EP3091095B1 - Low density rhenium-free nickel base superalloy - Google Patents

Low density rhenium-free nickel base superalloy Download PDF

Info

Publication number
EP3091095B1
EP3091095B1 EP15166317.6A EP15166317A EP3091095B1 EP 3091095 B1 EP3091095 B1 EP 3091095B1 EP 15166317 A EP15166317 A EP 15166317A EP 3091095 B1 EP3091095 B1 EP 3091095B1
Authority
EP
European Patent Office
Prior art keywords
nickel
nickel base
base alloy
rhenium
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP15166317.6A
Other languages
German (de)
French (fr)
Other versions
EP3091095A1 (en
Inventor
Thomas GÖHLER
Ralf RETTIG
Robert F. Singer
Steffen Neumeier
Nils Ritter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Priority to EP15166317.6A priority Critical patent/EP3091095B1/en
Priority to ES15166317.6T priority patent/ES2682362T3/en
Priority to US15/142,068 priority patent/US20170058383A1/en
Publication of EP3091095A1 publication Critical patent/EP3091095A1/en
Application granted granted Critical
Publication of EP3091095B1 publication Critical patent/EP3091095B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the present invention relates to a nickel-base alloy which is substantially free of rhenium but at the same time achieves the creep resistance properties of the second-generation nickel-based superalloys and has a reduced density compared to comparable alloys.
  • nickel-base superalloys are used for example as blade materials, since these materials still have sufficient strength for the high mechanical loads even at high operating temperatures.
  • turbine blades are exposed in stationary gas turbines or jet engines in commercial aircraft exhaust gas flow at temperatures of up to 1500 ° C and are subject to very high mechanical loads due to centrifugal forces. Under these conditions, it is particularly important that the creep resistance of the material used meets the requirements.
  • turbine blades In order to increase creep resistance, turbine blades have also been produced monocrystalline for several decades in order to further improve creep resistance by avoiding grain boundaries.
  • the alloys In the nickel-base superalloys of the so-called second and third generation currently in use, the alloys usually have the chemical element rhenium in a proportion of three or six percent by weight, since rhenium further improves the creep resistance.
  • the EP 2 725 110 A1 a nickel-based alloy which is substantially free of rhenium and has a solidus temperature of higher than 1320 ° C, wherein at temperatures of 1050 ° C to 1100 ° C excretions of a y 'phase in a ⁇ matrix in a proportion of 40 to 50 Vol .-% are present, the ⁇ / ⁇ 'mismatch at temperatures of 1050 ° C to 1100 ° C in the range of -0.15% to -0.25% and the tungsten content in the ⁇ -matrix is greater than in the excreted y'-phases.
  • the alloy has the following chemical composition: aluminum of 11 to 13 at.%, Cobalt of 4 to 14 at.%, Chromium of 6 to 12 at.%, Molybdenum of 0.1 to 2 at.%, Tantalum from 0.1 to 3.5 at .-%, titanium from 0.1 to 3.5 at .-%, tungsten from 0.1 to 3 at .-%, and the balance nickel and unavoidable impurities.
  • the alloy should have the lowest possible density and good solution heatability, be economical and efficient to produce and monocrystalline or directionally solidified and compared to the in EP 2 725 110 A1 Reinforced rhenium-free nickel-based alloy improved with comparable creep resistance Have properties, in particular a lower density, a lower proportion of Resteutikikum and improved Amsterdamsglühbarkeit.
  • a nickel-base alloy may have the following chemical composition: aluminum of 4.1 to 7.7 wt%, cobalt of 0 to 16.8 wt%, chromium of 6 to 11.8 wt% , Molybdenum from 3.6 to 11.3 wt%, tantalum from 0 to 3.9 wt%, titanium from 0 to 3.6 wt%, tungsten from 0 to 11.3 wt% , Carbon of 0 to 0.05 wt.%, Phosphorus of 0 to 0.015 wt.%, Copper of 0 to 0.05 wt.%, Zirconium of 0 to 0.015 wt.%, Silicon of 0 to 0 , 01% by weight, sulfur from 0 to 0.001% by weight, iron from 0 to 0.15% by weight, manganese from 0 to 0.05% by weight, boron from 0 to 0.003% by weight , Hafnium from 0 to 0.15 wt .
  • a nickel-based alloy according to the present invention may have the following chemical composition: aluminum of 4.7 to 5.7% by weight, cobalt of 2.6 to 13.6% by weight, chromium of 6.3 to 7.3% by weight, molybdenum from 3.7 to 4.7% by weight, tantalum from 0 to 0.5% by weight, titanium from 2.8 to 3.6% by weight, tungsten from 7.4 to 8.4 wt .-%, carbon from 0 to 0.05 wt .-%, phosphorus from 0 to 0.015 wt .-%, copper from 0 to 0.05 wt .-%, zirconium from 0 to 0.015% by weight, silicon from 0 to 0.01% by weight, sulfur from 0 to 0.001% by weight, iron from 0 to 0.15% by weight, manganese from 0 to 0.05% by weight. %, Boron from 0 to 0.003% by weight, hafnium from 0 to 0.15% by weight, yttrium from
  • a nickel-based alloy according to the present invention may have the following chemical composition: aluminum of 5.0 to 5.4 wt .-%, cobalt of 2.9 to 13.3 wt .-%, chromium of 6.6 to 7% by weight, molybdenum from 4 to 4.4% by weight, tantalum from 0 to 0.2% by weight, titanium from 3.1 to 3.5% by weight, tungsten from 7.7 to 8.1% by weight, carbon from 0 to 0.05% by weight, phosphorus from 0 to 0.015% by weight, copper from 0 to 0.05% by weight, zirconium from 0 to 0.015% by weight.
  • Silicon from 0 to 0.01% by weight, sulfur from 0 to 0.001% by weight, iron from 0 to 0.15% by weight, manganese from 0 to 0.05% by weight, boron from 0 to 0.003% by weight, hafnium from 0 to 0.15% by weight, yttrium from 0 to 0.002% by weight, as well as the balance nickel and unavoidable impurities.
  • a nickel-based alloy according to the present invention may have a cobalt content of less than 5% by weight, preferably less than 4% by weight. Since cobalt has a lower molar mass than nickel, a relatively low cobalt content has an advantageous effect on the overall density of the nickel-based alloy, and thus also on the total weight of the target component produced from this alloy.
  • the nickel-based alloy according to the invention may also have a cobalt content of greater than 11% by weight, preferably greater than 13% by weight.
  • a correspondingly high cobalt content has a positive effect on the segregation during solidification and the microstructural stability against the undesired formation of TCP phases.
  • the nickel-based alloy according to the present invention contains at least 67 at.%, In particular at least 68 at.%, Nickel.
  • the alloy elements are to be understood, the addition of which is not intended, but which can not be prevented for technical reasons or only with extremely great effort.
  • the following elements may still be present in the form of trace elements, the content of which is limited to the following ranges: bismuth from 0 to 0.00003% by weight, selenium from 0 to 0.0001% by weight, Thallium from 0 to 0.00005 wt%, lead from 0 to 0.0005 wt%, and tellurium from 0 to 0.0001 wt%.
  • alloy according to the invention in particular articles such as components of gas turbines, preferably turbine blades, and the like can be prepared, which may be monocrystalline or directionally solidified.
  • the attached figure shows a Larson-Miller plot to illustrate the creep resistance of the alloy according to the invention compared to known alloys.
  • alloy according to the invention was produced, the composition of which can be taken from the table below (alloy 1). Alloys 2 and 3 were chosen as comparison alloys, with the alloy 3 in the chemical composition essentially corresponding to that of the rhenium-containing material CMSX-4, and the alloy 2 corresponding to that in EP 2 725 110 A1 disclosed rhenium-free nickel base superalloy is. The components of the alloys are given in the table in weight percent (balance nickel and unavoidable impurities). Alloy no. al Co Cr Not a word re Ta Ti W 1 5.2 3.1 6.8 4.2 - - 3.3 7.9 2 4.8 8.6 5.0 1.4 - 10.1 1.3 8.8 3 5.6 9.0 6.5 0.6 3.0 6.5 1.0 6.0
  • the alloy 1 according to the invention was produced in a columnar crystal structure on a laboratory Bridgman casting installation in a three-bar geometry.
  • the rods had a diameter of 12 mm each and a length of 180 mm each and showed a typical dendritic microstructure with a dendrite spacing of about 230 ⁇ m.
  • the proportion of residual eutectic is very low at 2.8% (alloys 2 and 3 have a residual eutectic of 6.5% and 9.0%, respectively).
  • alloy 1 has a typical fully cubic y'-phase morphology.
  • Alloy 1 (L1) according to the present invention has a creep resistance substantially equal to that of rhenium-free alloy 2 (L2), the creep resistances of these alloys being similar to the creep resistance of Alloy 3 (L3) corresponds to a second generation nickel base superalloy. In comparison to the alloys 2 and 3, however, the alloy 1 in particular has a lower density. Analysis of the microstructure of the inventive alloy 1 after creep revealed no TCP phase formation.
  • nickel-based superalloys can be provided by the teachings of the present invention which can dispense with the hard-to-obtain element rhenium but nevertheless provide high temperature mechanical properties such as creep resistance, such as known rhenium containing alloys, and also have lower density than known rhenium-containing and rhenium-free alloys.
  • alloy 1 may undergo one or both of the following precipitation heat treatments after solution annealing: Excretion heat treatment 1: temperature heating rate hold time 1000 ° C 4 K / min 1050 ° C 1K / min 1050 ° C 1 h 20 ° C rapid cooling Excretion heat treatment 2: temperature heating rate hold time 840 ° C 4 K / min 870 ° C 1K / min 870 ° C 24 hours 20 ° C rapid cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die vorliegende Erfindung betrifft eine Nickelbasislegierung, die im Wesentlichen frei von Rhenium ist, aber gleichzeitig die Eigenschaften hinsichtlich der Kriechbeständigkeit der Nickelbasis-Superlegierungen der zweiten Generation erreicht und eine gegenüber vergleichbaren Legierungen verringerte Dichte aufweist.The present invention relates to a nickel-base alloy which is substantially free of rhenium but at the same time achieves the creep resistance properties of the second-generation nickel-based superalloys and has a reduced density compared to comparable alloys.

