EP1819838B1 - Titanium aluminide based alloy - Google Patents

Titanium aluminide based alloy Download PDF

Info

Publication number
EP1819838B1
EP1819838B1 EP05784793A EP05784793A EP1819838B1 EP 1819838 B1 EP1819838 B1 EP 1819838B1 EP 05784793 A EP05784793 A EP 05784793A EP 05784793 A EP05784793 A EP 05784793A EP 1819838 B1 EP1819838 B1 EP 1819838B1
Authority
EP
European Patent Office
Prior art keywords
atom
alloy
phase
titanium aluminide
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05784793A
Other languages
German (de)
French (fr)
Other versions
EP1819838A1 (en
Inventor
Michael Oehring
Jonathan Paul
Uwe Lorenz
Fritz Appel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GKSS Forshungszentrum Geesthacht GmbH
Original Assignee
GKSS Forshungszentrum Geesthacht GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GKSS Forshungszentrum Geesthacht GmbH filed Critical GKSS Forshungszentrum Geesthacht GmbH
Publication of EP1819838A1 publication Critical patent/EP1819838A1/en
Application granted granted Critical
Publication of EP1819838B1 publication Critical patent/EP1819838B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/005Castings of light metals with high melting point, e.g. Be 1280 degrees C, Ti 1725 degrees C

Definitions

  • the invention relates to alloys based on titanium aluminides prepared using melt and powder metallurgy techniques with an alloy composition according to claim 1
  • Titanium aluminide alloys have properties that are particularly favorable for use as a lightweight material, especially for high temperature applications.
  • alloys are interesting, which are based on an intermetallic phase ⁇ - (TiAl) with tetragonal structure and in addition to the majority phase ⁇ - (TiAl) and minority components of the intermetallic phase ⁇ 2 (Ti 3 Al) with hexagonal structure.
  • These ⁇ -titanium aluminide alloys are characterized by properties such as low density (3.85 - 4.2 g / cm 3 ), high elastic moduli, high strength and creep resistance up to 700 ° C, making them attractive as a material for moving parts at elevated service temperatures. Examples of this are turbine blades in aircraft engines and in stationary gas turbines, valves in engines and hot gas fans.
  • the element niobium (Nb) leads to an increase in strength, creep resistance, oxidation resistance, but also ductility.
  • the element boron which is virtually insoluble in the ⁇ -phase, grain refining can be achieved both in the cast state and after the forming with subsequent heat treatment in the ⁇ -region.
  • An increased proportion of ⁇ -phase in the microstructure due to low aluminum contents and high concentrations of ⁇ -stabilizing elements can lead to coarse dispersion of this phase and cause a deterioration of the mechanical properties.
  • ⁇ -titanium aluminide alloys are the preferred because of their deformation and fracture behavior, but also because of the microstructural anisotropy lamellar structure or duplex structure strongly anisotropic.
  • different powder metallurgy and forming methods and combinations of these production methods are used.
  • EP 1 015 650 B1 is a titanium aluminide alloy is known, which has a structurally and chemically homogeneous structure.
  • the majority phases ⁇ (TiAl) and ⁇ 2 (Ti 3 Al) are finely dispersed.
  • the disclosed titanium aluminide alloy with an aluminum content of 45 atom% is characterized by exceptionally good mechanical properties and high temperature properties.
  • a common problem of all titanium aluminide alloys is their low ductility. So far, the high brittleness and low damage tolerance of titanium aluminide alloys due to the nature of the intermetallic phases has not been achieved by alloying effects decisively improve (see " Structural Intermetallics 1997, p. 531 , see above). For the applications mentioned in the introduction, plastic elongations at break of ⁇ 1% are often sufficient. Manufacturers of turbines and engines, however, demand that this minimum level of ductility be guaranteed in large-scale industrial production. Since the ductility is sensitive to the microstructure, it is extremely difficult in the industrial manufacturing process to ensure as homogeneous a microstructure as possible.
  • the maximum tolerable defect size eg the maximum grain or lamellar colony size
  • the maximum tolerable defect size is particularly small, so that a very high structural homogeneity is desirable for such alloys.
  • this can only be achieved with difficulty because of the unavoidable fluctuations in the alloy composition of, for example, ⁇ 0.5 atom% in the Al content.
  • duplex microstructures are considered for high temperature applications.
  • the former arise during cooling from the single-phase region of the ⁇ -mixed crystal by precipitating plates of the ⁇ -phase crystallographically oriented from the ⁇ -mixed crystal.
  • duplex microstructures consist of lamellar colonies and ⁇ grains and are formed when the material is annealed in the two-phase region ⁇ + ⁇ .
  • the ⁇ grains which are present there are converted back into two-phase lamellar colonies on cooling.
  • Coarse microstructure constituents are formed in ⁇ -titanium aluminide alloys mainly by forming large ⁇ grains as they pass through the ⁇ region. This can already happen during the solidification when large columnar crystals of ⁇ -phase form from the melt. Thus, as far as possible, the single-phase region of the ⁇ -mixed crystal must be avoided during processing. Since in practice, however, fluctuations of the composition and process temperatures occur and therefore the constitution varies locally in the workpieces, the formation of coarse lamellar colonies can not be excluded.
  • EP-0 549 181 a titanium aluminide of the ⁇ -type comprising titanium, aluminum, chromium and niobium in the composition TiAl 46-48 Cr 1-3 Nb 6-14 , wherein the alloy is made by casting and hot isostatic pressing (HIP).
  • HIP hot isostatic pressing
  • JP-A-06 116691 discloses a heat treatment process for TiAl alloys of composition Ti - (45 - 50) atomic% Al - (3 - 12) atomic% (Nb, Mo, Cr) wherein in one or two of said elements Nb, Mo and Cr in the alloys are included.
  • the alloys in the ⁇ -phase region are annealed and then rapidly cooled to suppress the equilibrium conversion ⁇ ⁇ ⁇ + ⁇ ⁇ ⁇ 2 + ⁇ and instead cause a massive conversion of ⁇ ⁇ y. Following this, an age glow will be carried out.
  • US-A-5,393,356 a multi-phase, high-temperature material made of an alloy based on an intermetallic compound of the type y -TiAl, wherein the TiAl alloy in addition to a titanium content of 35 to 45 atom% and an aluminum content of 45 to 60 atom% also alloyed amounts of silicon (0.1 to 20 at.%) and niobium (0.1 to 15 at.%), thereby improving the oxidation resistance of the alloy.
  • the present invention has the object to provide a titanium aluminide alloy with a fine and homogeneous Gefömgemorphologie, with occurring in industrial practice, variations in the alloy composition and unavoidable temperature fluctuations in the manufacturing process hardly or not appreciably on the homogeneity of the alloy especially without major changes to the manufacturing processes. Furthermore, the object is to provide a component of a homogeneous alloy.
  • This object is achieved by means of an alloy based on titanium aluminides produced using fusion and powder metallurgy techniques and having an alloy composition of 44.5 atom% ⁇ Al ⁇ 47 atom%, in particular 44.5 atom% ⁇ Al ⁇ 45.5 At% atomic% and at least 5 atom% ⁇ Nb ⁇ 10 atom%, molybdenum (Mo) in between 0.1 atom% to 3.0 atom%, optional B and / or C with contents ⁇ 0.05 atom% and ⁇ 0, 8 atom%, and the remainder titanium and common impurities, wherein the ⁇ -titanium aluminide alloy is formed with a fine dispersion of the ⁇ -phase and the ⁇ -phase is present up to a temperature of below 1320 ° C. The rest of the alloy is Ti (titanium).
  • This type of alloy according to the invention then has a homogeneous structure with high strength values due to the fine and very uniform dispersion of the ⁇ phase.
  • an alloy which can be used as a lightweight material for high temperature applications, e.g. Turbine blades or engine and turbine components, is suitable.
  • the alloy of the invention is produced using casting metallurgy, melt metallurgy or powder metallurgy processes or using these processes in combination with forming techniques.
  • an alloy according to the invention has a composition of Ti - z Al - y Nb - x B with 44.5 atom% ⁇ z ⁇ 47 atom%, in particular with 44.5 atom% ⁇ z ⁇ 45.5 atom%, 5 atom % ⁇ y ⁇ 10 atom% and 0.05 atom% ⁇ x ⁇ 0.8 atom% and remainder titanium and usual impurities, or a composition of Ti - z Al - y Nb - w C with 44.5 atom% ⁇ z ⁇ 47 atom%, in particular with 44.5 atom% ⁇ z ⁇ 45.5 atom%, 5 atom% ⁇ y ⁇ 10 atom% and 0.05 atom% ⁇ w ⁇ 0.8 atom% and the balance titanium and conventional impurities, each containing molybdenum (Mo) in the range between 0.1 atom% to 3 atom% and wherein the ⁇ -phase is present up to a temperature of below 1320
  • Mo
  • the desired microstructure stability and process reliability is achieved by avoiding the occurrence of single-phase regions over the entire temperature range during the manufacturing processes and during use by the targeted incorporation of the cubic-body-centered ⁇ -phase.
  • the ⁇ -phase occurs in all technical titanium aluminide alloys as a high-temperature phase at temperatures ⁇ 1350 ° C.
  • this phase can be stabilized by various elements such as Mo, W, Nb, Cr, Mn and V at lower temperatures.
  • elements such as Mo, W, Nb, Cr, Mn and V at lower temperatures.
  • the particular problem with alloying these elements, however, is that the ⁇ -stabilizing. Elements must be tuned very precisely to the Al content. In addition, occur in the addition of these elements undesirable interactions, which leads to high levels of the ⁇ -phase and lead to a coarse dispersion of this phase. Such a constitution is extremely disadvantageous for the mechanical properties.
  • the properties of the ⁇ phase also depend on the respective alloying elements and their composition.
  • the constitution must be chosen so that an excretion of the brittle ⁇ -phase from the ⁇ -phase is largely avoided. Due to these relationships, an alloy composition is provided which can provide a mechanical properties optimum composition and dispersion of the ⁇ -phase for a wide range of process temperatures. At the same time the best possible strength properties are achieved.
  • the alloy also contains boron, preferably with a boron content in the alloy in the range of 0.05 atom% to 0.8 atom%.
  • boron advantageously leads to the formation of stable precipitates which contribute to the mechanical hardening of the alloy according to the invention and stabilization of the microstructure of the alloy.
  • the alloy contains carbon, preferably with a carbon content in the range of 0.05 at% to 0.8 at%.
  • carbon preferably in combination with the above-described additive boron, leads to the formation of stable precipitates, which also contribute to the mechanical hardening of the alloy and to the stabilization of the structure.
  • Fig. 1 Two photographs of a structure in a cast block of the alloy Ti - 45 Al - 8 Nb - 0.2 C (atom%) are shown. The recordings as well as all further recordings in the following figures were recorded by means of backscattered electrons in a scanning electron microscope.
  • the structure ( Fig. 1 ) shows lamellar colonies of the ⁇ 2 and ⁇ phases, which originated from former ⁇ -lamellae.
  • the former ⁇ -lamellae are separated by strips of light-emitting grains of the ⁇ or B2 phase.
  • the ⁇ -lamellae initially formed in the ⁇ - ⁇ transformation decompose on further cooling in ⁇ 2 - and ⁇ -lamellae.
  • FIGS. 2a to 2c Further images of the microstructure of the alloy Ti - 45 Al - 8 Nb - 0.2 C are shown after different process steps in the scanning electron micrographs.
  • Fig. 2a shows the structure after extrusion at 1230 ° C. The extrusion direction is horizontal.
  • the microstructure shows grains of the ⁇ 2 and ⁇ phases, with the cubic body-centered ⁇ phase disappearing.
  • Fig. 2b shows the structure of the alloy after extrusion at 1230 ° C and another forging step at 1100 ° C.
  • the microstructure shows grains of the ⁇ 2 and ⁇ phases and a few ⁇ 2 / ⁇ lamellar colonies.
  • Fig. 2c the structure of the alloy after extrusion at 1230 ° C and a subsequent heat treatment at 1330 ° C is shown.
  • the microstructure also shows grains of the ⁇ 2 and ⁇ phases.
  • the picture shows a fully lamellar microstructure with lamellae of ⁇ 2 and ⁇ phase.
  • the lamellar colony size is about 200 microns, which also colonies occur, which are significantly larger than 200 microns.
  • Fig. 2a shown structure also occurs in the Fig. 2b and 2c represented structures the cubic body-centered phase no longer on.
  • the ⁇ -phase is thermodynamically unstable in this temperature range with heat treatment after extrusion.
  • FIGS. 3a and 3b Microstructures of an alloy according to the invention are shown in two scanning electron micrographs. Starting from an alloy Ti - 45 Al - 5 Nb, the alloy molybdenum was alloyed with 2 atom%. This resulting alloy Ti - 45 Al - 5 Nb - 2 Mo is based on a composition as described in the European patent specification EP 1 015 650 B1 is described.
  • FIGS. 3a and 3b show the microstructures of this alloy according to the invention, which after extrusion at 1250 ° C and a subsequent heat treatment at 1030 ° C ( Fig. 3a ) and at 1270 ° C were observed ( Fig. 3b ).
  • the structure in Fig. 3a shows grains of the ⁇ 2 , ⁇ and light-imaging ⁇ phases, the latter being arranged in stripes.
  • the structure in Fig. 3b shows lamellar colonies of the ⁇ 2 - and ⁇ -phase and grains of the light-imaging ⁇ -phase, from which in turn the ⁇ -phase has been eliminated.
  • the microstructure in Fig. 3a and 3b are fine, very homogeneous and show a uniform distribution of the ⁇ -phase. After heat treatment at 1030 ° C., a globular structure is present, with ⁇ -phase grains arranged in strips parallel to the extrusion direction ( Fig. 3a ), while the material heat-treated at 1270 ° C has a very homogeneous, fully lamellar microstructure with evenly distributed ⁇ -grains ( Fig. 3b ).
  • the colony size of the microstructures of the Ti - 45 Al - 5 Nb - 2 Mo alloy is between 20 and 30 ⁇ m, which is at least a factor of 5 smaller than otherwise in fully lamellar microstructures of ⁇ -titanium aluminide alloys.
  • the ⁇ -phase is precipitated, so that the ⁇ -grains are very finely subdivided. As a result, a very fine and homogeneous structure is achieved overall.
  • Fig. 4 shows measured stress-strain curves of samples of the alloy Ti-45 Al-5 Nb-2 Mo in a tensile test.
  • the sample material was extruded at 1250 ° C and then subjected to a heat treatment of 2 hours at 1030 ° C and oven cooling.
  • the tensile curves recorded at 700 ° C and 900 ° C show that the alloy is suitable for many high temperature applications.
  • Fig. 4 the result of a tensile test at room temperature (25 ° C) shown on the material according to the invention, wherein the tensile stress ⁇ in MPa against the strain ⁇ in% is plotted.
  • a yield strength increase was found, which was otherwise not observed on ⁇ -Titanaluminid-alloys so far. This is an indication of a particularly fine and homogeneous structure.
  • the yield strength increase indicates that the material can react to local stresses by plastic flow, which is very favorable for the ductility and damage tolerance.
  • the homogeneity of the alloys according to the invention does not depend on technically unavoidable variations in temperature or composition in the range of relevant process temperatures.
  • the titanium aluminide alloys of this invention were prepared using casting or powder metallurgy techniques.
  • the alloys of the invention can be processed by hot forging, hot pressing or hot extrusion and hot rolling.
  • the invention offers the advantage that, despite the variations in alloy composition and process conditions occurring in industrial production, a titanium aluminide alloy having a very uniform microstructure and high strength is provided more reliably than heretofore.
  • the titanium aluminide alloy according to the invention achieves high strength up to a temperature in the range of 700 ° C. to 800 ° C. and good room temperature ductility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The invention concerns alloys made through the use of melting and powdered metallurgical techniques on the basis of titanium aluminides with an alloy composition of Ti-z Al-y Nb where 44.5 Atom % ≰z≰47 Atom %, 44.5 Atom % ≰z≰45.5 Atom %, and 5 Atom % ≰y≰10 Atom % with possibly the addition of B and/or C at a content between 0.05 Atom % and 0.8 Atom %. Said alloy is characterized in that it contains a molybdenum (Mo) content ranging between 0.1 Atom % to 3.0 Atom %.

