EP2386663B1 - Method for producing a component and component from a gamma-titanium-aluminium base alloy - Google Patents

Method for producing a component and component from a gamma-titanium-aluminium base alloy Download PDF

Info

Publication number
EP2386663B1
EP2386663B1 EP11450055.6A EP11450055A EP2386663B1 EP 2386663 B1 EP2386663 B1 EP 2386663B1 EP 11450055 A EP11450055 A EP 11450055A EP 2386663 B1 EP2386663 B1 EP 2386663B1
Authority
EP
European Patent Office
Prior art keywords
globular
volume fraction
grain size
gamma
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11450055.6A
Other languages
German (de)
French (fr)
Other versions
EP2386663A1 (en
Inventor
Helmut Clemens
Wilfried Wallgram
Martin Schloffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Boehler Aerospace GmbH and Co KG
MTU Aero Engines AG
Original Assignee
Voestalpine Boehler Aerospace GmbH and Co KG
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Boehler Aerospace GmbH and Co KG, MTU Aero Engines AG filed Critical Voestalpine Boehler Aerospace GmbH and Co KG
Publication of EP2386663A1 publication Critical patent/EP2386663A1/en
Application granted granted Critical
Publication of EP2386663B1 publication Critical patent/EP2386663B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • C22C1/0458Alloys based on titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Definitions

  • the invention relates to a method for producing a component from a titanium-aluminum base alloy.
  • the invention relates to a component made of a titanium-aluminum base alloy, produced with dimensions close to the final dimensions.
  • Titanium-aluminum base alloys generally have high strength, low density, and good corrosion resistance, and are preferably used as components in gas turbines and aircraft engines.
  • Alloys having a composition of: aluminum 40 at.% To 50 at.%, Niobium 3 at.% To 10 at.%, Molybdenum to 4 at.%, And optionally the elements manganese, are suitable for the above fields of application. Boron, silicon, carbon, oxygen and nitrogen in low concentrations as well as titanium as the remainder of interest.
  • a schematic diagram ( Fig. 1 ) shows microstructures as a function of the temperature and the aluminum concentration with temperature range information used by the person skilled in the art.
  • Prepared the components can be by casting an ingot or powder by H schreib- I sostatisches- P ests (HIPing) of alloyed metal powder as well as by casting an ingot and optionally HIPing thereof followed by extrusion molding and each with a subsequent forging of the ingot or intermediate to a Component, which is subsequently subjected to heat treatments.
  • HIPing H prolongation- I sostatisches- P ests
  • Titanium-aluminum materials have only a narrow temperature window for a hot forming, although through the alloying elements niobium and molybdenum can be extended, nevertheless, there are limitations with respect to the deformation or forging of the parts. It is known, by slow, isothermal deformation, familiar to those skilled in the art as Isothermschmieden to produce a component at least partially by chipless shaping, but this is associated with great expense.
  • a component produced by the above technologies will usually not have a homogeneous microstructure because, on the one hand, a low and unequal recrystallization potential of the slowly isothermally deformed material is given, and / or, on the other hand, a time-consuming diffusion of the atoms of the elements niobium and / or molybdenum are important for a deformability of a material, align themselves with the forming structure and thus can adversely affect the structure.
  • components made of a titanium-aluminum base alloy are required, which have direction-independent, homogeneous, mechanical properties, the ductility, strength and creep resistance of the material are balanced even at high operating temperatures at a high level.
  • the present invention has the object to provide a method by which a component having a homogeneous, fine and uniform microstructure can be produced, which component in balanced form, a ductility, strength and creep resistance of the material in all directions substantially the same has desired, high level and can be economically produced with dimensions close to final dimensions.
  • the invention further aims at a component which, in the case of a targeted phase shaping of the microstructure, has desired mechanical properties, in particular the yield strength R p0.2 and strength R m and total elongation A t in the tensile test at room temperature and at a temperature of 700 ° C. ,
  • a melt or powder metallurgy manufactured starting material having a chemical composition of in At .-%: Aluminum (Al) 41 to 48 optionally Niobium (Nb) 4 to 9 Molybdenum (Mo) 0.1 to 3.0 Manganese (Mn) to 2.4 Boron (B) to 1.0 Silicon (Si) to 1.0 Carbon (C) to 1.0 Oxygen (O) to 0.5 Nitrogen (N) to 0.5
  • a melt or powder metallurgy produced material requires only compaction by hot isostatic pressing thereof, after which the blank is heated in a second step at an elevated isothermal forging temperature and, as found, at a favorably improved hot working capability of the material of a high speed -Massivumformung at a speed greater than 0.4 mm / sec and a compression ratio ⁇ of greater than 0.3 is subjected.
  • This rapid massive forming of the blank can, surprisingly for the expert, be carried out at elevated temperature with high forming speed, according to the invention a high minimum deformation and subsequent cooling with high cooling rate for a formation of a high, for the time being frozen recrystallization potential in the structure are required.
  • This recrystallization potential or stored energy resulting from the rapid deformation, which is also formed from the driving force from the chemical phase imbalance, in a third step causes the alloy to undergo a transformation in the region of the eutectoid temperature of the alloy extremely fine-globular microstructure from the phases GAMMA, BETA 0 , ALPHA 2 with ordered at room temperature atomic structure with certain phase proportions, which microstructure serves as a favorable fine grain starting structure for a subsequent, achievable by heat treatment (s), provided with regard to desired properties of the material structure formation ,
  • the object is also achieved by a method of the type mentioned, in which in a first step, a melt or powder metallurgy manufactured starting material having a chemical composition of in At .-%: al 42 to 44.5 optionally Nb 3.5 to 4.5 Not a word 0.5 to 1.5 Mn to 2.2 B 12:05 to 0.2 Si 0001 to 12:01 C 0001 to 1.0 O 0001 to 0.1 N 0.0001 to 12:02
  • the supersaturated ALPHA 2 grains and a fine but non-optimized microstructural shape give low material ductility and toughness at high strength values.
  • Improved mechanical properties of the material can be achieved by means of a narrowed chemical composition, but the property profile is oriented only to specific uses.
  • a choice of annealing time at a post-anneal close to the alpha transus temperature (T ⁇ ) can be made with a view to setting desired phase amounts and grain sizes.
  • the ⁇ -phase is generally reduced as the annealing time increases.
  • the structural phases After a thermal treatment in the Alpha-Transus area and a forced Cooling, the structural phases essentially have a disordered atomic structure.
  • the supersaturated ALPHA 2 grains are converted into a lamellar ALPHA 2 / GAMMA structure without any significant change in grain size.
  • a lamellar structure in the formerly supersaturated structural grains greatly improves the creep resistance of the material at high temperatures of around 700 ° C in the temperature range.
  • This created with high efficiency of manufacturing component has a fine, globular, homogeneous microstructure with the same property profile in all directions of the material, which is advantageously used for a variety of applications.
  • Fig. 1 schematically the microstructures of titanium-aluminum base alloys are shown as a function of the temperature and the aluminum concentration. Furthermore, the temperature data used by the expert can be seen.
  • the in the Fig. 2 to Fig. 5 The microstructures shown are from a test series with an alloy Ti, 43.2 at.% Al, 4 at.% Nb, 1 at.% Mo, 0.1 at.% B.
  • micrographs were taken at 200X magnification on the scanning electron microscope in electron backscatter contrast.
  • a typical directed deformation texture shows as components directed GAMMA-BETA 0 -ALPHA 2 grains.
  • Fig. 3 shows the structure of the deformed part after a heat treatment in the region of the eutectioden temperature (T eu ) in the present case at 1150 ° C, followed by a cooling.
  • the microstructure consisted of globular ALPHA 2 grains with a particle size (measured as the diameter of the smallest circumscribed circle) of 3.2 ⁇ m ⁇ 1.9 ⁇ m with a volume fraction of approximately 25% from globular BETA 0 grains with a particle size of 3.7 ⁇ m ⁇ 2.1 ⁇ m with a volume fraction of about 26% and globular GAMMA grains with a grain size of 5.7 ⁇ m ⁇ 2.4 ⁇ m with a volume fraction of 49%.
  • Fig. 4 is the structure of the deformed and subsequently annealed at 1150 ° C and cooled part after a subsequent annealing in the range of the alpha transus temperature (T ⁇ ) in the given case at a temperature of 1240 ° C and a cooling of this to 700 ° C in 5 min and further cooling in air.
  • T ⁇ alpha transus temperature
  • microstructural constituents were: ALPHA 2 granules with a particle size of 11.0 ⁇ m ⁇ 5.8 ⁇ m with a volume fraction of 73%, globular BETA 0 grains with a particle size of 4.5 ⁇ m ⁇ 2.6 ⁇ m with a volume fraction of 11% and globular GAMMA grains with a grain size of 4.2 ⁇ m ⁇ 2.2 ⁇ m with a volume fraction of 16%.
  • Fig. 5 shows the structure of the deformed part after a fine grain annealing in the eutectoid temperature range (T eu ), followed by a high-temperature annealing in the ( ⁇ + ⁇ + ⁇ ) phase space or an alpha transus annealing (T ⁇ ) at 1240 ° C and a forced cooling stabilizing annealing in a given case at 875 ° C followed by slow cooling at a rate of 2 ° C / min.
  • T eu eutectoid temperature range
  • microstructure of the microstructure and the property profile of the material can be adjusted by varying the annealing temperature and / or the annealing time.
  • the structure consisted of globular ALPHA 2 / GAMMA grains with lamellar ⁇ / ⁇ structure with a grain size of 7.1 ⁇ m ⁇ 3.8 ⁇ m with a volume fraction of 64% from globular BETA 0 grains with a grain size of 2.3 ⁇ m ⁇ 2.2 ⁇ m with a volume fraction of 13% and of globular GAMMA phases with a grain size of 2.7 ⁇ m ⁇ 2.1 ⁇ m with a volume fraction of 23%.
  • a value A p of less than 0.65% was determined in the creep test (ASTME139 or EN2005-5) at a test voltage in the sample of 250 MPa and a stress duration of 100 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Bauteiles aus einer Titan-Aluminium-Basislegierung.The invention relates to a method for producing a component from a titanium-aluminum base alloy.

Weiters bezieht sich die Erfindung auf ein Bauteil aus einer Titan-Aluminium-Basislegierung, hergestellt mit endabmessungsnahen Dimensionen.Furthermore, the invention relates to a component made of a titanium-aluminum base alloy, produced with dimensions close to the final dimensions.

Titan-Aluminium-Basislegierungen weisen im Allgemeinen eine hohe Festigkeit, eine geringe Dichte und eine gute Korrosionsbeständigkeit auf und werden bevorzugt als Bauteile in Gasturbinen und Flugtriebwerken eingesetzt.Titanium-aluminum base alloys generally have high strength, low density, and good corrosion resistance, and are preferably used as components in gas turbines and aircraft engines.