In Gasturbinen, wie stationaren Gasturbinen oder Flugtriebwerken, werden Nickelbasis-Superlegierungen beispielsweise als Schaufelwerkstoffe eingesetzt, da diese Werkstoffe auch bei den hohen Betriebstemperaturen noch eine ausreichende Festigkeit für die hohen mechanischen Belastungen aufweisen. Beispielsweise werden Turbinenschaufeln bei stationären Gasturbinen oder Strahltriebwerken in Verkehrsflugzeugen einem Abgasstrom mit Temperaturen von bis zu 1500 °C ausgesetzt und unterliegen gleichzeitig sehr hohen mechanischen Belastungen durch Fliehkräfte. Unter diesen Bedingungen kommt es insbesondere darauf an, dass die Kriechbestandigkeit des eingesetzten Werkstoffs den Anforderungen genügt. Um die Kriechbestandigkeit weiter zu steigern, werden seit einigen Jahrzenten Turbinenschaufeln auch einkristallin hergestellt, um durch die Vermeidung von Korngrenzen die Kriechbeständigkeit weiter zu verbessern.In gas turbines, such as stationary gas turbines or aircraft engines, nickel-base superalloys are used for example as blade materials, since these materials still have sufficient strength for the high mechanical loads even at high operating temperatures. For example, turbine blades are exposed in stationary gas turbines or jet engines in commercial aircraft exhaust gas flow at temperatures of up to 1500 ° C and are subject to very high mechanical loads due to centrifugal forces. Under these conditions, it is particularly important that the creep resistance of the material used meets the requirements. In order to increase creep resistance, turbine blades have also been produced monocrystalline for several decades in order to further improve creep resistance by avoiding grain boundaries.

Bei den derzeit eingesetzten Nickelbasis-Superlegierungen der sogenannten zweiten und dritten Generation weisen die Legierungen üblicherweise das chemische Element Rhenium auf, und zwar mit einem Anteil von drei bzw. sechs Gewichtsprozent, da Rhenium die Kriechbeständigkeit weiter verbessert.In the nickel-base superalloys of the so-called second and third generation currently in use, the alloys usually have the chemical element rhenium in a proportion of three or six percent by weight, since rhenium further improves the creep resistance.

Allerdings ist durch die geringe Verfügbarkeit von Rhenium die Beimengung von Rhenium sehr teuer. Entsprechend gibt es im Stand der Technik bereits Bestrebungen den Anteil von Rhenium zu reduzieren bzw. ganz auf das Zulegieren von Rhenium zu verzichten, wobei gleichzeitig die mechanischen Eigenschaften, insbesondere hinsichtlich der Kriechbeständigkeit, erhalten bleiben sollen. Untersuchungen hierzu gibt es von A. Heckl, S. Neumeier, M. Goken, R.F. Singer, "The effect of Re and Ru on y/y'microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys", in Material Science and Engineering A 528 (2011) 3435-3444 und Paul J. Fink, Joshua L. Miller, Douglas G. Konitzer, "Rhenium Reduction - Alloy Design Using an Economically Strategic Element", JOM, 62(2010), 55-57 . Darüber hinaus sind auch entsprechende Legierungen Gegenstand von Patentanmeldungen und Patenten, wie beispielsweise EP 2 725 110 A1 , DE 102010037046 , US 2011/0076180 A1 , EP 2 314 727 A1 , EP 2 305 847 A1 , EP 2 305 848 A1 , US 2013/0129522 A1 , WO 2013/083101 A1 , EP 2 576 853 B1 , WO 2009/032578 A1 , WO 2009/032579 A1 , EP 0 962 542 A1 , US 6,054,096 , US 2013/0230405 A1 und US 2010/0135846 A1 .However, the low availability of rhenium, the addition of rhenium is very expensive. Accordingly, efforts are already being made in the prior art to reduce the proportion of rhenium or to completely dispense with the alloying of rhenium, at the same time preserving the mechanical properties, in particular with regard to creep resistance. Examinations are available from A. Heckl, S. Neumeier, M. Goken, RF Singer, "The Effect of Re and Ru on y / microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys", in Material Science and Engineering A 528 (2011) 3435-3444 and Paul J. Fink, Joshua L. Miller, Douglas G. Konitzer, "Rhenium Reduction - Alloy Design Using an Economically Strategic Element", JOM, 62 (2010), 55-57 , In addition, corresponding alloys are also subject matter patent applications and patents, such as EP 2 725 110 A1 . DE 102010037046 . US 2011/0076180 A1 . EP 2 314 727 A1 . EP 2 305 847 A1 . EP 2 305 848 A1 . US 2013/0129522 A1 . WO 2013/083101 A1 . EP 2 576 853 B1 . WO 2009/032578 A1 . WO 2009/032579 A1 . EP 0 962 542 A1 . US 6,054,096 . US 2013/0230405 A1 and US 2010/0135846 A1 ,

