EP3175008B1 - Cobalt based alloy - Google Patents

Cobalt based alloy Download PDF

Info

Publication number
EP3175008B1
EP3175008B1 EP15750314.5A EP15750314A EP3175008B1 EP 3175008 B1 EP3175008 B1 EP 3175008B1 EP 15750314 A EP15750314 A EP 15750314A EP 3175008 B1 EP3175008 B1 EP 3175008B1
Authority
EP
European Patent Office
Prior art keywords
weight
cobalt
alloys
temperature
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP15750314.5A
Other languages
German (de)
French (fr)
Other versions
EP3175008A2 (en
Inventor
Alexander Bauer
Mathias GÖKEN
Lisa FREUND
Steffen Neumeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Friedrich Alexander Univeritaet Erlangen Nuernberg FAU
Original Assignee
Friedrich Alexander Univeritaet Erlangen Nuernberg FAU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friedrich Alexander Univeritaet Erlangen Nuernberg FAU filed Critical Friedrich Alexander Univeritaet Erlangen Nuernberg FAU
Publication of EP3175008A2 publication Critical patent/EP3175008A2/en
Application granted granted Critical
Publication of EP3175008B1 publication Critical patent/EP3175008B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt

Definitions

  • the invention relates to polycrystalline precipitation hardened and oxidation resistant ⁇ / ⁇ 'cobalt base superalloys for high temperature applications.
  • the mechanical properties of the specified cobalt-based superalloys exceed those of conventional carbide-hardened cobalt alloys. Up to a temperature of 800 ° C similar and at temperatures above 800 ° C even higher hot strengths than the nickel-based ⁇ / ⁇ 'forging alloys are achieved. The creep strengths are also significantly higher. In comparison to ⁇ / ⁇ 'nickel-base superalloys, similar proportions of the ⁇ ' precipitation phase are achieved despite the low solvus temperature. Due to the large temperature range between the solidus and solvus temperatures, the precipitation-hardened ⁇ / ⁇ 'cobalt-base superalloys are particularly suitable as polycrystalline forging alloys.
  • Cobalt base and especially ⁇ / ⁇ 'nickel base superalloys are essential materials for a variety of components in jet engines of commercial aircraft or in stationary gas turbines for power conversion. Efforts to increase the efficiency of these turbines, reduce costs and reduce fossil fuel consumption can all be achieved through new materials that offer higher temperature resistance, longer service life and lower manufacturing and processing costs.
  • ⁇ / ⁇ 'Cobalt base superalloys generally have a very high solidus temperature in the temperature range of 1300 ° C to 1450 ° C in conjunction with a relatively low ⁇ ' solvus temperature in the temperature range of 900 ° C to 1150 ° C.
  • very high ⁇ ' volume fractions of more than 75% can be realized at temperatures up to 900 ° C (see, for example, US Pat. B. Bauer et al., Microstructure and creep strength of different ⁇ / ⁇ '-enhanced co-base superalloy variants, Scripta Materialia 63 (2010) 1197-1200 ).
  • Nickel base superalloys in comparison, either have a low ⁇ 'solvus temperature below 1100 ° C, combined with a low ⁇ ' volume fraction at use temperatures of up to 700 ° C (eg, Waspaloy: ⁇ 'solvus temperature: 1038 ° C ( Semiatin et al., Deformation behavior of Waspaloy at hot-working temperatures, Scripta Materialia 50 (2004) 625-629 ); ⁇ 'volume fraction at application temperature: 25% ( ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, Ed.
  • alloys are either malleable, but have a lower strength or that they still have a relatively high proportion of the precipitation phase at forging temperatures of 1000 ° C to 1150 ° C and thus difficult or no longer deformable are and can only be processed powder metallurgy. This significantly increases the costs.
  • cobalt-based alloys are known to have higher hot-gas corrosion resistance than nickel-base alloys, since a liquid co-sulfur phase can occur only at 877 ° C, whereas a liquid Ni-S phase already occurs at 637 ° C ( please refer Bürgel, Maier, Niendorf, Handbook High Temperature Materials Technology, 4th Revised Edition 2011, Vieweg + Teubner Verlag, Springer crampmedien Wiesbaden GmbH 2011 or ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, Ed. Davies et al, ASM International, Materials Park, OH 44073, USA ). Increased hot gas corrosion resistance can thus lead to a lifetime extension.
  • Cobalt base superalloys are known per se, for example Titus et al., "Creep and directional coarsening in single crystals of new ⁇ - ⁇ 'cobalt-base alloys", Scripta Mat. 66 (2012) 574-577 . US 2011/0268989 A1 . US 2010/0291406 A1 . EP 2 251 446 A1 . CA2 620 606 A1 . EP 1 925 683 A1 . US 2008/0185078 A1 . EP 2 163 656 A1 . US 2011/0062214 A1 . EP 2 298 486 A2 . EP 2 383 356 A1 . EP 2 045 345 A1 and EP 2 532 762 A1 ,
  • the object of the invention is the development of polycrystalline, higher-strength, precipitation-hardened ⁇ / ⁇ 'cobalt-base superalloys, with very good oxidation properties, which can be processed by means of various forming processes, such as forging.
  • a cobalt-base superalloy comprising 32-45% by weight of Co, 28-40% by weight of Ni, 10-15% by weight of Cr, 2.5-5.5% by weight of Al, 6 , 5-16% by weight W, 0-9% by weight Ta, 0-8% by weight Ti, 0.1-1% by weight Si, 0-0.5% by weight B, 0-0.5 wt% C, 0-2 wt% Hf, 0-0.1 wt% Zr, 0-8 wt% Fe, 0-6 wt% Nb, 0 7 wt% Mo, 0-4 wt% Ge and a balance of unavoidable impurities.
  • the cobalt-base superalloy comprises 32-45% by weight of Co, 28-40% by weight of Ni, 10-15% by weight of Cr, 2.5-5.5% by weight of Al, 6.5 -16 wt% W, 0-9 wt% Ta, 0-8 wt% Ti, 0.1-1 wt% Si, 0-0.5 wt% B, 0-0 , 5% by weight C, 0 to ⁇ 2% by weight Hf, 0 to ⁇ 0.1% by weight Zr, 0 to ⁇ 8% by weight Fe, 0 to ⁇ 6% by weight Nb, 0 to ⁇ 7 wt .-% Mo, 0 to ⁇ 4 wt .-% Ge and a balance of unavoidable impurities.
  • the cobalt base superalloy comprises 32-45 wt.% Co, 28-40 wt.% Ni, 10-15 wt.% Cr, 2.5-5.5 wt.% Al, 6, 5-16 wt% W, 0.2-9 wt% Ta, 0.2-8 wt% Ti, 0.1-1 wt% Si, ⁇ 0.5 wt% B, ⁇ 0.5 wt .-% C, 0 to ⁇ 2 wt .-% Hf, 0 to ⁇ 0.1 wt .-% Zr, 0 to ⁇ 8 wt .-% Fe, 0 to ⁇ 6 wt. -% Nb, 0 to ⁇ 7 wt .-% Mo, 0 to ⁇ 4 wt .-% Ge and a balance of unavoidable impurities.
  • the cobalt base superalloy comprising an aforesaid composition characterized by an intermetallic ⁇ 'phase of the composition (Co, Ni) 3 (Al, W, Ti, Ta), each clip containing at least one of the elements listed in parentheses ,
  • the intermetallic ⁇ 'phase (precipitation phase) is contained with a volume fraction of more than 35%, preferably of more than 45%.
  • Co forms the cubic face-centered ⁇ matrix phase as a basic element among other elements and is an important constituent of the hardening ⁇ '- (Co, Ni) 3 (Al, W, Ti, Ta) precipitation phase. Co also lowers the stacking fault energy.
  • Ni (nickel) 28-40% by weight
  • Ni in the specified range expands the ⁇ / ⁇ 'two-phase region to a sufficient extent, so that further alloying elements, in particular Cr, can be added to a sufficient extent.
  • Cr contents from about 4% by weight destabilize the biphasic ⁇ / ⁇ 'microstructure in ternary Co-Al-W alloys, and further undesirable intermetallic phases are formed.
  • Ni shifts the maximum possible concentration of Cr to higher concentrations. Furthermore, with Ni, the ⁇ 'solvus temperature can be increased.
  • the alloying element Cr should be added to the specified range.
  • Cr acts as a mixed crystal hardener.
  • Al forms the ⁇ 'precipitation phase (Co, Ni) 3 (Al, W, Ti, Ta), which contributes significantly to the increase in strength. Furthermore, Al increases the oxidation resistance. Higher levels of Al in the specified composition range can lead to the formation of additional intermetallic phases, such as CoAl, which can limit grain growth in forging alloys. As a result, smaller particle sizes and thus higher strengths can be achieved.
  • Si is a crucial element and significantly improves the oxidation resistance. However, excessive amounts of Si can lead to further undesirable intermetallic phases.
  • B acts as a grain boundary strengthening alloying element and improves the oxidation properties. Too high concentrations lead to too high a proportion of borides. Preferably, B is contained at more than 0.01% by weight.
  • C acts as a grain boundary strengthening alloying element.
  • C forms carbides.
  • C is preferably contained with more than 0.01% by weight.
  • Ta (Tantalum): 0.2-9% by weight
  • Ta contributes to the formation of the ⁇ 'precipitation phase, increases the ⁇ ' solvus temperature and the ⁇ / ⁇ 'lattice mismatch. Ta hardens the ⁇ 'precipitation phase and leads to an increase in strength. In particular, when high toughness at 800 ° C is required, the two elements Ta and Ti are required.
  • Ti contributes to the formation of the ⁇ 'precipitation phase, increases the ⁇ ' solvus temperature and the ⁇ / ⁇ 'lattice mismatch. Ti hardens the ⁇ 'precipitation phase and leads to an increase in strength. In particular, when high toughness at 800 ° C is required, the two elements Ta and Ti are required. Ti can largely replace W, thereby significantly reducing the density.
  • Hf stabilizes the ⁇ 'excretion phase.
  • Hf is contained at more than 0.2% by weight.
  • Zr serves to increase the grain boundary strength and to stabilize the ⁇ 'precipitation phase.
  • Zr is included at more than 0.01% by weight.
  • Fe lowers the ⁇ 'solvus temperature and can be used to adjust this especially for forging alloys. Fe is also a low cost element and can improve weldability. Too high concentrations destabilize the ⁇ / ⁇ 'microstructure. Preference is given to containing Fe more than 0.1% by weight.
  • Nb contributes to the formation of the ⁇ 'precipitation phase, leads to an increase in strength and increases the ⁇ ' solvus temperature. Higher concentrations within the given concentration range may lead to the formation of additional intermetallic phases which may limit grain growth in forging alloys. As a result, smaller particle sizes and thus higher strengths can be achieved.
  • Nb is contained at more than 0.1% by weight.
  • Mo serves as a solid-solution-hardening element and can partially replace W, thereby decreasing the density. Higher concentrations lead to the formation of additional intermetallic phases, which can limit grain growth in forging alloys. As a result, smaller particle sizes and thus higher strengths can be achieved.
  • Mo is contained with more than 0.1 wt .-%.
  • Ge forms the ⁇ 'precipitation phase Co 3 (Al, Ge, W), lowers the ⁇ ' solvus temperature and can be used to adjust this in particular for forging alloys.
  • Ge preferably contains more than 0.1% by weight.
  • compositions of some embodiments of the ⁇ / ⁇ 'cobalt base superalloys of the present invention hereinafter referred to as CoWAlloy®, CoWAlloy1, and CoWAlloy2, as well as some reference alloys, are set forth in Table 1 below.
  • Table 1 Compositions of the ⁇ / ⁇ 'cobalt base superalloys described here CoWAlloy0, CoWAlloy1 and CoWAlloy2 as well as some polycrystalline, cobalt and nickel based reference alloys (% by weight).
  • the developed alloys described here have the distinct advantage compared to nickel-based forging alloys that despite the relatively low ⁇ 'solvus temperatures of about 1050 ° C (CoWAlloy), 1070 ° C (CoWAlloy1) or 1030 ° C (CoWAlloy2) high Excretion volume ratios of more than 45% (CoWAlloy0) at 750 ° C can be achieved.
  • Fig. 1 shows the relationship between the excretion fraction at the application temperature and the solvus temperature of the y'-phase of ⁇ / ⁇ 'nickel-base superalloys and the presently stated ⁇ / ⁇ ' cobalt-base superalloy CoWAlloy0.
  • the relatively low ⁇ 'solvus temperatures facilitate easier forming at typical forging temperatures of 1000 ° C to 1150 ° C.
  • Fig. 2 shows here in different resolution the microstructure of the ⁇ / ⁇ 'cobalt-base superalloys CoWAlloy1 a) and c) or CoWAlloy2 b) and d) in the heat-treated state.
  • Fig. 3 shows an electron back scattering diffraction (EBSD) measurement to determine the grain size and twin density of the CoWAlloy 2 ⁇ / ⁇ cobalt base superalloy described herein.
  • the twin density of the alloy CoWAlloy2 which was determined by means of EBSD, is considerably higher at 55% compared to the nickel base superalloy Udimet 720Li with only 33%. This is due to the lower stacking fault energy of the cobalt base superalloys.
  • Fig. 4 shows the yield strength as a function of the temperature of the alloys CoWAlloy1 and CoWAlloy2 specified here in comparison with the nickel-based alloys Waspaloy and Udimet 720Li and with the cobalt alloy Mar-M509.
  • the yield strengths determined by compression tests at room temperature with 1110 MPa (CoWAlloy1) and 995 MPa (CoWAlloy2) are in the range of the yield strengths of Waspaloy (1010 MPa) and Udimet (1155 MPa) and reach significantly higher values at 800 ° C (880 MPa (CoWAlloy1) compared to Waspaloy (680 MPa) and Udimet 720Li (about 800 MPa)).
  • Fig. 5 shows the creep strength of the ⁇ / ⁇ 'cobalt base superalloy CoWAlloy2 compared to the polycrystalline ⁇ / ⁇ ' nickel base superalloys Waspaloy and Udimet 720LI at 700 ° C. Accordingly, the alloy CoWAlloy2 at 700 ° C also has a significantly higher creep resistance than the nickel-based alloys Waspaloy and Udimet 720Li.
  • the oxidation behavior can be assessed on the basis of the oxide layer thicknesses formed at 900 ° C in 50 h.
  • Fig. 6 shows for this purpose microstructural images of the oxide layers of the ternary alloy Co9Al9W (a) and the presently stated alloy CoWAlloy2 (b).
  • the oxide layer thickness after annealing at 900 ° C for 50 h is at least 10 times smaller in the alloy CoWAlloy2 than in the ternary alloy Co9Al9W (see a with b).
  • the alloy CoWAlloy2 Fig. 6b
  • the alloy CoWAlloy2 Fig. 6b
  • Fig. 7 shows the element distributions in the different oxide layers of the alloy CoWAlloy2 after annealing at 900 ° C for 50 h, determined by energy dispersive X-ray spectroscopy EDS in the scanning electron microscope SEM.
  • the relatively good oxidation properties result from the protective oxide layers rich in Al, Si and Cr.
  • the cobalt-base superalloys of the present invention are characterized by being based on the element cobalt, hardened with the intermetallic ⁇ 'phase (Co, Ni) 3 (Al, W, Ti, Ta) to have better mechanical properties than conventional ones carbide-hardened cobalt-base superalloys have higher strengths than comparable polycrystalline ⁇ / ⁇ 'nickel-base superalloys at temperatures above 800 ° C, that they have higher creep strengths than comparable polycrystalline ⁇ / ⁇ ' nickel-base superalloys at temperatures of 700 ° C, making them better Have oxidation properties as previous ⁇ / ⁇ 'Kobaltbasissuperlegleiteren and / or that they have high ⁇ ' volume fractions at application temperatures of up to 850 ° C at comparatively low ⁇ 'solvus temperatures and thus can be used as a forging alloy.
  • the intermetallic ⁇ 'phase (Co, Ni) 3 (Al, W, Ti, Ta) to have better mechanical properties than
  • a ⁇ / ⁇ 'cobalt base superalloy is added with the addition of molybdenum (CoWAlloy3).
  • the composition is shown again in Table 2 together with the other exemplary alloys CoWAlloy0, CoWAlloy1 and CoWAlloy2 described above.
  • the content of Mo is changed at the expense of Co.
  • Mo serves as a solid solution hardening element and can partially replace W, thereby reducing the density.
  • Mo results in the formation of additional "grain boundary pinning" intermetallic phases which can limit grain growth in forging alloys.
  • Table 2 Compositions of ⁇ / ⁇ 'cobalt base superalloy CoWAlloy3 together with CoWAlloy®, CoWAlloy® and CoWAlloy® (% by weight).
  • Co-based Co Ni al Cr W Ta Ti Hf Zr Si B C Not a word CoWAlloy0 39.8 28.8 2.7 12.8 9.0 4.4 2.0 0.3 0.02 0.2 0,014 0.016 CoWAlloy1 40.6 30.6 2.7 10.2 9.0 4.4 2.0 0.3 0.02 0.2 0,014 0.016 CoWAlloy2 39.2 30.5 4.0 10.1 14.9 0.6 0.2 0.3 0.02 0.2 0,014 0.016 CoWAlloy3 37.9 30.3 4.0 10.1 14.9 0.6 0.2 0.3 0.02 0.2 0,014 0.016 1.55
  • CoWAlloy3 As with the previously described CoWAlloy alloys 0, 1, 2, a relatively low solvus temperature of about 1050 ° C is expected for CoWAlloy3, at the same time relatively high solidus temperature, which is advantageous for the processing in particular by casting and forging, since these two temperatures span the window for processing and heat treatment.
  • the alloy CoWAlloy3 was after a homogenization annealed at 1250 ° C for 3h at 1100 ° C for 1h and then hot rolled. The diameter was reduced in several passes from 40 mm to 15 mm. Subsequently, a recrystallization heat treatment was carried out to obtain a homogeneous, fine-grained texture. The simultaneous precipitation of the ⁇ -phase allows a targeted variation of the grain size by a suitable choice of the heat treatment parameters.
  • Fig. 8 shows SEM micrographs of CoWAlloy3 after recrystallization for 4 h at (a) 1000 ° C and (b) 1100 ° C.
  • the predominantly grain boundary white contrast phase is the W and Mo containing ⁇ phase. It is clear that at a higher recrystallization temperature, the proportion of ⁇ -phase decreases and at the same time the grain size increases significantly.
  • the recrystallization at 1000 ° C leads to a ⁇ -phase content of about 3.2% and a median grain size of about 5 microns.
  • the same heat-treated CoWAlloy2 has a median of about 8 microns, which illustrates the grain boundary pinning effect of the ⁇ -phase.
  • FIG. 9 shows the ⁇ / ⁇ 'microstructure after a two-stage heat treatment (900 ° C, 4 h + 750 ° C, 16 h): (a) SEM with primary and secondary ⁇ ' fragments, (b) TEM Darkfield image with secondary and tertiary ⁇ '-particles.
  • the ⁇ 'particles are round, as in the comparative alloy CoWAlloy2, indicating a low lattice mismatch.
  • the particle diameter is about 65 nm also in the range of the comparative alloy.
  • a difference can be seen in the ⁇ 'portion, which is about 37% lower than in CoWAlloy2.
  • the reason for this can be assumed to be the formation of a ⁇ phase Co 7 (W, Mo) 6 , which reduces the W content available in the co-mixed crystal to form ⁇ '.
  • this slightly lower phase content does not adversely affect the high temperature strength.
  • Fig. 10 shows the yield stress above the temperature of the Mo-containing alloy CoWAlloy3 with grain boundary pinning ⁇ -phase compared to CoWAlloy2.