Für obige Anwendungsgebiete sind insbesondere Legierungen mit einer Zusammensetzung von: Aluminium 40 At.-% bis 50 At.-%, Niob 3 At.-% bis 10 At.-%, Molybdän bis 4 At.-% sowie optional die Elemente Mangan, Bor, Silicium, Kohlenstoff, Sauerstoff und Stickstoff in geringen Konzentrationen sowie Titan als Rest von Interesse.Alloys having a composition of: aluminum 40 at.% To 50 at.%, Niobium 3 at.% To 10 at.%, Molybdenum to 4 at.%, And optionally the elements manganese, are suitable for the above fields of application. Boron, silicon, carbon, oxygen and nitrogen in low concentrations as well as titanium as the remainder of interest.

Diese Legierungen erstarren vorzugsweise vollständig über den β-Mischkristall und durchlaufen bei einer nachfolgenden Abkühlung eine Reihe von Phasenumwandlungen. Ein Prinzipschaubild (Fig. 1) zeigt Gefügeausbildungen in Abhängigkeit von der Temperatur und der Aluminiumkonzentration mit vom Fachmann verwendeten Temperaturbereichsangaben.These alloys preferably solidify completely over the β-mixed crystal and undergo a series of phase transformations upon subsequent cooling. A schematic diagram ( Fig. 1 ) shows microstructures as a function of the temperature and the aluminum concentration with temperature range information used by the person skilled in the art.

Hergestellt können die Bauteile werden durch Gießen eines Blockes oder pulvermetallurgisch durch Heiß-Isostatisches-Pressen (HIPen) von legiertem Metallpulver sowie durch Gießen eines Blockes und gegebenenfalls HIPen desselben mit anschließendem Strangpressen und jeweils mit einem nachfolgenden Schmieden des Blockes oder Zwischenproduktes zu einem Bauteil, welches in der Folge Wärmebehandlungen unterworfen wird.Prepared the components can be by casting an ingot or powder by H eiß- I sostatisches- P ests (HIPing) of alloyed metal powder as well as by casting an ingot and optionally HIPing thereof followed by extrusion molding and each with a subsequent forging of the ingot or intermediate to a Component, which is subsequently subjected to heat treatments.

Titan-Aluminium-Werkstoffe haben für eine Warmformgebung nur ein schmales Temperaturfenster, welches zwar durch die Legierungselemente Niob und Molybdän erweitert werden kann, trotzdem ergeben sich Limitierungen bezüglich der Verformung bzw. Schmiedung der Teile. Es ist bekannt, durch langsames, isothermes Verformen, dem Fachmann geläufig als Isothermschmieden, ein Bauteil zumindest teilweise durch spanlose Formgebung herzustellen, allerdings ist dies mit hohem Aufwand verbunden.Titanium-aluminum materials have only a narrow temperature window for a hot forming, although through the alloying elements niobium and molybdenum can be extended, nevertheless, there are limitations with respect to the deformation or forging of the parts. It is known, by slow, isothermal deformation, familiar to those skilled in the art as Isothermschmieden to produce a component at least partially by chipless shaping, but this is associated with great expense.

Allenfalls wird ein nach obigen Technologien hergestelltes Bauteil zumeist keine homogene Gefügestruktur aufweisen, weil einerseits ein geringes und ungleiches Rekristallisationspotential des langsam isotherm verformten Werkstoffes gegeben ist, und/oder andererseits die einen hohen Zeitaufwand fordernde Diffusion der Atome der Elemente Niob und/oder Molybdän, die für eine Verformbarkeit eines Werkstoffes wichtig sind, sich nach der Umformstruktur ausrichten und derart das Gefüge nachteilig beeinflussen können.At most, a component produced by the above technologies will usually not have a homogeneous microstructure because, on the one hand, a low and unequal recrystallization potential of the slowly isothermally deformed material is given, and / or, on the other hand, a time-consuming diffusion of the atoms of the elements niobium and / or molybdenum are important for a deformability of a material, align themselves with the forming structure and thus can adversely affect the structure.

Eine Homogenisierung der Gefügeausbildung und damit ein Erreichen isotroper, mechanischer Eigenschaften des Werkstoffes durch zeitaufwändige Glühbehandlungen sind zwar grundsätzlich möglich, erfordert allerdings einen hohen Aufwand.Although a homogenization of the structure formation and thus an achievement of isotropic, mechanical properties of the material by time-consuming annealing treatments are in principle possible, however, requires a lot of effort.

Für die industrielle Praxis sind Bauteile aus einer Titan-Aluminium-Basislegierung erforderlich, welche richtungsunabhängig homogene, mechanische Eigenschaften aufweisen, wobei die Duktilität, Festigkeit und Kriechbeständigkeit des Werkstoffes auch bei hohen Einsatztemperaturen ausgewogen auf hohem Niveau vorliegen.For industrial practice, components made of a titanium-aluminum base alloy are required, which have direction-independent, homogeneous, mechanical properties, the ductility, strength and creep resistance of the material are balanced even at high operating temperatures at a high level.

Aus dem Stand der Technik sind die folgenden Verfahren bzw. Bauteile bekannt:From the prior art, the following methods or components are known:

  • SCHMOELZER T ET AL: "Phase fractions, transition and ordering temperatures in TiAl-Nb-Mo alloys: An in- and ex-situ studySCHMOELZER T ET AL: "Phase fractions, transition and ordering temperatures in TiAl-Nb-Mo alloys: An in- and ex-situ study ";";
  • CLEMENS H ET AL: "In and ex situ investigations of the beta-phase in a Nb and Mo containing gamma-TiAl based alloyCLEMENS H ET AL: "In and ex situ investigations of the beta-phase in a Nb and Mo containing gamma-TiAl based alloy ";";
  • HABEL U ET AL: "PROCESSING, MICROSTRUCTURE AND TENSILE PROPERTIES OF .GAMMA.-TIAL PM ALLOY 395MMHABEL U ET AL: "PROCESSING, MICROSTRUCTURE AND TENSILE PROPERTIES OF .GAMMA.-TIAL PM ALLOY 395MM ";";
  • D. ZHANG ET AL: "Effect of heat-treatments and hot-isostatic pressing on phase transformation and microstructure in a B/B2 containing Gamma-TiAl based alloyD. ZHANG ET AL: "Effect of heat-treatments and hot-isostatic pressing on phase transformation and microstructure in a B / B2 containing gamma-TiAl based alloy ";";
  • H. CLEMENS ET AL: "Design of Novel B-Solidifying TiAl Alloys with Adjustable B/B2-Phase Fraction and Excellent Hot-WorkabilityH. CLEMENS ET AL: "Design of Novel B-Solidifying TiAl Alloys with Adjustable B / B2 Phase Fraction and Excellent Hot Workability ";";
  • Auch in derAlso in the DE 10 2004 056582 A1DE 10 2004 056582 A1 und derand the EP 0 464 366EP 0 464 366 sind derartige Vorfahren beschrieben.Such ancestors are described.

Ausgehend vom Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren anzugeben, mit welchem ein Bauteil mit homogener, feiner und gleichmäßiger Gefügestruktur herstellbar ist, welches Bauteil in ausgewogener Form eine Duktilität, Festigkeit und Kriechbeständigkeit des Werkstoffes in allen Richtungen im Wesentlichen gleich auf gewünschtem, hohen Niveau aufweist und mit endabmessungsnahen Dimensionen wirtschaftlich herstellbar ist.Based on the prior art, the present invention has the object to provide a method by which a component having a homogeneous, fine and uniform microstructure can be produced, which component in balanced form, a ductility, strength and creep resistance of the material in all directions substantially the same has desired, high level and can be economically produced with dimensions close to final dimensions.

Die Erfindung zielt weiters auf ein Bauteil ab, welches bei einer gezielten Phasenausformung des Gefüges gewünschte, mechanische Eigenschaften, insbesondere der Dehngrenze Rp0.2 und Festigkeit Rm sowie Gesamtdehnung At im Zugversuch bei Raumtemperatur und bei einer Temperatur von 700°C, aufweist.The invention further aims at a component which, in the case of a targeted phase shaping of the microstructure, has desired mechanical properties, in particular the yield strength R p0.2 and strength R m and total elongation A t in the tensile test at room temperature and at a temperature of 700 ° C. ,

Die Aufgabe wird durch ein Verfahren der eingangs genannten Art gelöst, bei welchem in einem ersten Schritt ein schmelz- oder pulvermetallurgisch gefertigtes Vormaterial mit einer chemischen Zusammensetzung von in At.-%: Aluminium (Al) 41 bis 48 wahlweise Niob (Nb) 4 bis 9 Molybdän (Mo) 0.1 bis 3.0 Mangan (Mn) bis 2.4 Bor (B) bis 1.0 Silicium (Si) bis 1.0 Kohlenstoff (C) bis 1.0 Sauerstoff (O) bis 0.5 Stickstoff (N) bis 0.5 The object is achieved by a method of the type mentioned, in which in a first step, a melt or powder metallurgy manufactured starting material having a chemical composition of in At .-%: Aluminum (Al) 41 to 48 optionally Niobium (Nb) 4 to 9 Molybdenum (Mo) 0.1 to 3.0 Manganese (Mn) to 2.4 Boron (B) to 1.0 Silicon (Si) to 1.0 Carbon (C) to 1.0 Oxygen (O) to 0.5 Nitrogen (N) to 0.5

Titan und Verunreinigungen als Rest,
hergestellt und dieses Vormaterial bei einer Druckerhöhung auf mindestens 150 MPa bei einer Temperatur von mindestens 1000°C nach einer Durchwärmung während einer Zeitdauer von mindestens 60 min isostatisch zu einem Rohteil gepresst wird, wonach in einem zweiten Schritt das HIP-Rohteil einer Warmformgebung durch eine Schnell-Massivumformung mit einer Geschwindigkeit von größer 0.4 mm/sec und einer Umformung durch Stauchen gemessen als lokale Dehnung ϕ von größer 0.3, wobei ϕ wie folgt definiert ist: ϕ = ln h f / h o

