WO2020129282A1 - Ni‑BASED SUPER-HEAT-RESISTANT ALLOY - Google Patents

Ni‑BASED SUPER-HEAT-RESISTANT ALLOY Download PDF

Info

Publication number
WO2020129282A1
WO2020129282A1 PCT/JP2019/024698 JP2019024698W WO2020129282A1 WO 2020129282 A1 WO2020129282 A1 WO 2020129282A1 JP 2019024698 W JP2019024698 W JP 2019024698W WO 2020129282 A1 WO2020129282 A1 WO 2020129282A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
mar
creep rupture
phase
strength
Prior art date
Application number
PCT/JP2019/024698
Other languages
French (fr)
Japanese (ja)
Inventor
良 佐々木
伊達 正芳
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2020528975A priority Critical patent/JP6802991B2/en
Publication of WO2020129282A1 publication Critical patent/WO2020129282A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium

Definitions

  • the present invention relates to a Ni-base super heat resistant alloy.
  • Ni-based super heat-resistant alloys are alloys that can have both excellent heat resistance and strength, they are used for members used in various high temperature environments.
  • a turbocharger is a device that increases the density of inhaled air by rotating a turbine wheel with exhaust gas and interlocking rotation with a compressor through a shaft. By installing a turbocharger, more oxygen than usual can be sent to the engine to improve energy efficiency.
  • the turbine wheel which is a component of the turbocharger, is a component that rotates at high speed of 100,000 rpm or more when it receives exhaust gas of over 1000°C, so it is essential that its material has excellent heat resistance. ..
  • the Ni-based super heat-resistant alloys such as Alloy 713C and Mar-M246 are typical materials used for the turbine wheel.
  • Alloy 713C is a relatively inexpensive and widely used turbine wheel material.
  • the material cost of Mar-M246 is high because it contains a large amount of relatively rare elements Co and W, and particularly rare elements Ta.
  • Mar-M246 has excellent creep rupture strength, it is possible to use high-temperature exhaust gas that 713C cannot cope with and to design more efficiently than when 713C is used.
  • JP-A-11-131162 Japanese Patent Laid-Open No. 2000-169924
  • Mar-M246 boasts excellent creep rupture strength as a material for turbochargers, but its high material cost poses the greatest problem.
  • the high material cost poses a major problem in mass production of general-purpose vehicles equipped with highly efficient turbochargers. So far, alloys that are cheaper than Mar-M246 and have a creep rupture strength of 713 C or higher have been developed, but the high-efficiency turbocharger to which Mar-M246 is applied has a high exhaust gas temperature, so The developed material lacks creep rupture strength and cannot be said to be sufficient as an alternative material.
  • the Ni-base superheat-resistant alloy disclosed in Patent Document 1 described above does not contain Ta and Co and is inexpensive, but its creep rupture life under conditions of 1000° C. and 180 MPa is less than 35 hours.
  • the super heat-resistant alloy disclosed in Patent Document 2 described above achieves low price and low specific gravity by not including Ta and W, but has a creep rupture life of 25 hours under conditions of 1000° C. and 180 MPa.
  • An object of the present invention is to provide an alloy having a composition capable of lowering cost than Mar-M246 and having a creep rupture strength capable of substituting Mar-M246.
  • the present inventors presume that rare elements such as Co, W, and Ta play an important role in the creep rupture strength at high temperature, so that the development of an alloy having low cost and excellent high temperature creep rupture strength has been investigated. I examined the problem of difficulty.
  • Ta which is a rare element among Co, W, and Ta, contributes to the improvement of creep rupture strength by forming a solid solution with carbides and the ⁇ ′ phase. Ta forms a solid solution with the carbide formed at a high temperature to strengthen the solid solution of the carbide and improve the grain boundary strength. Further, by forming a solid solution in the ⁇ 'phase formed at a temperature lower than that of the carbide, the ⁇ 'phase is solid-solution strengthened to improve the intragranular strength.
  • the present inventor has sufficiently crystallized MC type carbides containing a large amount of W at the crystal grain boundaries without containing Ta, and further, the inside of the crystal grains is sufficiently solid-solution strengthened by Co, W, and Ti.
  • the inventors have found that, if this is done, an excellent creep rupture strength can be exhibited at high temperatures, and have reached the present invention. That is, in the present invention, C: 0.02 to 0.5%, Cr: 7 to 12%, Co: 4 to 14%, Al: 3.0 to 6.5%, Mo: 0.
  • Ta 0 to 0.7%
  • Mg 0 to 0.02%
  • B 0.001 to 0.05 %
  • Zr 0 to 0.1%
  • the Ta is preferably not added
  • the Mg content is preferably 0.001 to 0.02%
  • the Ti content is preferably 1.0 to 3.5%.
  • Ni-base superheat-resistant alloy having a composition capable of lowering cost than Mar-M246 and having high-temperature creep rupture strength capable of substituting for Mar-M246. Therefore, for example, it is possible to reduce the material cost of a highly efficient turbocharger using the same.
  • the alloy of the present invention No. It is an optical microscope image which shows the crystal grain boundary of 1 alloy as cast.
  • the alloy of the present invention No. 3 is an optical microscope image showing crystal grain boundaries of 3 alloy as cast.
  • Conventional example No. 4 is an optical microscope image showing grain boundaries of 4 alloy as cast.
  • an important feature of the present invention is that MC type carbide containing a large amount of W is sufficiently crystallized at the grain boundaries without depending on Ta which is a rare element, and By sufficiently solid-solution strengthening with Co, W, and Ti, we have realized a composition that enables cost reduction compared to Mar-M246 and that can be substituted and has a high creep rupture strength at high temperatures. is there.
  • the reason for defining each chemical composition range in the Ni-base superalloy according to the present invention is as follows. In addition, unless otherwise specified, it is described as mass %.
  • Ta is an element that contributes to the improvement of creep rupture strength by forming a solid solution with a carbide or a ⁇ 'phase.
  • Ta is a rare element among the elements constituting the present invention, and the material cost increases as the amount of Ta increases. Further, in the present invention, even if Ta is not added, the creep rupture strength can be maintained at a high level by adjusting the addition amounts of other elements. Therefore, the upper limit of Ta can be allowed within the range of 0.7%.
  • the preferable permissible amount of Ta is 0.5% or less, and more preferably, it does not substantially contain Ta (0%).
  • the phrase "substantially free of Ta (0%)" means that the impurity level is unavoidable or lower.
  • Ta is preferably not added.
  • ⁇ C: 0.02 to 0.5%> C forms carbides by combining with alloy elements.
  • the carbide precipitated at the grain boundary increases the high temperature strength by suppressing the grain boundary slip at high temperatures, so 0.02% or more is required.
  • the upper limit is 0.5%.
  • the preferable lower limit for obtaining the above-mentioned effect of C more reliably is 0.1%.
  • a particularly preferable upper limit of C is 0.3%, and a further preferable upper limit is 0.2%.
  • ⁇ Cr 7-12%> Since Cr forms an oxide film having high adhesion on the surface of the alloy during heating at high temperature and enhances oxidation resistance, 7% or more is required. However, if the amount of Cr is too large, the structure becomes unstable, and a harmful phase such as a hard and brittle ⁇ phase is formed and the creep rupture strength and ductility are deteriorated. Therefore, the upper limit is 12%. A preferable lower limit is 7.5% and a preferable upper limit is 10% in order to more reliably obtain the above-described effect of Cr. ⁇ Co: 4-14%> Since Co contributes to the improvement of creep rupture strength by forming a solid solution in the ⁇ phase, 4% or more is required.