Beispielsweise offenbart die EP 2 725 110 A1 eine Nickelbasislegierung, die im Wesentlichen frei von Rhenium ist und eine Solidustemperatur von höher als 1320°C aufweist, wobei bei Temperaturen von 1050 °C bis 1100 °C Ausscheidungen einer y'-Phase in einer γ-Matrix mit einem Anteil von 40 bis 50 Vol.-% vorliegen, die γ/γ'-Fehlpassung bei Temperaturen von 1050 °C bis 1100 °C im Bereich von -0,15 % bis -0,25 % liegt und der Wolframgehalt in der γ-Matrix größer ist als in den ausgeschiedenen y'-Phasen. Die Legierung weist folgende chemische Zusammensetzung auf: Aluminium von 11 bis 13 at.-%, Kobalt von 4 bis 14 at.-%, Chrom von 6 bis 12 at.-%, Molybdän von 0,1 bis 2 at.-%, Tantal von 0,1 bis 3,5 at.-%, Titan von 0,1 bis 3,5 at.-%, Wolfram von 0,1 bis 3 at.-%, sowie Rest Nickel und unvermeidbare Verunreinigungen.For example, the EP 2 725 110 A1 a nickel-based alloy which is substantially free of rhenium and has a solidus temperature of higher than 1320 ° C, wherein at temperatures of 1050 ° C to 1100 ° C excretions of a y 'phase in a γ matrix in a proportion of 40 to 50 Vol .-% are present, the γ / γ 'mismatch at temperatures of 1050 ° C to 1100 ° C in the range of -0.15% to -0.25% and the tungsten content in the γ-matrix is greater than in the excreted y'-phases. The alloy has the following chemical composition: aluminum of 11 to 13 at.%, Cobalt of 4 to 14 at.%, Chromium of 6 to 12 at.%, Molybdenum of 0.1 to 2 at.%, Tantalum from 0.1 to 3.5 at .-%, titanium from 0.1 to 3.5 at .-%, tungsten from 0.1 to 3 at .-%, and the balance nickel and unavoidable impurities.

Obwohl damit bereits einige Lösungsvorschlage für eine Rheniumreduzierung bzw. für rheniumfreie Nickelbasis-Superlegierungen bestehen, besteht weiterhin Bedarf, rheniumreduzierte bzw. rheniumfreie Nickelbasis-Superlegierungen zu entwickeln, deren mechanische Eigenschaften, insbesondere Hochtemperatureigenschaften, wie Kriechbeständigkeit, im Bereich der derzeit eingesetzten rheniumhaltigen und rheniumfreien Nickelbasis-Superlegierungen liegen und gegenüber diesen Legierungen weiter verbesserte Eigenschaften, wie beispielsweise eine geringere Dichte, aufweisen.Although there are already some proposed solutions for rhenium reduction or rhenium-free nickel-base superalloys, there is a continuing need to develop rhenium-reduced or rhenium-free nickel-based superalloys whose mechanical properties, in particular high-temperature properties such as creep resistance, are in the range of rhenium-containing and rhenium-free nickel base currently used Super alloys and compared to these alloys have further improved properties, such as a lower density.

Es ist deshalb Aufgabe der vorliegenden Erfindung, eine Nickelbasis-Superlegierung anzugeben, welche vergleichbare mechanische Eigenschaften, insbesondere Hochtemperatureigenschaften, wie Kriechbeständigkeit, wie derzeit eingesetzte Nickelbasis-Superlegierungen der zweiten und dritten Generation aufweist, aber im Wesentlichen kein Rhenium enthält. Darüber hinaus soll die Legierung eine möglichst geringe Dichte und eine gute Lösungsglühbarkeit aufweisen, wirtschaftlich und effizient herstellbar und einkristallin oder gerichtet erstarrbar sein und gegenüber der in EP 2 725 110 A1 offenbarten rheniumfreien Nickelbasislegierung bei vergleichbarer Kriechbeständigkeit verbesserte Eigenschaften aufweisen, insbesondere eine geringere Dichte, einen geringeren Anteil an Resteutektikum und eine verbesserte Lösungsglühbarkeit.It is therefore an object of the present invention to provide a nickel-based superalloy which has comparable mechanical properties, in particular high temperature properties, such as creep resistance, such as currently used nickel-base superalloys of the second and third generation, but contains substantially no rhenium. In addition, the alloy should have the lowest possible density and good solution heatability, be economical and efficient to produce and monocrystalline or directionally solidified and compared to the in EP 2 725 110 A1 Reinforced rhenium-free nickel-based alloy improved with comparable creep resistance Have properties, in particular a lower density, a lower proportion of Resteutikikum and improved Lösungsglühbarkeit.

TECHNISCHE LÖSUNGTECHNICAL SOLUTION

Diese Aufgabe wird gelöst durch eine Legierung mit den Merkmalen des Anspruchs 1 und einen entsprechenden Gegenstand, insbesondere eine Komponente einer stationären Gasturbine oder Fluggasturbine mit den Merkmalen des Anspruchs 12. Vorteilhafte Ausgestaltungen sind Gegenstand der abhängigen Ansprüche.This object is achieved by an alloy having the features of claim 1 and a corresponding object, in particular a component of a stationary gas turbine or aircraft gas turbine with the features of claim 12. Advantageous embodiments are the subject of the dependent claims.

Die vorliegende Erfindung betrifft eine mindestens die Elemente Al, Cr, Mo und Ta enthaltenden Nickelbasis-Superlegierung, die mit den folgenden Zielen optimiert wurde:

  • höchstmöglicher gewichteter Mischkristallhärtungsindex ISSS in der Matrix
  • optimale γ-Morphologie:
    • o γ/γ'-Fehlpassung bei 1100 °C von -0,1 bis -0,5 %
    • o y'-Anteil bei 1100 °C von 44 bis 48 mol-%
  • Solidustemperatur > 1320 °C.
The present invention relates to a nickel-base superalloy containing at least the elements Al, Cr, Mo and Ta, which has been optimized with the following objectives:
  • highest possible weighted solid solution hardening index I SSS in the matrix
  • optimal γ-morphology:
    • o γ / γ 'mismatch at 1100 ° C from -0.1 to -0.5%
    • o y'-content at 1100 ° C from 44 to 48 mol%
  • Solidus temperature> 1320 ° C.