Figure imgb0001

  • hf = Höhe des Werkstückes nach dem Stauchen
  • ho = Höhe des Werkstückes vor dem Stauchen
oder einem anderen Umformverfahren mit gleich hoher Mindestverformung, insbesondere durch Schmieden bei einer Temperatur im Bereich von 1000 bis 1350°C unter Ausformung eines Bauteiles mit einer nachfolgenden Abkühlung desselben, wobei die Zeitspanne bis zum Erreichen einer Temperatur von 700°C höchstens 10 min beträgt, unterworfen wird, wobei ein Gefüge, welches nur in geringen Teilbereichen dynamisch erholt oder rekristallisiert sein kann, im Wesentlichen jedoch ein Verformungsgefüge mit hohemTitanium and impurities as the remainder,
and this starting material is isostatically pressed to a blank at a pressure of at least 150 MPa at a temperature of at least 1000 ° C after a soak for a period of at least 60 min, after which in a second step the HIP blank of a hot forming by a Rapid massive forming with a speed of greater than 0.4 mm / sec and a deformation by compression measured as local elongation φ of greater than 0.3, where φ is defined as follows: φ = ln H f / H O
Figure imgb0001
  • h f = height of the workpiece after swaging
  • h o = height of the workpiece before swaging
or another forming method with equal minimum deformation, in particular by forging at a temperature in the range of 1000 to 1350 ° C to form a component with a subsequent cooling thereof, the time to reach a temperature of 700 ° C is at most 10 minutes, is subjected, wherein a microstructure, which can be dynamically recovered or recrystallized only in small portions, but essentially a deformation structure with high

Rekristallisationsenergiepotential aufweist, gebildet wird, wonach das Bauteil für ein Einstellen gewünschter Werkstoffeigenschaften in einem dritten Schritt einer Wärmebehandlung unterworfen wird, bei welcher im Bereich der eutektoiden Temperatur der Legierung, insbesondere von 1010 bis 1180°C in einer Zeitspanne von 30 bis 1000 min aus dem Verformungsgefüge, aufgrund der gespeicherten Verformungsenergie und der Triebkraft, welche aus dem chemischen Phasenungleichgewicht nach dem Verformen und Abkühlen besteht, eine homogene, feinglobulare Mikrostruktur, bestehend aus den bei Raumtemperatur eine geordnete Atomstruktur aufweisenden Phasen:
GAMMA, BETA0, ALPHA2 (γ,β02)
mit einer Ausformung:

ALPHA2:
globular mit einer Korngröße von 1 bis 50 µm mit einem Volumsanteil von 1 bis 50% die vereinzelte, gröbere γ-Lamellen mit einer Dicke von > 100 nm enthalten können
BETA0:
globular die α2-Phase umgebend, mit einer Korngröße von 1 bis 25 µm mit einem Volumsanteil von 1 bis 50%
GAMMA:
globular die α2-Phase umgebend, mit einer Korngröße von 1 bis 25 µm mit einem Volumsanteil von 1 bis 60%
gebildet werden, und in einem nachgeordneten Schritt wahlweise mindestens eine weitere Wärmebehandlung, insbesondere Folgeglühung und/oder Stabilisierungsglühung des Bauteiles, erfolgt (erfolgen kann).Recrystallization energy potential is formed, after which the component for setting desired material properties in a third step is subjected to a heat treatment in which in the eutectoid temperature of the alloy, in particular from 1010 to 1180 ° C in a period of 30 to 1000 min Deformation structure, due to the stored strain energy and the driving force, which consists of the chemical phase imbalance after deformation and cooling, a homogeneous, fine-structure microstructure, consisting of the phases having an ordered atomic structure at room temperature:
GAMMA, BETA 0 , ALPHA 2 (γ, β 0 , α 2 )
with a shape:
ALPHA 2 :
Globular with a particle size of 1 to 50 microns with a volume fraction of 1 to 50%, the scattered, coarser γ-lamellae with a thickness of> 100 nm may contain
BETA 0 :
Globular surrounding the α 2 -phase, with a grain size of 1 to 25 μm with a volume fraction of 1 to 50%
GAMMA:
Globular surrounding the α 2 -phase, with a particle size of 1 to 25 μm with a volume fraction of 1 to 60%
are formed, and in a subsequent step optionally at least one further heat treatment, in particular subsequent annealing and / or stabilization annealing of the component takes place (can take place).

Mit dem erfindungsgemäßen Verfahren wird eine Vielzahl von technischen und wirtschaftlichen Vorteilen erreicht.With the method according to the invention a variety of technical and economic advantages is achieved.

Im ersten Schritt des Verfahrens erfordert ein schmelz- oder pulvermetallurgisch hergestelltes Vormaterial lediglich eine Kompaktierung durch heißisostatisches Pressen desselben, wonach das Rohteil in einem zweiten Schritt bei einer gegenüber einem Isothermschmieden erhöhten Temperatur und, wie gefunden wurde, bei einem vorteilhaft verbesserten Warmumformvermögen des Materials einer Schnell-Massivumformung mit einer Geschwindigkeit von größer 0.4 mm/sec und einem Stauchgrad ϕ von größer 0.3 unterzogen wird. Diese Schnell-Massivumformung des Rohteiles kann, für den Fachmann überraschend, bei erhöhter Temperatur mit hoher Umformgeschwindigkeit erfolgen, wobei erfindungsgemäß eine hohe Mindestverformung und eine nachfolgende Abkühlung mit hoher Kühlrate für eine Ausbildung eines hohen, vorerst eingefrorenen Rekristallisierungspotentials im Gefüge erforderlich sind.In the first step of the process, a melt or powder metallurgy produced material requires only compaction by hot isostatic pressing thereof, after which the blank is heated in a second step at an elevated isothermal forging temperature and, as found, at a favorably improved hot working capability of the material of a high speed -Massivumformung at a speed greater than 0.4 mm / sec and a compression ratio φ of greater than 0.3 is subjected. This rapid massive forming of the blank can, surprisingly for the expert, be carried out at elevated temperature with high forming speed, according to the invention a high minimum deformation and subsequent cooling with high cooling rate for a formation of a high, for the time being frozen recrystallization potential in the structure are required.

Dieses Rekristallisationspotential bzw. diese gespeicherte aus der Schnell-Verformung resultierende Energie, welches bzw. welche auch aus der Triebkraft aus dem chemischen Phasenungleichgewicht gebildet ist, bewirkt in einem dritten Schritt bei einer Glühung des Werkstoffes im Bereich der eutektoiden Temperatur der Legierung eine Umwandlung in eine äußerst feinglobulare Mikrostruktur aus den Phasen GAMMA, BETA0, ALPHA2 mit bei Raumtemperatur geordneter Atomstruktur mit bestimmten Phasenanteilen, welche Gefügestruktur als günstige Feinkorn-Ausgangsstruktur für eine nachfolgende, durch Wärmebehandlung(en) erreichbare, im Hinblick auf gewünschte Eigenschaften des Werkstoffes vorgesehene Gefügeausformung dient.This recrystallization potential or stored energy resulting from the rapid deformation, which is also formed from the driving force from the chemical phase imbalance, in a third step causes the alloy to undergo a transformation in the region of the eutectoid temperature of the alloy extremely fine-globular microstructure from the phases GAMMA, BETA 0 , ALPHA 2 with ordered at room temperature atomic structure with certain phase proportions, which microstructure serves as a favorable fine grain starting structure for a subsequent, achievable by heat treatment (s), provided with regard to desired properties of the material structure formation ,

Die Aufgabe wird auch durch ein Verfahren der eingangs genannten Art gelöst, bei welchem in einem ersten Schritt ein schmelz- oder pulvermetallurgisch gefertigtes Vormaterial mit einer chemischen Zusammensetzung von in At.-%:The object is also achieved by a method of the type mentioned, in which in a first step, a melt or powder metallurgy manufactured starting material having a chemical composition of in At .-%: Alal 4242 bisto 44.544.5 wahlweiseoptionally NbNb 3.53.5 bisto 4.54.5 MoNot a word 0.50.5 bisto 1.51.5 MnMn bisto 2.22.2 BB 0.0512:05 bisto 0.20.2 SiSi 0.0010001 bisto 0.0112:01 CC 0.0010001 bisto 1.01.0 OO 0.0010001 bisto 0.10.1 NN 0.00010.0001 bisto 0.0212:02

Titan und Verunreinigungen als Rest
hergestellt und dieses Vormaterial bei einer Druckerhöhung auf mindestens 150 MPa bei einer Temperatur von mindestens 1000°C nach einer Durchwärmung während einer Zeitdauer von mindestens 60 min isostatisch zu einem Rohteil gepresst wird, wonach in einem zweiten Schritt das HIP-Rohteil einer Warmformgebung durch eine Schnell-Massivumformung mit einer Geschwindigkeit von größer 0.4 mm/sec und einer Umformung durch Stauchen gemessen als lokale Dehnung ϕ von größer 0.3, wobei ϕ wie folgt definiert ist: ϕ = ln h f / h o

Figure imgb0002

  • hf = Höhe des Werkstückes nach dem Stauchen
  • ho = Höhe des Werkstückes vor dem Stauchen
oder einem anderen Umformverfahren mit gleich hoher Mindestverformung, insbesondere durch Schmieden bei einer Temperatur im Bereich von 1000 bis 1350°C unter Ausformung eines Bauteiles mit einer nachfolgenden Abkühlung desselben, wobei die Zeitspanne bis zum Erreichen einer Temperatur von 700°C höchstens 10 min beträgt, unterworfen wird, wobei ein Gefüge, welches nur in geringen Teilbereichen dynamisch erholt oder rekristallisiert sein kann, im Wesentlichen jedoch ein Verformungsgefüge mit hohem Rekristallisationsenergiepotential aufweist, gebildet wird und wonach das Bauteil in einem dritten Schritt einer Wärmebehandlung unterworfen wird, welche mit einer Zeitspanne von 30 bis 600 min im Bereich der eutektoiden Temperatur der Legierung, insbesondere von 1040 bis 1170°C erfolgt, wobei aus dem Verformungsgefüge eine homogene, feinglobulare Mikrostruktur, bestehend aus den bei Raumtemperatur eine geordnete Atomstruktur aufweisenden Phasen:
GAMMA, BETA0, ALPHA2 (γ,β02)
mit einer Ausformung:
ALPHA2:
globular mit einer Korngröße von 1 bis 10 µm mit einem Volumsanteil von 10 bis 35% die vereinzelte, gröbere γ-Lamellen mit einer Dicke von > 100 nm enthalten können
BETA0:
globular die α2-Phase umgebend, mit einer Korngröße von 1 bis 10 µm mit einem Volumsanteil von 15 bis 45%
GAMMA:
globular die α2-Phase umgebend, mit einer Korngröße von 1 bis 10 µm mit einem Volumsanteil von 15 bis 60%
gebildet wird, und wahlweise in einem nachgeordneten Schritt mindestens eine weitere Wärmebehandlung, insbesondere Folgeglühung und/oder
Stabilisierungsglühung des Bauteiles, erfolgt (erfolgen). Titanium and impurities as rest
and this starting material is isostatically pressed to a blank at a pressure of at least 150 MPa at a temperature of at least 1000 ° C after a soak for a period of at least 60 min, after which in a second step the HIP blank of a hot forming by a Fast -Massivumformung with a speed of greater than 0.4 mm / sec and a deformation by compression measured as a local elongation φ of greater than 0.3, where φ is defined as follows: φ = ln H f / H O
Figure imgb0002
  • h f = height of the workpiece after swaging
  • h o = height of the workpiece before swaging
or another forming method with equal minimum deformation, in particular by forging at a temperature in the range of 1000 to 1350 ° C to form a component with a subsequent cooling thereof, the time to reach a temperature of 700 ° C is at most 10 minutes, wherein a microstructure, which may be dynamically recovered or recrystallized only in small portions, but essentially has a deformation structure with high Rekristallisationsenergiepotential is formed, and then the component is subjected in a third step to a heat treatment, which with a period of 30 up to 600 min in the region of the eutectoid temperature of the alloy, in particular from 1040 to 1170 ° C., whereby from the deformation microstructure a homogeneous, fine-globular microstructure consisting of the phases having an ordered atomic structure at room temperature:
GAMMA, BETA 0 , ALPHA 2 (γ, β 0 , α 2 )
with a shape:
ALPHA 2 :
Globular with a particle size of 1 to 10 microns with a volume fraction of 10 to 35%, the isolated, coarser γ-lamellae with a thickness of> 100 nm may contain
BETA 0 :
globular surrounding the α 2 -phase, with a grain size of 1 to 10 μm with a volume fraction of 15 to 45%
GAMMA:
Globular surrounding the α 2 -phase, with a grain size of 1 to 10 μm with a volume fraction of 15 to 60%
is formed, and optionally in a subsequent step, at least one further heat treatment, in particular subsequent annealing and / or
Stabilizing annealing of the component, carried out (done).