  • the upper limit is 14%.
  • the preferable lower limit for more reliably obtaining the above-mentioned effect of Co is 4.5%
  • the preferable upper limit is 11%, and more preferably 10.5%.
  • the particularly preferable upper limit of Al is 6.0%, and more preferably 5.8%.
  • ⁇ Ti: 1.0 to 5.0%> Ti strengthens the ⁇ 'phase by forming a solid solution in the ⁇ '(Ni 3 Al) phase. Further, since the solid solution temperature of the ⁇ 'phase is raised, it contributes to increase the ⁇ 'amount in the high temperature region, so 1.0% or more is required. However, if the amount of Ti is too large, the solid solution temperature of the ⁇ 'phase rises, and coarse ⁇ / ⁇ ' eutectic occurs at the crystal grain boundaries, so the upper limit is 5.0%.
  • a preferable lower limit for more reliably obtaining the effect of Ti described above is 1.4%, and particularly preferably 1.5%.
  • the preferable upper limit of Ti is 4.0%, and considering the balance with other elements, the upper limit of Ti is preferably 3.5, more preferably 3.0%, and further preferably 2.7%.
  • ⁇ Mo 0.5-4%> Mo forms a solid solution in the ⁇ phase and contributes to the improvement of creep rupture strength, so 0.5% or more is required.
  • the upper limit is 4%.
  • a preferable lower limit is 1.0% and a preferable upper limit is 3.5% in order to more reliably obtain the effect of Mo described above.
  • ⁇ W: 7-14%> W contributes to the improvement of creep rupture strength by forming a solid solution with ⁇ phase, ⁇ ′ phase and carbide. In particular, since the contribution of W having a small diffusion coefficient is large to the creep rupture strength at high temperature, 7% or more is required.
  • the upper limit of W is 14%.
  • a particularly preferable lower limit for more reliably obtaining the above-mentioned effect of W is 7.5%, and more preferably 9%.
  • the preferable upper limit of W is 13%, and more preferably 12.5%.
  • Mg is a selective element and can be added if necessary.
  • Mg is added as a desulfurizing agent which forms a compound with S which is an embrittlement phase forming element when the alloy is melted.
  • Addition of an appropriate amount of Mg has the effect of suppressing the grain boundary segregation of S and improving hot workability. To ensure this effect, Mg needs to be 0.001% or more. However, if excessive Mg is added, a low melting point phase of Mg precipitates and the grain boundary strength decreases, so 0.02% is made the upper limit.
  • a preferable lower limit for more reliably obtaining the above-mentioned effect of Mg is 0.0005%, more preferably 0.002%, and a preferable upper limit is 0.01%.
  • ⁇ B 0.001 to 0.05%> It is considered that B segregates at the grain boundaries because Ni has a great difference in atomic radius from Ni forming the ⁇ phase, which is the parent phase, and suppresses grain boundary slip, which is beneficial for high temperature strength. To ensure this effect, B needs to be 0.001% or more. However, addition of a large amount deteriorates the oxidation resistance, so the upper limit is 0.05%.
  • Zr is a selective element and can be added if necessary. It is considered that Zr has a great difference in atomic radius from Ni forming the ⁇ phase as a matrix phase, so that it segregates at the grain boundaries and forms carbides at the grain boundaries to strengthen the grain boundaries and is beneficial for high temperature strength. However, addition of a large amount deteriorates the oxidation resistance, so the upper limit is 0.1%. In order to more surely obtain the above-mentioned effect of Zr, the preferable lower limit of the content of Zr is 0.01%.
  • Alloy 11 is Alloy 713C, which is known as a typical material for turbochargers. Alloy 713C is inexpensive as a material for a turbocharger because it does not contain Co and W, which are relatively rare elements, and Ta, which is a particularly rare element.
  • Mar-M246 contains a large amount of Co and W and also contains Ta in an amount of 1.5%, so that it is expensive as a material for a turbocharger.
  • the alloy of the present invention is the conventional alloy No. 12 is an alloy having a composition that does not contain Ta or has a lower content than that of Mar-M246, so that the cost can be lower than that of Mar-M246.
  • a test piece was prepared from an ingot of each alloy, and the creep rupture strength at high temperature was evaluated by a rupture test according to ASTM E139.
  • the parallel part of the test piece was 6.4 mm.
  • Table 2 shows the test results of creep rupture strength.
  • the 11th alloy (Alloy 713C) had the shortest rupture life at 1000° C./180 MPa among the alloys shown in Table 1.
  • No. No. 11 alloy had a short rupture life. Since the No. 11 alloy does not contain Co, W, and Ta, it has a weaker intragranular strength than the other alloys shown in Table 1, and MC carbides that crystallize at the grain boundaries do not contain Ta or W. This is because the grain boundary strength is also weak.
  • No. 12 alloy (Mar-M246) had the longest rupture life at 1000° C./180 MPa. This is because Mar-M246 has strong intragranular strength due to solid solution strengthening of Co, W, and Ta, and MC carbides containing Ta and W are sufficiently crystallized in the grain boundaries, so that grain boundaries at high temperatures are high. This is because the strength is also strong.
  • the alloy of the example of the present invention is No. Although the rupture life is slightly shorter than that of 12 alloy (Mar-M246), it exceeds the rupture life of 50 hours at 1000°C/180MPa, which is considered to be the minimum condition that can replace Mar-M246 as a highly efficient turbocharger material. Most of them are over 60 hours.
  • the alloy of the present invention example has a rupture life at 1000° C./180 MPa of more than 50 hours.
  • the alloy of the present invention shows an elongation of 2.5% or more. Elongation equal to or higher than that of No. 12 alloy was obtained. Also, the diaphragm is No. Similar or better than the 12 alloys were obtained. Among them, there are alloys in which both elongation and drawing are 4.0% or more. It can replace the 12 alloy Mar-M246.
  • Figure 1 shows the No. It is an optical microscope image which shows the crystal grain boundary of 1 alloy.
  • FIG. 2 is an optical microscope image showing the crystal grain boundaries of No. 3 alloy.
  • FIG. 12 is an optical microscope image showing a crystal grain boundary of Mar-M246 which is a 12 alloy.
  • a grain boundary exists in the center, and carbides existing along the grain boundary can be confirmed.
  • Table 3 No. No. 1 alloy, No. 3 alloy and No. 3 alloy. The component analysis value which analyzed the carbide
  • the carbide does not contain Ta either.
  • No. No. 1 alloy and No. 3 alloy are No. It contains more W than the 12th alloy, and W is the most contained metal element. Further, the content of W is 40% by mass or more. Since W has a small diffusion coefficient like Ta, No.
  • the carbides of the No. 1 alloy and the No. 3 alloy are also No. 1 alloys. It is stable at high temperatures as well as the carbide of 12 alloy. Therefore, the alloy of the example of the present invention, in which the grain boundary is strengthened by the carbide stable at high temperature, has sufficiently high grain boundary strength at high temperature and can replace Mar-M246. From the above results, it is understood that the alloy of the present invention can be sufficiently applied to the turbine wheel which is a component of the turbocharger. Of course, it can be applied to the components of the turbocharger other than the turbine wheel.
  • turbocharger material that can replace Mar-M246 as a highly efficient turbocharger material that has a composition that enables lower cost than that of Mar-M246, and thus can be installed in a general-purpose vehicle with high efficiency. Applicable as turbocharger material.