Description

Die Erfindung betrifft polykristalline, ausscheidungsgehärtete und oxidationsbeständige γ/γ' Kobaltbasissuperlegierungen für Hochtemperaturanwendungen. Die mechanischen Eigenschaften der angegebenen Kobaltbasissuperlegierungen übertreffen dabei die von konventionellen, karbidgehärteten Kobaltlegierungen. Bis zu einer Temperatur von 800 °C werden ähnliche und bei Temperaturen über 800 °C sogar höhere Warmfestigkeiten als die von nickelbasierten γ/γ' Schmiedelegierungen erreicht. Die Kriechfestigkeiten sind ebenfalls deutlich höher. Im Vergleich zu γ/γ' Nickelbasissuperlegierungen werden trotz niedriger Solvustemperatur ähnliche Anteile an der γ' Ausscheidungsphase erreicht. Aufgrund des großen Temperaturbereichs zwischen Solidus- und Solvustemperatur eignen sich die ausscheidungsgehärteten γ/γ' Kobaltbasissuperlegierungen insbesondere als polykristalline Schmiedelegierungen.The invention relates to polycrystalline precipitation hardened and oxidation resistant γ / γ 'cobalt base superalloys for high temperature applications. The mechanical properties of the specified cobalt-based superalloys exceed those of conventional carbide-hardened cobalt alloys. Up to a temperature of 800 ° C similar and at temperatures above 800 ° C even higher hot strengths than the nickel-based γ / γ 'forging alloys are achieved. The creep strengths are also significantly higher. In comparison to γ / γ 'nickel-base superalloys, similar proportions of the γ' precipitation phase are achieved despite the low solvus temperature. Due to the large temperature range between the solidus and solvus temperatures, the precipitation-hardened γ / γ 'cobalt-base superalloys are particularly suitable as polycrystalline forging alloys.