Eine derartige, in den Konzentrationen der Elemente eingeschränkte, chemische Zusammensetzung des Werkstoffes kann ein durch die Verfahrensparameter erreichtes, günstiges Verhalten bezüglich der Gefügeum- und -ausbildung intensivieren.Such, limited in the concentrations of the elements, chemical composition of the material can intensify a achieved by the process parameters, favorable behavior in terms of structural transformation and education.

Die Feinkornausbildung im Werkstoff, geschaffen nach obigem Verfahren, bewirkt zwar bei isotroper Gefügemorphologie eine erhöhte Festigkeit in engeren Grenzen, wobei jedoch die Zähigkeit und die Kriechbeständigkeit des Materials für bestimmte Anwendungsgebiete als nicht ausreichend erachtet werden können. Diese Feinkornstruktur bildet jedoch allenfalls eine Voraussetzung für den Erhalt eines weitgehend feinen, homogenen Gefüges bei weiteren Glühbehandlungen zur Einstellung gewünschter, mechanischer Eigenschaften des Bauteiles.The fine grain formation in the material, created by the above method, although in isotropic microstructure morphology causes increased strength within narrow limits, but the toughness and the creep resistance of the material for certain applications can not be considered sufficient. However, this fine grain structure is at best a prerequisite for obtaining a substantially fine, homogeneous structure in further annealing treatments for setting desired, mechanical properties of the component.

Um insbesondere die Hochtemperatureigenschaften des Werkstoffes betreffend eine Verbesserung der Duktilität bzw. eine Erhöhung der Zähigkeit und einer Erhöhung der Kriechbeständigkeit zu erreichen, ist gemäß der Erfindung vorgesehen, das Bauteil mit einer im dritten Schritt geschaffenen Feinkornstruktur zur Einstellung von optimierten Hochtemperaturwerkstoffeigenschaften mindestens einer Folgeglühung zu unterwerfen, welche Folgeglühung im Bereich nahe der Alpha-Transus-Temperatur (Tα) der Legierung im Dreiphasenraum (Alpha, Beta, Gamma) während einer Zeitdauer von mindestens 30 bis 6000 min erfolgt, wonach das Teil in einer Zeitspanne von weniger als 10 min auf eine Temperatur von 700°C und anschließend weiter, vorzugsweise an Luft, abgekühlt wird und derart eine Phasenausformung:

ALPHA2:
globular übersättigt, gegebenenfalls gering feine γ-Lamellen enthaltend, mit einer Korngröße von 5 µm bis 100 µm mit einem Volumsanteil von 25% bis 98%
BETA0:
globular, mit einer Korngröße von 1 µm bis 25 µm mit einem Volumsanteil von 1% bis 25%
GAMMA:
globular, mit einer Korngröße von 1 µm bis 25 µm mit einem Volumsanteil von 1% bis 50%
gebildet wird.In order to achieve in particular the high-temperature properties of the material with respect to an improvement in ductility or an increase in toughness and an increase in creep resistance, it is provided according to the invention to subject the component with a fine grain structure created in the third step for setting optimized high-temperature material properties of at least one subsequent annealing which subsequent annealing in the region close to the alpha transus temperature (T α ) of the alloy in three-phase space (alpha, beta, gamma) during a period of at least 30 to 6000 min, after which the part in a Period of less than 10 min to a temperature of 700 ° C and then further, preferably in air, cooled and thus a Phasenausformung:
ALPHA 2 :
Globular supersaturated, possibly containing low-fine γ-lamellae, with a particle size of 5 μm to 100 μm with a volume fraction of 25% to 98%
BETA 0 :
globular, with a particle size of 1 μm to 25 μm with a volume fraction of 1% to 25%
GAMMA:
globular, with a particle size of 1 μm to 25 μm with a volume fraction of 1% to 50%
is formed.

Insbesondere die übersättigten ALPHA2-Körner und eine zwar feine, jedoch nicht optimierte Gefügeausformung ergeben bei hohen Festigkeitswerten eine niedrige Materialduktilität und Zähigkeit. Durch eine eingeengte, chemische Zusammensetzung sind verbesserte, mechanische Werkstoffeigenschaften erreichbar, jedoch ist das Eigenschaftsprofil nur auf bestimmte Verwendungszwecke ausgerichtet.In particular, the supersaturated ALPHA 2 grains and a fine but non-optimized microstructural shape give low material ductility and toughness at high strength values. Improved mechanical properties of the material can be achieved by means of a narrowed chemical composition, but the property profile is oriented only to specific uses.

Eine eingeengte, chemische Zusammensetzung des Werkstoffes, wie vorstehend angegeben, kann zwar für ein Erreichen von günstigen Anteilen der Gefügebestandteile mit engeren Abmessungen und engeren Gehaltsgrenzen genutzt werden, wobei sich die daraus ergebenden Vorteile in einer gewissen Präzisierung der mechanischen Eigenschaftswerte niederschlagen; im Wesentlichen werden damit jedoch in höchst vorteilhafter Weise die Voraussetzungen für eine Optimierung des Hochtemperaturverhaltens eines Bauteiles aus einer Titan-Aluminium-Basislegierung erstellt.Although a narrowed chemical composition of the material, as stated above, can be used to achieve favorable proportions of the microstructural constituents with narrower dimensions and narrower content limits, the resulting advantages are reflected in a certain refinement of the mechanical property values; Essentially, however, the prerequisites for optimizing the high-temperature behavior of a component made of a titanium-aluminum base alloy are created in a highly advantageous manner.

Eine Wahl der Glühzeit bei einer Folgeglühung nahe der Alpha-Transus-Temperatur (Tα) kann im Hinblick auf eine Einstellung von gewünschten Phasenmengen und der Korngrößen erfolgen. Beispielsweise wird die β-Phase mit zunehmender Glühdauer generell reduziert.A choice of annealing time at a post-anneal close to the alpha transus temperature (T α ) can be made with a view to setting desired phase amounts and grain sizes. For example, the β-phase is generally reduced as the annealing time increases.

Nach einer thermischen Behandlung im Alpha-Transus-Gebiet und einer forcierten Abkühlung weisen die Gefügephasen im Wesentlichen eine ungeordnete Atomstruktur auf.After a thermal treatment in the Alpha-Transus area and a forced Cooling, the structural phases essentially have a disordered atomic structure.

Wenn beim Herstellungsverfahren das Bauteil nach einer Folgeglühung mindestens einer Stabilisierungsglühung unterworfen wird, welche in einem Temperaturbereich von 700°C bis 1000°C, allenfalls oberhalb der Anwendungstemperatur des Bauteiles mit einer Dauer von 60 min bis 1000 min und einer anschließenden Langsam- bzw. Ofenabkühlung mit einer Geschwindigkeit von weniger als 5°C/min, vorzugsweise von weniger als 1°C/min, zur Einstellung bzw. Ausformung der Gefügebestandteile:

ALPHA2 / GAMMA:
Lamellarkorn mit einer Korngröße von 5 µm bis 100 µm mit einem Volumsanteil von 25% bis 98% mit einer (α2/γ) Lamellen-Feinstruktur vorzugsweise mit einem mittleren Lamellenabstand von 10 nm bis 1 µm
BETA0:
globular, mit einer Korngröße von 1 µm bis 25 µm mit einem Volumsanteil von 1% bis 25%
GAMMA:
globular, mit einer Korngröße von 1 µm bis 25 µm mit einem Volumsanteil von 1% bis 50%
erfolgt, können Gefügeausformungen mit wesentlich verbesserten mechanischen Hochtemperatureigenschaften des Werkstoffes erreicht werden.If, in the production process, the component is subjected to at least one stabilization annealing after a subsequent annealing, which in a temperature range of 700 ° C. to 1000 ° C., if necessary above the application temperature of the component with a duration of 60 minutes to 1000 minutes and a subsequent slow or furnace cooling at a rate of less than 5 ° C / min, preferably less than 1 ° C / min, for the purpose of adjusting or shaping the microstructural constituents:
ALPHA 2 / GAMMA:
Lamellar grain with a grain size of 5 .mu.m to 100 .mu.m with a volume fraction of 25% to 98% with a (α 2 / γ) lamellar fine structure, preferably with a mean fin spacing of 10 nm to 1 .mu.m
BETA 0 :
globular, with a particle size of 1 μm to 25 μm with a volume fraction of 1% to 25%
GAMMA:
globular, with a particle size of 1 μm to 25 μm with a volume fraction of 1% to 50%
structural conformations with significantly improved high-temperature mechanical properties of the material can be achieved.

Mittels einer Stabilisierungsglühung mit einer Langsamabkühlung, in welcher eine ausreichende Atomdiffusion erhalten bleibt, erfolgt eine Umwandlung der übersättigten ALPHA2-Körner in eine lamellare ALPHA2 / GAMMA-Struktur ohne wesentliche Änderung der Korngröße. Eine Lamellenstruktur in den ehemals übersättigten Gefügekörnern verbessert im hohen Maße die Kriechbeständigkeit des Werkstoffes bei hohen Belastungen im Temperaturbereich um 700°C.By means of a stabilization annealing with a slow cooling, in which sufficient atomic diffusion is maintained, the supersaturated ALPHA 2 grains are converted into a lamellar ALPHA 2 / GAMMA structure without any significant change in grain size. A lamellar structure in the formerly supersaturated structural grains greatly improves the creep resistance of the material at high temperatures of around 700 ° C in the temperature range.