Abstract

Provided is an alloy which has a composition enabling lower cost than Mar-M246, and which has a substitutable creep rupture strength. The present invention provides a Ni-based super-heat-resistant alloy comprising, in terms of mass%, 0.02-0.5% C, 7-12% Cr, 4-14% Co, 3-6.5% Al, 0.5-4% Mo, 7-14% W, 1.0-3.5% Ti, 0-0.7% Ta, 0.001-0.05% B, 0-0.02% Mg, and 0-0.1% Zr, the remainder comprising Ni and unavoidable impurities.

Description

Ni基超耐熱合金Ni-base super heat resistant alloy
 本発明は、Ni基超耐熱合金に関するものである。 The present invention relates to a Ni-base super heat resistant alloy.
 Ni基超耐熱合金は優れた耐熱性と強度とを兼ね備えることが可能な合金であるため、種々の高温環境下で使用される部材に用いられている。例えば、ターボチャージャーは排出ガスによりタービンホイールを回転させ、シャフトを通してコンプレッサーへと回転を連動することで吸気される空気の密度を高める装置である。ターボチャージャーを搭載することで、通常より多くの酸素をエンジンへと送り、エネルギー効率を向上することができる。ターボチャージャーの構成部品であるタービンホイールは1000℃を超える排出ガスを受け10万rpm以上の高速回転をする部品であるため、その材料は優れた耐熱性を有していることが必要不可欠である。 Since Ni-based super heat-resistant alloys are alloys that can have both excellent heat resistance and strength, they are used for members used in various high temperature environments. For example, a turbocharger is a device that increases the density of inhaled air by rotating a turbine wheel with exhaust gas and interlocking rotation with a compressor through a shaft. By installing a turbocharger, more oxygen than usual can be sent to the engine to improve energy efficiency. The turbine wheel, which is a component of the turbocharger, is a component that rotates at high speed of 100,000 rpm or more when it receives exhaust gas of over 1000°C, so it is essential that its material has excellent heat resistance. ..
 前述のタービンホイールに使用される代表的な材料として、Alloy713C、Mar-M246といったNi基超耐熱合金が挙げられる。Alloy713Cはタービンホイール材料の中では比較的安価であり、広く使用されている。Mar-M246は比較的希少な元素であるCoやW、特に希少な元素であるTaを多く含んでいるので材料コストは高い。しかし、Mar-M246はクリープ破断強度に優れているため、713Cでは対応できない高温の排ガスを利用し、713Cを使用した場合よりも高効率な設計が可能となる。さらに、高価なHf、Ta、Coといった元素を添加せず、713C程度の低価格でありながら、組成を調整することで713C以上のクリープ破断強度を実現する材料が提案されている。(例えば、特許文献1、特許文献2参照。)。 The Ni-based super heat-resistant alloys such as Alloy 713C and Mar-M246 are typical materials used for the turbine wheel. Alloy 713C is a relatively inexpensive and widely used turbine wheel material. The material cost of Mar-M246 is high because it contains a large amount of relatively rare elements Co and W, and particularly rare elements Ta. However, since Mar-M246 has excellent creep rupture strength, it is possible to use high-temperature exhaust gas that 713C cannot cope with and to design more efficiently than when 713C is used. Further, there has been proposed a material that does not add expensive elements such as Hf, Ta, and Co, and realizes a creep rupture strength of 713C or more by adjusting the composition while maintaining a low price of about 713C. (See, for example, Patent Documents 1 and 2).
特開平11-131162号公報JP-A-11-131162 特開2000-169924号公報Japanese Patent Laid-Open No. 2000-169924
 Mar―M246はターボチャージャー用の材料として、優れたクリープ破断強度を誇るが、材料コストが高いことが最大の問題となっている。材料コストが高いことは高効率のターボチャージャーを搭載した汎用車両の量産に際して大きな問題となる。
 これまでにMar-M246より安価で713C以上のクリープ破断強度を有する合金が開発されているが、Mar-M246が適用されている高効率ターボチャージャーは排気ガスの温度が高温であるため、前述の開発材料ではクリープ破断強度が不足し、代替材料として十分であるとはいえない。Mar-M246の代替材料としては、1000℃、180MPaの条件下でのクリープ破断寿命が最低でも50時間以上必要であると考えられる。
 例えば、前述の特許文献1に示されるNi基超耐熱合金は、Ta、Coを含まず、低価格であるが、1000℃、180MPaの条件下でのクリープ破断寿命は35時間に満たない。また、前述の特許文献2に示される超耐熱合金は、Ta、Wを含まないことで低価格かつ低比重を達成しているが、1000℃、180MPaの条件化でのクリープ破断寿命は25時間に満たない。以上のように、高温のクリープ破断強度にはCo、W、Taといった希少な元素が重要な役割を果たしていると推定されることから、Mar-M246より低コストかつ代替可能なクリープ破断強度を有する材料を開発することは難しく、このような材料が開発されているとはいえない。
 本発明の目的は、Mar-M246より低コスト化が可能な組成を有し、かつMar-M246を代替可能なクリープ破断強度を有する合金を提供することである。
Mar-M246 boasts excellent creep rupture strength as a material for turbochargers, but its high material cost poses the greatest problem. The high material cost poses a major problem in mass production of general-purpose vehicles equipped with highly efficient turbochargers.
So far, alloys that are cheaper than Mar-M246 and have a creep rupture strength of 713 C or higher have been developed, but the high-efficiency turbocharger to which Mar-M246 is applied has a high exhaust gas temperature, so The developed material lacks creep rupture strength and cannot be said to be sufficient as an alternative material. As a substitute material for Mar-M246, it is considered that creep rupture life under conditions of 1000° C. and 180 MPa is required to be at least 50 hours or more.
For example, the Ni-base superheat-resistant alloy disclosed in Patent Document 1 described above does not contain Ta and Co and is inexpensive, but its creep rupture life under conditions of 1000° C. and 180 MPa is less than 35 hours. Further, the super heat-resistant alloy disclosed in Patent Document 2 described above achieves low price and low specific gravity by not including Ta and W, but has a creep rupture life of 25 hours under conditions of 1000° C. and 180 MPa. Less than As described above, since it is estimated that rare elements such as Co, W, and Ta play an important role in the creep rupture strength at high temperature, it has a lower cost and replaceable creep rupture strength than the Mar-M246. It is difficult to develop materials, and it cannot be said that such materials have been developed.
An object of the present invention is to provide an alloy having a composition capable of lowering cost than Mar-M246 and having a creep rupture strength capable of substituting Mar-M246.