Kobaltbasis- und insbesondere γ/γ' Nickelbasissuperlegierungen sind essentielle Werkstoffe für eine Vielzahl von Komponenten in Strahltriebwerken von Verkehrsflugzeugen oder in stationären Gasturbinen zur Stromumwandlung. Bestrebungen, die Effizienz dieser Turbinen zu erhöhen, die Kosten zu senken und den Verbrauch an fossilen Brennstoff zu reduzieren, können durch neue Werkstoffe, die eine höhere Temperaturbeständigkeit, längere Lebensdauer sowie geringere Herstellungs- und Verarbeitungskosten besitzen, realisiert werden.Cobalt base and especially γ / γ 'nickel base superalloys are essential materials for a variety of components in jet engines of commercial aircraft or in stationary gas turbines for power conversion. Efforts to increase the efficiency of these turbines, reduce costs and reduce fossil fuel consumption can all be achieved through new materials that offer higher temperature resistance, longer service life and lower manufacturing and processing costs.

Konventionelle Kobaltbasissuperlegierungen werden aufgrund ihres hohen Schmelzpunktes, ihrer hohen Verschleißbeständigkeit, ihrer guten Schweißbarkeit und insbesondere wegen ihrer exzellenten Heißgaskorrosions- und Sulfidationsbeständigkeit als Hochtemperaturwerkstoffe in Flugtriebwerken und stationären Gasturbinen eingesetzt (siehe z. B. Bürgel, Maier, Niendorf, Handbuch Hochtemperaturwerkstofftechnik, 4. überarbeitete Auflage 2011, Vieweg + Teubner Verlag, Springer Fachmedien Wiesbaden GmbH 2011 ).Conventional cobalt-base superalloys are used as high-temperature materials in aircraft engines and stationary gas turbines due to their high melting point, high wear resistance, good weldability and, in particular, their excellent hot gas corrosion and sulfidation resistance (see, for example, US Pat. Bürgel, Maier, Niendorf, Handbuch Hochtemperaturwerkstofftechnik, 4th revised edition 2011, Vieweg + Teubner Verlag, Springer Fachmedien Wiesbaden GmbH 2011 ).

Da sie mischkristall- und karbidgehärtet sind, werden sie jedoch wegen ihrer im Vergleich zu den ausscheidungsgehärteten γ/γ' Nickelbasissuperlegierungen geringeren Hochtemperaturfestigkeit nur für geringer belastete bzw. statische Bauteile wie Leitschaufeln verwendet. Als Werkstoffe für Laufschaufeln oder Turbinenscheiben werden diese somit nicht eingesetzt. Mit der Entdeckung der intermetallischen γ'-Phase Co3(Al,W) mit L12-Kristallstruktur im ternären Co-Al-W-System im Jahr 2006 können nun auch auf Basis von Kobalt höherfeste, ausscheidungsgehärtete, zweiphasige γ/γ' Superlegierungen (γ: kubisch flächenzentrierter Kobaltmischkristall) mit gleicher Mikrostruktur wie die seit Jahrzehnten eingesetzten γ/γ' Nickelbasissuperlegierungen hergestellt werden, wie dies beispielsweise in Sato et al., Cobalt-Base High-Temperature Alloys, Science 312 (2006) 90-91 beschrieben ist. Im Vergleich zu den polykristallinen γ/γ' Nickelbasissuperlegierungen weisen diese entscheidende Vorteile auf.However, because they are mixed crystal and carbide-cured, they are used only for light-weight and static components such as vanes because of their lower high-temperature strength than the precipitation-hardened γ / γ 'nickel-base superalloys. As materials for blades or turbine disks they are thus not used. With the discovery of the intermetallic γ'-phase Co 3 (Al, W) with an L1 2 -crystal structure in the ternary Co-Al-W system in 2006, higher-strength, precipitation-hardened, biphasic γ / γ 'superalloys can now be produced on the basis of cobalt (γ: cubic face-centered cobalt mixed crystal) with the same microstructure as the γ / γ 'nickel-base superalloys used for decades are produced, as for example in Sato et al., Cobalt Base High-Temperature Alloys, Science 312 (2006) 90-91 is described. Compared to the polycrystalline γ / γ 'nickel-base superalloys, these have decisive advantages.

γ/γ' Kobaltbasissuperlegierungen besitzen im Allgemeinen eine sehr hohe Solidustemperatur im Temperaturbereich von 1300 °C bis 1450 °C in Verbindung mit einer relativ niedrigen γ' Solvustemperatur im Temperaturbereich von 900 °C bis 1150 °C. Trotz der relativ niedrigen γ' Solvustemperatur können bei Temperaturen bis 900 °C sehr hohe γ' Volumenanteile von über 75 % realisiert werden (siehe z. B. Bauer et al., Microstructure and creep strength of different γ/γ'-strengthened Co-base superalloy variants, Scripta Materialia 63 (2010) 1197-1200 ). Die ternäre γ/γ' Kobaltbasissuperlegierungen Co-9Al-9W (Angaben in Atom-%) besitzt beispielsweise trotz einer γ' Solvustemperatur von etwa nur 975 °C einen relativ hohen γ' Ausscheidungsvolumenanteil von 58 %. Aufgrund des großen Temperaturbereiches zwischen Solidus- und γ' Solvustemperatur (Schmiedefenster), der vergleichsweise niedrigen γ' Solvustemperaturen und des hohen γ' Volumenanteiles bei Anwendungstemperaturen eignen sich die γ/γ' KobaltbasisSuperlegierungen somit insbesondere als Schmiedelegierungen. Nickelbasissuperlegierungen besitzen im Vergleich dazu entweder eine niedrige γ' Solvustemperatur unter 1100 °C, verbunden mit einem geringen γ' Volumenanteil bei Anwendungstemperaturen von bis zu 700 °C (z.B. Waspaloy: γ' Solvustemperatur: 1038 °C ( Semiatin et al., Deformation behavior of Waspaloy at hot-working temperatures, Scripta Materialia 50 (2004) 625-629 ); γ' Volumenanteil bei Anwendungstemperatur: 25% ( ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, Ed. Davies et al, ASM International, Materials Park, OH 44073, USA )) oder einen hohen γ' Volumenanteil bei 700 °C in Verbindung mit einer deutlich höheren γ' Solvustemperatur (z.B. Udimet 720Li: γ' Solvustemperatur: 1142 °C; γ' Volumenanteil bei Anwendungstemperatur: 45% ( Gu et al., Development of Ni-Co base alloys for high-temperature disk applications, Superalloys 2008, Ed. Roger C. Reed et al., The Minerals, Metals & Materials Society, Warrendale, PA, USA )). Dies hat zur Folge, dass die Legierungen entweder schmiedbar sind, aber eine geringere Festigkeit aufweisen oder dass sie bei Schmiedetemperaturen von 1000 °C bis 1150 °C noch einen relativ hohen Anteil an der Ausscheidungsphase besitzen und damit nur noch schwerlich bzw. überhaupt nicht mehr umformbar sind und nur noch pulvermetallurgisch verarbeitet werden können. Dadurch steigen die Kosten deutlich.γ / γ 'Cobalt base superalloys generally have a very high solidus temperature in the temperature range of 1300 ° C to 1450 ° C in conjunction with a relatively low γ' solvus temperature in the temperature range of 900 ° C to 1150 ° C. Despite the relatively low γ 'solvus temperature, very high γ' volume fractions of more than 75% can be realized at temperatures up to 900 ° C (see, for example, US Pat. B. Bauer et al., Microstructure and creep strength of different γ / γ'-enhanced co-base superalloy variants, Scripta Materialia 63 (2010) 1197-1200 ). The ternary γ / γ 'cobalt-base superalloys Co-9Al-9W (in atomic%), for example, despite a γ' solvus temperature of about only 975 ° C has a relatively high γ 'excretion volume fraction of 58%. Owing to the large temperature range between solidus and γ 'solvus temperature (forging window), the comparatively low γ' solvus temperatures and the high γ 'volume fraction at application temperatures, the γ / γ' cobalt base superalloys are thus suitable in particular as forging alloys. Nickel base superalloys, in comparison, either have a low γ 'solvus temperature below 1100 ° C, combined with a low γ' volume fraction at use temperatures of up to 700 ° C (eg, Waspaloy: γ 'solvus temperature: 1038 ° C ( Semiatin et al., Deformation behavior of Waspaloy at hot-working temperatures, Scripta Materialia 50 (2004) 625-629 ); γ 'volume fraction at application temperature: 25% ( ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, Ed. Davies et al, ASM International, Materials Park, OH 44073, USA ) or a high γ 'volume fraction at 700 ° C in conjunction with a significantly higher γ' solvus temperature (eg Udimet 720Li: γ 'solvus temperature: 1142 ° C; γ' volume fraction at application temperature: 45% ( Gu et al., Development of Ni-Co base alloys for high-temperature disk applications, Superalloys 2008, Ed. Roger C. Reed et al., The Minerals, Metals and Materials Society, Warrendale, PA, USA )). This has the consequence that the alloys are either malleable, but have a lower strength or that they still have a relatively high proportion of the precipitation phase at forging temperatures of 1000 ° C to 1150 ° C and thus difficult or no longer deformable are and can only be processed powder metallurgy. This significantly increases the costs.

Des Weiteren ist von kobaltbasierten Legierungen bekannt, dass sie eine höhere Heißgaskorrosionsbeständigkeit als nickelbasierte Legierungen besitzen können, da eine flüssige Co-Schwefel-Phase erst bei 877 °C auftreten kann, wohingegen eine flüssige Ni-S-Phase schon bei 637 °C entsteht (siehe Bürgel, Maier, Niendorf, Handbuch Hochtemperaturwerkstofftechnik, 4. Überarbeitete Auflage 2011, Vieweg + Teubner Verlag, Springer Fachmedien Wiesbaden GmbH 2011 oder ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, Ed. Davies et al, ASM International, Materials Park, OH 44073, USA ). Eine erhöhte Heißgaskorrosionsbeständigkeit kann somit zu einer Lebensdauerverlängerung führen. Außerdem zeigt reines Kobalt zwar eine geringere Korrosionsbeständigkeit als reines Nickel in Schwefelsäure, jedoch sind laut Literatur in Kobalt nur 10 Gew.% Chrom für eine Passivierung nötig, wohingegen bei Nickel 14 Gew.% Chrom erforderlich sind (siehe z.B. ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, Ed. Davies et al, ASM International, Materials Park, OH 44073, USA ).Further, cobalt-based alloys are known to have higher hot-gas corrosion resistance than nickel-base alloys, since a liquid co-sulfur phase can occur only at 877 ° C, whereas a liquid Ni-S phase already occurs at 637 ° C ( please refer Bürgel, Maier, Niendorf, Handbook High Temperature Materials Technology, 4th Revised Edition 2011, Vieweg + Teubner Verlag, Springer Fachmedien Wiesbaden GmbH 2011 or ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, Ed. Davies et al, ASM International, Materials Park, OH 44073, USA ). Increased hot gas corrosion resistance can thus lead to a lifetime extension. In addition, although pure cobalt shows less corrosion resistance than pure nickel in sulfuric acid, according to the literature in cobalt, only 10% by weight of chromium is necessary for passivation, whereas nickel requires 14% by weight of chromium (see, for example, US Pat ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys, Ed. Davies et al, ASM International, Materials Park, OH 44073, USA ).

