサイト粒および針状α粒(針状粒)の平均幅、等軸α粒(等軸粒)の平均粒径、粒界α相の短軸方向の平均幅(いずれも500倍の倍率で各視野からランダムに10カ所測定し、計20視野測定した際の平均値を算出)を計測した。   At this time, while confirming the morphology of the metal structure, the average width of the acicular martensite grains and acicular α grains (acicular grains), the average grain size of equiaxed α grains (equiaxial grains), and the grain boundary α phase The average width in the direction of the short axis (all were randomly measured from each visual field at a magnification of 500 times at 10 locations, and an average value was calculated when a total of 20 visual fields were measured) was measured.

なお、針状粒の幅や等軸粒の平均粒径が1μm未満の場合、分解能の低い光学顕微鏡では正確な数値が測定できなかったため、表中には1μm未満と記載している。さらに、粒界α相が確認できた素材については、光学顕微鏡観察用の埋め込み試料から、粒界α相の面積率(500倍の倍率で画像解析することで面積率を測定し、3視野の平均値を面積率とした)を算出した。   When the width of the acicular grains or the average grain size of the equiaxed grains is less than 1 μm, accurate numerical values could not be measured with an optical microscope having a low resolution, and therefore the table describes it as less than 1 μm. Furthermore, for the material in which the grain boundary α phase was confirmed, the area ratio of the grain boundary α phase was measured from the embedded sample for optical microscope observation (the area ratio was measured by image analysis at a magnification of 500 times, and the The average value was used as the area ratio).

採取した引張試験片については、昇温速度45℃/分で700〜800℃まで加熱し、10分間保持した後、歪速度1×10−3〜1×10−2−1の条件で引張特性(引張強度、絞り、突き合わせ伸び)を評価した。 The sampled tensile test piece was heated to 700 to 800 ° C. at a temperature rising rate of 45 ° C./minute, held for 10 minutes, and then pulled at a strain rate of 1 × 10 −3 to 1 × 10 −2 s −1. The properties (tensile strength, drawing, butt elongation) were evaluated.

表2に、チタン合金No.1〜11の素材をそのまま引張試験片に加工し、試験温度800℃、歪速度1×10−2−1の条件で引張試験した結果と、その素材の金属組織の観察結果を示す。 Table 2 shows titanium alloy No. The results obtained by processing the raw materials 1 to 11 as they are into a tensile test piece and performing a tensile test under the conditions of a test temperature of 800 ° C. and a strain rate of 1 × 10 −2 s −1 and an observation result of the metal structure of the raw material are shown.

合金No.A−1〜11は、いずれも、針状粒および等軸粒の混合組織であり、粒界α相は確認できなかった。   Alloy No. All of A-1 to 11 had a mixed structure of acicular grains and equiaxed grains, and no grain boundary α phase could be confirmed.

合金A−1〜7の本発明例では、いずれも針状粒の平均幅が3μm以下であり、かつ等軸粒の平均粒径が5μm以下であり、突き合わせ伸びは200%以上であった。また、破断試験片の破断部近傍の断面組織でもボイドは確認されなかった。   In each of the inventive examples of Alloys A-1 to A-7, the average width of the acicular grains was 3 μm or less, the average grain size of the equiaxed grains was 5 μm or less, and the butt elongation was 200% or more. Further, no void was confirmed in the cross-sectional structure near the fractured part of the fractured test piece.

合金A−8の比較例は、Al,Fe,Mo含有量がいずれも本発明の範囲の下限を下回るため、針状粒の短軸方向の平均幅が大きくなり、突き合わせ伸びが不芳になった。   In the comparative example of alloy A-8, since the Al, Fe, and Mo contents are all below the lower limit of the range of the present invention, the average width of the acicular grains in the minor axis direction becomes large, and the butt elongation becomes poor. It was

合金A−9の比較例は、Mo含有量が本発明の範囲の下限を下回るため、針状粒の短軸方向の平均幅が大きくなり、突き合わせ伸びが不芳になった。   In the comparative example of alloy A-9, the Mo content was less than the lower limit of the range of the present invention, so that the average width of the acicular grains in the minor axis direction was large and the butt elongation was poor.