 本発明者は、高温のクリープ破断強度にCo、W、Taといった希少な元素が重要な役割を果たしていると推定されることから、低コストかつ優れた高温のクリープ破断強度を有する合金の開発が難しいという問題について検討した。Co、W、Taの中でも特に希少な元素であるTaは炭化物やγ’相に固溶することでクリープ破断強度の向上に寄与する。Taは高温で形成される炭化物に固溶することで、炭化物を固溶強化し粒界強度を向上させる。さらに炭化物より低温で形成されるγ’相にも固溶することで、γ’相を固溶強化し粒内強度を向上させる。しかし、本発明者は、Taを含まなくても、Wを多く含んだMCタイプの炭化物を結晶粒界に十分に晶出させ、さらに結晶粒内がCo、W、Tiによって十分に固溶強化されていれば、高温において優れたクリープ破断強度を発現できることを見出し本発明に到達した。
 すなわち、本発明は、質量%で、C:0.02~0.5%、Cr:7~12%、Co:4~14%、Al:3.0~6.5%、Mo:0.5~4%、W:7~14%、Ti:1.0~5.0%、Ta:0~0.7%、Mg:0~0.02%、B:0.001~0.05%、Zr:0~0.1%、残部はNi及び不可避的不純物からなるNi基超耐熱合金である。
 前記Taは無添加であることが好ましく、前記Mgの含有量は0.001~0.02%であることが好ましく、また、前記Tiの含有量は1.0~3.5%が好ましい。
The present inventors presume that rare elements such as Co, W, and Ta play an important role in the creep rupture strength at high temperature, so that the development of an alloy having low cost and excellent high temperature creep rupture strength has been investigated. I examined the problem of difficulty. Ta, which is a rare element among Co, W, and Ta, contributes to the improvement of creep rupture strength by forming a solid solution with carbides and the γ′ phase. Ta forms a solid solution with the carbide formed at a high temperature to strengthen the solid solution of the carbide and improve the grain boundary strength. Further, by forming a solid solution in the γ'phase formed at a temperature lower than that of the carbide, the γ'phase is solid-solution strengthened to improve the intragranular strength. However, the present inventor has sufficiently crystallized MC type carbides containing a large amount of W at the crystal grain boundaries without containing Ta, and further, the inside of the crystal grains is sufficiently solid-solution strengthened by Co, W, and Ti. The inventors have found that, if this is done, an excellent creep rupture strength can be exhibited at high temperatures, and have reached the present invention.
That is, in the present invention, C: 0.02 to 0.5%, Cr: 7 to 12%, Co: 4 to 14%, Al: 3.0 to 6.5%, Mo: 0. 5 to 4%, W: 7 to 14%, Ti: 1.0 to 5.0%, Ta: 0 to 0.7%, Mg: 0 to 0.02%, B: 0.001 to 0.05 %, Zr: 0 to 0.1%, the balance being a Ni-base superheat-resistant alloy composed of Ni and inevitable impurities.
The Ta is preferably not added, the Mg content is preferably 0.001 to 0.02%, and the Ti content is preferably 1.0 to 3.5%.
 本発明によれば、Mar-M246より低コスト化が可能な組成を有し、かつMar-M246を代替可能な高温のクリープ破断強度を有するNi基超耐熱合金を得ることができる。このため、例えば、これを用いてなる高効率のターボチャージャーの材料コストを下げることが可能となる。 According to the present invention, it is possible to obtain a Ni-base superheat-resistant alloy having a composition capable of lowering cost than Mar-M246 and having high-temperature creep rupture strength capable of substituting for Mar-M246. Therefore, for example, it is possible to reduce the material cost of a highly efficient turbocharger using the same.
本発明合金であるNo.1合金の鋳造ままの結晶粒界を示す光学顕微鏡像である。The alloy of the present invention No. It is an optical microscope image which shows the crystal grain boundary of 1 alloy as cast. 本発明合金であるNo.3合金の鋳造ままの結晶粒界を示す光学顕微鏡像である。The alloy of the present invention No. 3 is an optical microscope image showing crystal grain boundaries of 3 alloy as cast. 従来例であるNo.4合金の鋳造ままの結晶粒界を示す光学顕微鏡像である。Conventional example No. 4 is an optical microscope image showing grain boundaries of 4 alloy as cast.
 上述のように、本発明の重要な特徴は、特に希少な元素であるTaに依存しなくてもWを多く含んだMCタイプの炭化物を結晶粒界に十分に晶出させ、結晶粒内をCo、W、Tiによって十分に固溶強化することで、Mar-M246より低コスト化が可能な組成を有し、かつ代替可能な、高温における高いクリープ破断強度を有する合金組成を実現したことにある。
 本発明のNi基超耐熱合金において、各化学組成範囲を規定した理由は以下のとおりである。なお、特に記載のない限り質量%として記す。
As described above, an important feature of the present invention is that MC type carbide containing a large amount of W is sufficiently crystallized at the grain boundaries without depending on Ta which is a rare element, and By sufficiently solid-solution strengthening with Co, W, and Ti, we have realized a composition that enables cost reduction compared to Mar-M246 and that can be substituted and has a high creep rupture strength at high temperatures. is there.
The reason for defining each chemical composition range in the Ni-base superalloy according to the present invention is as follows. In addition, unless otherwise specified, it is described as mass %.
 <Ta:0~0.7%>
 Taは炭化物やγ’相に固溶することでクリープ破断強度の向上に寄与する元素である。しかし、Taは本発明を構成する元素の中で特に希少な元素であり、Ta量が増えるほど材料コストも増加する。また、本発明ではTaを無添加としても他の元素の添加量の調整によって、クリープ破断強度を高いレベルに維持することができる。そのため、Taについては上限を0.7%までの範囲で許容できる。好ましいTaの許容量は0.5%以下であり、更に好ましくは実質的にTaを含まない(0%)ことである。なお、「実質的にTaを含まない(0%)」とは、不可避的不純物レベルまたはそれ未満であることをいう。即ち、Taについては無添加とするのが好ましい。
 <C:0.02~0.5%>
 Cは合金元素と結合することで炭化物を形成する。粒界に析出した炭化物は高温での粒界すべりを抑制することで高温強度を高めるため、0.02%以上が必要となる。しかし、C量が多すぎると、粗大な炭化物が多量に晶出することで延性、耐食性を損なう可能性があるため、0.5%を上限とする。前述したCの効果をより確実に得るための好ましい下限は0.1%である。Cの特に好ましい上限は0.3%であり、更に好ましい上限は0.2%である。
<Ta: 0 to 0.7%>
Ta is an element that contributes to the improvement of creep rupture strength by forming a solid solution with a carbide or a γ'phase. However, Ta is a rare element among the elements constituting the present invention, and the material cost increases as the amount of Ta increases. Further, in the present invention, even if Ta is not added, the creep rupture strength can be maintained at a high level by adjusting the addition amounts of other elements. Therefore, the upper limit of Ta can be allowed within the range of 0.7%. The preferable permissible amount of Ta is 0.5% or less, and more preferably, it does not substantially contain Ta (0%). The phrase "substantially free of Ta (0%)" means that the impurity level is unavoidable or lower. That is, Ta is preferably not added.
<C: 0.02 to 0.5%>