Außerdem konnte in den vergangenen Jahren gezeigt werden, dass mit erhöhtem Co-Gehalt in nickelbasierten Schmiedelegierungen mit γ/γ' Mikrostruktur die Stapelfehlerenergie abnimmt und dadurch die Zwillingsdichte ("twin density") im Material zunimmt, was zu einem zusätzlichen Härtungseffekt in den polykristallinen Schmiedelegierungen führt und somit höhere Warmfestigkeiten erzielt werden können (siehe z.B. Yuan et al., A new method to strengthen turbine disc superalloys at service temperatures Scripta Mat. 66 (2012) 884-889 ). Es ist zu erwarten, dass kobaltbasierte Schmiedelegierungen eine noch höhere Zwillingsdichte aufweisen, so dass dieser Härtungseffekt nochmals gesteigert werden kann.In addition, it has been shown in recent years that with increased Co content in nickel-based forging alloys with γ / γ 'microstructure, the stacking fault energy decreases and thereby the twin density in the material increases, which leads to an additional hardening effect in the polycrystalline forging alloys and thus higher heat resistance can be achieved (see, eg Yuan et al., A new method for stronger turbine superalloys at service temperatures Scripta Mat. 66 (2012) 884-889 ). It is to be expected that cobalt-based forging alloys have an even higher twin density, so that this hardening effect can be further increased.

Trotz vermehrter Forschungsaktivitäten auf dem Gebiet dieser neuen Werkstoffklasse der γ/γ' Kobaltbasissuperlegierungen wurden bisher meist nur einfache Legierungen mit relativ wenigen Legierungselementen und einer nicht ausreichenden Oxidationsbeständigkeit entwickelt und untersucht. Kobaltbasissuperlegierungen sind an sich z.B. bekannt aus Titus et al., "Creep and directional coarsening in single crystals of new γ-γ' cobalt-base alloys", Scripta Mat. 66 (2012) 574-577 , US 2011/0268989 A1 , US 2010/0291406 A1 , EP 2 251 446 A1 , CA2 620 606 A1 , EP 1 925 683 A1 , US 2008/0185078 A1 , EP 2 163 656 A1 , US 2011/0062214 A1 , EP 2 298 486 A2 , EP 2 383 356 A1 , EP 2 045 345 A1 und EP 2 532 762 A1 .Despite increased research activities in the field of this new class of γ / γ 'cobalt base superalloys, only simple alloys with relatively few alloying elements and insufficient oxidation resistance have so far been developed and investigated. Cobalt base superalloys are known per se, for example Titus et al., "Creep and directional coarsening in single crystals of new γ-γ 'cobalt-base alloys", Scripta Mat. 66 (2012) 574-577 . US 2011/0268989 A1 . US 2010/0291406 A1 . EP 2 251 446 A1 . CA2 620 606 A1 . EP 1 925 683 A1 . US 2008/0185078 A1 . EP 2 163 656 A1 . US 2011/0062214 A1 . EP 2 298 486 A2 . EP 2 383 356 A1 . EP 2 045 345 A1 and EP 2 532 762 A1 ,

Eine gute Oxidationsbeständigkeit in Verbindung mit guten mechanischen Eigenschaften ist jedoch essentiell, um diese neuen γ/γ' Kobaltbasissuperlegierungen zukünftig als Hochtemperaturwerkstoff einsetzen zu können.However, a good oxidation resistance in combination with good mechanical properties is essential to be able to use these new γ / γ 'cobalt base superalloys as a high-temperature material in the future.

Aufgabe der Erfindung ist die Entwicklung von polykristallinen, höherfesten, ausscheidungsgehärteten γ/γ' Kobaltbasissuperlegierungen, mit sehr guten Oxidationseigenschaften, die mittels verschiedener Umformverfahren, wie dem Schmieden prozessiert werden können.The object of the invention is the development of polycrystalline, higher-strength, precipitation-hardened γ / γ 'cobalt-base superalloys, with very good oxidation properties, which can be processed by means of various forming processes, such as forging.

Diese Aufgabe wird erfindungsgemäß gelöst durch eine Kobaltbasissuperlegierung umfassend 32-45 Gew.-% Co, 28-40 Gew.-% Ni, 10-15 Gew.-% Cr, 2,5-5,5 Gew.-% Al, 6,5-16 Gew.-% W, 0-9 Gew.-% Ta, 0-8 Gew.-% Ti, 0,1-1 Gew.-% Si, 0-0,5 Gew.-% B, 0-0,5 Gew.-% C, 0-2 Gew.-% Hf, 0-0,1 Gew.-% Zr, 0-8 Gew.-% Fe, 0-6 Gew.-% Nb, 0-7 Gew.-% Mo, 0-4 Gew.-% Ge sowie einen Rest an unvermeidbaren Verunreinigungen.This object is achieved according to the invention by a cobalt-base superalloy comprising 32-45% by weight of Co, 28-40% by weight of Ni, 10-15% by weight of Cr, 2.5-5.5% by weight of Al, 6 , 5-16% by weight W, 0-9% by weight Ta, 0-8% by weight Ti, 0.1-1% by weight Si, 0-0.5% by weight B, 0-0.5 wt% C, 0-2 wt% Hf, 0-0.1 wt% Zr, 0-8 wt% Fe, 0-6 wt% Nb, 0 7 wt% Mo, 0-4 wt% Ge and a balance of unavoidable impurities.

In einer vorteilhaften Variante umfasst die Kobaltbasissuperlegierung 32-45 Gew.-% Co, 28-40 Gew.-% Ni, 10-15 Gew.-% Cr, 2,5-5,5 Gew.-% Al, 6,5-16 Gew.-% W, 0-9Gew.-% Ta, 0-8 Gew.-% Ti, 0,1-1 Gew.-% Si, 0-0,5 Gew.-% B, 0-0,5 Gew.-% C, 0 bis <2 Gew.-% Hf, 0 bis <0,1 Gew.-% Zr, 0 bis <8 Gew.-% Fe, 0 bis <6 Gew.-% Nb, 0 bis <7 Gew.-% Mo, 0 bis<4 Gew.-% Ge sowie einen Rest an unvermeidbaren Verunreinigungen.
Vorteilhaft sind von der Kobaltbasissuperlegierung in einer weiteren Ausführungsvariante 32-45 Gew.-% Co, 28-40 Gew.-% Ni, 10-15 Gew.-% Cr, 2,5-5,5 Gew.-% Al, 6,5-16 Gew.-% W, 0,2-9 Gew.-% Ta, 0,2-8 Gew.-% Ti, 0,1-1 Gew.-% Si, <0,5 Gew.-% B, <0,5 Gew.-% C, 0-2 Gew.-% Hf, 0-0,1 Gew.-% Zr, 0-8 Gew.-% Fe, 0-6 Gew.-% Nb, 0-7 Gew.-% Mo, 0-4 Gew.-% Ge sowie ein Rest an unvermeidbaren Verunreinigungen umfasst.
In einer weiter bevorzugten Ausgestaltung umfasst die Kobaltbasissuperlegierung 32-45 Gew.-% Co, 28-40 Gew.-% Ni, 10-15 Gew.-% Cr, 2,5-5,5 Gew.-% Al, 6,5-16 Gew.-% W, 0,2-9 Gew.-% Ta, 0,2-8 Gew.-% Ti, 0,1-1 Gew.-% Si, <0,5 Gew.-% B, <0,5 Gew.-% C, 0 bis <2 Gew.-% Hf, 0 bis <0,1 Gew.-% Zr, 0 bis <8 Gew.-% Fe, 0 bis <6 Gew.-% Nb, 0 bis <7 Gew.-% Mo, 0 bis <4 Gew.-% Ge sowie einen Rest an unvermeidbaren Verunreinigungen.
In an advantageous variant, the cobalt-base superalloy comprises 32-45% by weight of Co, 28-40% by weight of Ni, 10-15% by weight of Cr, 2.5-5.5% by weight of Al, 6.5 -16 wt% W, 0-9 wt% Ta, 0-8 wt% Ti, 0.1-1 wt% Si, 0-0.5 wt% B, 0-0 , 5% by weight C, 0 to <2% by weight Hf, 0 to <0.1% by weight Zr, 0 to <8% by weight Fe, 0 to <6% by weight Nb, 0 to <7 wt .-% Mo, 0 to <4 wt .-% Ge and a balance of unavoidable impurities.
Advantageously, from the cobalt-base superalloy in another embodiment, 32-45 wt.% Co, 28-40 wt.% Ni, 10-15 wt.% Cr, 2.5-5.5 wt.% Al, 6 , 5-16 wt.% W, 0.2-9 wt.% Ta, 0.2-8 wt.% Ti, 0.1-1 wt.% Si, <0.5 wt. % B, <0.5 wt% C, 0-2 wt% Hf, 0-0.1 wt% Zr, 0-8 wt% Fe, 0-6 wt% Nb , 0-7 wt% Mo, 0-4 wt% Ge and a balance of unavoidable impurities.
In a further preferred embodiment, the cobalt base superalloy comprises 32-45 wt.% Co, 28-40 wt.% Ni, 10-15 wt.% Cr, 2.5-5.5 wt.% Al, 6, 5-16 wt% W, 0.2-9 wt% Ta, 0.2-8 wt% Ti, 0.1-1 wt% Si, <0.5 wt% B, <0.5 wt .-% C, 0 to <2 wt .-% Hf, 0 to <0.1 wt .-% Zr, 0 to <8 wt .-% Fe, 0 to <6 wt. -% Nb, 0 to <7 wt .-% Mo, 0 to <4 wt .-% Ge and a balance of unavoidable impurities.

Vorteilhaft ist die Kobaltbasissuperlegierung, die eine vorgenannte Zusammensetzung umfasst, gekennzeichnet durch eine intermetallische γ' Phase der Zusammensetzung (Co, Ni)3 (Al, W, Ti, Ta), wobei aus jeder Klammer jeweils wenigstens eines der in Klammern aufgeführten Elemente enthalten ist. Vorteilhafterweise ist die intermetallische γ' Phase (Ausscheidungsphase) mit einem Volumenanteil von mehr als 35%, bevorzugt von mehr als 45% enthalten.
Diese durch ihre Zusammensetzung gekennzeichneten oxidationsbeständigen, ausscheidungsgehärteten Kobaltbasissuperlegierungen setzen sich aus einer Vielzahl von Legierungselementen zusammen. Die Gründe für die gewählten Konzentrationsbereiche der Legierungselemente und deren wesentlichen Wirkungsweisen werden nachfolgend beschrieben:
Advantageously, the cobalt base superalloy comprising an aforesaid composition characterized by an intermetallic γ 'phase of the composition (Co, Ni) 3 (Al, W, Ti, Ta), each clip containing at least one of the elements listed in parentheses , Advantageously, the intermetallic γ 'phase (precipitation phase) is contained with a volume fraction of more than 35%, preferably of more than 45%.
These oxidation resistant, precipitation hardened cobalt base superalloys, characterized by their composition, are composed of a variety of alloying elements. The reasons for the selected concentration ranges The alloying elements and their essential effects are described below:

Notwendige Legierungselemente:Necessary alloying elements: Co(Kobalt): 32-45 Gew.-%Co (cobalt): 32-45% by weight

Co bildet als Basiselement neben anderen Elementen die kubisch flächenzentrierte γ-Matrixphase und ist wichtiger Bestandteil der härtenden γ'-(Co,Ni)3(Al,W,Ti,Ta) - Ausscheidungsphase. Co erniedrigt außerdem die Stapelfehlerenergie.Co forms the cubic face-centered γ matrix phase as a basic element among other elements and is an important constituent of the hardening γ '- (Co, Ni) 3 (Al, W, Ti, Ta) precipitation phase. Co also lowers the stacking fault energy.