合金A−10の比較例は、不純物であるSi,C含有量が本発明の範囲の上限を上回るため、突き合わせ伸びが不芳になった。   In the comparative example of alloy A-10, the content of Si and C as impurities exceeded the upper limit of the range of the present invention, so that the butt elongation was poor.

さらに、合金A−10の比較例は、本発明の化学成分系(Ti−5Al−2Fe−3Mo合金)とは異なる化学成分系(Ti−6Al−4V合金)であるため、合金コストが高い。   Furthermore, the comparative example of Alloy A-10 has a high alloy cost because it is a chemical composition system (Ti-6Al-4V alloy) different from the chemical composition system (Ti-5Al-2Fe-3Mo alloy) of the present invention.

表3には、表2と同様に、チタン合金No.1〜11の素材をそのまま引張試験片に加工し、試験温度700℃、歪速度1×10−3−1の条件で引張試験した結果を示す。 In Table 3, similarly to Table 2, titanium alloy No. The results of tensile testing of raw materials 1 to 11 directly processed into tensile test pieces under the conditions of a test temperature of 700 ° C. and a strain rate of 1 × 10 −3 s −1 are shown.

A−12〜18の本発明例は、いずれも、突き合わせ伸びは200%以上であった。また、破断試験片の破断部近傍の断面組織でもボイドは確認されなかった。   In each of the invention examples A-12 to A18, the butt elongation was 200% or more. Further, no void was confirmed in the cross-sectional structure near the fractured part of the fractured test piece.

合金A−19の比較例は、Al,Fe,Mo含有量がいずれも本発明の範囲の下限を下回るため、針状粒の短軸方向の平均幅が大きくなり、突き合わせ伸びが不芳になった。   In the comparative example of alloy A-19, the Al, Fe, and Mo contents are all below the lower limit of the range of the present invention, so that the average width of the acicular grains in the minor axis direction becomes large and the butt elongation becomes poor. It was

合金A−20の比較例は、Mo含有量が本発明の範囲の下限を下回るため、針状粒の短軸方向の平均幅が大きくなり、突き合わせ伸びが不芳になった。   In the comparative example of alloy A-20, the Mo content was less than the lower limit of the range of the present invention, so that the average width of the acicular grains in the minor axis direction was large and the butt elongation was poor.

合金A−21の比較例は、不純物であるSi,C含有量が本発明の範囲の上限を上回るため、突き合わせ伸びが不芳になった。   In the comparative example of the alloy A-21, the Si and C contents of impurities exceeded the upper limit of the range of the present invention, so that the butt elongation became poor.

さらに、合金A−22の比較例は、本発明の化学成分系(Ti−5Al−2Fe−3Mo合金)とは異なる化学成分系(Ti−6Al−4V合金)であるため、合金コストが高い。   Furthermore, the comparative example of alloy A-22 has a high alloy cost because it is a chemical composition system (Ti-6Al-4V alloy) different from the chemical composition system (Ti-5Al-2Fe-3Mo alloy) of the present invention.

表4には、チタン合金No.1〜11の素材を、β変態点以上まで加熱した後に高速冷却してから引張試験片に加工し、試験温度800℃、歪速度1×10−2−1の条件で引張試験した結果と、その素材の金属組織の観察結果とを示す。 Table 4 shows titanium alloy No. The materials 1 to 11 were heated to a β transformation point or higher and then rapidly cooled, then processed into tensile test pieces, and the tensile test was performed under the conditions of a test temperature of 800 ° C. and a strain rate of 1 × 10 −2 s −1. , And the observation results of the metal structure of the material.

合金No.B−1〜11は、いずれも、針状粒からなる針状組織であり、等軸粒は確認できなかった。   Alloy No. All of B-1 to B-11 were needle-shaped structures composed of needle-shaped grains, and equiaxed grains could not be confirmed.