C forms carbides by combining with alloy elements. The carbide precipitated at the grain boundary increases the high temperature strength by suppressing the grain boundary slip at high temperatures, so 0.02% or more is required. However, if the C content is too large, a large amount of coarse carbide may crystallize, which may impair the ductility and corrosion resistance. Therefore, the upper limit is 0.5%. The preferable lower limit for obtaining the above-mentioned effect of C more reliably is 0.1%. A particularly preferable upper limit of C is 0.3%, and a further preferable upper limit is 0.2%.
 <Cr:7~12%>
 Crは高温加熱中に合金の表面に密着性の高い酸化皮膜を形成し、耐酸化性を高めるため、7%以上が必要になる。しかし、Cr量が多すぎると組織が不安定となり、硬くてもろいσ相などの有害相を形成し、クリープ破断強度と延性の低下を招くため、12%を上限とする。前述したCrの効果をより確実に得るための好ましい下限は7.5%であり、好ましい上限は10%である。
 <Co:4~14%>
 Coはγ相中に固溶することでクリープ破断強度の向上に寄与するため、4%以上が必要になる。しかし、Co量が多すぎると組織は不安定となり、有害なσ相を形成する。さらに、Coは希少な元素のひとつであり、添加量が増えるほど材料コストが増加するため、14%を上限とする。前述したCoの効果をより確実に得るための好ましい下限は4.5%であり、好ましい上限は11%であり、更に好ましくは10.5%である。
<Cr: 7-12%>
Since Cr forms an oxide film having high adhesion on the surface of the alloy during heating at high temperature and enhances oxidation resistance, 7% or more is required. However, if the amount of Cr is too large, the structure becomes unstable, and a harmful phase such as a hard and brittle σ phase is formed and the creep rupture strength and ductility are deteriorated. Therefore, the upper limit is 12%. A preferable lower limit is 7.5% and a preferable upper limit is 10% in order to more reliably obtain the above-described effect of Cr.
<Co: 4-14%>
Since Co contributes to the improvement of creep rupture strength by forming a solid solution in the γ phase, 4% or more is required. However, if the amount of Co is too large, the structure becomes unstable and forms a harmful σ phase. Further, Co is one of the rare elements, and the material cost increases as the added amount increases, so the upper limit is 14%. The preferable lower limit for more reliably obtaining the above-mentioned effect of Co is 4.5%, the preferable upper limit is 11%, and more preferably 10.5%.
 <Al:3.0~6.5%>
 Alはγ’(NiAl)相を形成することで結晶粒内を析出強化するため、3.0%以上が必要になる。ただし、Al量が多すぎると粗大なγ/γ’共晶が結晶粒界に発生する。粗大なγ/γ’共晶は高温のクリープ破断強度への寄与が小さく、さらに共晶に溶質元素が奪われ粒内のγ’相分率が下がるので、共晶は発生しないほうが好ましいと考えられる。したがって、本発明においては共晶が発生しすぎないようにするため、Alは6.5%を上限とする。前述したAlの効果をより確実に得るための好ましい下限は4.0%であり、更に好ましくは4.5%である。特に好ましいAlの上限は6.0%であり、更に好ましくは5.8%である。
 <Ti:1.0~5.0%>
 Tiはγ’(NiAl)相に固溶することでγ’相を強化する。また、γ’相の固溶温度を上昇させるので高温域におけるγ’量を増やすことに貢献するため、1.0%以上が必要となる。ただし、Ti量が多すぎるとγ’相の固溶温度が上昇し、粗大なγ/γ’共晶が結晶粒界に発生するため、5.0%を上限とする。前述したTiの効果をより確実に得るための好ましい下限は1.4%であり、特に好ましくは1.5%である。Tiの好ましい上限は4.0%であり、他の元素とバランスを考慮するとTiの上限は3.5が好ましく、更に好ましくは3.0%であり、より好ましくは2.7%である。
<Al: 3.0 to 6.5%>
Since Al strengthens the precipitation in the crystal grains by forming the γ'(Ni 3 Al) phase, 3.0% or more is required. However, if the amount of Al is too large, coarse γ/γ′ eutectic will occur at the grain boundaries. Coarse γ/γ' eutectic contributes little to the creep rupture strength at high temperature, and solute elements are deprived of the eutectic, which lowers the γ'phase fraction in the grains. To be Therefore, in the present invention, the upper limit of Al is 6.5% in order to prevent excessive eutectic formation. A preferable lower limit for more reliably obtaining the above-described effect of Al is 4.0%, and further preferably 4.5%. The particularly preferable upper limit of Al is 6.0%, and more preferably 5.8%.
<Ti: 1.0 to 5.0%>
Ti strengthens the γ'phase by forming a solid solution in the γ'(Ni 3 Al) phase. Further, since the solid solution temperature of the γ'phase is raised, it contributes to increase the γ'amount in the high temperature region, so 1.0% or more is required. However, if the amount of Ti is too large, the solid solution temperature of the γ'phase rises, and coarse γ/γ' eutectic occurs at the crystal grain boundaries, so the upper limit is 5.0%. A preferable lower limit for more reliably obtaining the effect of Ti described above is 1.4%, and particularly preferably 1.5%. The preferable upper limit of Ti is 4.0%, and considering the balance with other elements, the upper limit of Ti is preferably 3.5, more preferably 3.0%, and further preferably 2.7%.
 <Mo:0.5~4%>
 Moはγ相中に固溶することでクリープ破断強度の向上に寄与するため、0.5%以上が必要になる。しかし、Mo量が多すぎると耐酸化性に悪影響を及ぼすため、4%を上限とする。前述したMoの効果をより確実に得るための好ましい下限は1.0%であり、好ましい上限は3.5%である。
 <W:7~14%>
 Wはγ相、γ’相、炭化物に固溶することでクリープ破断強度の向上へ寄与する。特に高温のクリープ破断強度には、拡散係数の小さいWの寄与が大きいため、7%以上が必要になる。しかし、W量が多すぎると組織が不安定となり、硬くてもろいσ相などの有害相を形成し、クリープ破断強度と延性の低下を招く。さらに、Wは比重が高いのでW量が増えるほど密度が高くなり、回転体として不利になるため、Wは14%を上限とする。前述したWの効果をより確実に得るための特に好ましい下限は7.5%であり、更に好ましくは9%である。Wの好ましい上限は13%であり、更に好ましくは12.5%である。
<Mo: 0.5-4%>
Mo forms a solid solution in the γ phase and contributes to the improvement of creep rupture strength, so 0.5% or more is required. However, if the amount of Mo is too large, the oxidation resistance is adversely affected, so the upper limit is 4%. A preferable lower limit is 1.0% and a preferable upper limit is 3.5% in order to more reliably obtain the effect of Mo described above.
<W: 7-14%>
W contributes to the improvement of creep rupture strength by forming a solid solution with γ phase, γ′ phase and carbide. In particular, since the contribution of W having a small diffusion coefficient is large to the creep rupture strength at high temperature, 7% or more is required. However, if the amount of W is too large, the structure becomes unstable, and a harmful phase such as a hard and brittle σ phase is formed, resulting in a decrease in creep rupture strength and ductility. Furthermore, since W has a high specific gravity, the higher the amount of W, the higher the density, which is disadvantageous as a rotating body. Therefore, the upper limit of W is 14%. A particularly preferable lower limit for more reliably obtaining the above-mentioned effect of W is 7.5%, and more preferably 9%. The preferable upper limit of W is 13%, and more preferably 12.5%.