Das weitere Ziel der Erfindung wird mit einem endabmessungsnahe Dimensionen aufweisenden Bauteil aus einer Titan-Aluminium-Basislegierung mit einer chemischen Zusammensetzung gemäß Anspruch 1 oder 2, hergestellt mit einem Gefüge des Werkstoffes, bestehend aus den bei Raumtemperatur eine geordnete Atomstruktur aufweisenden Phasen:
GAMMA, BETA0, ALPHA2 (γ,β02)
mit einer Ausformung:

ALPHA2:
globular übersättigt mit einer Korngröße von 1 µm bis 50 µm mit einem Volumsanteil von 1% bis 50%, die vereinzelte, gröbere γ-Lamellen mit einer Dicke von > 100 nm enthalten können
BETA0:
globular die α2-Phase umgebend, mit einer Korngröße von 1 µm bis 25 µm mit einem Volumsanteil von 1% bis 50%
GAMMA:
globular die α2-Phase umgebend, mit einer Korngröße von 1 µm bis 25 µm mit einem Volumsanteil von 1% bis 60%
erreicht, vorzugsweise eingestellt mit einem Verfahren gemäß Anspruch 1 oder 3, wobei das Material folgende, mechanische Eigenschaften im Bereich von:
  • Festigkeit und Bruchdehnung bei Raumtemperatur:
    • ∘ Rp0.2: 650 bis 910 MPa
    • ∘ Rm: 680 bis 1010 MPa
    • ∘ At: 0.5% bis 3%
  • Festigkeit und Bruchdehnung bei 700°C:
    • ∘ Rp0.2: 520 bis 690 MPa
    • ∘ Rm: 620 bis 970 MPa
    • ∘ At: 1% bis 3.5%
aufweist.The further object of the invention is provided with a dimensionally near-dimensionally dimensioned component made of a titanium-aluminum base alloy having a chemical composition according to claim 1 or 2, prepared with a microstructure of the material consisting of the phases having an ordered atomic structure at room temperature:
GAMMA, BETA 0 , ALPHA 2 (γ, β 0 , α 2 )
with a shape:
ALPHA 2 :
Globular supersaturated with a particle size of 1 .mu.m to 50 .mu.m with a volume fraction of 1% to 50%, which may contain isolated, coarser γ-lamellae with a thickness of> 100 nm
BETA 0 :
globular surrounding the α 2 -phase, with a grain size of 1 μm to 25 μm with a volume fraction of 1% to 50%
GAMMA:
globular surrounding the α 2 -phase, with a grain size of 1 μm to 25 μm with a volume fraction of 1% to 60%
achieved, preferably adjusted by a method according to claim 1 or 3, wherein the material has the following mechanical properties in the range of:
  • Strength and elongation at room temperature:
    • P R p0.2 : 650 to 910 MPa
    • ∘ R m : 680 to 1010 MPa
    • ∘ A t : 0.5% to 3%
  • Strength and elongation at 700 ° C:
    • P R p0.2 : 520 to 690 MPa
    • ∘ R m : 620 to 970 MPa
    • ∘ A t : 1% to 3.5%
having.

Dieses mit hoher Wirtschaftlichkeit der Herstellung geschaffene Bauteil hat eine feine, globulare, homogene Gefügestruktur mit in allen Richtungen gleichem Eigenschaftsprofil des Werkstoffes, welches für eine Vielzahl von Anwendungszwecken vorteilhaft einsetzbar ist.This created with high efficiency of manufacturing component has a fine, globular, homogeneous microstructure with the same property profile in all directions of the material, which is advantageously used for a variety of applications.

Um eine Verbesserung der mechanischen Materialeigenschaften, insbesondere eine Erhöhung der Kriechbeständigkeit, zu erreichen, ist es von Vorteil, wenn das Bauteil mit einem Gefüge des Werkstoffes aus:

ALPHA2:
globular übersättigt, gegebenenfalls gering feine γ-Lamellen enthaltend, mit einer Korngröße von 5 µm bis 80 µm mit einem Volumsanteil von 50% bis 95%
BETA0:
globular, mit einer Korngröße von 1 µm bis 20 µm mit einem Volumsanteil von 31% bis 25%
GAMMA:
globular, mit einer Korngröße von 1 µm bis 20 µm mit einem Volumsanteil von 1% bis 28%
vorzugsweise eingestellt nach einem Verfahren gemäß Anspruch 4 oder 5 gebildet ist, wobei das Material folgende, mechanische Eigenschaften im Bereich von:
  • Festigkeit und Bruchdehnung (nach ASTM E8M, EN 2002-1) bei Raumtemperatur:
    • ∘ Rp0.2: 650 bis 940 MPa
    • ∘ Rm: 730 bis 1050 MPa
    • ∘ At: 0.2% bis 2%
  • Festigkeit und Bruchdehnung bei 700°C:
    • ∘ Rp0.2: 430 bis 620 MPa
    • ∘ Rm: 590 bis 940 MPa
    • ∘ At: 1% bis 2.5%
aufweist.In order to achieve an improvement in the mechanical material properties, in particular an increase in creep resistance, it is advantageous if the component is made with a structure of the material:
ALPHA 2 :
globular supersaturated, optionally containing small fine γ-lamellae, with a particle size of 5 μm to 80 μm with a volume fraction of 50% to 95%
BETA 0 :
globular, with a grain size of 1 μm to 20 μm with a volume fraction of 31% to 25%
GAMMA:
globular, with a grain size of 1 μm to 20 μm with a volume fraction of 1% to 28%
preferably adjusted according to a method according to claim 4 or 5, wherein the material has the following mechanical properties in the range of:
  • Strength and elongation at break (according to ASTM E8M, EN 2002-1) at room temperature:
    • P R p0.2 : 650 to 940 MPa
    • ∘ R m : 730 to 1050 MPa
    • ∘ A t : 0.2% to 2%
  • Strength and elongation at 700 ° C:
    • P R p0.2 : 430 to 620 MPa
    • ∘ R m : 590 to 940 MPa
    • ∘ A t : 1% to 2.5%
having.

Ein besonderer Vorteil im Hinblick auf eine Duktilität, Festigkeit und Kriechbeständigkeit des Werkstoffes in allen Richtungen in gleichem Maße auf einem hohen Niveau wird erreicht, wenn das Bauteil mit einem Gefüge des Werkstoffes, bestehend aus den Bestandteilen mit einer Ausformung:

ALPHA2 / GAMMA:
Lamellarkorn mit einer Korngröße von 5 µm bis 100 µm mit einem Volumsanteil von 25% bis 98% mit einer (α2/γ) Lamellen-Feinstruktur vorzugsweise mit einem mittleren Lamellenabstand von 10 nm bis 1 nm
BETA0:
globular, mit einer Korngröße von 0.5 µm bis 25 µm mit einem Volumsanteil von 1% bis 25%
GAMMA:
globular, mit einer Korngröße von 0.5 µm bis 25 µm mit einem Volumsanteil von 1% bis 50%
  • vorzugsweise eingestellt nach einem Verfahren gemäß Anspruch 6 oder 7 gebildet ist, wobei das Material folgende, mechanische Eigenschaften im Bereich von:
    • Festigkeit und Bruchdehnung (nach ASTM E8M, EN 2002-1) bei Raumtemperatur:
      • ∘ Rp0.2: 710 bis 1020 MPa
      • ∘ Rm: 800 bis 1250 MPa
      • ∘ At: 0.8% bis 4%
    • Festigkeit und Bruchdehnung bei 700°C:
      • ∘ Rp0.2: 540 bis 760 MPa
      • ∘ Rm: 630 bis 1140 MPa
      • ∘ At: 1 % bis 4.5%
aufweist.A particular advantage in terms of ductility, strength and creep resistance of the material in all directions to the same extent at a high level is achieved if the component with a structure of the material consisting of the components with a shape:
ALPHA 2 / GAMMA:
Lamellar grain with a grain size of 5 .mu.m to 100 .mu.m with a volume fraction of 25% to 98% with a (α 2 / γ) lamellar fine structure, preferably with a mean fin spacing of 10 nm to 1 nm
BETA 0 :
globular, with a particle size of 0.5 μm to 25 μm with a volume fraction of 1% to 25%
GAMMA:
globular, with a particle size of 0.5 μm to 25 μm with a volume fraction of 1% to 50%
  • preferably adjusted according to a method according to claim 6 or 7, wherein the material has the following mechanical properties in the range of:
    • Strength and elongation at break (according to ASTM E8M, EN 2002-1) at room temperature:
      • P R p0.2 : 710 to 1020 MPa
      • ∘ R m : 800 to 1250 MPa
      • ∘ A t : 0.8% to 4%
    • Strength and elongation at 700 ° C:
      • P R p0.2 : 540 to 760 MPa
      • ∘ R m : 630 to 1140 MPa
      • ∘ A t : 1% to 4.5%
having.

Im Folgenden soll die Erfindung anhand lediglich eine Legierungszusammensetzung umfassenden Bildern näher erläutert werden.In the following, the invention will be explained in more detail with reference to images comprising only one alloy composition.

Es zeigen:

Fig. 1
Gefügeausbildung in Abhängigkeit von der Temperatur und der Aluminiumkonzentration mit vom Fachmann verwendeten Temperaturbereichsangaben (Prinzipschaubild)
Fig. 2
Gefüge der Ti-AI-Basislegierung nach einer Massivumformung und anschließender Abkühlung
Fig. 3
Gefüge der Legierung nach einer Glühung im Bereich der eutektoiden Temperatur (Teu) und Abkühlung
Fig. 4
Gefüge der Legierung nach einer Glühung bei Alpha-Transus-Temperatur (Tα)
Fig. 5
Gefüge der Legierung nach einer Stabilisierungsglühung
Show it:
Fig. 1
Structure formation as a function of the temperature and the aluminum concentration with temperature range data used by the person skilled in the art (schematic diagram)
Fig. 2
Microstructure of the Ti-Al base alloy after massive forming and subsequent cooling
Fig. 3
Structure of the alloy after annealing at the eutectoid temperature (T eu ) and cooling
Fig. 4
Microstructure of Alloy After Annealing at Alpha Transus Temperature (T α )
Fig. 5
Structure of the alloy after stabilization annealing

In Fig. 1 sind schematisch die Gefügeausformungen von Titan-Aluminium-Basislegierungen in Abhängigkeit von der Temperatur und der Aluminiumkonzentration dargestellt. Weiters sind die vom Fachmann verwendeten Temperaturangaben ersichtlich.In Fig. 1 schematically the microstructures of titanium-aluminum base alloys are shown as a function of the temperature and the aluminum concentration. Furthermore, the temperature data used by the expert can be seen.