合金No.B−1〜7の本発明例では、いずれも針状粒および粒界α相の平均幅は3μm以下であり、かつ粒界α相の体積率が1%以下であり、突き合わせ伸びは200%以上であった。また、破断試験片の破断部近傍の断面組織でもボイドは確認されなかった。   Alloy No. In each of Examples B-1 to 7 of the present invention, the average width of the acicular grains and the grain boundary α phase is 3 μm or less, the volume ratio of the grain boundary α phase is 1% or less, and the butt elongation is 200%. That was all. Further, no void was confirmed in the cross-sectional structure near the fractured part of the fractured test piece.

合金B−8の比較例は、Al,Fe,Mo含有量がいずれも本発明の範囲の下限を下回るため、粒界α相の面積率が大きくなり、突き合わせ伸びが不芳になった。   In the comparative example of alloy B-8, the Al, Fe, and Mo contents were all below the lower limit of the range of the present invention, so that the area ratio of the grain boundary α phase was large and the butt elongation was poor.

合金B−9の比較例は、Mo含有量が本発明の範囲の下限を下回るため、粒界α相の面積率が大きくなり、突き合わせ伸びが不芳になった。   In the comparative example of Alloy B-9, the Mo content was less than the lower limit of the range of the present invention, so that the area ratio of the grain boundary α phase was large and the butt elongation was poor.

合金B−10の比較例は、不純物であるSi,C含有量が本発明の範囲の上限を上回るため、突き合わせ伸びが不芳になった。   In the comparative example of the alloy B-10, the content of impurities Si and C exceeded the upper limit of the range of the present invention, so that the butt elongation was poor.

さらに、合金B−11の比較例は、本発明の化学成分系(Ti−5Al−2Fe−3Mo合金)とは異なる化学成分系(Ti−6Al−4V合金)であるためにこの加工条件では超塑性を発現できず、突き合わせ伸びが不芳になったとともに、合金コストが高い。   Further, the comparative example of the alloy B-11 is a chemical composition system (Ti-6Al-4V alloy) different from the chemical composition system (Ti-5Al-2Fe-3Mo alloy) of the present invention, and therefore, under these processing conditions, Inability to develop plasticity, poor butt elongation, and high alloy cost.

表5には、表4と同様に、チタン合金No.1〜11の素材を、β変態点以上まで加熱した後に高速冷却してから引張試験片に加工し、試験温度700℃、歪速度1×10−3−1の条件で引張試験した結果を示す。 In Table 5, similarly to Table 4, titanium alloy No. The materials of Nos. 1 to 11 were heated to a β transformation point or higher and then rapidly cooled, then processed into tensile test pieces, and the results of the tensile test under the conditions of a test temperature of 700 ° C. and a strain rate of 1 × 10 −3 s −1 were shown. Show.

合金No.B−12〜18は、いずれも、突き合わせ伸びは200%以上であった。また、破断試験片の破断部近傍の断面組織でもボイドは確認されなかった。   Alloy No. In all of B-12 to 18, the butt elongation was 200% or more. Further, no void was confirmed in the cross-sectional structure near the fractured part of the fractured test piece.

合金B−19の比較例は、Al,Fe,Mo含有量がいずれも本発明の範囲の下限を下回るため、突き合わせ伸びが不芳になった。   In the comparative example of alloy B-19, the butt elongation was poor because the Al, Fe, and Mo contents were all below the lower limit of the range of the present invention.

合金B−20の比較例は、Mo含有量が本発明の範囲の下限を下回るため、突き合わせ伸びが不芳になった。   In the comparative example of the alloy B-20, the Mo content was below the lower limit of the range of the present invention, so that the butt elongation was poor.

合金B−21の比較例は、不純物であるSi,C含有量が本発明の範囲の上限を上回るため、突き合わせ伸びが不芳になった。   In the comparative example of the alloy B-21, the content of Si and C as impurities exceeds the upper limit of the range of the present invention, so that the butt elongation becomes poor.