 <Mg:0~0.02%>
 Mgは選択元素であり、必要に応じて添加することができる。Mgは合金の溶解時に脆化相形成元素であるSと化合物を形成する脱硫剤として添加する。適量のMg添加はSの粒界偏析を抑制して熱間加工性を改善する効果がある。この効果を確実に得るため、Mgは0.001%以上が必要になる。しかし、過度のMgを添加するとMgの低融点相が析出し粒界強度が低下するため0.02%を上限とする。前述したMgの効果をより確実に得るための好ましい下限は0.0005%であり、更に好ましくは0.002%であり、好ましい上限は0.01%である。
 <B:0.001~0.05%>
 Bは母相であるγ相を構成するNiと原子半径が大きく異なるため粒界に偏析し、粒界すべりを抑制するため高温強度に有益と考えられる。この効果を確実に得るため、Bは0.001%以上が必要となる。ただし、多量の添加は耐酸化性を劣化させるため0.05%を上限とする。
<Mg:0-0.02%>
Mg is a selective element and can be added if necessary. Mg is added as a desulfurizing agent which forms a compound with S which is an embrittlement phase forming element when the alloy is melted. Addition of an appropriate amount of Mg has the effect of suppressing the grain boundary segregation of S and improving hot workability. To ensure this effect, Mg needs to be 0.001% or more. However, if excessive Mg is added, a low melting point phase of Mg precipitates and the grain boundary strength decreases, so 0.02% is made the upper limit. A preferable lower limit for more reliably obtaining the above-mentioned effect of Mg is 0.0005%, more preferably 0.002%, and a preferable upper limit is 0.01%.
<B: 0.001 to 0.05%>
It is considered that B segregates at the grain boundaries because Ni has a great difference in atomic radius from Ni forming the γ phase, which is the parent phase, and suppresses grain boundary slip, which is beneficial for high temperature strength. To ensure this effect, B needs to be 0.001% or more. However, addition of a large amount deteriorates the oxidation resistance, so the upper limit is 0.05%.
 <Zr:0~0.1%>
 Zrは選択元素であり、必要に応じて添加することができる。Zrは母相であるγ相を構成するNiと原子半径が大きく異なるため粒界に偏析し、粒界に炭化物を形成することで粒界を強化し高温強度に有益と考えられる。ただし、多量の添加は耐酸化性を劣化させるため0.1%を上限とする。前述したZrの効果をより確実に得るために、Zrを含有する場合の好ましい下限は0.01%とすると良い。
 <残部:Ni及び不可避的不純物>
 残部は実質的にNiであるが、製造上不可避的に混入する不純物は含まれる。なお、従来合金に積極的に添加されるTaは積極的に添加する必要がなく、また、Nbは本発明においては不純物元素である。
<Zr: 0-0.1%>
Zr is a selective element and can be added if necessary. It is considered that Zr has a great difference in atomic radius from Ni forming the γ phase as a matrix phase, so that it segregates at the grain boundaries and forms carbides at the grain boundaries to strengthen the grain boundaries and is beneficial for high temperature strength. However, addition of a large amount deteriorates the oxidation resistance, so the upper limit is 0.1%. In order to more surely obtain the above-mentioned effect of Zr, the preferable lower limit of the content of Zr is 0.01%.
<Remainder: Ni and inevitable impurities>
The balance is substantially Ni, but contains impurities that are unavoidably mixed in during manufacturing. It should be noted that Ta that is positively added to the conventional alloy does not need to be positively added, and Nb is an impurity element in the present invention.
 以下の実施例で本発明をさらに詳しく説明する。
 本発明例、従来例として表1に示す合金10kgを真空炉内で溶解し、同炉内に設置した鋳鉄製のφ80mm鋳型へと鋳造して、それぞれの合金のインゴットを作製した。これらの合金は、ターボチャージャーの構成部品であるタービンホイールに用いられることを想定したものである。
 従来例として示されるNo.11合金はターボチャージャーの代表的な材料として知られているAlloy713Cである。Alloy713Cは比較的希少な元素であるCoやW、特に希少な元素であるTaを含んでいないため、ターボチャージャー用の材料としては安価である。一方、Mar-M246はCo、Wの含有量が多い上、Taも1.5%含有していることから、ターボチャージャー用の材料としては高価である。本発明例の合金は、従来合金No.12のMar-M246と比較してTaを含んでいない、もしくは含有量が低いことからMar-M246より低コスト化が可能な組成を有する合金である。
The invention is described in more detail in the following examples.
As an example of the present invention and a conventional example, 10 kg of the alloy shown in Table 1 was melted in a vacuum furnace and cast into a cast iron φ80 mm mold installed in the furnace to produce an ingot of each alloy. These alloys are intended for use in turbine wheels, which are components of turbochargers.
No. shown as a conventional example. Alloy 11 is Alloy 713C, which is known as a typical material for turbochargers. Alloy 713C is inexpensive as a material for a turbocharger because it does not contain Co and W, which are relatively rare elements, and Ta, which is a particularly rare element. On the other hand, Mar-M246 contains a large amount of Co and W and also contains Ta in an amount of 1.5%, so that it is expensive as a material for a turbocharger. The alloy of the present invention is the conventional alloy No. 12 is an alloy having a composition that does not contain Ta or has a lower content than that of Mar-M246, so that the cost can be lower than that of Mar-M246.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 それぞれの合金のインゴットから試験片を作製し、ASTM E139に準拠したラプチャー試験によって、高温のクリープ破断強度を評価した。試験片の平行部はφ6.4mmとした。表2には、クリープ破断強度の試験結果を示す。
 表2で示す試験結果として、従来例のNo.11合金(Alloy713C)は表1に示される合金の中で1000℃/180MPaにおけるラプチャー寿命が最も短かった。No.11合金のラプチャー寿命が短かったのは、No.11合金はCo、W、Taを含んでいないために、表1に示される他の合金に比べ粒内強度が弱く、粒界に晶出するMC炭化物もTa、Wを含まないので高温での粒界強度も弱いためである。
 また、同じ従来例のNo.12合金(Mar-M246)は表1に示される合金の中で1000℃/180MPaにおけるラプチャー寿命が最も長かった。このことは、Mar-M246はCo、W、Taの固溶強化によって粒内強度が強く、さらに粒界にもTa、Wを含んだMC炭化物が十分に晶出しているので高温での粒界強度も強いためである。
 本発明例の合金は、No.12合金(Mar-M246)に対してラプチャー寿命がやや下回るものの、高効率なターボチャージャー材料としてMar-M246を代替可能な最低条件であると考えられる1000℃/180MPaのラプチャー寿命50時間を上回っており、ほとんどが60時間以上となっている。なかには、70時間以上が得られている合金があることが分かる。これは、本発明例の合金はTaを含有していないが、粒界に晶出するMC炭化物にはTaの不在を補うようにWが多く固溶するので、高温での粒界強度はMar-M246に比べて十分に高い。さらに、本発明例の合金はTiを多く含むことから、γ’相にTiが多く固溶するので、高温での粒内強度もMar-M246に比べて十分に高く、Mar-M246を代替可能なものである。以上の効果によって、本発明例の合金は1000℃/180MPaのラプチャー寿命が50時間を上回ったと考えられる。