Dabei ist ISSS = 2,44 xγ Re + 1,22 xγ W + xγMo (xγ i = Konzentration in at.-% des jeweiligen Elements in der Matrix) und die γ/γ'-Fehlpassung ist definiert als die normierte Differenz der Gitterkonstanten der beiden Phasen γ und γ': a γ ' a γ 1 / 2 * a γ ' a γ

Figure imgb0001
Here, I SSS = 2.44 × γ Re + 1.22 × γ W + x γ M o (x γ i = concentration in at .-% of the respective element in the matrix) and the γ / γ 'mismatch is defined as the normalized difference of the lattice constants of the two phases γ and γ ': a γ ' - a γ 1 / 2 * a γ ' - a γ
Figure imgb0001

Gemäß der obigen Optimierung kann eine Nickelbasislegierung die folgende chemische Zusammensetzung aufweisen: Aluminium von 4,1 bis 7,7 Gew.-%, Kobalt von 0 bis 16,8 Gew.-%, Chrom von 6 bis 11,8 Gew.-%, Molybdän von 3,6 bis 11,3 Gew.-%, Tantal von 0 bis 3,9 Gew.-%, Titan von 0 bis 3,6 Gew.-%, Wolfram von 0 bis 11,3 Gew.-%, Kohlenstoff von 0 bis 0,05 Gew.-%, Phosphor von 0 bis 0,015 Gew.-%, Kupfer von 0 bis 0,05 Gew.-%, Zirkonium von 0 bis 0,015 Gew.-%, Silizium von 0 bis 0,01 Gew.-%, Schwefel von 0 bis 0,001 Gew.-%, Eisen von 0 bis 0,15 Gew.-%, Mangan von 0 bis 0,05 Gew.-%, Bor von 0 bis 0,003 Gew.-%, Hafnium von 0 bis 0,15 Gew.-%, Yttrium von 0 bis 0,002 Gew.-%, sowie Rest Nickel und unvermeidbare Verunreinigungen. Wie ersichtlich ist die Legierung im Wesentlichen frei von Rhenium, d.h. enthält Rhenium wenn überhaupt nur im Spurenmengenbereich (z.B. nicht mehr als 0,001 Gew.-%). Die Legierung kann ferner auch im Wesentlichen frei von Tantal sein.According to the above optimization, a nickel-base alloy may have the following chemical composition: aluminum of 4.1 to 7.7 wt%, cobalt of 0 to 16.8 wt%, chromium of 6 to 11.8 wt% , Molybdenum from 3.6 to 11.3 wt%, tantalum from 0 to 3.9 wt%, titanium from 0 to 3.6 wt%, tungsten from 0 to 11.3 wt% , Carbon of 0 to 0.05 wt.%, Phosphorus of 0 to 0.015 wt.%, Copper of 0 to 0.05 wt.%, Zirconium of 0 to 0.015 wt.%, Silicon of 0 to 0 , 01% by weight, sulfur from 0 to 0.001% by weight, iron from 0 to 0.15% by weight, manganese from 0 to 0.05% by weight, boron from 0 to 0.003% by weight , Hafnium from 0 to 0.15 wt .-%, yttrium from 0 to 0.002 wt .-%, and balance nickel and unavoidable impurities. As can be seen, the alloy is essentially free of rhenium, ie contains rhenium, if at all Trace amount range (eg not more than 0.001% by weight). The alloy may also be substantially free of tantalum.

In einer bevorzugten Ausgestaltung kann eine Nickelbasislegierung gemäß der vorliegenden Erfindung folgende chemische Zusammensetzung aufweisen: Aluminium von 4,7 bis 5,7 Gew.-%, Kobalt von 2,6 bis 13,6 Gew.-%, Chrom von 6,3 bis 7,3 Gew.-%, Molybdän von 3,7 bis 4,7 Gew.-%, Tantal von 0 bis 0,5 Gew.-%, Titan von 2,8 bis 3,6 Gew.-%, Wolfram von 7,4 bis 8,4 Gew.-%, Kohlenstoff von 0 bis 0,05 Gew.-%, Phosphor von 0 bis 0,015 Gew.-%, Kupfer von 0 bis 0,05 Gew.-%, Zirkonium von 0 bis 0,015 Gew.-%, Silizium von 0 bis 0,01 Gew.-%, Schwefel von 0 bis 0,001 Gew.-%, Eisen von 0 bis 0,15 Gew.-%, Mangan von 0 bis 0,05 Gew.-%, Bor von 0 bis 0,003 Gew.-%, Hafnium von 0 bis 0,15 Gew.-%, Yttrium von 0 bis 0,002 Gew.-%, sowie Rest Nickel und unvermeidbare Verunreinigungen.In a preferred embodiment, a nickel-based alloy according to the present invention may have the following chemical composition: aluminum of 4.7 to 5.7% by weight, cobalt of 2.6 to 13.6% by weight, chromium of 6.3 to 7.3% by weight, molybdenum from 3.7 to 4.7% by weight, tantalum from 0 to 0.5% by weight, titanium from 2.8 to 3.6% by weight, tungsten from 7.4 to 8.4 wt .-%, carbon from 0 to 0.05 wt .-%, phosphorus from 0 to 0.015 wt .-%, copper from 0 to 0.05 wt .-%, zirconium from 0 to 0.015% by weight, silicon from 0 to 0.01% by weight, sulfur from 0 to 0.001% by weight, iron from 0 to 0.15% by weight, manganese from 0 to 0.05% by weight. %, Boron from 0 to 0.003% by weight, hafnium from 0 to 0.15% by weight, yttrium from 0 to 0.002% by weight, as well as the balance nickel and unavoidable impurities.

In einer weiteren bevorzugten Ausgestaltung kann eine Nickelbasislegierung gemäß der vorliegenden Erfindung folgende chemische Zusammensetzung aufweisen: Aluminium von 5,0 bis 5,4 Gew.-%, Kobalt von 2,9 bis 13,3 Gew.-%, Chrom von 6,6 bis 7 Gew.-%, Molybdän von 4 bis 4,4 Gew.-%, Tantal von 0 bis 0,2 Gew.-%, Titan von 3,1 bis 3,5 Gew.-%, Wolfram von 7,7 bis 8,1 Gew.-%, Kohlenstoff von 0 bis 0,05 Gew.-%, Phosphor von 0 bis 0,015 Gew.-%, Kupfer von 0 bis 0,05 Gew.-%, Zirkonium von 0 bis 0,015 Gew.-%, Silizium von 0 bis 0,01 Gew.-%, Schwefel von 0 bis 0,001 Gew.-%, Eisen von 0 bis 0,15 Gew.-%, Mangan von 0 bis 0,05 Gew.-%, Bor von 0 bis 0,003 Gew.-%, Hafnium von 0 bis 0,15 Gew.-%, Yttrium von 0 bis 0,002 Gew.-%, sowie Rest Nickel und unvermeidbare Verunreinigungen.In a further preferred embodiment, a nickel-based alloy according to the present invention may have the following chemical composition: aluminum of 5.0 to 5.4 wt .-%, cobalt of 2.9 to 13.3 wt .-%, chromium of 6.6 to 7% by weight, molybdenum from 4 to 4.4% by weight, tantalum from 0 to 0.2% by weight, titanium from 3.1 to 3.5% by weight, tungsten from 7.7 to 8.1% by weight, carbon from 0 to 0.05% by weight, phosphorus from 0 to 0.015% by weight, copper from 0 to 0.05% by weight, zirconium from 0 to 0.015% by weight. %, Silicon from 0 to 0.01% by weight, sulfur from 0 to 0.001% by weight, iron from 0 to 0.15% by weight, manganese from 0 to 0.05% by weight, boron from 0 to 0.003% by weight, hafnium from 0 to 0.15% by weight, yttrium from 0 to 0.002% by weight, as well as the balance nickel and unavoidable impurities.