Ni (Nickel): 28-40 Gew.-%Ni (nickel): 28-40% by weight

Ni im angegebenen Bereich erweitert im ausreichenden Maße das γ/γ' Zweiphasengebiet, so dass weitere Legierungselemente, insbesondere Cr, im ausreichenden Maße hinzugegeben werden können. Cr-Anteile ab ca. 4 Gew.-% destabilisieren in ternären Co-Al-W-Legierungen die zweiphasige γ/γ' Mikrostruktur, und weitere nicht gewünschte intermetallische Phasen werden gebildet. Durch Ni wird die maximal mögliche Konzentration an Cr zu höheren Konzentrationen verschoben. Des Weiteren kann mit Ni die γ' Solvustemperatur erhöht werden.Ni in the specified range expands the γ / γ 'two-phase region to a sufficient extent, so that further alloying elements, in particular Cr, can be added to a sufficient extent. Cr contents from about 4% by weight destabilize the biphasic γ / γ 'microstructure in ternary Co-Al-W alloys, and further undesirable intermetallic phases are formed. Ni shifts the maximum possible concentration of Cr to higher concentrations. Furthermore, with Ni, the γ 'solvus temperature can be increased.

Cr (Chrom): 10-15 Gew.-%Cr (chromium): 10-15% by weight

Um eine ausreichende Korrosions- und Oxidationsbeständigkeit zu erlangen, soll das Legierungselement Cr im angegebenen Bereich hinzulegiert werden. Außerdem wirkt Cr als Mischkristallhärter.In order to obtain a sufficient corrosion and oxidation resistance, the alloying element Cr should be added to the specified range. In addition, Cr acts as a mixed crystal hardener.

Al (Aluminium): 2,5-5,5 Gew.-%Al (aluminum): 2.5-5.5% by weight

Al bildet die γ' Ausscheidungsphase (Co,Ni)3(Al,W,Ti,Ta), die zur Festigkeitssteigerung entscheidend beiträgt. Des Weiteren erhöht Al die Oxidationsbeständigkeit. Höhere Anteile an Al im angegebenen Zusammensetzungsbereich können zu der Bildung weiterer intermetallischer Phasen wie CoAl führen, die das Kornwachstum bei Schmiedelegierungen einschränken können. Dadurch können kleinere Korngrößen und damit höhere Festigkeiten erzielt werden.Al forms the γ 'precipitation phase (Co, Ni) 3 (Al, W, Ti, Ta), which contributes significantly to the increase in strength. Furthermore, Al increases the oxidation resistance. Higher levels of Al in the specified composition range can lead to the formation of additional intermetallic phases, such as CoAl, which can limit grain growth in forging alloys. As a result, smaller particle sizes and thus higher strengths can be achieved.

W (Wolfram):6,5-16 Gew.-%W (Tungsten): 6.5-16 wt%

W bildet die γ' Ausscheidungsphase Co3(Al,W), die zur Festigkeitssteigerung entscheidend beiträgt und erhöht als langsam diffundierendes Element die Kriechfestigkeit. Höhere Gehalte führen zu einer zu hohen Dichte und weitere unerwünschte intermetallische Phasen können sich bilden.W forms the γ 'precipitation phase Co 3 (Al, W), which contributes decisively to the increase in strength and increases the creep resistance as a slowly diffusing element. Higher contents lead to too high a density and further undesirable intermetallic phases can form.

Si (Silizium): 0,1-1 Gew.-%Si (silicon): 0.1-1% by weight

Si ist ein entscheidendes Element und verbessert deutlich die Oxidationsbeständigkeit. Zu hohe Mengen an Si können jedoch zu weiteren unerwünschten intermetallischen Phasen führen.Si is a crucial element and significantly improves the oxidation resistance. However, excessive amounts of Si can lead to further undesirable intermetallic phases.

B (Bor): <0,5 Gew.-%B (boron): <0.5% by weight

B wirkt als korngrenzenfestigendes Legierungselement und verbessert die Oxidationseigenschaften. Zu hohe Konzentrationen führen zu einem zu hohen Anteil an Boriden. Bevorzugt ist B mit mehr als 0,01 Gew.-% enthalten.B acts as a grain boundary strengthening alloying element and improves the oxidation properties. Too high concentrations lead to too high a proportion of borides. Preferably, B is contained at more than 0.01% by weight.

C (Kohlenstoff): <0,5 Gew.-%C (carbon): <0.5% by weight

C wirkt als korngrenzenfestigendes Legierungselement. Außerdem bildet C Carbide. Bevorzugt ist C mit mehr 0,01 Gew.-% enthalten.C acts as a grain boundary strengthening alloying element. In addition, C forms carbides. C is preferably contained with more than 0.01% by weight.

Erforderlich bei hohen Warmfestigkeiten:Required for high heat resistance: Ta (Tantal): 0,2-9 Gew.-%Ta (Tantalum): 0.2-9% by weight

Ta trägt zur Bildung der γ' Ausscheidungsphase bei, erhöht die γ' Solvustemperatur und die γ/γ' Gitterfehlpassung. Ta härtet die γ' Ausscheidungsphase und führt zu einer Festigkeitssteigerung. Insbesondere wenn hohe Warmfestigkeiten bei 800 °C benötigt werden, sind die beiden Elemente Ta und Ti erforderlich.Ta contributes to the formation of the γ 'precipitation phase, increases the γ' solvus temperature and the γ / γ 'lattice mismatch. Ta hardens the γ 'precipitation phase and leads to an increase in strength. In particular, when high toughness at 800 ° C is required, the two elements Ta and Ti are required.

Ti (Titan): 0,2-8 Gew.-%Ti (titanium): 0.2-8 wt%

Ti trägt zur Bildung der γ' Ausscheidungsphase bei, erhöht die γ' Solvustemperatur und die γ/γ' Gitterfehlpassung. Ti härtet die γ' Ausscheidungsphase und führt zu einer Festigkeitssteigerung. Insbesondere wenn hohe Warmfestigkeiten bei 800°C benötigt werden sind die beiden Elemente Ta und Ti erforderlich. Ti kann in hohem Maße W ersetzen und verringert dadurch die Dichte signifikant.Ti contributes to the formation of the γ 'precipitation phase, increases the γ' solvus temperature and the γ / γ 'lattice mismatch. Ti hardens the γ 'precipitation phase and leads to an increase in strength. In particular, when high toughness at 800 ° C is required, the two elements Ta and Ti are required. Ti can largely replace W, thereby significantly reducing the density.

Optionale Legierungselemente:Optional alloy elements: Hf (Hafnium): <2 Gew.-%Hf (hafnium): <2% by weight

Hf stabilisiert die γ' Ausscheidungsphase. Bevorzugt ist Hf mit mehr als 0,2 Gew.-% enthalten.Hf stabilizes the γ 'excretion phase. Preferably, Hf is contained at more than 0.2% by weight.

Zr (Zirkonium): <0,1 Gew.-%Zr (zirconium): <0.1% by weight

Zr dient der Steigerung der Korngrenzenfestigkeit und vermag die γ' Ausscheidungsphase zu stabilisieren. Bevorzugt ist Zr mit mehr als 0,01 Gew.-% enthalten.Zr serves to increase the grain boundary strength and to stabilize the γ 'precipitation phase. Preferably, Zr is included at more than 0.01% by weight.

Fe (Eisen): <8 Gew.-%Fe (iron): <8% by weight

Fe erniedrigt die γ' Solvustemperatur und kann zur Einstellung dieser insbesondere für Schmiedelegierungen verwendet werden. Fe ist außerdem ein kostengünstiges Element und kann die Schweißbarkeit verbessern. Zu hohe Konzentrationen destabilisieren die γ/γ' Mikrostruktur. Bevorzugt ist Fe mit mehr als 0,1 Gew.-% enthalten.Fe lowers the γ 'solvus temperature and can be used to adjust this especially for forging alloys. Fe is also a low cost element and can improve weldability. Too high concentrations destabilize the γ / γ 'microstructure. Preference is given to containing Fe more than 0.1% by weight.

Nb (Niob): <6 Gew.-%Nb (niobium): <6% by weight

Nb trägt zur Bildung der γ' Ausscheidungsphase bei, führt zu einer Festigkeitssteigerung und erhöht die γ' Solvustemperatur. Höhere Konzentrationen innerhalb des angegebenen Konzentrationsbereiches können zur Bildung von weiteren intermetallischen Phasen führen, die das Kornwachstum bei Schmiedelegierungen einschränken können. Dadurch können kleinere Korngrößen und damit höhere Festigkeiten erzielt werden. Bevorzugt ist Nb mit mehr als 0,1 Gew.-% enthalten.Nb contributes to the formation of the γ 'precipitation phase, leads to an increase in strength and increases the γ' solvus temperature. Higher concentrations within the given concentration range may lead to the formation of additional intermetallic phases which may limit grain growth in forging alloys. As a result, smaller particle sizes and thus higher strengths can be achieved. Preferably, Nb is contained at more than 0.1% by weight.

Mo (Molybdän): <7 Gew.-%Mo (molybdenum): <7% by weight

Mo dient als mischkristallhärtendes Element und kann W teilweise ersetzen und erniedrigt damit die Dichte. Höhere Konzentrationen führen zur Bildung von weiteren intermetallischen Phasen, die das Kornwachstum bei Schmiedelegierungen einschränken können. Dadurch können kleinere Korngrößen und damit höhere Festigkeiten erzielt werden. Bevorzugt ist Mo mit mehr als 0,1 Gew.-% enthalten.Mo serves as a solid-solution-hardening element and can partially replace W, thereby decreasing the density. Higher concentrations lead to the formation of additional intermetallic phases, which can limit grain growth in forging alloys. As a result, smaller particle sizes and thus higher strengths can be achieved. Preferably, Mo is contained with more than 0.1 wt .-%.

Ge (Germanium): <4 Gew.-%Ge (germanium): <4% by weight

Ge bildet die γ' Ausscheidungsphase Co3(Al,Ge,W), erniedrigt die γ' Solvustemperatur und kann zur Einstellung dieser insbesondere für Schmiedelegierungen verwendet werden. Bevorzugt ist Ge mit mehr als 0,1 Gew.-% enthalten.Ge forms the γ 'precipitation phase Co 3 (Al, Ge, W), lowers the γ' solvus temperature and can be used to adjust this in particular for forging alloys. Ge preferably contains more than 0.1% by weight.