Description

Die Erfindung betrifft Legierungen auf der Basis von unter Verwendung von schmelz- und pulvermetallurgischen Techniken hergestellten Titanaluminiden mit einer Legierungszusammensetzung nach Anspruch 1The invention relates to alloys based on titanium aluminides prepared using melt and powder metallurgy techniques with an alloy composition according to claim 1

Titanaluminid-Legierungen weisen Eigenschaften auf, die für einen Einsatz als Leichtbau-Werkstoff, insbesondere für Hochtemperaturanwendungen, besonders günstig sind. Für die industrielle Praxis sind insbesondere Legierungen interessant, die auf einer intermetallischen Phase γ-(TiAl) mit tetragonaler Struktur beruhen und neben der Majoritätsphase γ-(TiAl) auch Minoritätsanteile der intermetallischen Phase α2(Ti3Al) mit hexagonaler Struktur enthalten. Diese γ-Titanaluminid-Legierungen zeichnen sich durch Eigenschaften wie geringe Dichte (3,85 - 4,2 g/cm3), hohe elastische Moduln, hohe Festigkeit und Kriechfestigkeit bis zu 700°C aus, die sie als Werkstoff für bewegte Bauteile bei erhöhten Einsatztemperaturen attraktiv machen. Beispiele hierfür sind Turbinenschaufeln in Flugzeugtriebwerken und in stationären Gasturbinen, Ventile bei Motoren sowie Heißgasventilatoren.Titanium aluminide alloys have properties that are particularly favorable for use as a lightweight material, especially for high temperature applications. For industrial practice in particular alloys are interesting, which are based on an intermetallic phase γ- (TiAl) with tetragonal structure and in addition to the majority phase γ- (TiAl) and minority components of the intermetallic phase α 2 (Ti 3 Al) with hexagonal structure. These γ-titanium aluminide alloys are characterized by properties such as low density (3.85 - 4.2 g / cm 3 ), high elastic moduli, high strength and creep resistance up to 700 ° C, making them attractive as a material for moving parts at elevated service temperatures. Examples of this are turbine blades in aircraft engines and in stationary gas turbines, valves in engines and hot gas fans.