In einer weiteren bevorzugten Ausgestaltung kann eine Nickelbasislegierung gemäß der vorliegenden Erfindung einen Kobaltgehalt kleiner als 5 Gew.-%, vorzugsweise kleiner als 4 Gew.-%, aufweisen. Da Kobalt eine niedrigere molare Masse als Nickel aufweist, wirkt sich ein relativ niedriger Kobaltgehalt vorteilhaft auf die Gesamtdichte der Nickelbasislegierung aus, und somit auch auf das Gesamtgewicht des aus dieser Legierung herstellten Zielbauteils.In a further preferred embodiment, a nickel-based alloy according to the present invention may have a cobalt content of less than 5% by weight, preferably less than 4% by weight. Since cobalt has a lower molar mass than nickel, a relatively low cobalt content has an advantageous effect on the overall density of the nickel-based alloy, and thus also on the total weight of the target component produced from this alloy.

Alternativ kann die erfindungsgemäße Nickelbasislegierung jedoch auch einen Kobaltgehalt größer als 11 Gew.-%, vorzugsweise größer als 13 Gew.-%, aufweisen. Ein entsprechend hoher Kobaltgehalt wirkt sich positiv für die Seigerungen bei der Erstarrung und die Mikrostrukturstabilität gegenüber der unerwünschten Bildung von TCP-Phasen aus.Alternatively, however, the nickel-based alloy according to the invention may also have a cobalt content of greater than 11% by weight, preferably greater than 13% by weight. A correspondingly high cobalt content has a positive effect on the segregation during solidification and the microstructural stability against the undesired formation of TCP phases.

Bevorzugt ist es außerdem, dass die Nickelbasislegierung gemäß der vorliegenden Erfindung mindestens 67 at.-%, insbesondere mindestens 68 at.-% Nickel enthält.It is also preferred that the nickel-based alloy according to the present invention contains at least 67 at.%, In particular at least 68 at.%, Nickel.

Bevorzugt ist es weiterhin, dass die Nickelbasislegierung gemäß der vorliegenden Erfindung eine oder mehrere (und vorzugsweise alle) der folgenden Eigenschaften aufweist:

  • Dichte von nicht höher als 8,5 g/cm3, vorzugsweise nicht höher als 8,4 g/cm3;
  • Solidustemperatur von höher als 1320°C;
  • 44 bis 48 Vol.-% Ausscheidungen einer y'-Phase in einer γ-Matrix bei einer Temperatur von 1100°C;
  • γ/γ'-Fehlpassung im Bereich von -0,1 % bis -0,5 % bei einer Temperatur von 1100°C;
  • Resteutektikum von nicht mehr als 4 %, vorzugsweise nicht mehr als 3 %.
It is further preferred that the nickel-based alloy according to the present invention has one or more (and preferably all) of the following properties:
  • Density of not higher than 8.5 g / cm 3 , preferably not higher than 8.4 g / cm 3 ;
  • Solidus temperature of higher than 1320 ° C;
  • 44 to 48% by volume precipitates of a y'-phase in a γ-matrix at a temperature of 1100 ° C;
  • γ / γ 'mismatch ranging from -0.1% to -0.5% at a temperature of 1100 ° C;
  • Resteutikumikum of not more than 4%, preferably not more than 3%.

Als "unvermeidbare Verunreinigungen" in der Legierung sind Elemente zu verstehen, deren Zugabe nicht beabsichtigt ist, die sich jedoch aus technischen Gründen nicht oder nur mit extrem großen Aufwand verhindern lässt. Beispielsweise können in der erfindungsgemäßen Legierung noch die folgenden Elemente in Form von Spurenelementen vorhanden sein, deren Gehalt jedoch auf folgende Bereiche beschränkt ist: Bismut von 0 bis 0,00003 Gew.-%, Selen von 0 bis 0,0001 Gew.-%, Thallium von 0 bis 0,00005 Gew.-%, Blei von 0 bis 0,0005 Gew.-%, und Tellur von 0 bis 0,0001 Gew.-%.As "unavoidable impurities" in the alloy elements are to be understood, the addition of which is not intended, but which can not be prevented for technical reasons or only with extremely great effort. For example, in the alloy according to the invention the following elements may still be present in the form of trace elements, the content of which is limited to the following ranges: bismuth from 0 to 0.00003% by weight, selenium from 0 to 0.0001% by weight, Thallium from 0 to 0.00005 wt%, lead from 0 to 0.0005 wt%, and tellurium from 0 to 0.0001 wt%.

Mit der erfindungsgemäßen Legierung können insbesondere Gegenstände wie Komponenten von Gasturbinen, vorzugsweise Turbinenschaufeln, und dergleichen hergestellt werden, die einkristallin oder gerichtet erstarrt ausgebildet sein können.With the alloy according to the invention in particular articles such as components of gas turbines, preferably turbine blades, and the like can be prepared, which may be monocrystalline or directionally solidified.

Die beigefügte Figur zeigt einen Larson - Miller - Plot zur Veranschaulichung der Kriechbeständigkeit der erfindungsgemässen Legierung im Vergleich zu bekannten Legierungen.The attached figure shows a Larson-Miller plot to illustrate the creep resistance of the alloy according to the invention compared to known alloys.