さらに、B−22の比較例は、本発明の化学成分系(Ti−5Al−2Fe−3Mo合金)とは異なる化学成分系(Ti−6Al−4V合金)であるため、突き合わせ伸びが不芳になった。

Furthermore, since the comparative example of B-22 is a chemical composition system (Ti-6Al-4V alloy) different from the chemical composition system (Ti-5Al-2Fe-3Mo alloy) of the present invention, the butt elongation is poor. became.

Claims (3)

化学組成が、質量%で、Al:4.4%以上5.5%未満、Fe:1.4%以上2.1%未満、Mo:1.5%以上5.5%未満、残部:Tiおよび不純物からなり、前記不純物のうちのSi:0.1%未満およびC:0.01%未満であり、かつ、前記不純物の総量:0.3%未満であり、
金属組織が、針状マルテンサイト粒および針状α粒の短軸方向の幅が平均3μm以下である微細針状組織、および、等軸α粒の平均粒径が5μm以下である微細等軸状組織のいずれか一方または両方であり、さらに、粒界α相の体積率が1%以下であり、かつ、粒界α相の短軸方向の幅が平均3μm以下である、α+β型チタン合金部材。
The chemical composition is mass%, Al: 4.4% or more and less than 5.5%, Fe: 1.4% or more and less than 2.1%, Mo: 1.5% or more and less than 5.5%, balance: Ti And Si: less than 0.1% and C: less than 0.01% of the impurities, and the total amount of the impurities: less than 0.3%,
The metal structure has a fine needle-like structure in which the widths of acicular martensite grains and acicular α grains in the short axis direction are 3 μm or less on average, and fine equiaxed grains in which equiaxed α grains have an average particle size of 5 μm or less. Ri either or both der tissue, further 1% or less the volume ratio of the grain boundary alpha phase, and the width in the minor axis direction of the grain boundary alpha phase is Ru der average 3μm or less, alpha + beta titanium Alloy material.
超塑性加工用である、請求項1に記載のα+β型チタン合金部材。   The α + β type titanium alloy member according to claim 1, which is for superplastic working. 質量%で、Al:4.4%以上5.5%未満、Fe:1.4%以上2.1%未満、Mo:1.5%以上5.5%未満、残部:Tiおよび不純物からなり、前記不純物のうちのSi:0.1%未満およびC:0.01%未満であり、かつ、前記不純物の総量:0.3%未満である化学組成を有する素材を、β変態点以上の温度域から、β変態点での冷却速度が50〜100℃/秒となるように冷却する、請求項1または2のいずれかに記載の、α+β型チタン合金部材の製造方法。 In mass%, Al: 4.4% or more and less than 5.5%, Fe: 1.4% or more and less than 2.1%, Mo: 1.5% or more and less than 5.5%, balance: Ti and impurities , Si among the impurities is less than 0.1% and C is less than 0.01%, and the total amount of the impurities is less than 0.3%. the temperature range, the cooling rate at the beta transus is cooled so that 50 to 100 ° C. / sec, according to claim 1 or 2, alpha + beta type method for producing a titanium alloy member.
JP2016025469A 2016-02-15 2016-02-15 α + β type titanium alloy member and manufacturing method thereof Active JP6696202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016025469A JP6696202B2 (en) 2016-02-15 2016-02-15 α + β type titanium alloy member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016025469A JP6696202B2 (en) 2016-02-15 2016-02-15 α + β type titanium alloy member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017145429A JP2017145429A (en) 2017-08-24
JP6696202B2 true JP6696202B2 (en) 2020-05-20