Ausführungsbeispiele der Erfindung werden durch eine Zeichnung sowie durch die nachfolgenden Angaben näher erläutert. Dabei zeigen:

Fig.1
in einer Grafik den Zusammenhang zwischen dem Ausscheidungsanteil bei Anwendungstemperatur und der Solvustemperatur der γ'-Phase von γ/γ' Nickelbasissuperlegierungen im Vergleich zu Ausführungsbeispielen der Erfindung,
Fig. 2
die Mikrostruktur von beispielhaften Legierungen der Erfindung,
Fig. 3
eine EBSD-Messung zur Bestimmung der Korngröße und der Zwillingsdichte einer beispielhaften Legierung der Erfindung,
Fig. 4
in einer Grafik die Streckgrenze in Abhängigkeit der Temperatur für beispielhafte Legierungen der Erfindung,
Fig. 5
in einer Grafik die Kriechfestigkeit einer beispielhaften Legierung der Erfindung im Vergleich zu Nickelbasissuperlegierungen,
Fig. 6
Mikrostrukturbilder der ternären Legierung Co9Al9W im Vergleich einer beispielhaften Legierung der Erfindung,
Fig. 7
die Elementverteilung der Oxidschicht einer beispielhaften Legierung der Erfindung,
Fig. 8
REM-Aufnahmen einer beispielhaften Legierung der Erfindung,
Fig. 9
REM- und TEM-Aufnahmen einer beispielhaften Legierung der Erfindung und
Fig. 10
in einer Grafik die Streckgrenze in Abhängigkeit der Temperatur für eine weitere beispielhafte Legierung der Erfindung.
Embodiments of the invention are explained in more detail by a drawing and by the following information. Showing:
Fig.1
in a graph, the relationship between the precipitation rate at the application temperature and the solvus temperature of the γ'-phase of γ / γ 'nickel-base superalloys compared to embodiments of the invention,
Fig. 2
the microstructure of exemplary alloys of the invention,
Fig. 3
an EBSD measurement to determine the grain size and the twin density of an exemplary alloy of the invention,
Fig. 4
in a graph, the yield strength versus temperature for exemplary alloys of the invention,
Fig. 5
FIG. 4 is a graph of creep resistance of an exemplary alloy of the invention compared to nickel base superalloys; FIG.
Fig. 6
Microstructural images of the ternary alloy Co9Al9W compared to an exemplary alloy of the invention,
Fig. 7
the element distribution of the oxide layer of an exemplary alloy of the invention,
Fig. 8
SEM images of an exemplary alloy of the invention,
Fig. 9
REM and TEM images of an exemplary alloy of the invention and
Fig. 10
in a graph, the yield strength versus temperature for another exemplary alloy of the invention.

Die Zusammensetzungen einiger Ausführungsbeispiele der erfindungsgemäßen γ/γ' Kobaltbasissuperlegierungen, im Nachfolgenden CoWAlloy0, CoWAlloy1, und CoWAlloy2 genannt, sowie einiger Referenzlegierungen sind in der nachfolgenden Tabelle 1 angegeben. Ebenso werden im Folgenden die Eigenschaften von Ausführungsbeispielen der Erfindung anhand der Figuren und Untersuchungen näher beschrieben. Tabelle 1: Zusammensetzungen der hier beschriebenen γ/γ' Kobaltbasissuperlegierungen CoWAlloy0, CoWAlloy1 und CoWAlloy2 sowie einiger polykristalliner, kobalt- und nickelbasierter Referenzlegierungen (Angaben in Gew.-%). Co-Basis Co Ni Al Cr W Ta Ti Hf Zr Si B C CoWAlloy 0 39,8 28,8 2,7 12,8 9,0 4,4 2,0 0,3 0,02 0,2 0,014 0,016 CoWAlloy 1 40,6 30,6 2,7 10,2 9,0 4,4 2,0 0,3 0,02 0,2 0,014 0,016 CoWAlloy 2 39,2 30,5 4,0 10,1 14,9 0,6 0,2 0,3 0,02 0,2 0,014 0,016 Co9Al9W Bal. - 3,6 - 24,6 - - - - - 0,06 - MarM 509 Bal. 10 - 24 7 3,5 0,2 - 0,5 - - 0,6 Ni-Basis Co Ni Al Cr Mo Ta Ti Hf Zr Si B C Waspaloy 13,5 Bal. 1,3 19,5 4,3 - 3,0 - - - 0,006 0,08 Udimet 720Li 15,0 Bal. 2,5 16,0 3,0 - 5,0 - 0,05 - 0,018 0,025 The compositions of some embodiments of the γ / γ 'cobalt base superalloys of the present invention, hereinafter referred to as CoWAlloy®, CoWAlloy1, and CoWAlloy2, as well as some reference alloys, are set forth in Table 1 below. Likewise, the properties of exemplary embodiments of the invention will be described in more detail below with reference to the figures and investigations. Table 1: Compositions of the γ / γ 'cobalt base superalloys described here CoWAlloy0, CoWAlloy1 and CoWAlloy2 as well as some polycrystalline, cobalt and nickel based reference alloys (% by weight). Co-based Co Ni al Cr W Ta Ti Hf Zr Si B C CoWAlloy 0 39.8 28.8 2.7 12.8 9.0 4.4 2.0 0.3 0.02 0.2 0,014 0.016 CoWAlloy 1 40.6 30.6 2.7 10.2 9.0 4.4 2.0 0.3 0.02 0.2 0,014 0.016 CoWAlloy 2 39.2 30.5 4.0 10.1 14.9 0.6 0.2 0.3 0.02 0.2 0,014 0.016 Co9Al9W Bal. - 3.6 - 24.6 - - - - - 0.06 - MarM 509 Bal. 10 - 24 7 3.5 0.2 - 0.5 - - 0.6 Ni-base Co Ni al Cr Not a word Ta Ti Hf Zr Si B C waspaloy 13.5 Bal. 1.3 19.5 4.3 - 3.0 - - - 0,006 0.08 Udimet 720Li 15.0 Bal. 2.5 16.0 3.0 - 5.0 - 0.05 - 0,018 0,025

Mikrostruktur und Mechanische Eigenschaften:Microstructure and Mechanical Properties:

Die entwickelten, hier beschriebenen Legierungen weisen im Vergleich zu nickelbasierten Schmiedelegierungen den entscheidenden Vorteil auf, dass trotz der relativ niedrigen γ' Solvustemperaturen von ca. 1050 °C (CoWAlloy0), 1070 °C (CoWAlloy1) bzw. 1030 °C (CoWAlloy2) hohe Ausscheidungsvolumenanteile von mehr als 45% (CoWAlloy0) bei 750 °C erzielt werden können. Fig. 1 zeigt hierzu den Zusammenhang zwischen dem Ausscheidungsanteil bei Anwendungstemperatur und der Solvustemperatur der y'-Phase von γ/γ' Nickelbasissuperlegierungen und der vorliegend angegebenen γ/γ' Kobaltbasissuperlegierung CoWAlloy0. Trotz hoher Ausscheidungsvolumenanteile wird durch die relativ niedrigen γ' Solvustemperaturen ein leichteres Umformen bei typischen Schmiedetemperaturen von 1000 °C bis 1150 °C ermöglicht.The developed alloys described here have the distinct advantage compared to nickel-based forging alloys that despite the relatively low γ 'solvus temperatures of about 1050 ° C (CoWAlloy), 1070 ° C (CoWAlloy1) or 1030 ° C (CoWAlloy2) high Excretion volume ratios of more than 45% (CoWAlloy0) at 750 ° C can be achieved. Fig. 1 shows the relationship between the excretion fraction at the application temperature and the solvus temperature of the y'-phase of γ / γ 'nickel-base superalloys and the presently stated γ / γ' cobalt-base superalloy CoWAlloy0. Despite high precipitation volume fractions, the relatively low γ 'solvus temperatures facilitate easier forming at typical forging temperatures of 1000 ° C to 1150 ° C.

Nach Warmwalzen bei einer Walzguttemperatur von 1100 °C und einer anschließenden Wärmebehandlung von 1050 °C / 4h + 900 °C / 8h (CoWAlloy1) bzw. 1000 °C / 4h + 900 °C / 4h + 750 °C / 16h (CoWAlloy2) können mittlere Korngrößen von etwa 8 bis 15 µm und eine typische γ/γ' Mikrostruktur eingestellt werden. Dies ist unmittelbar aus Fig. 2 ersichtlich. Fig. 2 zeigt hierbei in unterschiedlicher Auflösung die Mikrostruktur der γ/γ' Kobaltbasissuperlegierungen CoWAlloy1 a) und c) bzw. CoWAlloy2 b) und d) im wärmebehandelten Zustand.After hot rolling at a rolling temperature of 1100 ° C and a subsequent heat treatment of 1050 ° C / 4h + 900 ° C / 8h (CoWAlloy1) or 1000 ° C / 4h + 900 ° C / 4h + 750 ° C / 16h (CoWAlloy2) For example, average particle sizes of about 8 to 15 μm and a typical γ / γ 'microstructure can be set. This is immediately out Fig. 2 seen. Fig. 2 shows here in different resolution the microstructure of the γ / γ 'cobalt-base superalloys CoWAlloy1 a) and c) or CoWAlloy2 b) and d) in the heat-treated state.

Fig. 3 zeigt eine EBSD-Messung ("electron back scattering diffraction") zur Bestimmung der Korngröße und Zwillingsdichte der hier beschriebenen γ/γ' Kobaltbasissuperlegierung CoWAlloy2. Die Zwillingsdichte ("twin density") der Legierung CoWAlloy2, die mittels EBSD bestimmt wurde, liegt mit 55% im Vergleich zur Nickelbasissuperlegierung Udimet 720Li mit nur 33% deutlich höher. Dies ist auf die niedrigere Stapelfehlerenergie der Kobaltbasissuperlegierungen zurückzuführen. Fig. 3 shows an electron back scattering diffraction (EBSD) measurement to determine the grain size and twin density of the CoWAlloy 2 γ / γ cobalt base superalloy described herein. The twin density of the alloy CoWAlloy2, which was determined by means of EBSD, is considerably higher at 55% compared to the nickel base superalloy Udimet 720Li with only 33%. This is due to the lower stacking fault energy of the cobalt base superalloys.

Fig. 4 zeigt die Streckgrenze in Abhängigkeit der Temperatur der hier angegebenen Legierungen CoWAlloy1 und CoWAlloy2 im Vergleich mit den nickelbasierten Legierungen Waspaloy und Udimet 720Li und mit der Kobaltlegierung Mar-M509. Die mittels Druckversuchen ermittelten Streckgrenzfestigkeiten liegen bei Raumtemperatur mit 1110 MPa (CoWAlloy1) bzw. mit 995 MPa (CoWAlloy2) im Bereich der Streckgrenzfestigkeiten von Waspaloy (1010 MPa) und Udimet (1155 MPa) und erreichen bei 800 °C z.T. deutlich höhere Werte (880 MPa (CoWAlloy1) im Vergleich zu Waspaloy (680 MPa) und Udimet 720Li (ca. 800 MPa)). Fig. 4 shows the yield strength as a function of the temperature of the alloys CoWAlloy1 and CoWAlloy2 specified here in comparison with the nickel-based alloys Waspaloy and Udimet 720Li and with the cobalt alloy Mar-M509. The yield strengths determined by compression tests at room temperature with 1110 MPa (CoWAlloy1) and 995 MPa (CoWAlloy2) are in the range of the yield strengths of Waspaloy (1010 MPa) and Udimet (1155 MPa) and reach significantly higher values at 800 ° C (880 MPa (CoWAlloy1) compared to Waspaloy (680 MPa) and Udimet 720Li (about 800 MPa)).