Es wurde eine erfindungsgemäße Legierung hergestellt, deren Zusammensetzung der nachfolgenden Tabelle entnommen werden kann (Legierung 1). Als Vergleichslegierungen wurden die Legierungen 2 und 3 gewählt, wobei die Legierung 3 in der chemischen Zusammensetzung im Wesentlichen derjenigen des rheniumhaltigen Werkstoffs CMSX-4 entspricht und die Legierung 2 die in EP 2 725 110 A1 offenbarte rheniumfreie Nickelbasis-Superlegierung ist. Die Bestandteile der Legierungen sind in der Tabelle in Gewichtsprozent angegeben (Rest Nickel und unvermeidbare Verunreinigungen). Legierung No. Al Co Cr Mo Re Ta Ti W 1 5,2 3,1 6,8 4,2 - - 3,3 7,9 2 4,8 8,6 5,0 1,4 - 10,1 1,3 8,8 3 5,6 9,0 6,5 0,6 3,0 6,5 1,0 6,0 An alloy according to the invention was produced, the composition of which can be taken from the table below (alloy 1). Alloys 2 and 3 were chosen as comparison alloys, with the alloy 3 in the chemical composition essentially corresponding to that of the rhenium-containing material CMSX-4, and the alloy 2 corresponding to that in EP 2 725 110 A1 disclosed rhenium-free nickel base superalloy is. The components of the alloys are given in the table in weight percent (balance nickel and unavoidable impurities). Alloy no. al Co Cr Not a word re Ta Ti W 1 5.2 3.1 6.8 4.2 - - 3.3 7.9 2 4.8 8.6 5.0 1.4 - 10.1 1.3 8.8 3 5.6 9.0 6.5 0.6 3.0 6.5 1.0 6.0

Die erfindungsgemäße Legierung 1 wurde an einer Labor-Bridgman Giessanlage in einer Dreistab-Geometrie stängelkristallin hergestellt. Die Stäbe hatten einen Durchmesser von jeweils 12 mm und eine Länge von jeweils 180 mm und zeigten eine typische dendritische Mikrostruktur mit einem Dendritenabstand von etwa 230 µm. Der Anteil an Resteutektikum ist mit 2,8 % sehr gering (die Legierungen 2 und 3 weisen ein Resteutektikum von 6,5 % bzw. 9,0 % auf). Bei geeigneter Wärmebehandlung (siehe unten) hat die Legierung 1 eine typische vollständig kubische y'-Phasenmorphologie.The alloy 1 according to the invention was produced in a columnar crystal structure on a laboratory Bridgman casting installation in a three-bar geometry. The rods had a diameter of 12 mm each and a length of 180 mm each and showed a typical dendritic microstructure with a dendrite spacing of about 230 μm. The proportion of residual eutectic is very low at 2.8% (alloys 2 and 3 have a residual eutectic of 6.5% and 9.0%, respectively). With suitable heat treatment (see below), alloy 1 has a typical fully cubic y'-phase morphology.

Außerdem wurden an aus den fertig wärmebehandelten Legierungen 1 bis 3 hergestellten Zylindern (Durchmesser 4,0 mm, Höhe 6,4 mm) Druckkriechversuche durchgeführt. Die Stirnflächen waren abgedreht um deren Planparallelität sicherzustellen. Alle Kriechversuche wurden bei konstanten Spannungen und folgenden Parametern durchgeführt: 1100 °C/137 MPa, 1050 °C/200 MPa, 950 °C/300 MPa, 950 °C/400 MPa. Die entsprechenden Kriechkurven sind in der Figur dargestellt (1 % plastische Dehnung, DB-Material, λ = 220 µm).In addition, pressure creep tests were performed on cylinders made of the finished heat-treated alloys 1 to 3 (diameter 4.0 mm, height 6.4 mm). The faces were turned off to ensure their parallelism. All creep tests were carried out at constant voltages and with the following parameters: 1100 ° C / 137 MPa, 1050 ° C / 200 MPa, 950 ° C / 300 MPa, 950 ° C / 400 MPa. The corresponding creep curves are shown in the figure (1% plastic strain, DB material, λ = 220 μm).

Wie sich aus der Figur ergibt, weist die erfindungsgemäße Legierung 1 (L1) eine Kriechbeständigkeit auf, die im Wesentlichen gleich derjenigen der rheniumfreien Legierung 2 (L2) ist, wobei die Kriechbeständigkeiten dieser Legierungen ähnlich der Kriechbeständigkeit von Legierung 3 (L3) sind, die einer Nickelbasis-Superlegierung der zweiten Generation entspricht. Im Vergleich zu den Legierungen 2 und 3 weist die Legierung 1 aber insbesondere eine geringere Dichte auf. Die Analyse der Mikrostruktur der erfindungsgemäßen Legierung 1 nach dem Kriechen offenbarte keinerlei TCP-Phasenbildung.As can be seen from the figure, Alloy 1 (L1) according to the present invention has a creep resistance substantially equal to that of rhenium-free alloy 2 (L2), the creep resistances of these alloys being similar to the creep resistance of Alloy 3 (L3) corresponds to a second generation nickel base superalloy. In comparison to the alloys 2 and 3, however, the alloy 1 in particular has a lower density. Analysis of the microstructure of the inventive alloy 1 after creep revealed no TCP phase formation.

Damit wird deutlich, dass durch die erfindungsgemässe Lehre Nickelbasis-Superlegierungen bereitgestellt werden können, die auf das schwer verfügbare Element Rhenium verzichten können, aber gleichwohl mechanische Hochtemperatureigenschaften, wie beispielsweise eine entsprechende Kriechbeständigkeit, wie bekannte rheniumhaltige Legierungen bereitstellen können und zudem eine geringere Dichte aufweisen als bekannte rheniumhaltige und rheniumfreie Legierungen.Thus, it is clear that nickel-based superalloys can be provided by the teachings of the present invention which can dispense with the hard-to-obtain element rhenium but nevertheless provide high temperature mechanical properties such as creep resistance, such as known rhenium containing alloys, and also have lower density than known rhenium-containing and rhenium-free alloys.

In der folgenden Tabelle sind einige Eigenschaften der Legierungen 1-3 einander gegenübergestellt. Eigenschaft Legierung 1 berechnet Legierung 1 gemessen Legierung 2 gemessen Legierung 3 berechnet Dichte, g/cm3 8,3 8,4 9,0 8,7 Liquidustemp., °C 1373 1371 1371 1381 Solidustemp., °C 1348 1302* 1316* 1338 γ' - Solvustemp. °C 1232 1255 1242 1257 γ/γ'-Fehlpassung, 1100 °C, % -0,5 -0,45** -0,02** -0,17 γ' - Anteil, 1100 °C, mol-% 44,0 - - 44,9 *Gusszustand **Raumtemperatur The following table compares some properties of alloys 1-3. property Alloy 1 calculated Alloy 1 measured Alloy 2 measured Alloy 3 is calculated Density, g / cm 3 8.3 8.4 9.0 8.7 Liquidus temp., ° C 1373 1371 1371 1381 Solidus, ° C 1348 1302 * 1316 * 1338 γ '- Solvustemp. ° C 1232 1255 1242 1257 γ / γ 'mismatch, 1100 ° C,% -0.5 -0.45 ** -0.02 ** -0.17 γ 'content, 1100 ° C, mol% 44.0 - - 44.9 * Cast state ** room temperature

Herauszuheben ist insbesondere die relative geringe Dichte der erfindungsgemäßen Legierung 1. Die γ/γ'-Fehlpassung konnte nur bei Raumtemperatur gemessen werden; üblicherweise liegen die Werte bei höheren Temperaturen höher.Particularly noteworthy is the relatively low density of the inventive alloy 1. The γ / γ 'mismatch could only be measured at room temperature; Usually the values are higher at higher temperatures.