Im technisch wichtigen Bereich von Legierungen mit Aluminium-Gehalten zwischen 45 Atom % und 49 Atom % treten beim Erstarren aus der Schmelze und beim nachfolgenden Abkühlen eine Reihe von Phasenumwandlungen auf. Die Erstarrung kann entweder vollständig über den β-Mischkristall mit kubisch raumzentrierter Struktur (Hochtemperaturphase) oder in zwei peritektischen Reaktionen erfolgen, an denen der α-Mischkristall mit hexagonaler Struktur und die γ-Phase beteiligt sind.In the technically important range of alloys with aluminum contents between 45 atom% and 49 atom%, a number of phase transformations occur on solidification from the melt and subsequent cooling. The solidification can take place either completely via the β-mixed crystal with cubic body-centered structure (high-temperature phase) or in two peritectic reactions in which the α-mixed crystal with hexagonal structure and the γ-phase are involved.

Ferner ist bekannt, dass das Element Niob (Nb) zu einer Steigerung der Festigkeit, Kriechfestigkeit, Oxidationsbeständigkeit, aber auch der Duktilität führt. Mit dem in der γ-Phase praktisch nicht löslichen Element Bor kann eine Kornfeinung sowohl im Gusszustand als auch nach dem Umformen mit anschließender Wärmebehandlung im α-Gebiet erreicht werden. Ein erhöhter Anteil an β-Phase im Gefüge infolge von niedrigen Aluminium-Gehalten und hohen Konzentrationen von β-stabilisierenden Elementen kann zu grober Dispersion dieser Phase führen und eine Verschlechterung der mechanischen Eigenschaften bewirken.Furthermore, it is known that the element niobium (Nb) leads to an increase in strength, creep resistance, oxidation resistance, but also ductility. With the element boron, which is virtually insoluble in the γ-phase, grain refining can be achieved both in the cast state and after the forming with subsequent heat treatment in the α-region. An increased proportion of β-phase in the microstructure due to low aluminum contents and high concentrations of β-stabilizing elements can lead to coarse dispersion of this phase and cause a deterioration of the mechanical properties.

Die mechanischen Eigenschaften von γ-Titanaluminid-Legierungen sind aufgrund ihres Verformungs- und Bruchverhaltens, aber auch wegen der Gefügeanisotropie der bevorzugt eingestellten lamellaren Gefüge bzw. Duplex-Gefüge stark anisotrop. Zu einer gezielten Einstellung von Gefüge und Textur bei der Herstellung von Bauteilen aus Titanaluminiden werden Gießverfahren, unterschiedliche pulvermetallurgische und Umform-Verfahren sowie Kombinationen dieser Herstellungsverfahren angewandt.The mechanical properties of γ-titanium aluminide alloys are the preferred because of their deformation and fracture behavior, but also because of the microstructural anisotropy lamellar structure or duplex structure strongly anisotropic. For a specific adjustment of structure and texture in the production of components made of titanium aluminides casting methods, different powder metallurgy and forming methods and combinations of these production methods are used.

Aus der Veröffentlichung von Y-W. Kim und D.M. Dimiduk in "Structural Intermetallics 1997", Eds. M.V. Nathal, R. Darolia, C.T. Liu, P.L. Martin, D.B. Miracle, R. Wagner, M. Yamaguchi, TMS, Warrendale PA, 1996, S. 531 ist bekannt, dass in verschiedenen Entwicklungsprogrammen die Wirkung einer größeren Zahl von Legierungselementen hinsichtlich Konstitution, Gefügeeinstellung bei verschiedenen Herstellungsverfahren und einzelnen Eigenschaften untersucht wurde. Die gefundenen Zusammenhänge sind dabei ähnlich komplex, wie dies bei anderen Strukturmetallen, z.B. Stählen, der Fall ist, und lassen sich nur in eingeschränkter und sehr allgemeiner Form in Regeln zusammenfassen. Daher können bestimmte Zusammensetzungen herausragende Kombinationen an Eigenschaften aufweisen.From the publication of YW. Kim and Dimiduk in Structural Intermetallics 1997, Eds. MV Nathal, R. Darolia, CT Liu, PL Martin, DB Miracle, R. Wagner, M. Yamaguchi, TMS, Warrendale PA, 1996, p. 531 It is known that in various development programs the effect of a larger number of alloying elements with respect to constitution, microstructure adjustment in different production processes and individual properties has been investigated. The relationships found here are similarly complex, as is the case with other structural metals, eg steels, and can only be summarized in rules in a limited and very general form. Therefore, certain compositions may have outstanding combinations of properties.

Aus EP 1 015 650 B1 ist eine Titanaluminid-Legierung bekannt, die ein strukturell und chemisch homogenes Gefüge aufweist. Hierbei sind die Majoritätsphasen γ(TiAl) und α2 (Ti3Al) fein dispers verteilt. Die offenbarte Titanaluminid-Legierung mit einem AluminiumGehalt von 45 Atom % zeichnet sich durch außergewöhnlich gute mechanische Eigenschaften und Hochtemperatureigenschaften aus.Out EP 1 015 650 B1 is a titanium aluminide alloy is known, which has a structurally and chemically homogeneous structure. Here, the majority phases γ (TiAl) and α 2 (Ti 3 Al) are finely dispersed. The disclosed titanium aluminide alloy with an aluminum content of 45 atom% is characterized by exceptionally good mechanical properties and high temperature properties.

Ein allgemeines Problem aller Titanaluminid-Legierungen ist ihre geringe Duktilität. Bislang ist es nicht gelungen, die durch die Natur der intermetallischen Phasen vorgegebene hohe Sprödigkeit und geringe Schadenstoleranz der Titanaluminid-Legierungen über Legierungseffekte entscheidend zu verbessern (vgl. " Structural Intermetallics 1997", S. 531 , siehe oben). Für die einleitend genannten Anwendungen sind zwar vielfach plastische Bruchdehnungen von ≥ 1 % ausreichend. Von den Herstellern von Turbinen und Motoren wird jedoch gefordert, dass dieses Mindestmaß an Duktilität in der industriellen Fertigung über große Loszahlen garantiert wird. Da die Duktilität empfindlich vom Gefüge abhängt, ist es im industriellen Fertigungsprozess äußerst schwierig, eine möglichst homogene Gefügeausbildung sicherzustellen. Für hochfeste Legierungen ist die maximal tolerierbare Defektgröße, z.B. die maximale Korn- oder Lamellenkoloniegröße, besonders klein, so dass für solche Legierungen eine sehr hohe Gefügehomogenität wünschenswert ist. Diese kann aber schon wegen der unvermeidbaren Schwankungen der Legierungszusammensetzung von z.B. ± 0.5 Atom % im Al-Gehalt nur schwer erreicht werden.A common problem of all titanium aluminide alloys is their low ductility. So far, the high brittleness and low damage tolerance of titanium aluminide alloys due to the nature of the intermetallic phases has not been achieved by alloying effects decisively improve (see " Structural Intermetallics 1997, p. 531 , see above). For the applications mentioned in the introduction, plastic elongations at break of ≥ 1% are often sufficient. Manufacturers of turbines and engines, however, demand that this minimum level of ductility be guaranteed in large-scale industrial production. Since the ductility is sensitive to the microstructure, it is extremely difficult in the industrial manufacturing process to ensure as homogeneous a microstructure as possible. For high-strength alloys, the maximum tolerable defect size, eg the maximum grain or lamellar colony size, is particularly small, so that a very high structural homogeneity is desirable for such alloys. However, this can only be achieved with difficulty because of the unavoidable fluctuations in the alloy composition of, for example, ± 0.5 atom% in the Al content.

Gegenwärtig werden von den vielen in γ-Titanaluminid-Legierungen möglichen Gefügetypen nur lamellare bzw. so genannte Duplex-Gefüge für Hochtemperaturanwendungen in Betracht gezogen. Erstere entstehen beim Abkühlen aus dem Einphasengebiet des α-Mischkristalls, indem sich Platten der γ-Phase kristallographisch orientiert aus dem α-Mischkristall ausscheiden.Currently, of the many types of microstructures possible in γ-titanium aluminide alloys, only lamellar or so-called duplex microstructures are considered for high temperature applications. The former arise during cooling from the single-phase region of the α-mixed crystal by precipitating plates of the γ-phase crystallographically oriented from the α-mixed crystal.