Family

ID=59682092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016025469A Active JP6696202B2 (en) 2016-02-15 2016-02-15 α + β type titanium alloy member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6696202B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109055816B (en) * 2018-08-22 2019-08-23 广东省材料与加工研究所 A kind of engine powder metallurgy valve and preparation method thereof
TWI684646B (en) * 2019-05-10 2020-02-11 大田精密工業股份有限公司 Titanium alloy plate and its manufacturing method
CN114472897B (en) * 2022-01-28 2023-06-06 有研工程技术研究院有限公司 Gradient titanium alloy with low adiabatic shear sensitivity and preparation method thereof
CN114752874B (en) * 2022-03-25 2023-04-14 重庆大学 Multi-scale structure for synergistically optimizing strong plasticity of TA19 titanium alloy and preparation method thereof
KR20240000209A (en) * 2022-06-23 2024-01-02 한국재료연구원 High strength and ductility titanium alloys with excellent formability

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230858A (en) * 1987-03-20 1988-09-27 Sumitomo Metal Ind Ltd Manufacture of titanium-alloy sheet for superplastic working
JPH08269656A (en) * 1995-03-30 1996-10-15 Sumitomo Metal Ind Ltd Production of titanium alloy
JP4478123B2 (en) * 2006-05-25 2010-06-09 新日本製鐵株式会社 Α + β-type titanium alloy member having a tensile strength of 1000 MPa class or more and method for producing the same
JP5353754B2 (en) * 2009-02-19 2013-11-27 新日鐵住金株式会社 Metastable β-type titanium alloy having low Young's modulus and method for producing the same
JP5621571B2 (en) * 2010-12-14 2014-11-12 新日鐵住金株式会社 Α + β type titanium alloy having a low Young's modulus of less than 75 GPa and method for producing the same
JP6212976B2 (en) * 2013-06-20 2017-10-18 新日鐵住金株式会社 α + β type titanium alloy member and manufacturing method thereof

Also Published As

Publication number Publication date
JP2017145429A (en) 2017-08-24

Similar Documents

Publication Publication Date Title
JP5850859B2 (en) Production of high-strength titanium
JP6696202B2 (en) α + β type titanium alloy member and manufacturing method thereof
JP7024861B2 (en) Titanium alloy wire rod and titanium alloy wire rod manufacturing method
JP5592818B2 (en) Α-β type titanium alloy extruded material excellent in fatigue strength and method for producing the α-β type titanium alloy extruded material
EP2386663B1 (en) Method for producing a component and component from a gamma-titanium-aluminium base alloy
JP6889418B2 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
EP3844313B1 (en) High-strength titanium alloy for additive manufacturing
EP3822376A1 (en) ?+? type titanium alloy wire and method for producing ?+? type titanium alloy wire
CN106103757B (en) High-intensitive α/β titanium alloy
WO2012162226A2 (en) Aluminum alloys
JP5594244B2 (en) Α + β type titanium alloy having a low Young's modulus of less than 75 GPa and method for producing the same
KR101643838B1 (en) Resource-saving titanium alloy member having excellent strength and toughness, and method for manufacturing same
JPWO2016013566A1 (en) Titanium alloy member having shape change characteristics in the same direction as the machining direction and method for producing the same
JP5621571B2 (en) Α + β type titanium alloy having a low Young's modulus of less than 75 GPa and method for producing the same
JP5578041B2 (en) Titanium alloy member having shape memory characteristics in two directions and manufacturing method thereof
JP5064356B2 (en) Titanium alloy plate having high strength and excellent formability, and method for producing titanium alloy plate
JP6673121B2 (en) α + β type titanium alloy rod and method for producing the same
JP4019668B2 (en) High toughness titanium alloy material and manufacturing method thereof
JP2017002390A (en) Titanium alloy forging material
JP6851147B2 (en) Titanium alloy forged material
DE102008055546A1 (en) A method for improving mechanical properties of a beta-treated titanium alloy article
JP2017002373A (en) Titanium alloy forging material
JP2003013159A (en) Fastener material of titanium alloy and manufacturing method therefor
JP4987640B2 (en) Titanium alloy bar wire for machine parts or decorative parts suitable for manufacturing cold-worked parts and method for manufacturing the same
JP6213014B2 (en) β-type titanium alloy and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200406

R151 Written notification of patent or utility model registration

Ref document number: 6696202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151