Die in den Fig. 2 bis Fig. 5 dargestellten Gefügeausformungen stammen aus einer Versuchsreihe mit einer Legierung Ti, 43.2 At.-% Al, 4 At.-% Nb, 1 At.-% Mo, 0.1 At.-% B.The in the Fig. 2 to Fig. 5 The microstructures shown are from a test series with an alloy Ti, 43.2 at.% Al, 4 at.% Nb, 1 at.% Mo, 0.1 at.% B.

Diese Legierung hat eine eutektoide Temperatur von Teu 1165°C ± 7°C und eine Alpha-Transus-Temperatur Tα = 1243°C ± 7°C, welche Temperaturen mit der Differentialthermoanalyse bestimmt wurden.This alloy has a eutectoid temperature of T eu 1165 ° C ± 7 ° C and an alpha transus temperature T α = 1 243 ° C ± 7 ° C, which temperatures were determined by differential thermal analysis.

Die Gefügebilder wurden mit einer 200-fachen Vergrößerung am Rasterelektronenmikroskop im Elektronenrückstreukontrast aufgenommen.The micrographs were taken at 200X magnification on the scanning electron microscope in electron backscatter contrast.

Fig. 2 zeigt das Gefüge des Werkstoffes nach einer Verformung in einem Gesenk mit einem Umformgrad von ϕ = 0.7 mit einer Umformgeschwindigkeit von 1.0 mm/sec und einer Abkühlung an Luft. Infolge der Massivumformung weist nach Abkühlung des Teiles dieses eine typische gerichtete Verformungstextur auf und zeigt als Bestandteile gerichtete GAMMA-BETA0-ALPHA2-Körner. Fig. 2 shows the structure of the material after deformation in a die with a degree of deformation of φ = 0.7 with a forming speed of 1.0 mm / sec and a cooling in air. As a result of forging comprises after cooling of the part of this, a typical directed deformation texture and shows as components directed GAMMA-BETA 0 -ALPHA 2 grains.

Fig. 3 zeigt das Gefüge des verformten Teiles nach einer Wärmebehandlung im Bereich der eutektioden Temperatur (Teu) im vorliegenden Fall bei 1150°C, gefolgt von einer Abkühlung. Fig. 3 shows the structure of the deformed part after a heat treatment in the region of the eutectioden temperature (T eu ) in the present case at 1150 ° C, followed by a cooling.

Das Gefüge bestand aus globularen ALPHA2-Körnern mit einer Korngröße (gemessen als Durchmesser des kleinsten umschreibenden Kreises) von 3.2 µm ± 1.9 µm mit einem Volumsanteil von ca. 25% aus globularen BETA0-Körnern mit einer Korngröße von 3.7 µm ± 2.1 µm mit einem Volumsanteil von ca. 26% und aus globularen GAMMA-Körnern mit einer Korngröße von 5.7 µm ± 2.4 µm mit einem Volumsanteil von 49%.The microstructure consisted of globular ALPHA 2 grains with a particle size (measured as the diameter of the smallest circumscribed circle) of 3.2 μm ± 1.9 μm with a volume fraction of approximately 25% from globular BETA 0 grains with a particle size of 3.7 μm ± 2.1 μm with a volume fraction of about 26% and globular GAMMA grains with a grain size of 5.7 μm ± 2.4 μm with a volume fraction of 49%.

In Fig. 4 ist das Gefüge des verformten und nachfolgend bei 1150°C geglühten und abgekühlten Teiles nach einer Folgeglühung im Bereich der Alpha-Transus-Temperatur (Tα) im gegebenen Fall bei einer Temperatur von 1240°C und einer Abkühlung von dieser auf 700°C in 5 min und weiterer Abkühlung an Luft dargestellt.In Fig. 4 is the structure of the deformed and subsequently annealed at 1150 ° C and cooled part after a subsequent annealing in the range of the alpha transus temperature (T α ) in the given case at a temperature of 1240 ° C and a cooling of this to 700 ° C in 5 min and further cooling in air.

Die ermittelten Gefügebestandteile waren: ALPHA2-Körner in globularer Ausformung mit einer Korngröße von 11.0 µm ± 5.8 µm mit einem Volumsanteil von 73%, globulare BETA0-Körner mit einer Korngröße von 4.5 µm ± 2.6 µm mit einem Volumsanteil von 11 % und globulare GAMMA-Körner mit einer Korngröße von 4.2 µm ± 2.2 µm mit einem Volumsanteil von 16%.The microstructural constituents were: ALPHA 2 granules with a particle size of 11.0 μm ± 5.8 μm with a volume fraction of 73%, globular BETA 0 grains with a particle size of 4.5 μm ± 2.6 μm with a volume fraction of 11% and globular GAMMA grains with a grain size of 4.2 μm ± 2.2 μm with a volume fraction of 16%.

Fig. 5 zeigt das Gefüge des verformten Teiles nach einer Feinkornglühung im eutektoiden Temperaturbereich (Teu), eine Hochtemperaturglühung im (α+β+γ)-Phasenraum bzw. einer Alpha-Transus-Glühung (Tα) bei 1240°C und einer forcierten Abkühlung gefolgt von einer Stabilisierungsglühung in gegebenem Fall bei 875°C mit anschließender Langsamabkühlung mit einer Geschwindigkeit von 2°C/min. Fig. 5 shows the structure of the deformed part after a fine grain annealing in the eutectoid temperature range (T eu ), followed by a high-temperature annealing in the (α + β + γ) phase space or an alpha transus annealing (T α ) at 1240 ° C and a forced cooling stabilizing annealing in a given case at 875 ° C followed by slow cooling at a rate of 2 ° C / min.

An dieser Stelle soll festgestellt werden, dass durch Variationen der Glühtemperatur und/oder der Glühzeit die Mikrostruktur des Gefüges und das Eigenschaftsprofil des Werkstoffes einstellbar sind.It should be noted at this point that the microstructure of the microstructure and the property profile of the material can be adjusted by varying the annealing temperature and / or the annealing time.

Nach obiger Wärmebehandlung bestand das Gefüge aus globularen ALPHA2/GAMMA-Körnern mit lamellarer α/γ-Struktur mit einer Korngröße von 7.1 µm ± 3.8 µm mit einem Volumsanteil von 64% aus globularen BETA0-Körnern mit einer Korngröße von 2.3 µm ± 2.2 µm mit einem Volumsanteil von 13% und aus globularen GAMMA-Phasen mit einer Korngröße von 2.7 µm ± 2.1 µm mit einem Volumsanteil von 23%.After the above heat treatment, the structure consisted of globular ALPHA 2 / GAMMA grains with lamellar α / γ structure with a grain size of 7.1 μm ± 3.8 μm with a volume fraction of 64% from globular BETA 0 grains with a grain size of 2.3 μm ± 2.2 μm with a volume fraction of 13% and of globular GAMMA phases with a grain size of 2.7 μm ± 2.1 μm with a volume fraction of 23%.

Wie auch die übrigen Proben von Versuchsreihen wurden an diesem Teil die wichtigsten mechanischen Eigenschaften gemessen. Bei Raumtemperatur lagen die Festigkeitswerte Rp0.2 über 720 MP, Rm über 810 MP und die Bruchdehnung über 1.6%.Like the other samples from series of tests, the most important mechanical properties were measured on this part. At room temperature, the strength values R p0.2 exceeded 720 MP, R m exceeded 810 MP and the elongation at break exceeded 1.6%.

Bei 700°C wurde im Kriechversuch (ASTME139 bzw. EN2005-5) bei einer Prüfspannung in der Probe von 250 MPa und einer Beanspruchungsdauer von 100 Std. ein Wert Ap von kleiner 0.65% ermittelt.At 700 ° C., a value A p of less than 0.65% was determined in the creep test (ASTME139 or EN2005-5) at a test voltage in the sample of 250 MPa and a stress duration of 100 hours.

Claims (9)