Demgegenüber bestehen Duplex-Gefüge aus Lamellenkolonien und γ-Körnern und entstehen, wenn das Material im Zweiphasengebiet α + γ geglüht wird. Dabei wandeln sich die dort vorliegenden α-Körner beim Abkühlen wieder in zweiphasige Lamellenkolonien um. Grobe Gefügebestandteile entstehen in γ-Titanaluminid-Legierungen vor allem dadurch, dass beim Durchlaufen des α-Gebiets große α-Körner gebildet werden. Dies kann schon bei der Erstarrung geschehen, wenn sich große Stengelkristalle der α-Phase aus der Schmelze bilden. Demnach muss möglichst das Einphasengebiet des α-Mischkristalls beim Verarbeiten gemieden werden. Da in der Praxis jedoch Schwankungen der Zusammensetzung und Prozesstemperaturen auftreten und daher die Konstitution lokal in den Werkstücken schwankt, ist die Bildung grober Lamellenkolonien nicht auszuschließen.In contrast, duplex microstructures consist of lamellar colonies and γ grains and are formed when the material is annealed in the two-phase region α + γ. The α grains which are present there are converted back into two-phase lamellar colonies on cooling. Coarse microstructure constituents are formed in γ-titanium aluminide alloys mainly by forming large α grains as they pass through the α region. This can already happen during the solidification when large columnar crystals of α-phase form from the melt. Thus, as far as possible, the single-phase region of the α-mixed crystal must be avoided during processing. Since in practice, however, fluctuations of the composition and process temperatures occur and therefore the constitution varies locally in the workpieces, the formation of coarse lamellar colonies can not be excluded.

Darüber hinaus offenbart EP-0 549 181 ein Titanaluminid des γ-Typs, umfassend Titan, Aluminium, Chrom und Niob in der Zusammensetzung TiAl46-48Cr1-3Nb6-14, wobei die Legierung durch Gießen und heiß-isostatisches Pressen (HIP) hergestellt ist.In addition revealed EP-0 549 181 a titanium aluminide of the γ-type comprising titanium, aluminum, chromium and niobium in the composition TiAl 46-48 Cr 1-3 Nb 6-14 , wherein the alloy is made by casting and hot isostatic pressing (HIP).

In JP-A-06 116691 ist ein Wärmebehandlungsverfahren für TiAl-Legierungen der Zusammensetzung Ti - (45 - 50) Atom % Al - (3 - 12) Atom % (Nb, Mo, Cr) offenbart, wobei in ein oder zwei der genannten Elemente Nb, Mo und Cr in den Legierungen enthalten sind. Gemäß der technischen Lehre werden die Legierungen im α-Einphasengebiet geglüht und anschließend schnell abgekühlt, um die Gleichgewichtsumwandlung α → α + γ → α2 + γ zu unterdrücken und stattdessen eine massive Umwandlung von α → y zu bewirken. Im Anschluss daran wird eine Altersglühung durchgeführt.In JP-A-06 116691 discloses a heat treatment process for TiAl alloys of composition Ti - (45 - 50) atomic% Al - (3 - 12) atomic% (Nb, Mo, Cr) wherein in one or two of said elements Nb, Mo and Cr in the alloys are included. According to the technical teaching, the alloys in the α-phase region are annealed and then rapidly cooled to suppress the equilibrium conversion α → α + γ → α 2 + γ and instead cause a massive conversion of α → y. Following this, an age glow will be carried out.

Überdies offenbart US-A-5 393 356 einen mehrphasigen, hochwarmfesten Werkstoff aus einer Legierung auf der Basis einer intermetallischen Verbindung vom Typ y -TiAl, wobei die TiAl-Legierung neben einem Titangehalt von 35 bis 45 Atom % und einem Aluminiumgehalt von 45 bis 60 Atom % auch zulegierte Anteile von Silicium (0.1 bis 20 Atom %) und Niob (0,1 bis 15 Atom %) aufweist, wodurch die Legierung in ihrer Oxidationsbeständigkeit verbessert wird.Moreover disclosed US-A-5,393,356 a multi-phase, high-temperature material made of an alloy based on an intermetallic compound of the type y -TiAl, wherein the TiAl alloy in addition to a titanium content of 35 to 45 atom% and an aluminum content of 45 to 60 atom% also alloyed amounts of silicon (0.1 to 20 at.%) and niobium (0.1 to 15 at.%), thereby improving the oxidation resistance of the alloy.

Ausgehend von diesem Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Titanaluminid-Legierung mit einer feinen und homogenen Gefügemorphologie bereitzustellen, wobei sich in der industriellen Praxis auftretende Variationen der Legierungszusammensetzung sowie unvermeidliche Temperaturschwankungen beim Herstellungsprozess kaum oder nicht nennenswert auf die Homogenität der Legierung, insbesondere ohne grundlegende Änderungen der Herstellungsverfahren, auswirken sollen. Des Weiteren besteht die Aufgabe darin, ein Bauteil aus einer homogenen Legierung bereitzustellen.Starting from this prior art, the present invention has the object to provide a titanium aluminide alloy with a fine and homogeneous Gefömgemorphologie, with occurring in industrial practice, variations in the alloy composition and unavoidable temperature fluctuations in the manufacturing process hardly or not appreciably on the homogeneity of the alloy especially without major changes to the manufacturing processes. Furthermore, the object is to provide a component of a homogeneous alloy.

Gelöst wird diese Aufgabe mittels einer Legierung auf der Basis von unter Verwendung von schmelz- und pulvermetallurgischen Techniken hergestellten Titanaluminiden mit einer Legierungszusammensetzung aus 44,5 Atom % ≤ Al ≤ 47 Atom %, insbesondere mit 44,5 Atom % ≤ Al ≤ 45,5 Atom %, und 5 Atom % ≤ Nb ≤ 10 Atom %, Molybdän (Mo) im zwischen 0,1 Atom % bis 3,0 Atom %, Wahlweise B und/oder C mit Gehalten ≥ 0,05 Atom % und ≤ 0,8 Atom %, und als Rest Titan und übliche Verunreinigungen, wobei die γ-Titanaluminid-Legierung mit einer feinen Dispersion der β-Phase ausgebildet ist und die β-Phase bis zu einer Temperatur von unter 1320°C vorhanden ist. Der Rest der Legierung besteht aus Ti (Titan).This object is achieved by means of an alloy based on titanium aluminides produced using fusion and powder metallurgy techniques and having an alloy composition of 44.5 atom% ≦ Al ≦ 47 atom%, in particular 44.5 atom% ≦ Al ≦ 45.5 At% atomic% and at least 5 atom% ≦ Nb ≦ 10 atom%, molybdenum (Mo) in between 0.1 atom% to 3.0 atom%, optional B and / or C with contents ≥ 0.05 atom% and ≦ 0, 8 atom%, and the remainder titanium and common impurities, wherein the γ-titanium aluminide alloy is formed with a fine dispersion of the β-phase and the β-phase is present up to a temperature of below 1320 ° C. The rest of the alloy is Ti (titanium).

Es hat sich in Versuchen gezeigt, dass durch das Zulegieren von Molybdän bei Titanaluminiden mit einem Niobanteil, bei denen für gewöhnlich die β-Phase nicht über den gesamten Temperaturbereich stabil ist und sich daher Reste der Hochtemperatur-β-Phase bei den üblichen Prozessschritten wie dem Strangpressen auflösen, eine bessere Gefügehomogenität der Legierung erreicht wird. Somit wird über den gesamten, für den Herstellungsprozess relevanten Temperaturbereich ein Volumenanteil der β-Phase ohneIt has been shown by experiments that by adding molybdenum to titanium aluminides having a niobium content in which usually the β-phase is not stable over the entire temperature range and therefore remains of the high-temperature β-phase in the conventional process steps such as Dissolve extruders, a better structural homogeneity of the alloy is achieved. Thus, over the entire, relevant for the manufacturing process temperature range, a volume fraction of the β-phase without

Kornvergröberungen realisiert. Dieser erfindungsgemäße Legierungstyp weist dann aufgrund der feinen und sehr gleichmäßigen Dispersion der β-Phase ein homogenes Gefüge mit hohen Festigkeitswerten auf.Grain coarsening realized. This type of alloy according to the invention then has a homogeneous structure with high strength values due to the fine and very uniform dispersion of the β phase.

Damit wird eine Legierung bereitgestellt, die als Leichtbau-Werkstoff für Hochtemperaturanwendungen, wie z.B. Turbinenschaufeln oder Motoren- und Turbinenkomponenten, geeignet ist.Thus, an alloy is provided which can be used as a lightweight material for high temperature applications, e.g. Turbine blades or engine and turbine components, is suitable.

Die erfindungsgemäße Legierung wird unter Verwendung von gießmetallurgischen, schmelzmetallurgischen oder pulvermetallurgischen Verfahren oder unter Verwendung dieser Verfahren in Kombination mit Umformtechniken hergestellt.The alloy of the invention is produced using casting metallurgy, melt metallurgy or powder metallurgy processes or using these processes in combination with forming techniques.

Vor allem bei Ti - (44,5 Atom % bis 45,5 Atom %) Al - (5 Atom % bis 10 Atom %) Nb hat die Zugabe von Molybdän mit einem Gehalt ab 1,0 Atom % bis 3,0 Atom % zu guten Mikrostrukturen mit einer hohen Gefügehomogenität geführt.Especially with Ti - (44.5 at% to 45.5 at%) Al - (5 at% to 10 at%) Nb, the addition of molybdenum at a content of 1.0 at% to 3.0 at% led to good microstructures with a high structural homogeneity.