 また、伸びと絞りにおいても、本発明合金は、2.5%以上の伸びを示し、No.12合金と同等以上の伸びが得られた。また、絞りもNo.12の合金と同等以上が得られた。なかには伸びと絞りが共に4.0%以上が得られた合金があり、No.12合金のMar-M246を代替可能なものである。
A test piece was prepared from an ingot of each alloy, and the creep rupture strength at high temperature was evaluated by a rupture test according to ASTM E139. The parallel part of the test piece was 6.4 mm. Table 2 shows the test results of creep rupture strength.
As the test results shown in Table 2, No. of the conventional example. The 11th alloy (Alloy 713C) had the shortest rupture life at 1000° C./180 MPa among the alloys shown in Table 1. No. No. 11 alloy had a short rupture life. Since the No. 11 alloy does not contain Co, W, and Ta, it has a weaker intragranular strength than the other alloys shown in Table 1, and MC carbides that crystallize at the grain boundaries do not contain Ta or W. This is because the grain boundary strength is also weak.
In addition, the same conventional example No. Among the alloys shown in Table 1, No. 12 alloy (Mar-M246) had the longest rupture life at 1000° C./180 MPa. This is because Mar-M246 has strong intragranular strength due to solid solution strengthening of Co, W, and Ta, and MC carbides containing Ta and W are sufficiently crystallized in the grain boundaries, so that grain boundaries at high temperatures are high. This is because the strength is also strong.
The alloy of the example of the present invention is No. Although the rupture life is slightly shorter than that of 12 alloy (Mar-M246), it exceeds the rupture life of 50 hours at 1000°C/180MPa, which is considered to be the minimum condition that can replace Mar-M246 as a highly efficient turbocharger material. Most of them are over 60 hours. It can be seen that some alloys have been obtained for 70 hours or more. This is because the alloys of the examples of the present invention do not contain Ta, but a large amount of W is dissolved in the MC carbide crystallized at the grain boundaries so as to compensate for the absence of Ta, so the grain boundary strength at high temperature is Mar. -Much higher than M246. Furthermore, since the alloy of the present invention contains a large amount of Ti, a large amount of Ti is solid-solved in the γ'phase, and therefore the intragranular strength at high temperature is sufficiently higher than that of Mar-M246, which can replace Mar-M246. It is something. Due to the above effects, it is considered that the alloy of the present invention example has a rupture life at 1000° C./180 MPa of more than 50 hours.
In addition, in the elongation and the drawing, the alloy of the present invention shows an elongation of 2.5% or more. Elongation equal to or higher than that of No. 12 alloy was obtained. Also, the diaphragm is No. Similar or better than the 12 alloys were obtained. Among them, there are alloys in which both elongation and drawing are 4.0% or more. It can replace the 12 alloy Mar-M246.
 図1は、No.1合金の結晶粒界を示す光学顕微鏡像である。図2は、No.3合金の結晶粒界を示す光学顕微鏡像である。また、図3はNo.12合金であるMar-M246の結晶粒界を示す光学顕微鏡像である。図1、図2と図3では、中央に結晶粒界が存在し、結晶粒界中に沿って存在している炭化物が確認できる。表3には、No.1合金、No.3合金及びNo.12合金の炭化物をSEM-EDXにより分析した成分分析値を示す。No.12合金はTaを含むことから、炭化物中にもTaが多く含まれている。No.1合金及びNo.3合金はTaを含まないため、炭化物中にもTaを含まない。また、No.1合金及びNo.3合金はNo.12合金よりもWが多く含まれており、最も含有量が多い金属元素がWである。また、Wの含有量が40%質量以上である。WはTa同様に拡散係数が小さいため、No.1合金及びNo.3合金の炭化物もNo.12合金の炭化物と同様に高温で安定している。したがって、高温で安定な炭化物によって粒界が強化されている本発明例の合金は、高温での粒界強度が十分に高く、Mar-M246を代替可能なものである。以上の結果から、本発明合金はターボチャージャーの構成部品であるタービンホイールに十分に適用可能であることが分かる。勿論、タービンホイール以外のターボチャージャーの構成部品にも適用可能である。 Figure 1 shows the No. It is an optical microscope image which shows the crystal grain boundary of 1 alloy. FIG. 2 is an optical microscope image showing the crystal grain boundaries of No. 3 alloy. Further, FIG. 12 is an optical microscope image showing a crystal grain boundary of Mar-M246 which is a 12 alloy. In FIG. 1, FIG. 2, and FIG. 3, a grain boundary exists in the center, and carbides existing along the grain boundary can be confirmed. In Table 3, No. No. 1 alloy, No. 3 alloy and No. 3 alloy. The component analysis value which analyzed the carbide|carbonized_material of 12 alloy by SEM-EDX is shown. No. Since No. 12 alloy contains Ta, a large amount of Ta is contained also in the carbide. No. Since alloy No. 1 and alloy No. 3 do not contain Ta, the carbide does not contain Ta either. In addition, No. No. 1 alloy and No. 3 alloy are No. It contains more W than the 12th alloy, and W is the most contained metal element. Further, the content of W is 40% by mass or more. Since W has a small diffusion coefficient like Ta, No. The carbides of the No. 1 alloy and the No. 3 alloy are also No. 1 alloys. It is stable at high temperatures as well as the carbide of 12 alloy. Therefore, the alloy of the example of the present invention, in which the grain boundary is strengthened by the carbide stable at high temperature, has sufficiently high grain boundary strength at high temperature and can replace Mar-M246. From the above results, it is understood that the alloy of the present invention can be sufficiently applied to the turbine wheel which is a component of the turbocharger. Of course, it can be applied to the components of the turbocharger other than the turbine wheel.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 本発明によれば、Mar-M246より低コスト化が可能な組成を有し、かつ高効率なターボチャージャー材料としてMar-M246を代替可能な材料を提供できるので、汎用車両に搭載する高効率なターボチャージャー材料として適用できる。