Das Lösungsglühen der Legierung 1 kann beispielsweise zweistufig wie folgt durchgeführt werden:

  • Erwärmung der Legierung um 4 K/min bis auf 1285 °C,
  • 2 h Halten bei 1285°C,
  • Erwärmung der Legierung um 1 K/min bis auf 1300 °C,
  • 6,5 h Halten bei 1300 °C,
  • anschließend Schnellabkühlung.
The solution annealing of alloy 1 can be carried out, for example, in two stages as follows:
  • Heating the alloy by 4 K / min up to 1285 ° C,
  • 2 h hold at 1285 ° C,
  • Heating the alloy by 1 K / min up to 1300 ° C,
  • 6.5 hours hold at 1300 ° C,
  • then rapid cooling.

Zudem kann die Legierung 1 nach dem Lösungsglühen eine oder beide der nachfolgenden Ausscheidungswärmebehandlungen erfahren:
Ausscheidungswärmebehandlung 1: Temperatur Heizrate Haltezeit 1000 °C 4 K/min 1050 °C 1K/min 1050 °C 1 h 20 °C Schnellabkühlung
Ausscheidungswärmebehandlung 2: Temperatur Heizrate Haltezeit 840 °C 4 K/min 870 °C 1K/min 870 °C 24 h 20 °C Schnellabkühlung
In addition, alloy 1 may undergo one or both of the following precipitation heat treatments after solution annealing:
Excretion heat treatment 1: temperature heating rate hold time 1000 ° C 4 K / min 1050 ° C 1K / min 1050 ° C 1 h 20 ° C rapid cooling
Excretion heat treatment 2: temperature heating rate hold time 840 ° C 4 K / min 870 ° C 1K / min 870 ° C 24 hours 20 ° C rapid cooling

Längere Glühzeiten als 2 Stunden bei 1050 °C oder höhere Temperaturen führen zu einer Überalterung der Mikrostruktur.Longer annealing times than 2 hours at 1050 ° C or higher temperatures lead to an aging of the microstructure.

Zusammenfassend kann festgestellt werden, dass die oben beschriebene erfindungsgemäße Legierung insbesondere folgende Eigenschaften aufweist:

  • Kriechbeständigkeit nahe derjenigen von CSMX-4
  • niedrige Dichte von 8,4 g/cm3 (Vergleich: CSMX-4: 8,7 g/cm3)
  • geringes Resteutektikum von 2,8 % (Vergleich: CSMX-4: 9,0 %)
  • gute Lösungsglühbarkeit (8,5 Stunden Halten bei 1285 °C/ 1300 °C).
  • geringe TCP-Phasenneigung.
Obwohl die vorliegende Erfindung anhand des Ausführungsbeispiels detailliert beschrieben worden ist, ist für den Fachmann selbstverständlich, dass die Erfindung nicht auf dieses Ausführungsbeispiel beschränkt ist, sondern dass vielmehr Abwandlungen in der Weise möglich sind, dass einzelne Merkmale weggelassen oder Merkmale andersartig kombiniert werden können, solange der Schutzbereich der beigefügten Anspruche nicht verlassen wird. Die vorliegende Offenbarung offenbart sämtliche Kombinationen aller vorgestellter Einzelmerkmale.In summary, it can be stated that the above-described alloy according to the invention has in particular the following properties:
  • Creep resistance close to that of CSMX-4
  • low density of 8.4 g / cm 3 (comparison: CSMX-4: 8.7 g / cm 3 )
  • low residual eutectic of 2.8% (comparison: CSMX-4: 9.0%)
  • good solution heatability (8.5 hours hold at 1285 ° C / 1300 ° C).
  • low TCP phase slope.
Although the present invention has been described in detail with reference to the embodiment, it will be understood by those skilled in the art that the invention is not limited to this embodiment, but rather modifications in the manner it is possible that individual features may be omitted or features otherwise combined, as long as the scope of protection of the appended claims is not abandoned. The present disclosure discloses all combinations of all presented individual features.

Claims (12)

  1. A nickel base alloy that exhibits high creep resistance, is free of rhenium or contains no more than 0.001 wt% rhenium, and has the following chemical composition:
    aluminum from 4.1 to 7.7 wt%,
    cobalt from 0 to 16.8 wt%,
    chromium from 6 to 11.8 wt%,
    molybdenum from 3.6 to 11.3 wt%,
    tantalum from 0 to 3.9 wt%,
    titanium from 0 to 3.6 wt%,
    tungsten from 0 to 11.3 wt%,
    carbon from 0 to 0.05 wt%,
    phosphorus from 0 to 0.015 wt%,
    copper from 0 to 0.05 wt%,
    zirconium from 0 to 0.015 wt%,
    silicon from 0 to 0.01 wt%,
    sulfur from 0 to 0.001 wt%,
    iron from 0 to 0.15 wt%,
    manganese from 0 to 0.05 wt%,
    boron from 0 to 0.003 wt%,
    hafnium from 0 to 0.15 wt%,
    yttrium from 0 to 0.002 wt%,
    and a remainder of nickel and unavoidable impurities.
  2. The nickel base alloy according to claim 1,
    characterized in that
    the alloy has the following chemical composition:
    aluminum from 4.7 to 5.7 wt%,
    cobalt from 2.6 to 13.6 wt%,
    chromium from 6.3 to 7.3 wt%,
    molybdenum from 3.7 to 4.7 wt%,
    tantalum from 0 to 0.5 wt%,
    titanium from 2.8 to 3.6 wt%,
    tungsten from 7.4 to 8.4 wt%,
    carbon from 0 to 0.05 wt%,
    phosphorus from 0 to 0.015 wt%,
    copper from 0 to 0.05 wt%,
    zirconium from 0 to 0.015 wt%,
    silicon from 0 to 0.01 wt%,
    sulfur from 0 to 0.001 wt%,
    iron from 0 to 0.15 wt%,
    manganese from 0 to 0.05 wt%,
    boron from 0 to 0.003 wt%,
    hafnium from 0 to 0.15 wt%,
    yttrium from 0 to 0.002 wt%,
    and a remainder of nickel and unavoidable impurities.
  3. The nickel base alloy according to claim 2,
    characterized in that
    the alloy has the following chemical composition:
    aluminum from 5.0 to 5.4 wt%,
    cobalt from 2.9 to 13.3 wt%,
    chromium from 6.6 to 7 wt%,
    molybdenum from 4 to 4.4 wt%,
    tantalum from 0 to 0.2 wt%,
    titanium from 3.1 to 3.5 wt%,
    tungsten from 7.7 to 8.1 wt%,
    carbon from 0 to 0.05 wt%,
    phosphorus from 0 to 0.015 wt%,
    copper from 0 to 0.05 wt%,
    zirconium from 0 to 0.015 wt%,
    silicon from 0 to 0.01 wt%,
    sulfur from 0 to 0.001 wt%,
    iron from 0 to 0.15 wt%,
    manganese from 0 to 0.05 wt%,
    boron from 0 to 0.003 wt%,
    hafnium from 0 to 0.15 wt%,
    yttrium from 0 to 0.002 wt%,
    and a remainder of nickel and unavoidable impurities.
  4. The nickel base alloy according to any of the preceding claims,
    characterized in that
    the alloy has a cobalt content of less than 5 wt%, preferably less than 4 wt%.
  5. The nickel base alloy according to any of claims 1-3,
    characterized in that
    the alloy has a cobalt content of greater than 1 wt%, preferably greater than 13 wt%.
  6. The nickel base alloy according to any of the preceding claims,
    characterized by
    having a density of not higher than 8.5 g/cm3, preferably not higher than 8.4 g/cm3.
  7. The nickel base alloy according to any of the preceding claims,
    characterized by
    having a solidus temperature of higher than 1320°C.
  8. The nickel base alloy according to any of the preceding claims,
    characterized by
    having a residual eutectic of not more than 4%, preferably not more than 3%.
  9. An article produced from the nickel base alloy according to any of the preceding claims.
  10. The article according to claim 9,
    characterized in that
    the article is monocrystalline or directionally solidified.
  11. The article according to claim 9 or 10,
    characterized in that
    the article is a component of a stationary gas turbine or an aircraft engine, in particular, a turbine blade.
  12. A method for producing a nickel base alloy,
    characterized in that
    the method comprises combining and melting together metals in ratios that result in the alloy according to any of claims 1 to 8.
EP15166317.6A 2015-05-05 2015-05-05 Low density rhenium-free nickel base superalloy Not-in-force EP3091095B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15166317.6A EP3091095B1 (en) 2015-05-05 2015-05-05 Low density rhenium-free nickel base superalloy
ES15166317.6T ES2682362T3 (en) 2015-05-05 2015-05-05 Super-alloy of rhenium-free nickel with low density
US15/142,068 US20170058383A1 (en) 2015-05-05 2016-04-29 Rhenium-free nickel base superalloy of low density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15166317.6A EP3091095B1 (en) 2015-05-05 2015-05-05 Low density rhenium-free nickel base superalloy