Darüber hinaus weist eine erfindungsgemäße Legierung eine Zusammensetzung aus Ti - z Al - y Nb - x B mit 44,5 Atom % ≤ z ≤ 47 Atom %, insbesondere mit 44,5 Atom % ≤ z ≤ 45,5 Atom %, 5 Atom % ≤ y ≤ 10 Atom % und 0,05 Atom % ≤ x ≤ 0,8 Atom % und als Rest Titan und übliche Verunreinigungen, oder eine Zusammensetzung aus Ti - z Al - y Nb - w C mit 44,5 Atom % ≤ z ≤ 47 Atom %, insbesondere mit 44,5 Atom % ≤ z ≤ 45,5 Atom %, 5 Atom % ≤ y ≤ 10 Atom % und 0,05 Atom % ≤ w ≤ 0,8 Atom % und als Rest Titan und übliche Verunreinigungen auf, die jeweils Molybdän (Mo) im Bereich zwischen 0,1 Atom % bis 3 Atom % enthalten und wobei die β-Phase bis zu einer Temperatur von unter 1320°C vorhanden ist.In addition, an alloy according to the invention has a composition of Ti - z Al - y Nb - x B with 44.5 atom% ≦ z ≦ 47 atom%, in particular with 44.5 atom% ≦ z ≦ 45.5 atom%, 5 atom % ≤ y ≤ 10 atom% and 0.05 atom% ≤ x ≤ 0.8 atom% and remainder titanium and usual impurities, or a composition of Ti - z Al - y Nb - w C with 44.5 atom% ≤ z ≤ 47 atom%, in particular with 44.5 atom% ≤ z ≤ 45.5 atom%, 5 atom% ≤ y ≤ 10 atom% and 0.05 atom% ≤ w ≤ 0.8 atom% and the balance titanium and conventional impurities, each containing molybdenum (Mo) in the range between 0.1 atom% to 3 atom% and wherein the β-phase is present up to a temperature of below 1320 ° C.

Alternativ besteht eine Legierung aus Ti - z Al - y Nb - x B - w C mit 44,5 Atom % ≤ z ≤ 47 Atom %, insbesondere mit 44,5 Atom % ≤ z ≤ 45,5 Atom %, 5 Atom % ≤ y ≤ 10 Atom %, 0,05 Atom % ≤ x ≤ 0,8 Atom % und 0,05 Atom % ≤ w ≤ 0,8 Atom % und zusätzlich aus Molybdän im Bereich zwischen 0,1 Atom % bis 3 Atom %, wobei die β-Phase bis zu einer Temperatur von unter 1320°C vorhanden ist.Alternatively, an alloy of Ti - z Al - y Nb - x B - w C with 44.5 atom% ≤ z ≤ 47 atom%, in particular with 44.5 atom% ≤ z ≤ 45.5 atom%, 5 atom% ≦ y ≦ 10 at%, 0.05 at% ≦ x ≦ 0.8 at% and 0.05 at% ≦ w ≦ 0.8 at% and additionally from molybdenum in the range between 0.1 at% to 3 at% wherein the β-phase is present up to a temperature below 1320 ° C.

Mittels der angegebenen Legierungen und den entsprechenden Legierungsgehalten werden hochfeste γ-Titanaluminid-Legierungen mit einer feinen Dispersion der β-Phase für einen weiten Bereich an Prozesstemperaturen erzeugt.By means of the specified alloys and the corresponding alloying contents, high strength γ-titanium aluminide alloys having a fine dispersion of β-phase are produced for a wide range of process temperatures.

Bei der vorliegenden Erfindung wird die angestrebte Gefügestabilität und Prozesssicherheit dadurch erreicht, dass das Auftreten von Einphasengebieten über den gesamten, bei den Herstellungsprozessen und beim Einsatz durchlaufenen Temperaturbereich durch den gezielten Einbau der kubisch-raumzentrierten β-Phase vermieden wird. Prinzipiell tritt die β-Phase bei allen technischen Titanaluminid-Legierungen als Hochtemperaturphase bei Temperaturen ≥ 1350°C auf.In the present invention, the desired microstructure stability and process reliability is achieved by avoiding the occurrence of single-phase regions over the entire temperature range during the manufacturing processes and during use by the targeted incorporation of the cubic-body-centered β-phase. In principle, the β-phase occurs in all technical titanium aluminide alloys as a high-temperature phase at temperatures ≥ 1350 ° C.

Aus der Literatur ist bekännt, dass diese Phase durch verschiedene Element wie Mo, W, Nb, Cr, Mn und V bei tieferen Temperaturen stabilisiert werden kann. Das besondere Problem beim Zulegieren dieser Elemente besteht jedoch darin, dass die β-stabilisierenden . Elemente sehr genau auf den Al-Gehalt abgestimmt werden müssen. Außerdem treten bei der Zugabe dieser Elemente unerwünschte Wechselwirkungen auf, die zu hohen Anteilen der β-Phase und zu einer groben Dispersion dieser Phase führen. Eine derartige Konstitution ist für die mechanischen Eigenschaften äußerst nachteilig.It is known from the literature that this phase can be stabilized by various elements such as Mo, W, Nb, Cr, Mn and V at lower temperatures. The particular problem with alloying these elements, however, is that the β-stabilizing. Elements must be tuned very precisely to the Al content. In addition, occur in the addition of these elements undesirable interactions, which leads to high levels of the β-phase and lead to a coarse dispersion of this phase. Such a constitution is extremely disadvantageous for the mechanical properties.

Weiterhin hängen auch die Eigenschaften der β-Phase von den jeweiligen Legierungselementen und ihrer Zusammensetzung ab. Insbesondere muss die Konstitution so gewählt werden, dass eine Ausscheidung der spröden ω-Phase aus der β-Phase weitgehend vermieden wird. Aufgrund dieser Zusammenhänge wird eine Legierungszusammensetzung bereitgestellt, mit der eine für die mechanischen Eigenschaften optimale Zusammensetzung und Dispersion der β-Phase für einen weiten Bereich an Prozesstemperaturen realisiert werden kann. Gleichzeitig werden möglichst gute Festigkeitseigenschaften erzielt.Furthermore, the properties of the β phase also depend on the respective alloying elements and their composition. In particular, the constitution must be chosen so that an excretion of the brittle ω-phase from the β-phase is largely avoided. Due to these relationships, an alloy composition is provided which can provide a mechanical properties optimum composition and dispersion of the β-phase for a wide range of process temperatures. At the same time the best possible strength properties are achieved.

Gemäß einer vorteilhaften Ausgestaltung der Erfindung enthält die Legierung ebenfalls Bor, vorzugsweise mit einem Bor-Gehalt in der Legierung im Bereich von 0,05 Atom % bis 0,8 Atom %. Der Zusatz von Bor führt vorteilhafterweise zur Bildung von stabilen Ausscheidungen, die zur mechanischen Härtung der erfindungsgemäßen Legierung und Stabilisierung des Gefüges der Legierung beitragen.According to an advantageous embodiment of the invention, the alloy also contains boron, preferably with a boron content in the alloy in the range of 0.05 atom% to 0.8 atom%. The addition of boron advantageously leads to the formation of stable precipitates which contribute to the mechanical hardening of the alloy according to the invention and stabilization of the microstructure of the alloy.

Darüber hinaus ist es vorteilhaft, wenn die Legierung Kohlenstoff enthält, und zwar vorzugsweise mit einem Kohlenstoffgehalt im Bereich von 0,05 Atom % bis 0,8 Atom %. Auch der Zusatz von Kohlenstoff, vorzugsweise in Kombination mit dem vorbeschriebenen Zusatzstoff Bor, führt zur Bildung von stabilen Ausscheidungen, die ebenfalls zur mechanischen Härtung der Legierung und zur Stabilisierung des Gefüges beitragen.Moreover, it is advantageous if the alloy contains carbon, preferably with a carbon content in the range of 0.05 at% to 0.8 at%. The addition of carbon, preferably in combination with the above-described additive boron, leads to the formation of stable precipitates, which also contribute to the mechanical hardening of the alloy and to the stabilization of the structure.

Die Aufgabe wird weiterhin durch ein Bauteil gelöst, das aus einer erfindungsgemäßen Legierung hergestellt ist. Zur Vermeidung von Wiederholungen wird auf die voranstehenden Ausführungen ausdrücklich verwiesen.The object is further achieved by a component which is produced from an alloy according to the invention. To avoid repetition, reference is expressly made to the above statements.