  1. Method for the production of a component made of a titanium-aluminum base alloy, in which, in a first step, a primary material which has been produced by melting or powder metallurgy and has a chemical composition in At.-% of: Aluminum (Al) 41 to 48 optionally Niobium (Nb) 4 to 9 Molybdenum (Mo) 0.1 to 3.0 Manganese (Mn) to 2.4 Boron (B) to 1 .0 Silicon (Si) to 1.0 Carbon (C) to 1.0 Oxygen (0) to 0.5 Nitrogen (N) to 0.5
    Titanium and impurities as the remainder,
    wherein this primary material is isostatically pressed into a blank under a pressure increase to at least 150 MPa at a temperature of at least 1000 °C after heating for a period of at least 60 min, whereupon, in a second step, the HIP blank is subjected to a thermoforming process by means of rapid-forming though a rapid mass forming at a rate greater than 0.4 mm/sec and a forming by compression measured as a local strain ϕ of greater than 0.3, where ϕ is defined as follows: Φ = ln h f / h o
    Figure imgb0005
    hf = height of the workpiece after compression
    ho = height of the workpiece before compression
    or another forming method with an equally high minimum forming, in particular by forging at a temperature in the range from 1000 to 1350 °C, to form a component with a subsequent cooling thereof, wherein the time until a temperature of 700 °C. is reached is at most 10 min, wherein a structure which may only be dynamically recovered or recrystallized in small subregions, but substantially has a forming structure with high recrystallization energy potential, wherein the component is subjected to heat treatment in a third step for the adjustment of desired material properties, which in the region of the eutectoid temperature (Teu) of the alloy, in particular from 1010 to 1180 °C, over a period of 30 to 1000 min from the forming structure, due to the stored forming energy and the driving force to the structural change, which consists of the chemical phase equilibrium after the forming and cooling, after cooling in air, a homogeneous fine-globular microstructure, formed from the phases having an ordered atomic structure at room temperature:
    GAMMA, BETA0, ALPHA2 (γ, β0, α2)
    having a formation:
    ALPHA2: globular with a grain size of 1 to 50 µm with a volume fraction of 1 to 50%, which may contain isolated, coarser γ-lamellae with a thickness > 100 nm BETA0: globular surrounding the α2 phase with a grain size of 1 to 25 µm with a volume fraction of 1 to 50%
    GAMMA: Globular surrounding the α2 phase with a grain size of 1 to 25 µm with a volume fraction of 1 to 50%
    wherein, in a subsequent step, at least one further heat treatment, in particular subsequent annealing and/or stabilizing annealing of the component, takes place.
  2. Method for the production of a component from a titanium-aluminum base alloy, wherein, in a first step, a primary material which has been produced by melting or powder metallurgy and has a chemical composition in At.-% of at least. Al 42 to 44.5 optionally Nb 3.5 to 4.5 Mo 0.5 to 1.5 Mn to 2.2 B 0.05 to 0.2 Si 0.001 to 0.01 C 0.001 to 1.0 O 0.001 to 0.1 N 0.0001 to 0.02
    Titanium and impurities as the remainder,
    wherein this preliminary material is isostatically pressed into a blank at a pressure increase of at least 150 MPa at a temperature of at least 1000 °C after heating for a period of at least 60 minutes, whereupon, in a second step, the hot blank is subjected to a hot forming process by means of rapid-forming though rapid mass forming at a rate greater than 0.4 mm/sec and forming by compression measured as a local strain ϕ greater than 0.3, where ϕ is defined as follows: Φ = ln h f / h o
    Figure imgb0006
    hf = height of the workpiece after compression
    ho = height of the workpiece before compression
    or another forming method with an equally high minimum forming, in particular by forging at a temperature in the range from 1000 to 1350° C to form a component with subsequent cooling thereof, wherein the time until a temperature of 700 °C is reached is at most 10 min, wherein a structure which may be dynamically recovered or recrystallized only in small subregions, but essentially has a forming structure with a high recrystallization energy potential, after which the component is subjected to heat treatment in a third step in the range of the eutectoid temperature (Teu) of the alloy, in particular from 1040 to 1170 °C over a period of 30 to 600 min, for adjusting the desired material properties in a third step, wherein from the forming structures after cooling in air, a homogeneous, fine-lobular microstructure is produced consisting of the phases having an ordered atomic structure at room temperature:
    GAMMA, BETA0, ALPHA2 (γ, β0, α2)
    having a formation:
    ALPHA2: globular with a grain size of 1 to 10 µm with a volume fraction of 1 to 35%, which may contain isolated coarser γ-lamellae with a thickness of > 100 nm BETA0: globular surrounding the α2 phase with a grain size of 1 to 10 µm with a volume fraction of 15 to 45%
    GAMMA: globular surrounding the α2 phase with a grain size of 1 to 10 µm with a volume fraction of 15 to 60%
    wherein, optionally, at least one further heat treatment, in particular subsequent annealing and/or stabilizing annealing of the component, takes place in a subordinate step.
  3. Method according to claim 1, wherein the component with a fine structure produced in the third step for the adjustment of optimum high temperature material properties is subjected to at least a following annealing in the range near the alpha transus temperature (To) of the alloy in the thee phases (Alpha, Beta, Gamma) during a time period of at least 30 to maximum of 6000 min, after which the part is cooled to a temperature of 700 °C in a period of less than 10 min and then further preferably in air, and a phase forming in this way:
    ALPHA2: globular supersaturated, optionally containing small fine γ-lamellae, with a grain size of 5 to 100 µm with a volume fraction of 25 to 98%
    BETAo: globular, with a grain size of 1 to 25 µm with a volume fraction of 1 to 25% GAMMA: globular, with a grain size of 1 to 25 µm with a volume fraction of 1 to 50%.
  4. Method according to claim 2, wherein the component having a fine structure created in the third step for the adjustment of optimized high temperature properties, is subjected to at least one subsequent annealing which is carried out in the region close to the alpha transus temperature (To) of the alloy in the three-phase space (Alpha, Beta, Gamma) for a period of at least 30 to a maximum of 6000 min, after which the part is cooled to a temperature of 700 °C over a period of less than 10 min and then further, preferably in air, and a phase forming in such a way:
    ALPHA2: globular super saturated, optionally containing small fine γ-lamellae, with a grain size of 5 to 80 µm with a volume fraction of 50 to 98%
    BETAo: globular, with a grain size of 1 to 20 µm with a volume fraction of 1 to 25% GAMMA: globular, with a grain size of 1 to 20 µm with a volume fraction of 1 to 28%.
  5. Method according to claim 3, wherein the component is subjected to at least one stabilizing annealing after a subsequent annealing according to claim 3, which is carried out in a temperature range from 700 to 1000 °C, possibly above the application temperature of the component with a duration of 60 to 1000 min, and a subsequent slow or furnace cooling at a rate of less than 5 °C/min, preferably less than 1 °C/min, for setting or shaping the structural constituents:
    ALPHA2/GAMMA: Lamellar grain with a grain size of 5 to 100 µm with a volume fraction of 25 to 98%, and an (α2/γ) lamellar fine structure, preferably with a mean lamellar spacing of 10 nm to 1 µm
    BETAo: globular, with a grain size of 1 to 25 µm with a volume fraction of 1 to 25% GAMMA: globular, with a grain size of 1 to 25 µm with a volume fraction of 1 to 50%.
  6. Method according to claim 4, wherein the component is subjected to at least one stabilizing annealing after a subsequent annealing according to claim 4, which is carried out in a temperature range of from 700 to 1000 °C, possibly above the application temperature of the component with a duration of 60 to 1000 min, and followed by slow or furnace cooling at a rate of less than 5 °C/min, preferably of less than 1 °C/min, for setting or shaping the structural components:
    ALPHA2/GAMMA: Lamellar grain with a grain size of 5 to 80 µm with an (α2/γ) lamellar fine structure, preferably with a mean lamellar spacing of 10 to 30 nm and with a volume fraction of 45 to 90%
    BETAo: globular, with a grain size of 1 to 20 µm with a volume fraction of 1 to 25% GAMMA: globular, with a grain size of 1 to 20 µm with a volume fraction of 1 to 25%.
  7. Component made of a titanium-aluminum base alloy with a chemical composition according to claim 1 or 2, produced with dimensions close to the final dimensions, obtainable by a method according to claim 1 or 2 with a structure of the material comprising the ordered atomic structure at room temperature phases:

    GAMMA, BETA0, ALPHA2 (γ, β0, α2)
    with a formation:
    ALPHA2: globular with a grain size of 1 to 50 µm with a volume fraction of 1 to 50%, which may contain isolated, coarser γ-lamellae with a thickness > 100 nm BETAo: globular surrounding the α2 phase, with a grain size of 1 to 25 µm with a volume fraction of 1 to 50%
    GAMMA: globularly surrounding the α2 phase, with a grain size of 1 to 25 µm, with a volume fraction of 1 to 60%,
    obtainable by a method according to claim 1 or 2, wherein the material has the following mechanical properties in the range of:
    • Strength and elongation at break at room temperature:
    ∘ Rp0.2: 650 to 910 MPa
    ∘ Rm: 680 to 1010 Mpa
    ∘ At: 0.5 to 3%
    • Strength and elongation at break at 700 °C:
    Rp0.2: 520 to 690 MPa
    ∘ Rm: 620 to 970 MPa
    ∘ At: 1 to 3.5%.
  8. Component made of a titanium-aluminum base alloy with a chemical composition according to claim 1 or 2, produced with dimensions close to the final dimensions, with a microstructure of the material consisting of:
    ALPHA2: globular super saturated, optionally containing small fine γ-lamellae, with a grain size of 5 to 80 µm with a volume fraction of 50 to 95%
    BETAo: globular, with a grain size of 1 to 20 µm with a volume fraction of 1 to 25%
    GAMMA: globular, with a grain size of 1 to 20 µm with a volume fraction of 1 to 28% adjusted by a method according to claim 3 or 4, wherein said material has the following mechanical properties in the range of:
    • Strength and elongation at break (according to ASTM E8M, EN 2002-1) at room temperature:
    ∘ Rp0.2: 650 to 940 MPa
    ∘ Rm: 730 to 1050 MPa
    ∘ At: 0.2 to 2%
    • Strength and elongation at break at 700 °C:
    ∘ Rp0.2: 430 to 620 MPa
    ∘ Rm: 590 to 940 MPa
    ∘ At: 1 to 2.5%.
  9. Component made of a titanium-aluminum base alloy with a chemical composition according to claim 1 or 2, produced with dimensions close to the final dimensions, with a microstructure of the material consisting of the components with a shaping:
    ALPHA2/GAMMA: Lamellar grain with a grain size of 5 to 100 µm with a volume fraction of 25 to 98% with an (α2/γ) lamellar fine structure, preferably with a mean lamellar spacing of 10 to 1 nm
    BETAo: globular, with a grain size of 0.5 to 25 µm with a volume fraction of 1 to 25%
    GAMMA: globular, with a grain size of 0.5 to 25 µm with a volume fraction of 1 to 50% adjusted by a method according to claim 5 or 6, wherein the material has the following mechanical properties in the range of:
    • Strength and elongation at break (according to ASTM E8M, EN 2002-1) at room temperature:
    ∘ Rp0.2: 710 to 1020 MPa
    ∘ Rm: 800 to 1250 MPa
    ∘ At: 0.8 to 4%
    • Strength and elongation at break at 700 °C:
    ∘ Rp0.2: 540 to 760 MPa
    ∘ Rm: 630 to 1140 MPa
    ∘ At: 1 to 4.5% having.
EP11450055.6A 2010-05-12 2011-04-26 Method for producing a component and component from a gamma-titanium-aluminium base alloy Active EP2386663B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA802/2010A AT509768B1 (en) 2010-05-12 2010-05-12 METHOD FOR PRODUCING A COMPONENT AND COMPONENTS FROM A TITANIUM ALUMINUM BASE ALLOY

Publications (2)

Publication Number Publication Date
EP2386663A1 EP2386663A1 (en) 2011-11-16
EP2386663B1 true EP2386663B1 (en) 2017-08-02

Family

ID=44118536

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11450055.6A Active EP2386663B1 (en) 2010-05-12 2011-04-26 Method for producing a component and component from a gamma-titanium-aluminium base alloy

Country Status (7)