Publications (2)

Publication Number Publication Date
EP3091095A1 EP3091095A1 (en) 2016-11-09
EP3091095B1 true EP3091095B1 (en) 2018-07-11

Family

ID=53039792

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15166317.6A Not-in-force EP3091095B1 (en) 2015-05-05 2015-05-05 Low density rhenium-free nickel base superalloy

Country Status (3)

Country Link
US (1) US20170058383A1 (en)
EP (1) EP3091095B1 (en)
ES (1) ES2682362T3 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2554898B (en) 2016-10-12 2018-10-03 Univ Oxford Innovation Ltd A Nickel-based alloy
WO2020129282A1 (en) * 2018-12-17 2020-06-25 日立金属株式会社 Ni‑BASED SUPER-HEAT-RESISTANT ALLOY
CN112760525B (en) * 2019-11-01 2022-06-03 利宝地工程有限公司 High gamma prime nickel-based superalloy, use thereof and method of manufacturing a turbine engine component
CN111235434B (en) * 2020-03-02 2021-07-30 北京钢研高纳科技股份有限公司 Preparation method of nickel-based deformed superalloy wheel disc forging used at high temperature

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054096A (en) 1982-12-27 2000-04-25 United Technologies Corporation Stable heat treatable nickel superalloy single crystal articles and compositions
EP0962542A1 (en) 1998-05-01 1999-12-08 United Technologies Corporation Stable heat treatable nickel superalloy single crystal articles and compositions
US8876989B2 (en) 2007-08-31 2014-11-04 General Electric Company Low rhenium nickel base superalloy compositions and superalloy articles
US20130230405A1 (en) 2007-08-31 2013-09-05 Kevin Swayne O'Hara Nickel base superalloy compositions being substantially free of rhenium and superalloy articles
US20100135846A1 (en) 2008-12-01 2010-06-03 United Technologies Corporation Lower cost high strength single crystal superalloys with reduced re and ru content
US8226886B2 (en) 2009-08-31 2012-07-24 General Electric Company Nickel-based superalloys and articles
US20110076181A1 (en) 2009-09-30 2011-03-31 General Electric Company Nickel-Based Superalloys and Articles
US20110076182A1 (en) 2009-09-30 2011-03-31 General Electric Company Nickel-Based Superalloys and Articles
US20110076180A1 (en) 2009-09-30 2011-03-31 General Electric Company Nickel-Based Superalloys and Articles
EP2392684A1 (en) 2010-06-02 2011-12-07 Siemens Aktiengesellschaft Alloy, protective layer and component
US20130129522A1 (en) 2011-11-17 2013-05-23 Kenneth Harris Rhenium-free single crystal superalloy for turbine blades and vane applications
US9850765B2 (en) 2011-12-07 2017-12-26 MTU Aero Engines AG Rhenium-free or rhenium-reduced nickel-base superalloy
ES2625825T3 (en) 2012-10-26 2017-07-20 MTU Aero Engines AG Super-alloy with rhenium-free and creep-resistant nickel

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2682362T3 (en) 2018-09-20
EP3091095A1 (en) 2016-11-09
US20170058383A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
DE3023576C2 (en)
EP2145967B1 (en) Titanium aluminide alloys
DE69017574T2 (en) High strength fatigue crack resistant alloy workpiece.
EP1819838B1 (en) Titanium aluminide based alloy
EP3175008B1 (en) Cobalt based alloy
EP2163656B1 (en) High-temperature-resistant cobalt-base superalloy
DE3445996C2 (en) Single-crystal cast piece made of a nickel-based alloy and process for its production
DE102010037046A1 (en) Nickel base superalloys and articles
DE2749080A1 (en) NICKEL BASED SINGLE CRYSTAL SUPER-ALLOY ARTICLE AND METHOD FOR ITS MANUFACTURING
DE3030962A1 (en) SINGLE AND POLYCRYSTALLINE ALLOY ON NICKEL OR COBALT BASE.
EP2402473B1 (en) Process for producing a single-crystal component made of a nickel-based superalloy
DE2223114B2 (en) Heat treatment process for a nickel-iron based alloy
DE2445462B2 (en) Use of a nickel alloy
EP3091095B1 (en) Low density rhenium-free nickel base superalloy
EP2851445B1 (en) Creep-resistant TiAl alloy
EP3054023B1 (en) Aluminium-rich high temperature tial alloy
DE2821524C2 (en) Process for the heat treatment of a monocrystalline body made of a nickel superalloy
EP2354261B1 (en) Nickel-Basis-Superalloy with improved degradation behaviour
EP3133178B1 (en) Optimized nickel based superalloy
DE112016003045T5 (en) Casting material and method for producing a casting material
EP2725110B1 (en) Creep resistant rhenium-free nickel based superalloy
DE10100790C2 (en) Nickel-based alloy for the cast-technical production of solidified components
DE2365045A1 (en) ALLOY STRENGTHENED BY PRECIPITATION
WO2012041276A2 (en) Heat-resistant tial alloy
DE69216334T2 (en) Superalloy with a low coefficient of expansion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170503

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180307

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1016947

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015004987

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2682362

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180920

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180711

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181011

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181012

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181011

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015004987

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

26N No opposition filed

Effective date: 20190412

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200618

Year of fee payment: 6

Ref country code: DE

Payment date: 20200525

Year of fee payment: 6

Ref country code: FR

Payment date: 20200519

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200522

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1016947

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150505

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200505

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015004987

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210505

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210505

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180711

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210506