Die Erfindung wird nachstehend ohne Beschränkung des allgemeinen Erfindungsgedankens anhand von Ausführungsbeispielen unter Bezugnahme auf die beigefügten schematischen Zeichnungen exemplarisch beschrieben, auf die im Übrigen bezüglich der Offenbarung aller im Text nicht näher erläuterten erfindungsgemäßen Einzelheiten verwiesen wird. Es zeigen:

Fig. 1
eine Rasterelektronenmikroskopieaufnahme ei- nes Gussblocks mit einer Legierung Ti - 45 Al - 8 Nb - 0,2 C (Atom %);
Fig. 2a bis 2c
jeweils eine Aufnahme eines Gefüges in einer Legierung Ti - 45 Al - 8 Nb - 0,2 C (Atom %) mittels eines Rasterelektronenmikroskops nach verschiedenen Verfahrensschritten;
Fig. 3a und 3b
jeweils eine Aufnahme eines Gefüges in einer erfindungsgemäßen Legierung Ti - 45 Al - 5 Nb - 2 Mo (Atom %) nach verschiedenen Ver- fahrensschritten und
Fig. 4
ein Diagramm mit Spannungs-Dehnungskurven von Proben der Legierung Ti - 45 Al - 5 Nb - 2 Mo (Atom %).
The invention will now be described by way of example without limitation of the general inventive idea by means of embodiments with reference to the accompanying schematic drawings, to which reference is otherwise made with respect to the disclosure of all unspecified in the text details according to the invention. Show it:
Fig. 1
a scanning electron micrograph of a cast ingot with an alloy Ti - 45 Al - 8 Nb - 0.2 C (atom%);
Fig. 2a to 2c
in each case a photograph of a structure in an alloy Ti - 45 Al - 8 Nb - 0.2 C (atom%) by means of a scanning electron microscope according to various process steps;
Fig. 3a and 3b
in each case a picture of a microstructure in an alloy according to the invention Ti - 45 Al - 5 Nb - 2 Mo (atomic%) according to different method steps and
Fig. 4
a diagram with stress-strain curves of samples of the alloy Ti - 45 Al - 5 Nb - 2 Mo (atom%).

In Fig. 1 sind zwei Aufnahmen eines Gefüges in einem Gussblock der Legierung Ti - 45 Al - 8 Nb - 0,2 C (Atom %) gezeigt. Die Aufnahmen sowie alle weiteren Aufnahmen in den nachfolgenden Figuren wurden mittels rückgestreuter Elektronen in einem Rasterelektrohenmikroskop aufgenommen.In Fig. 1 Two photographs of a structure in a cast block of the alloy Ti - 45 Al - 8 Nb - 0.2 C (atom%) are shown. The recordings as well as all further recordings in the following figures were recorded by means of backscattered electrons in a scanning electron microscope.

Das Gefüge (Fig. 1) zeigt Lamellenkolonien der α2- und γ-Phase, welche aus ehemaligen γ-Lamellen entstanden sind. Die ehemaligen γ-Lamellen werden von Streifen hell-abbildender Körner der β-oder B2-Phase getrennt. Die zunächst in der β-α-Umwandlung gebildeten α-Lamellen zerfallen beim weiteren Abkühlen in α2- und γ-Lamellen.The structure ( Fig. 1 ) shows lamellar colonies of the α 2 and γ phases, which originated from former γ-lamellae. The former γ-lamellae are separated by strips of light-emitting grains of the β or B2 phase. The α-lamellae initially formed in the β-α transformation decompose on further cooling in α 2 - and γ-lamellae.

In den Figuren 2a bis 2c sind weitere Aufnahmen des Gefüges der Legierung Ti - 45 Al - 8 Nb - 0,2 C nach verschiedenen Verfahrensschritten in den Rasterelektronenmikroskopaufnahmen gezeigt. Fig. 2a zeigt das Gefüge nach dem Strangpressen bei 1230°C. Die Strangpressrichtung verläuft horizontal. Das Gefüge zeigt Körner der α2- und γ-Phase, wobei die kubisch-raumzentrierte β-Phase verschwunden ist.In the FIGS. 2a to 2c Further images of the microstructure of the alloy Ti - 45 Al - 8 Nb - 0.2 C are shown after different process steps in the scanning electron micrographs. Fig. 2a shows the structure after extrusion at 1230 ° C. The extrusion direction is horizontal. The microstructure shows grains of the α 2 and γ phases, with the cubic body-centered β phase disappearing.

Fig. 2b zeigt das Gefüge der Legierung nach dem Strangpressen bei 1230°C und einem weiteren Schmiedeschritt bei 1100°C. Das Gefüge zeigt Körner der α2- und γ-Phase und einige wenige α2/γ-Lamellenkolonien. Fig. 2b shows the structure of the alloy after extrusion at 1230 ° C and another forging step at 1100 ° C. The microstructure shows grains of the α 2 and γ phases and a few α 2 / γ lamellar colonies.

In Fig. 2c ist das Gefüge der Legierung nach dem Strangpressen bei 1230°C und einer nachfolgenden Wärmebehandlung bei 1330°C dargestellt. Das Gefüge zeigt ebenfalls Körner der α2- und γ-Phase. Das Bild zeigt ein voll-lamellares Gefüge mit Lamellen der α2- und γ-Phase. Die Lamellenkoloniegröße beträgt ungefähr 200 µm, wobei auch Kolonien auftreten, die deutlich größer als 200 µm sind.In Fig. 2c the structure of the alloy after extrusion at 1230 ° C and a subsequent heat treatment at 1330 ° C is shown. The microstructure also shows grains of the α 2 and γ phases. The picture shows a fully lamellar microstructure with lamellae of α 2 and γ phase. The lamellar colony size is about 200 microns, which also colonies occur, which are significantly larger than 200 microns.

Wie bei dem in Fig. 2a dargestellten Gefüge tritt auch bei den in Fig. 2b und 2c dargestellten Gefügen die kubisch raumzentrierte Phase nicht mehr auf. Somit ist die β-Phase in diesem Temperaturbereich mit einer Wärmebehandlung nach dem Strangpressen thermodynamisch nicht stabil.As with the in Fig. 2a shown structure also occurs in the Fig. 2b and 2c represented structures the cubic body-centered phase no longer on. Thus, the β-phase is thermodynamically unstable in this temperature range with heat treatment after extrusion.

In den Figuren 3a und 3b sind Gefüge einer erfindungsgemäßen Legierung in zwei Rasterelektronenmikroskopaufnahmen dargestellt. Ausgehend von einer Legierung Ti - 45 Al - 5 Nb wurde der Legierung Molybdän mit 2 Atom % zulegiert. Diese entstandene Legierung Ti - 45 Al - 5 Nb - 2 Mo basiert auf einer Zusammensetzung, wie sie in der europäischen Patentschrift EP 1 015 650 B1 beschrieben ist.In the FIGS. 3a and 3b Microstructures of an alloy according to the invention are shown in two scanning electron micrographs. Starting from an alloy Ti - 45 Al - 5 Nb, the alloy molybdenum was alloyed with 2 atom%. This resulting alloy Ti - 45 Al - 5 Nb - 2 Mo is based on a composition as described in the European patent specification EP 1 015 650 B1 is described.

Die Figuren 3a und 3b zeigen die Gefüge dieser erfindungsgemäßen Legierung, die nach dem Strangpressen bei 1250°C und einer nachfolgenden Wärmebehandlung bei 1030°C (Fig. 3a) sowie bei 1270°C beobachtet wurden (Fig. 3b).The FIGS. 3a and 3b show the microstructures of this alloy according to the invention, which after extrusion at 1250 ° C and a subsequent heat treatment at 1030 ° C ( Fig. 3a ) and at 1270 ° C were observed ( Fig. 3b ).

Das Gefüge in Fig. 3a zeigt Körner der α2-, γ- und der hell-abbildenden β-Phasen, wobei letztere in Streifen angeordnet sind. Das Gefüge in Fig. 3b zeigt Lamellenkolonien der α2- und γ-Phase sowie Körner der hell-abbildenden β-Phase, aus der sich wiederum die γ-Phase ausgeschieden hat.The structure in Fig. 3a shows grains of the α 2 , γ and light-imaging β phases, the latter being arranged in stripes. The structure in Fig. 3b shows lamellar colonies of the α 2 - and γ-phase and grains of the light-imaging β-phase, from which in turn the γ-phase has been eliminated.

Die Gefüge in Fig. 3a und 3b sind fein, sehr homogen und zeigen eine gleichmäßige Verteilung der β-Phase. Nach der Wärmebehandlung bei 1030°C liegt ein globulares Gefüge vor, wobei sich Körner der β-Phase in Streifen parallel zur Strangpressrichtung angeordnet haben (Fig. 3a), während das bei 1270°C wärmebehandelte Material ein sehr homogenes, voll-lamellares Gefüge mit gleichmäßig verteilten β-Körnern aufweist (Fig. 3b).The microstructure in Fig. 3a and 3b are fine, very homogeneous and show a uniform distribution of the β-phase. After heat treatment at 1030 ° C., a globular structure is present, with β-phase grains arranged in strips parallel to the extrusion direction ( Fig. 3a ), while the material heat-treated at 1270 ° C has a very homogeneous, fully lamellar microstructure with evenly distributed β-grains ( Fig. 3b ).

Die Koloniegröße der Gefüge der Legierung Ti - 45 Al - 5 Nb - 2 Mo beträgt zwischen 20 bis 30 µm und ist somit mindestens um den Faktor 5 kleiner als sonst in voll-lamellaren Gefügen von γ-Titanaluminid-Legierungen. Innerhalb der β-Phase wird außerdem die γ-Phase ausgeschieden, so dass die β-Körner sehr fein unterteilt werden. Hierdurch wird insgesamt ein sehr feines und homogenes Gefüge erreicht.The colony size of the microstructures of the Ti - 45 Al - 5 Nb - 2 Mo alloy is between 20 and 30 μm, which is at least a factor of 5 smaller than otherwise in fully lamellar microstructures of γ-titanium aluminide alloys. Moreover, within the β-phase, the γ-phase is precipitated, so that the β-grains are very finely subdivided. As a result, a very fine and homogeneous structure is achieved overall.