Fig. 5 zeigt die Kriechfestigkeit der γ/γ' Kobaltbasissuperlegierung CoWAlloy2 im Vergleich zu den polykristallinen γ/γ' Nickelbasissuperlegierungen Waspaloy und Udimet 720LI bei 700°C. Demnach weist die Legierung CoWAlloy2 bei 700 °C außerdem eine deutlich höhere Kriechfestigkeit als die nickelbasierten Legierungen Waspaloy und Udimet 720Li auf. Fig. 5 shows the creep strength of the γ / γ 'cobalt base superalloy CoWAlloy2 compared to the polycrystalline γ / γ' nickel base superalloys Waspaloy and Udimet 720LI at 700 ° C. Accordingly, the alloy CoWAlloy2 at 700 ° C also has a significantly higher creep resistance than the nickel-based alloys Waspaloy and Udimet 720Li.

Oxidations- und Korrosionsverhalten:Oxidation and corrosion behavior:

Das Oxidationsverhalten lässt sich anhand der bei 900 °C in 50h gebildeten Oxidschichtdicken beurteilen. Fig. 6 zeigt hierzu Mikrostrukturbilder der Oxidschichten der ternären Legierung Co9Al9W (a) und der vorliegend angegebenen Legierung CoWAlloy2 (b). Die Oxidschichtdicke nach Glühen bei 900°C für 50h ist in der Legierung CoWAlloy2 mindestens um den Faktor 10 kleiner als in der ternären Legierung Co9Al9W (vgl. a mit b). Im Vergleich zur ternären γ/γ' Kobaltbasissuperlegierung Co9Al9W (Fig. 6a) weist beispielsweise die Legierung CoWAlloy2 (Fig. 6b) (eine deutlich bessere Oxidationsbeständigkeit auf.The oxidation behavior can be assessed on the basis of the oxide layer thicknesses formed at 900 ° C in 50 h. Fig. 6 shows for this purpose microstructural images of the oxide layers of the ternary alloy Co9Al9W (a) and the presently stated alloy CoWAlloy2 (b). The oxide layer thickness after annealing at 900 ° C for 50 h is at least 10 times smaller in the alloy CoWAlloy2 than in the ternary alloy Co9Al9W (see a with b). Compared to the ternary γ / γ 'cobalt base superalloy Co9Al9W ( Fig. 6a ), for example, the alloy CoWAlloy2 ( Fig. 6b ) (a much better oxidation resistance.

Fig. 7 zeigt die Elementverteilungen in den verschiedenen Oxidschichten der Legierung CoWAlloy2 nach Glühen bei 900 °C für 50h, ermittelt mit der energiedispersiven Röntgenspektroskopie EDS im Rasterelektronenmikroskop REM. Die relativ guten Oxidationseigenschaften ergeben sich durch die schützenden Oxidschichten reich an Al, Si und Cr. Fig. 7 shows the element distributions in the different oxide layers of the alloy CoWAlloy2 after annealing at 900 ° C for 50 h, determined by energy dispersive X-ray spectroscopy EDS in the scanning electron microscope SEM. The relatively good oxidation properties result from the protective oxide layers rich in Al, Si and Cr.

Die erfindungsgemäßen Kobaltbasissuperlegierungen zeichnen sich insbesondere dadurch aus, dass sie auf dem Element Kobalt basieren, dass sie mit der intermetallischen γ' Phase (Co,Ni)3(Al,W,Ti,Ta) gehärtet sind, dass sie bessere mechanische Eigenschaften als konventionelle, karbidgehärtete Kobaltbasissuperlegierungen besitzen, dass sie höhere Festigkeiten als vergleichbare, polykristalline γ/γ' Nickelbasissuperlegierungen bei Temperaturen über 800°C aufweisen, dass sie höhere Kriechfestigkeiten als vergleichbare, polykristalline γ/γ' Nickelbasissuperlegierungen bei Temperaturen von 700°C aufweisen, dass sie bessere Oxidationseigenschaften als bisherige γ/γ' Kobaltbasissuperlegierungen aufweisen und/oder dass sie bei vergleichsweisen niedrigen γ' Solvustemperaturen hohe γ' Volumenanteile bei Anwendungstemperaturen von bis zu 850°C besitzen und somit als Schmiedelegierung verwendet werden können.In particular, the cobalt-base superalloys of the present invention are characterized by being based on the element cobalt, hardened with the intermetallic γ 'phase (Co, Ni) 3 (Al, W, Ti, Ta) to have better mechanical properties than conventional ones carbide-hardened cobalt-base superalloys have higher strengths than comparable polycrystalline γ / γ 'nickel-base superalloys at temperatures above 800 ° C, that they have higher creep strengths than comparable polycrystalline γ / γ' nickel-base superalloys at temperatures of 700 ° C, making them better Have oxidation properties as previous γ / γ 'Kobaltbasissuperlegierungen and / or that they have high γ' volume fractions at application temperatures of up to 850 ° C at comparatively low γ 'solvus temperatures and thus can be used as a forging alloy.

Als weiteres Ausführungsbeispiel der Erfindung wird eine γ/γ' Kobaltbasissuperlegierung mit Zusatz von Molybdän (CoWAlloy3) angegeben. Die Zusammensetzung ist in Tabelle 2 nochmals zusammen mit den weiteren vorbeschriebenen beispielhaften Legierungen CoWAlloy0, CoWAlloy1 und CoWAlloy2 gezeigt. Im Vergleich zu CoWAlloy2 ist der Gehalt an Mo auf Kosten von Co verändert. Mo dient, wie bereits beschrieben, als mischkristallhärtendes Element und kann W teilweise ersetzen, wodurch sich die Dichte verringert. Mo führt insbesondere zur Bildung von weiteren "korngrenzpinnenden" intermetallischen Phasen, die das Kornwachstum bei Schmiedelegierungen einschränken können. Tabelle 2: Zusammensetzungen der γ/γ' Kobaltbasissuperlegierung CoWAlloy3 zusammen mit CoWAlloy0, CoWAlloy1 und CoWAlloy2 (Angaben in Gew.-%). Co-Basis Co Ni Al Cr W Ta Ti Hf Zr Si B C Mo CoWAlloy0 39,8 28,8 2,7 12,8 9,0 4,4 2,0 0,3 0,02 0,2 0,014 0,016 CoWAlloy1 40,6 30,6 2,7 10,2 9,0 4,4 2,0 0,3 0,02 0,2 0,014 0,016 CoWAlloy2 39,2 30,5 4,0 10,1 14,9 0,6 0,2 0,3 0,02 0,2 0,014 0,016 CoWAlloy3 37,9 30,3 4,0 10,1 14,9 0,6 0,2 0,3 0,02 0,2 0,014 0,016 1,55 As a further embodiment of the invention, a γ / γ 'cobalt base superalloy is added with the addition of molybdenum (CoWAlloy3). The composition is shown again in Table 2 together with the other exemplary alloys CoWAlloy0, CoWAlloy1 and CoWAlloy2 described above. Compared to CoWAlloy2, the content of Mo is changed at the expense of Co. Mo, as already described, serves as a solid solution hardening element and can partially replace W, thereby reducing the density. In particular, Mo results in the formation of additional "grain boundary pinning" intermetallic phases which can limit grain growth in forging alloys. Table 2: Compositions of γ / γ 'cobalt base superalloy CoWAlloy3 together with CoWAlloy®, CoWAlloy® and CoWAlloy® (% by weight). Co-based Co Ni al Cr W Ta Ti Hf Zr Si B C Not a word CoWAlloy0 39.8 28.8 2.7 12.8 9.0 4.4 2.0 0.3 0.02 0.2 0,014 0.016 CoWAlloy1 40.6 30.6 2.7 10.2 9.0 4.4 2.0 0.3 0.02 0.2 0,014 0.016 CoWAlloy2 39.2 30.5 4.0 10.1 14.9 0.6 0.2 0.3 0.02 0.2 0,014 0.016 CoWAlloy3 37.9 30.3 4.0 10.1 14.9 0.6 0.2 0.3 0.02 0.2 0,014 0.016 1.55

Mikrostruktur und Eigenschaften:Microstructure and properties:

Wie auch bei den bereits vorbeschriebenen CoWAlloy-Legierungen 0, 1, 2 wird für CoWAlloy3 eine relativ niedrige Solvustemperatur von etwa 1050 °C erwartet, bei gleichzeitig relativ hoher Solidustemperatur, was für die Prozessierung insbesondere durch Gießen und Schmieden vorteilhaft ist, da diese beiden Temperaturen das Fenster zur Verarbeitung und Wärmebehandlung aufspannen. Die Legierung CoWAlloy3 wurde nach einer Homogenisierungsglühung bei 1250 °C für 3h bei 1100 °C für 1h zwischengeglüht und anschließend heißgewalzt. Dabei wurde der Durchmesser in mehreren Stichen von 40 mm auf 15 mm reduziert. Anschließend erfolgte eine Rekristallisations-Wärmebehandlung, um ein homogenes, feinkörniges Gefüge zu erhalten. Die gleichzeitige Ausscheidung der µ-Phase ermöglicht durch eine passende Wahl der Wärmebehandlungsparameter eine gezielte Variation der Korngröße.As with the previously described CoWAlloy alloys 0, 1, 2, a relatively low solvus temperature of about 1050 ° C is expected for CoWAlloy3, at the same time relatively high solidus temperature, which is advantageous for the processing in particular by casting and forging, since these two temperatures span the window for processing and heat treatment. The alloy CoWAlloy3 was after a homogenization annealed at 1250 ° C for 3h at 1100 ° C for 1h and then hot rolled. The diameter was reduced in several passes from 40 mm to 15 mm. Subsequently, a recrystallization heat treatment was carried out to obtain a homogeneous, fine-grained texture. The simultaneous precipitation of the μ-phase allows a targeted variation of the grain size by a suitable choice of the heat treatment parameters.