Country Link
US (1) US8864918B2 (en)
EP (1) EP2386663B1 (en)
JP (2) JP2011236503A (en)
AT (1) AT509768B1 (en)
CA (1) CA2739964C (en)
ES (1) ES2644256T3 (en)
IL (1) IL212821A (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012201082B4 (en) * 2012-01-25 2017-01-26 MTU Aero Engines AG Method for producing forged components from a TiAl alloy and correspondingly manufactured component
KR20160040447A (en) * 2013-02-22 2016-04-14 더 나노스틸 컴퍼니, 인코포레이티드 Warm forming advanced high strength steel
US9981349B2 (en) * 2013-05-31 2018-05-29 Arconic Inc. Titanium welding wire, ultrasonically inspectable welds and parts formed therefrom, and associated methods
US9651524B2 (en) * 2013-05-31 2017-05-16 Rti International Metals, Inc. Method of ultrasonic inspection of as-cast titanium alloy articles
ES2747155T3 (en) 2013-09-20 2020-03-10 MTU Aero Engines AG Creep resistant TiAl alloy
JP6230885B2 (en) * 2013-11-22 2017-11-15 東邦チタニウム株式会社 α + β type titanium alloy and method for producing the same
DE102013020460A1 (en) 2013-12-06 2015-06-11 Hanseatische Waren Handelsgesellschaft Mbh & Co. Kg Process for the production of TiAl components
US10240608B2 (en) 2014-02-05 2019-03-26 Borgwarner Inc. TiAl alloy, in particular for turbocharger applications, turbocharger component, turbocharger and method for producing the TiAl alloy
CN103898428B (en) * 2014-03-14 2015-10-28 西北工业大学 In near αtitanium alloy mixed structure, sheet α's repeats spheronization process of annealing
CN104264012A (en) * 2014-09-30 2015-01-07 西北有色金属研究院 Molybdenum-containing high-niobium beta-type gamma-TiAl alloy ingot and preparation method thereof
JP2018504282A (en) * 2014-11-05 2018-02-15 アールティーアイ・インターナショナル・メタルズ,インコーポレイテッド Ti welding wire, ultrasonically inspectable weld and article obtained from the welding wire, and related methods
CN104480347B (en) * 2014-12-17 2017-03-29 南京理工大学 TiAl-based alloy and heat treatment process thereof
DE102014226805A1 (en) * 2014-12-22 2016-06-23 Robert Bosch Gmbh Turbine wheel and method for its production
DE102015103422B3 (en) * 2015-03-09 2016-07-14 LEISTRITZ Turbinentechnik GmbH Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines
US20170067137A1 (en) * 2015-09-07 2017-03-09 Seiko Epson Corporation Titanium sintered body and ornament
JP6884994B2 (en) * 2015-09-07 2021-06-09 セイコーエプソン株式会社 Titanium sintered body and ornaments
DE102015115683A1 (en) * 2015-09-17 2017-03-23 LEISTRITZ Turbinentechnik GmbH A method for producing an alpha + gamma titanium aluminide alloy preform for producing a heavy duty component for reciprocating engines and gas turbines, in particular aircraft engines
EP3231536B8 (en) * 2016-04-14 2018-08-08 Element 22 GmbH Method for producing components from titanium or titanium alloys with powder metallurgy
EP3249064A1 (en) 2016-05-23 2017-11-29 MTU Aero Engines GmbH Additive manufacture of high temperature components from tial
US20180010468A1 (en) * 2016-07-07 2018-01-11 United Technologies Corporation Enhanced temperature capability gamma titanium aluminum alloys
US20180010213A1 (en) * 2016-07-07 2018-01-11 United Technologies Corporation Enhance ductility of gamma titanium aluminum alloys by reducing interstitial contents
CN106363021B (en) * 2016-08-30 2018-08-10 西部超导材料科技股份有限公司 A kind of milling method of 1500MPa grades of titanium alloy rod bar
EP3372700B1 (en) 2017-03-10 2019-10-09 MTU Aero Engines GmbH Method for making forged tial components
DE102017212082A1 (en) 2017-07-14 2019-01-17 MTU Aero Engines AG FORGING AT HIGH TEMPERATURES, IN PARTICULAR OF TITANALUMINIDES
JP6911651B2 (en) * 2017-08-31 2021-07-28 セイコーエプソン株式会社 Titanium sintered body, ornaments and watches
DE102018209315A1 (en) 2018-06-12 2019-12-12 MTU Aero Engines AG Process for producing a component from gamma - TiAl and corresponding manufactured component
SK288792B6 (en) * 2018-07-12 2020-11-03 Ustav Materialov A Mech Strojov Sav Method for controlled alloying of intermetallic alloys γ-TiAl with carbon during vacuum induction melting in graphite crucibles
CN109207892B (en) * 2018-11-05 2020-08-25 贵州大学 Texture control process of deformed two-phase titanium alloy
US11920219B2 (en) * 2018-12-21 2024-03-05 National Institute For Materials Science Hot-forged tial-based alloy, method for producing same, and uses for same
CN110643842B (en) * 2019-09-30 2021-12-14 西安欧中材料科技有限公司 Preparation method of nickel-based high-temperature alloy electrode bar
CN111020347B (en) * 2019-12-30 2021-08-17 广州航海学院 High-density complex phase alloy material and preparation method thereof
JP7124267B1 (en) * 2021-06-30 2022-08-24 住友電工ハードメタル株式会社 Cutting tools
CN113502412B (en) * 2021-07-03 2022-05-13 西北工业大学 TiAl alloy capable of inhibiting ordered omega phase generation and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0464366B1 (en) * 1990-07-04 1994-11-30 Asea Brown Boveri Ag Process for producing a work piece from an alloy based on titanium aluminide containing a doping material
US5226985A (en) * 1992-01-22 1993-07-13 The United States Of America As Represented By The Secretary Of The Air Force Method to produce gamma titanium aluminide articles having improved properties
JPH06116692A (en) * 1992-10-05 1994-04-26 Honda Motor Co Ltd Ti-al intermetallic compound excellent in high temperature strength and its production
US5442847A (en) * 1994-05-31 1995-08-22 Rockwell International Corporation Method for thermomechanical processing of ingot metallurgy near gamma titanium aluminides to refine grain size and optimize mechanical properties
JPH0892602A (en) * 1994-09-28 1996-04-09 Toyo Alum Kk Titanium-aluminium intermetallic compound powder and its sintered compact
JPH08104932A (en) * 1994-10-04 1996-04-23 Nkk Corp Tial-base alloy
JP4287991B2 (en) 2000-02-23 2009-07-01 三菱重工業株式会社 TiAl-based alloy, method for producing the same, and moving blade using the same
DE10024343A1 (en) * 2000-05-17 2001-11-22 Gfe Met & Mat Gmbh One-piece component used e.g. for valves in combustion engines has a lamella cast structure
JP4209092B2 (en) * 2001-05-28 2009-01-14 三菱重工業株式会社 TiAl-based alloy, method for producing the same, and moving blade using the same
AT5199U1 (en) 2001-07-19 2002-04-25 Plansee Ag MOLDED PART FROM AN INTERMETALLIC GAMMA-TI-AL MATERIAL
DE102004056582B4 (en) * 2004-11-23 2008-06-26 Gkss-Forschungszentrum Geesthacht Gmbh Alloy based on titanium aluminides
DE102007051499A1 (en) * 2007-10-27 2009-04-30 Mtu Aero Engines Gmbh Material for a gas turbine component, method for producing a gas turbine component and gas turbine component
AT508323B1 (en) 2009-06-05 2012-04-15 Boehler Schmiedetechnik Gmbh & Co Kg METHOD FOR PRODUCING A FORGING PIECE FROM A GAMMA TITANIUM ALUMINUM BASE ALLOY

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
AT509768B1 (en) 2012-04-15
EP2386663A1 (en) 2011-11-16
CA2739964A1 (en) 2011-11-12
IL212821A0 (en) 2011-07-31
JP6576379B2 (en) 2019-09-18
CA2739964C (en) 2014-02-18
US20110277891A1 (en) 2011-11-17
US8864918B2 (en) 2014-10-21
JP2011236503A (en) 2011-11-24
AT509768A1 (en) 2011-11-15
ES2644256T3 (en) 2017-11-28
IL212821A (en) 2014-11-30
JP2017122279A (en) 2017-07-13

Similar Documents

Publication Publication Date Title
EP2386663B1 (en) Method for producing a component and component from a gamma-titanium-aluminium base alloy
EP1819838B1 (en) Titanium aluminide based alloy
DE102007060587B4 (en) titanium aluminide
DE102015103422B3 (en) Process for producing a heavy-duty component of an alpha + gamma titanium aluminide alloy for piston engines and gas turbines, in particular aircraft engines
DE69203791T2 (en) Method for producing a workpiece from a titanium alloy with a modified hot processing stage and manufactured workpiece.
DE1558521C3 (en) Use of a nickel-chromium wrought alloy as a superplastic material
DE69024418T2 (en) Titanium-based alloy and process for its superplastic shaping
DE102013002483B4 (en) Nickel-cobalt alloy
KR101827017B1 (en) Production of high strength titanium alloys
DE60202598T2 (en) ULTRA-HIGH-RESISTANCE EXTRACTOR-STAINLESS STAINLESS STEEL AND LONG-TERM STRIP MANUFACTURED THEREFROM
EP2742162B1 (en) Method for producing forged tial components
DE68916414T2 (en) Titanium aluminide alloys.
DE2264997A1 (en) PRECIPITABLE NICKEL, IRON ALLOY
DE2606632C2 (en) Use of carbon steel as a superplastic agent and process for its heat treatment
DE3024645A1 (en) TITANIUM ALLOY, ESPECIALLY TITANIUM-ALUMINUM ALLOY
DE69028452T2 (en) Titanium-aluminum alloys of the gamma type modified with chromium and silicon and process for their production
DE2542094A1 (en) METAL POWDER, METAL POWDER TREATMENT METHOD, AND METAL POWDER MANUFACTURING METHOD
EP3372700A1 (en) Method for making forged tial components
JP6696202B2 (en) α + β type titanium alloy member and manufacturing method thereof
EP1017867A1 (en) Aluminium based alloy and method for subjecting it to heat treatment
EP3077556B1 (en) Process for treatment a dispersion-hardened platinum composition
DE2649529A1 (en) FORMABLE COBALT-NICKEL-CHROME BASED ALLOY AND METHOD FOR ITS MANUFACTURING
DE112020003615T5 (en) PROCESSES FOR MIXED TREATMENT OF MAGNESIUM ALLOYS (VARIANTS)
EP1341945B1 (en) Method for producing components with a high load capacity from tial alloys
DE1290727B (en) Process for the production of high strength niobium alloys

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111217

17Q First examination report despatched

Effective date: 20130320

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES GMBH

Owner name: BOEHLER SCHMIEDETECHNIK GMBH & CO KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BOEHLER SCHMIEDETECHNIK GMBH & CO KG

Owner name: MTU AERO ENGINES AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170303

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 914561

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011012711

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2644256

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20171128

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170802

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171102

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171103

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171202

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171102

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011012711

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180426

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 914561

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011012711

Country of ref document: DE

Owner name: MTU AERO ENGINES AG, DE

Free format text: FORMER OWNERS: BOEHLER SCHMIEDETECHNIK GMBH & CO. KG, KAPFENBERG, AT; MTU AERO ENGINES AG, 80995 MUENCHEN, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011012711

Country of ref document: DE

Representative=s name: MUELLER & SCHUBERT PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011012711

Country of ref document: DE

Representative=s name: MUELLER, THOMAS, DIPL.-ING., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110426

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170802

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011012711

Country of ref document: DE

Representative=s name: MUELLER, THOMAS, DIPL.-ING., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170802

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200629

Year of fee payment: 10

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20201008 AND 20201014

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230417

Year of fee payment: 13

Ref country code: DE

Payment date: 20230418

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 13