In Versuchen hat sich herausgestellt, dass diese feine und homogene Gefügemorphologie nach Wärmebehandlungen im gesamten Hochtemperaturbereich bis 1320°C vorhanden ist. Die Gefüge zeigen damit eindeutig, dass über den gesamten, für die Herstellungsprozesse relevanten Temperaturbereich ein ausreichender Volumenanteil der β-Phase vorhanden ist und Kornvergröberung wirksam unterdrückt wird.In experiments it has been found that this fine and homogeneous Gefömgemorphologie is present after heat treatments in the entire high temperature range up to 1320 ° C. The microstructures thus clearly show that over the entire temperature range relevant for the production processes a sufficient volume fraction of the β-phase is present and grain coarsening is effectively suppressed.

In Zugversuchen, die an Material durchgeführt wurden, das bei 1030°C wärmebehandelt worden war, wird bei Raumtemperatur eine Streckgrenze von 867 MPa, eine Zugfestigkeit von 816 MPa und eine plastische Bruchdehnung von 1,8 % gemessen.In tensile tests conducted on material heat treated at 1030 ° C, a yield strength of 867 MPa, a tensile strength of 816 MPa and a plastic elongation at break of 1.8% are measured at room temperature.

Fig. 4 zeigt gemessene Spannungs-Dehnungskurven von Proben der Legierung Ti - 45 Al - 5 Nb - 2 Mo im Zugversuch. Das Probenmaterial war bei 1250°C stranggepresst worden und anschließend einer Wärmebehandlung von 2 Stunden bei 1030°C und einer Ofenabkühlung unterzogen worden. Die bei 700°C und 900°C aufgenommenen Zugkurven zeigen, dass die Legierung für viele Hochtemperaturanwendungen geeignet ist. Fig. 4 shows measured stress-strain curves of samples of the alloy Ti-45 Al-5 Nb-2 Mo in a tensile test. The sample material was extruded at 1250 ° C and then subjected to a heat treatment of 2 hours at 1030 ° C and oven cooling. The tensile curves recorded at 700 ° C and 900 ° C show that the alloy is suitable for many high temperature applications.

Durch das Zulegieren geringer Molybdängehalte wird eine sehr gleichmäßige Mikrostruktur in der Legierung erreicht, so dass diese Legierungen als Hochtemperatur-Werkstoffe gut eingesetzt werden können.By alloying low molybdenum contents, a very uniform microstructure in the alloy is achieved, so that these alloys can be used well as high-temperature materials.

Darüber hinaus ist in Fig. 4 das Ergebnis eines Zugversuchs bei Raumtemperatur (25°C) am erfindungsgemäßen Material dargestellt, wobei die Zugspannung σ in MPa gegen die Dehnung ε in % aufgetragen ist. Dabei wurde eine Streckgrenzenüberhöhung gefunden, die sonst an γ-Titanaluminid-Legierungen bislang nicht beobachtet wurde. Diese stellt ein Anzeichen für ein besonders feines und homogenes Gefüge dar. Die Streckgrenzenüberhöhung weist darauf hin, dass das Material auf lokale Spannungen durch plastisches Fließen reagieren kann, was sehr günstig für die Duktilität und Schadenstoleranz ist.In addition, in Fig. 4 the result of a tensile test at room temperature (25 ° C) shown on the material according to the invention, wherein the tensile stress σ in MPa against the strain ε in% is plotted. In this case, a yield strength increase was found, which was otherwise not observed on γ-Titanaluminid-alloys so far. This is an indication of a particularly fine and homogeneous structure. The yield strength increase indicates that the material can react to local stresses by plastic flow, which is very favorable for the ductility and damage tolerance.

Die Homogenität der erfindungsgemäßen Legierungen hängt im Bereich relevanter Prozesstemperaturen nicht von technisch unvermeidbaren Schwankungen der Temperatur oder der Zusammensetzung ab.The homogeneity of the alloys according to the invention does not depend on technically unavoidable variations in temperature or composition in the range of relevant process temperatures.

Die erfindungsgemäßen Titanaluminid-Legierungen wurden unter Verwendung von gieß- oder pulvermetallurgischen Techniken hergestellt. Beispielsweise können durch Warmschmieden, Warmpressen bzw. Warmstrangpressen und Warmwalzen die erfindungsgemäßen Legierungen bearbeitet werden.The titanium aluminide alloys of this invention were prepared using casting or powder metallurgy techniques. For example, the alloys of the invention can be processed by hot forging, hot pressing or hot extrusion and hot rolling.

Die Erfindung bietet den Vorteil, dass trotz der bei der industriellen Fertigung auftretenden Schwankungen der Legierungszusammensetzung und Prozessbedingungen zuverlässiger als bisher eine Titanaluminid-Legierung mit einer sehr gleichmäßigen Mikrostruktur und hoher Festigkeit bereitgestellt wird.The invention offers the advantage that, despite the variations in alloy composition and process conditions occurring in industrial production, a titanium aluminide alloy having a very uniform microstructure and high strength is provided more reliably than heretofore.

Die erfindungsgemäße Titanaluminid-Legierung erreicht eine hohe Festigkeit bis zu einer Temperatur im Bereich von 700°C bis 800°C sowie eine gute Raumtemperatur-Duktilität. Somit sind die Legierungen für zahlreiche Einsatzbereiche geeignet und können z.B. für besonders hochbelastete Bauteile oder bei für Titanaluminid-Legierungen außergewöhnlich hohen Temperaturen verwendet werden. The titanium aluminide alloy according to the invention achieves high strength up to a temperature in the range of 700 ° C. to 800 ° C. and good room temperature ductility. Thus, the alloys suitable for numerous applications and can be used eg for particularly highly stressed components or for titanium aluminide alloys exceptionally high temperatures.

Claims (3)

  1. A titanium aluminide based alloy, produced by using melt metallurgical and powder metallurgical techniques with an alloy composition of 44.5 atom % ≤ Al ≤ 47 atom %, 5 atom % ≤ Nb ≤ 10 atom %, molybdenum between 0.1 atom % to 3 atom %, optionally B and/or C with contents ≥ 0.05 atom % and ≤ 0.8 atom %, and the remainder being titanium and conventional impurities, wherein the γ-titanium aluminide alloy is formed with a fine dispersion of the β phase and the β phase is present up to a temperature of less than 1320°C.
  2. An alloy as claimed in claim 1, characterised in that the proportion of aluminium in the alloy composition is between 44.5 atom % to 45.5 atom %.
  3. A component produced from an alloy as claimed in claim 1 or 2.
EP05784793A 2004-11-23 2005-09-01 Titanium aluminide based alloy Not-in-force EP1819838B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004056582A DE102004056582B4 (en) 2004-11-23 2004-11-23 Alloy based on titanium aluminides
PCT/EP2005/009402 WO2006056248A1 (en) 2004-11-23 2005-09-01 Titanium aluminide based alloy

Publications (2)

Publication Number Publication Date
EP1819838A1 EP1819838A1 (en) 2007-08-22
EP1819838B1 true EP1819838B1 (en) 2009-03-11

Family

ID=35134314

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05784793A Not-in-force EP1819838B1 (en) 2004-11-23 2005-09-01 Titanium aluminide based alloy

Country Status (11)

Country Link
US (2) US20100015005A1 (en)
EP (1) EP1819838B1 (en)
JP (3) JP2008520826A (en)
KR (1) KR101010965B1 (en)
CN (1) CN101056998B (en)
AT (1) ATE425272T1 (en)
CA (1) CA2587237C (en)
DE (2) DE102004056582B4 (en)
ES (1) ES2322082T3 (en)
RU (1) RU2370561C2 (en)
WO (1) WO2006056248A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110184503A (en) * 2019-06-27 2019-08-30 朱胜利 A kind of aluminium alloy fining agent and preparation method thereof