Fig. 8 zeigt REM-Aufnahmen der Mikrostruktur von CoWAlloy3 nach einer Rekristallisation für 4 h bei (a) 1000°C und (b) 1100°C. Die vorwiegend an den Korngrenzen vorliegende Phase mit weißem Kontrast ist die W und Mo enthaltende µ-Phase. Es wird deutlich, dass bei höherer Rekristallisationstemperatur der Anteil an µ-Phase ab- und gleichzeitig die Korngröße deutlich zunimmt. Die Rekristallisation bei 1000 °C führt zu einem µ-Phasenanteil von etwa 3,2% und einem Median der Korngröße von etwa 5 µm. Die gleich wärmebehandelte CoWAlloy2 weist einen Median von ca. 8 µm auf, was die korngrenzenpinnende Wirkung der µ-Phase verdeutlicht. Eine weitere, zweistufige Wärmebehandlung (900°C, 4 h + 750°C, 16 h) führt zur gleichmäßigen Ausscheidung von γ' Phase im Co-Mischkristall. Das zeigt Fig. 9, in der das γ/γ' Gefüge nach einer zweistufigen Wärmebehandlung (900 °C, 4 h + 750 °C, 16 h) dargestellt ist: (a) REM-Aufnahme mit primären und sekundären γ'-Teitchen, (b) TEM Dunkelfeldaufnahme mit sekundären und tertiären γ'-Teilchen. Fig. 8 shows SEM micrographs of CoWAlloy3 after recrystallization for 4 h at (a) 1000 ° C and (b) 1100 ° C. The predominantly grain boundary white contrast phase is the W and Mo containing μ phase. It is clear that at a higher recrystallization temperature, the proportion of μ-phase decreases and at the same time the grain size increases significantly. The recrystallization at 1000 ° C leads to a μ-phase content of about 3.2% and a median grain size of about 5 microns. The same heat-treated CoWAlloy2 has a median of about 8 microns, which illustrates the grain boundary pinning effect of the μ-phase. Another two-stage heat treatment (900 ° C, 4 h + 750 ° C, 16 h) leads to the uniform excretion of γ 'phase in the co-mixed crystal. This shows Fig. 9 in which the γ / γ 'microstructure after a two-stage heat treatment (900 ° C, 4 h + 750 ° C, 16 h) is shown: (a) SEM with primary and secondary γ' fragments, (b) TEM Darkfield image with secondary and tertiary γ'-particles.

Die γ'-Teilchen sind wie in der Vergleichslegierung CoWAlloy2 rund, was auf eine geringe Gitterfehlpassung hinweist. Der Teilchendurchmesser liegt mit etwa 65 nm ebenfalls im Bereich der Vergleichslegierung. Ein Unterschied ist im γ'-Anteil zu erkennen, der mit ca. 37% niedriger liegt, als bei CoWAlloy2. Als Grund hierfür kann die Bildung einer µ-Phase Co7(W,Mo)6 angenommen werden, die den im Co-Mischkristall verfügbaren W-Gehalt zur γ' Bildung verringert. Dieser etwas geringere Phasenanteil wirkt sich jedoch nicht nachteilig auf die Hochtemperaturfestigkeit aus. Fig. 10 zeigt hierzu die Fließspannung über der Temperatur der Mo-haltigen Legierung CoWAlloy3 mit korngrenzenpinnender µ-Phase im Vergleich zu CoWAlloy2.The γ 'particles are round, as in the comparative alloy CoWAlloy2, indicating a low lattice mismatch. The particle diameter is about 65 nm also in the range of the comparative alloy. A difference can be seen in the γ 'portion, which is about 37% lower than in CoWAlloy2. The reason for this can be assumed to be the formation of a μ phase Co 7 (W, Mo) 6 , which reduces the W content available in the co-mixed crystal to form γ '. However, this slightly lower phase content does not adversely affect the high temperature strength. Fig. 10 shows the yield stress above the temperature of the Mo-containing alloy CoWAlloy3 with grain boundary pinning μ-phase compared to CoWAlloy2.

Claims (4)

  1. Cobolt-based superalloy consisting of 32-45% by weight of Co, 28-40% by weight of Ni, 10-15% by weight of Cr, 2.5-5.5% by weight of Al, 6.5-16% by weight of W, 0-9% by weight of Ta, 0-8% by weight of Ti, 0.1-1% by weight of Si, 0-0.5% by weight of B, 0-0.5% by weight of C, 0-2% by weight of Hf, 0-0.1% by weight of Zr, 0-8% by weight of Fe, 0-6% by weight of Nb, 0-7% by weight of Mo, 0-4% by weight of Ge and a balance of unavoidable impurities.
  2. Cobolt-based superalloy according to Claim 1, comprising less than 2% by weight of Hf, less than 0.1% by weight of Zr, less than 8% by weight of Fe, less than <6% by weight of Nb, less than 7% by weight of Mo and less than 4% by weight of Ge.
  3. Cobolt-based superalloy according to Claims 1 and 2, comprising at least 0.2% by weight of Ta, at least 0.2% by weight of Ti, less than 0.5% by weight of B and less than 0.5% by weight of C.
  4. Cobolt-based superalloy, having a composition according to any of the preceding claims, characterized by an intermetallic γ' phase (Co,Ni)3(Al, W, Ti, Ta).
EP15750314.5A 2014-08-01 2015-07-31 Cobalt based alloy Not-in-force EP3175008B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014011249 2014-08-01
PCT/EP2015/067697 WO2016016437A2 (en) 2014-08-01 2015-07-31 Cobalt-based super alloy

Publications (2)

Publication Number Publication Date
EP3175008A2 EP3175008A2 (en) 2017-06-07
EP3175008B1 true EP3175008B1 (en) 2018-10-17

Family

ID=53836558

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15750314.5A Not-in-force EP3175008B1 (en) 2014-08-01 2015-07-31 Cobalt based alloy

Country Status (3)

Country Link
US (1) US20170342527A1 (en)
EP (1) EP3175008B1 (en)
WO (1) WO2016016437A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113684398A (en) * 2021-08-26 2021-11-23 大连理工大学 Cubic gamma' nano particle coherent precipitation strengthened high-temperature alloy with stable structure at 900 ℃ and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016200135A1 (en) * 2016-01-08 2017-07-13 Siemens Aktiengesellschaft Gamma, gamma cobalt based alloys for additive manufacturing or soldering, welding, powder and component
KR102633691B1 (en) * 2017-04-21 2024-02-05 플란제 콤포지트 마테리얼스 게엠베하 Superalloy sputtering target
MX2019012545A (en) * 2017-04-21 2019-12-02 Crs Holdings Inc Precipitation hardenable cobalt-nickel base superalloy and article made thereform.
US11725263B2 (en) 2018-04-04 2023-08-15 The Regents Of The University Of California High temperature oxidation resistant co-based gamma/gamma prime alloys DMREF-Co
DE102018208737A1 (en) * 2018-06-04 2019-12-05 Siemens Aktiengesellschaft Y, Y` hardened cobalt-nickel base alloy, powder, component and process
DE102018208736A1 (en) * 2018-06-04 2019-12-05 Siemens Aktiengesellschaft Y, Y 'hardened cobalt-nickel base alloy, powder, component and process
DE102020203436A1 (en) 2020-03-18 2021-09-23 Siemens Aktiengesellschaft Cobalt-based alloy, powder mixture, process and component
CN114086049B (en) * 2021-11-17 2022-08-23 沈阳航空航天大学 2.0GPa grade CoCrNi-based medium entropy alloy with ultrahigh yield strength and plasticity and preparation method thereof
US11913093B2 (en) * 2022-07-11 2024-02-27 Liburdi Engineering Limited High gamma prime nickel based welding material
CN115233074A (en) * 2022-07-12 2022-10-25 北京科技大学 Cobalt-nickel-based high-temperature alloy for gas turbine moving blade and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0719195D0 (en) * 2007-10-02 2007-11-14 Rolls Royce Plc A nickel base superalloy
JP5201334B2 (en) * 2008-03-19 2013-06-05 大同特殊鋼株式会社 Co-based alloy
US20110268989A1 (en) * 2010-04-29 2011-11-03 General Electric Company Cobalt-nickel superalloys, and related articles
US9034247B2 (en) * 2011-06-09 2015-05-19 General Electric Company Alumina-forming cobalt-nickel base alloy and method of making an article therefrom
CN102212725B (en) * 2011-06-10 2012-10-10 深圳市新星轻合金材料股份有限公司 Application of aluminium-zirconium-titanium-carbon intermediate alloy in magnesium and magnesium alloy deformation processing
GB201312000D0 (en) * 2013-07-04 2013-08-21 Rolls Royce Plc Alloy
GB201421949D0 (en) * 2014-12-10 2015-01-21 Rolls Royce Plc Alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113684398A (en) * 2021-08-26 2021-11-23 大连理工大学 Cubic gamma' nano particle coherent precipitation strengthened high-temperature alloy with stable structure at 900 ℃ and preparation method thereof
CN113684398B (en) * 2021-08-26 2022-05-13 大连理工大学 Cubic gamma' nano particle coherent precipitation strengthened high-temperature alloy with stable structure at 900 ℃ and preparation method thereof

Also Published As

Publication number Publication date
US20170342527A1 (en) 2017-11-30
WO2016016437A3 (en) 2016-04-07
WO2016016437A2 (en) 2016-02-04
EP3175008A2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
EP3175008B1 (en) Cobalt based alloy
EP2956562B1 (en) Nickel-cobalt alloy
EP2163656B1 (en) High-temperature-resistant cobalt-base superalloy
DE2415074C2 (en) Use of a nickel-based superalloy to manufacture gas turbine parts
EP1819838B1 (en) Titanium aluminide based alloy
DE602006000160T2 (en) Heat resistant alloy for 900oC sustainable exhaust valves and exhaust valves made from this alloy
DE3023576C2 (en)
DE60302108T2 (en) Precipitation-hardened cobalt-nickel alloy with good heat resistance and associated production method
EP2145967A2 (en) Titanium aluminide alloys
DE112016005830B4 (en) Metal gasket and process for its manufacture
DE3024645A1 (en) TITANIUM ALLOY, ESPECIALLY TITANIUM-ALUMINUM ALLOY
DE1238672B (en) Use of a nickel-cobalt-chromium alloy for castings that are resistant to creep at high temperatures
DE102020116868A1 (en) Nickel-cobalt alloy powder and method of manufacturing the powder
EP2620517A1 (en) Heat-resistant TiAl alloy
EP3091095B1 (en) Low density rhenium-free nickel base superalloy
EP2196550B1 (en) High temperature and oxidation resistant material on the basis of NiAl
AT399165B (en) CHROME BASED ALLOY
CH674019A5 (en)
EP1420075A1 (en) Nickel-base superalloy
EP3133178B1 (en) Optimized nickel based superalloy
EP0760869B1 (en) Nickel-aluminium intermetallic basis alloy
WO2012041276A2 (en) Heat-resistant tial alloy
EP2725110A1 (en) Creep resistant rhenium-free nickel based superalloy
EP2154261B1 (en) High temperature alloy
DE102022103420A1 (en) Nickel alloy, powder for producing a nickel alloy, component, method for producing a nickel alloy and method for producing a component

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

17P Request for examination filed

Effective date: 20170217

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180424

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015006497

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1054118

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181017

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190117

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190217

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190118

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190217

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015006497

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

26N No opposition filed

Effective date: 20190718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200724

Year of fee payment: 6

Ref country code: FR

Payment date: 20200727

Year of fee payment: 6

Ref country code: DE

Payment date: 20200727

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20200724

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1054118

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502015006497

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181017