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007051499A1 (en) * 2007-10-27 2009-04-30 Mtu Aero Engines Gmbh Material for a gas turbine component, method for producing a gas turbine component and gas turbine component
DE102007060587B4 (en) * 2007-12-13 2013-01-31 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH titanium aluminide
AT509768B1 (en) * 2010-05-12 2012-04-15 Boehler Schmiedetechnik Gmbh & Co Kg METHOD FOR PRODUCING A COMPONENT AND COMPONENTS FROM A TITANIUM ALUMINUM BASE ALLOY
EP2591337B1 (en) * 2010-07-07 2020-12-23 Agamatrix, Inc. Electrochemical test strip and method of determining a charactersistic thereof
WO2012041276A2 (en) 2010-09-22 2012-04-05 Mtu Aero Engines Gmbh Heat-resistant tial alloy
CN101948967A (en) * 2010-09-30 2011-01-19 洛阳双瑞精铸钛业有限公司 TiAl-based alloy material with excellent high-temperature property and preparation method thereof
EP2620517A1 (en) 2012-01-25 2013-07-31 MTU Aero Engines GmbH Heat-resistant TiAl alloy
FR2997884B3 (en) * 2012-11-09 2015-06-26 Mecachrome France METHOD AND DEVICE FOR MANUFACTURING TURBINE BLADES
RU2502824C1 (en) * 2012-11-13 2013-12-27 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Heat treatment method of castings from alloys based on gamma titanium aluminide
RU2500826C1 (en) * 2012-11-15 2013-12-10 Открытое акционерное общество "Всероссийский Институт Легких сплавов" (ОАО ВИЛС) Titanium-base alloy
DE102013018944A1 (en) * 2013-06-27 2014-12-31 Audi Ag Method for producing an impeller of an exhaust gas turbocharger and TiAl alloy for an impeller
CN103409660A (en) * 2013-08-12 2013-11-27 南京理工大学 Novel Beta/Gamma-TiAl alloy with ultra-fine grain
CN103834843B (en) * 2014-02-28 2016-05-18 西北工业大学 A kind of as-cast high-Nb TiAl alloy and improve the method for its alloy structure
CN103834844B (en) * 2014-03-12 2016-08-24 北京工业大学 A kind of V, Mn alloying β phase solidifies high Nb containing TiAl based alloy and preparation method thereof
CN104928531B (en) * 2015-05-12 2017-03-01 哈尔滨工业大学 A kind of homogenization TiAl alloy lamellar microstructure and preparation method thereof
CN105803255B (en) * 2016-03-29 2017-05-03 齐鲁工业大学 High-niobium titanium aluminum-base supercharger turbine and manufacturing method thereof
CN105695799B (en) * 2016-04-06 2017-12-15 中国航空工业集团公司北京航空材料研究院 A kind of Ti Al Nb series intermetallic compound high-temperature structural materials
EP3249064A1 (en) 2016-05-23 2017-11-29 MTU Aero Engines GmbH Additive manufacture of high temperature components from tial
EP3508594B8 (en) * 2016-09-02 2021-06-16 IHI Corporation TiAI ALLOY AND METHOD OF MANUFACTURING THE SAME
RU2633135C1 (en) * 2016-11-11 2017-10-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Intermetallic tial-based alloy
EP3326746A1 (en) * 2016-11-25 2018-05-30 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Method for joining and/or repairing substrates of titanium aluminide alloys
CN107699738A (en) * 2017-09-29 2018-02-16 成都露思特新材料科技有限公司 A kind of fine-grained TiAl alloy and preparation method thereof, aero-engine, automobile
JP7226536B2 (en) * 2019-05-23 2023-02-21 株式会社Ihi TiAl alloy and its manufacturing method
RU2754424C2 (en) * 2019-12-24 2021-09-02 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Method for producing intermetallic alloys based on titanium aluminide
CN116607048A (en) * 2022-02-09 2023-08-18 中国科学院金属研究所 Gamma-TiAl alloy for precision casting and preparation method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1000000A (en) * 1910-04-25 1911-08-08 Francis H Holton Vehicle-tire.
JP3310680B2 (en) * 1991-09-25 2002-08-05 三菱重工業株式会社 Intermetallic compound-based heat-resistant alloy
US5213635A (en) * 1991-12-23 1993-05-25 General Electric Company Gamma titanium aluminide rendered castable by low chromium and high niobium additives
DE4224867A1 (en) * 1992-07-28 1994-02-03 Abb Patent Gmbh Highly heat-resistant material
JPH06116691A (en) * 1992-10-05 1994-04-26 Mitsubishi Materials Corp Method for heat-treating ti-al intermetallic compound series ti alloy
JPH06116692A (en) * 1992-10-05 1994-04-26 Honda Motor Co Ltd Ti-al intermetallic compound excellent in high temperature strength and its production
US5328530A (en) * 1993-06-07 1994-07-12 The United States Of America As Represented By The Secretary Of The Air Force Hot forging of coarse grain alloys
GB9419712D0 (en) * 1994-09-30 1994-11-16 Rolls Royce Plc A turbomachine aerofoil and a method of production
USH1659H (en) * 1995-05-08 1997-07-01 The United States Of America As Represented By The Secretary Of The Air Force Method for heat treating titanium aluminide alloys
US5653828A (en) * 1995-10-26 1997-08-05 National Research Council Of Canada Method to procuce fine-grained lamellar microstructures in gamma titanium aluminides
DE19748874C2 (en) * 1996-11-09 2000-03-23 Max Planck Inst Eisenforschung Use of a TiAl alloy
DE19735841A1 (en) * 1997-08-19 1999-02-25 Geesthacht Gkss Forschung Titanium aluminide alloy contains niobium
US6174387B1 (en) * 1998-09-14 2001-01-16 Alliedsignal, Inc. Creep resistant gamma titanium aluminide alloy
DE10058155A1 (en) * 2000-11-22 2002-05-23 Geesthacht Gkss Forschung Alloy based on titanium aluminides produced using a smelting and powder metallurgical process and containing an alloy composition made from titanium, aluminum and niobium has specified an aluminum content
AT5199U1 (en) * 2001-07-19 2002-04-25 Plansee Ag MOLDED PART FROM AN INTERMETALLIC GAMMA-TI-AL MATERIAL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110184503A (en) * 2019-06-27 2019-08-30 朱胜利 A kind of aluminium alloy fining agent and preparation method thereof

Also Published As

Publication number Publication date
CA2587237A1 (en) 2006-06-01
US20120263623A1 (en) 2012-10-18
RU2370561C2 (en) 2009-10-20
CN101056998A (en) 2007-10-17
DE102004056582A1 (en) 2006-06-01
JP2009097095A (en) 2009-05-07
JP2009256802A (en) 2009-11-05
WO2006056248A1 (en) 2006-06-01
DE102004056582B4 (en) 2008-06-26
ES2322082T3 (en) 2009-06-16
ATE425272T1 (en) 2009-03-15
EP1819838A1 (en) 2007-08-22
KR20070086597A (en) 2007-08-27
CA2587237C (en) 2012-03-20
CN101056998B (en) 2010-10-13
DE502005006844D1 (en) 2009-04-23
KR101010965B1 (en) 2011-01-26
RU2007123588A (en) 2008-12-27
JP2008520826A (en) 2008-06-19
JP4467637B2 (en) 2010-05-26
US20100015005A1 (en) 2010-01-21

Similar Documents

Publication Publication Date Title
EP1819838B1 (en) Titanium aluminide based alloy
EP2386663B1 (en) Method for producing a component and component from a gamma-titanium-aluminium base alloy
DE102007060587B4 (en) titanium aluminide
DE102013002483B4 (en) Nickel-cobalt alloy
DE69014085T2 (en) Oxidation-resistant alloys with a low coefficient of expansion.
DE69015021T2 (en) Gamma-titanium-aluminum alloys modified by chromium and tantalum and manufacturing processes.
DE3884887T2 (en) Heavy metal alloys made of tungsten-nickel-iron-cobalt with high hardness and process for producing these alloys.
DE69400848T2 (en) Titanium aluminide alloys with good creep resistance
DE2264997A1 (en) PRECIPITABLE NICKEL, IRON ALLOY
EP3175008B1 (en) Cobalt based alloy
DE68916414T2 (en) Titanium aluminide alloys.
DE2517275B2 (en) Process for the production and further processing of a plastically deformable cast product based on an aluminum-silicon alloy and the use of the further processed cast product
EP2185738B1 (en) Production of alloys based on titanium aluminides
DE69028452T2 (en) Titanium-aluminum alloys of the gamma type modified with chromium and silicon and process for their production
DE2606632C2 (en) Use of carbon steel as a superplastic agent and process for its heat treatment
DE60001249T2 (en) Ti-Al (Mo, V, Si, Fe) alloys and process for their manufacture
EP3054023B1 (en) Aluminium-rich high temperature tial alloy
DE69303841T2 (en) Titanium aluminides for precision casting and casting methods with their use
EP3091095B1 (en) Low density rhenium-free nickel base superalloy
DE2049546C3 (en) Process for the powder-metallurgical production of a dispersion-strengthened alloy body
DE2649529A1 (en) FORMABLE COBALT-NICKEL-CHROME BASED ALLOY AND METHOD FOR ITS MANUFACTURING
WO2012041276A2 (en) Heat-resistant tial alloy
DE4304481A1 (en) High-temperature alloy based on alloyed gamma-titanium aluminide and use of this alloy
EP4332260A1 (en) Age-hardenable aluminium alloy, aluminium alloy metal strip or sheet, method for manufacturing this metal strip or sheet and its use in superplastic forming
EP3981893A1 (en) Plate made of a rolled aluminium alloy and production of such a plate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070425

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071015

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005006844

Country of ref document: DE

Date of ref document: 20090423

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2322082

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090611

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090824

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090711

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090611

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

26N No opposition filed

Effective date: 20091214

BERE Be: lapsed

Owner name: GKSS-FORSCHUNGSZENTRUM GEESTHACHT G.M.B.H.

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005006844

Country of ref document: DE

Owner name: HELMHOLTZ-ZENTRUM GEESTHACHT ZENTRUM FUER MATE, DE

Free format text: FORMER OWNER: GKSS-FORSCHUNGSZENTRUM GEESTHACHT GMBH, 21502 GEESTHACHT, DE

Effective date: 20110208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20170530

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170920

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20171003

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 425272

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20191129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180902

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200923

Year of fee payment: 16

Ref country code: FR

Payment date: 20200921

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210921

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210901

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005006844

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401