 
According to the present invention, it is possible to provide a material that can replace Mar-M246 as a highly efficient turbocharger material that has a composition that enables lower cost than that of Mar-M246, and thus can be installed in a general-purpose vehicle with high efficiency. Applicable as turbocharger material.

Claims (4)

  1. 質量%で、C:0.02~0.5%、Cr:7~12%、Co:4~14%、Al:3.0~6.5%、Mo:0.5~4%、W:7~14%、Ti:1.0~5.0%、Ta:0~0.7%、Mg:0~0.02%、B:0.001~0.05%、Zr:0~0.1%、残部はNi及び不可避的不純物からなることを特徴とするNi基超耐熱合金。 % By mass, C: 0.02 to 0.5%, Cr: 7 to 12%, Co: 4 to 14%, Al: 3.0 to 6.5%, Mo: 0.5 to 4%, W : 7 to 14%, Ti: 1.0 to 5.0%, Ta: 0 to 0.7%, Mg: 0 to 0.02%, B: 0.001 to 0.05%, Zr: 0 to A Ni-based superheat-resistant alloy, characterized in that 0.1% and the balance Ni and unavoidable impurities.
  2.  前記Taは無添加である請求項1に記載のNi基超耐熱合金。 The Ni-based superheat-resistant alloy according to claim 1, wherein Ta is not added.
  3.  前記Mgの含有量が0.001~0.02%である請求項1または2に記載のNi基超耐熱合金。 The Ni-base superheat-resistant alloy according to claim 1 or 2, wherein the content of Mg is 0.001 to 0.02%.
  4.  前記Tiの含有量が1.0~3.5%である請求項1乃至3の何れかに記載のNi基超耐熱合金。

     
    The Ni-based superheat-resistant alloy according to any one of claims 1 to 3, wherein the content of Ti is 1.0 to 3.5%.

PCT/JP2019/024698 2018-12-17 2019-06-21 Ni‑BASED SUPER-HEAT-RESISTANT ALLOY WO2020129282A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020528975A JP6802991B2 (en) 2018-12-17 2019-06-21 Ni-based super heat-resistant alloy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-235188 2018-12-17
JP2018235188 2018-12-17
JP2019045430 2019-03-13
JP2019-045430 2019-03-13

Publications (1)

Publication Number Publication Date
WO2020129282A1 true WO2020129282A1 (en) 2020-06-25

Family

ID=71102707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/024698 WO2020129282A1 (en) 2018-12-17 2019-06-21 Ni‑BASED SUPER-HEAT-RESISTANT ALLOY

Country Status (2)

Country Link
JP (1) JP6802991B2 (en)
WO (1) WO2020129282A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621817B2 (en) * 1973-03-30 1981-05-21
JPS57210942A (en) * 1981-06-12 1982-12-24 Special Metals Corp Nickel-base cast alloy
JPS5864331A (en) * 1981-09-19 1983-04-16 ロ−ルス・ロイス・ピ−エルシ− Alloy suitable for manufacture of single crystal casted article and casted article therefrom
JPH09157777A (en) * 1995-12-12 1997-06-17 Mitsubishi Materials Corp Nickel base alloy excellent in thermal fatigue resistance, high temperature creep resistance and high temperature corrosion resistance
JP2016132824A (en) * 2015-01-22 2016-07-25 株式会社日本製鋼所 HIGH STRENGTH Ni-BASED SUPER ALLOY
US20170058383A1 (en) * 2015-05-05 2017-03-02 MTU Aero Engines AG Rhenium-free nickel base superalloy of low density
CN108624959A (en) * 2018-04-17 2018-10-09 西北工业大学 The method for preparing single crystal super alloy using the seed crystal through solution treatment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621817B2 (en) * 1973-03-30 1981-05-21
JPS57210942A (en) * 1981-06-12 1982-12-24 Special Metals Corp Nickel-base cast alloy
JPS5864331A (en) * 1981-09-19 1983-04-16 ロ−ルス・ロイス・ピ−エルシ− Alloy suitable for manufacture of single crystal casted article and casted article therefrom
JPH09157777A (en) * 1995-12-12 1997-06-17 Mitsubishi Materials Corp Nickel base alloy excellent in thermal fatigue resistance, high temperature creep resistance and high temperature corrosion resistance
JP2016132824A (en) * 2015-01-22 2016-07-25 株式会社日本製鋼所 HIGH STRENGTH Ni-BASED SUPER ALLOY
US20170058383A1 (en) * 2015-05-05 2017-03-02 MTU Aero Engines AG Rhenium-free nickel base superalloy of low density
CN108624959A (en) * 2018-04-17 2018-10-09 西北工业大学 The method for preparing single crystal super alloy using the seed crystal through solution treatment

Also Published As

Publication number Publication date
JP6802991B2 (en) 2020-12-23
JPWO2020129282A1 (en) 2021-02-15

Similar Documents

Publication Publication Date Title
US8864919B2 (en) Nickel based forged alloy, gas turbine member using said alloy and gas turbine using said member
US8696979B2 (en) Ni-base superalloy and method for producing the same
JP3753143B2 (en) Ni-based super heat-resistant cast alloy and turbine wheel using the same
US20070163682A1 (en) Ni-based superalloy having high oxidation resistance and gas turbine part
US20130206287A1 (en) Co-based alloy
JP2007162041A (en) Ni-BASE SUPERALLOY WITH HIGH STRENGTH AND HIGH DUCTILITY, MEMBER USING THE SAME, AND MANUFACTURING METHOD OF THE MEMBER
WO2017006927A1 (en) HIGH-STRENGTH, HEAT-RESISTANT Ni-BASE ALLOY MEMBER, METHOD FOR PRODUCING SAME, AND GAS TURBINE
JP2007191791A (en) Nickel-based superalloy composition
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP2006083447A (en) Nickel-base superalloy with excellent strength, corrosion resistance and oxidation resistance
JP5595495B2 (en) Nickel-base superalloy
JP2004256840A (en) COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR
WO2020129282A1 (en) Ni‑BASED SUPER-HEAT-RESISTANT ALLOY
JPH09268337A (en) Forged high corrosion resistant superalloy alloy
JP4811841B2 (en) Ni-base super heat-resistant cast alloy and Ni-base super heat-resistant alloy turbine wheel
JP2001294959A (en) SINGLE CRYSTAL Ni HEAT RESISTANT ALLOY AND TURBINE BRADE
JP2005171384A (en) Heat-resistant superalloy and its use
JPH1121645A (en) Ni-base superalloy having heat resistance, production of ni-base superalloy having heat resistance, and ni-base superalloy parts having heat resistance
JP2005060731A (en) SINGLE CRYSTAL Ni-BASED SUPERALLOY HAVING EXCELLENT STRENGTH, CORROSION RESISTANCE AND OXIDATION RESISTANCE
JP5408768B2 (en) Ni-base heat-resistant alloy ingot having high-temperature strength and dendritic structure and gas turbine blade casting comprising the same
JP2001234292A (en) LOW THERMAL EXPANSION Fe-BASE HEAT RESISTANT ALLOY, EXCELLENT IN HIGH TEMPERATURE STRENGTH
JP4184648B2 (en) Ni-based single crystal alloy excellent in strength and corrosion resistance and its manufacturing method
JP2787946B2 (en) Ni-based single crystal superalloy with excellent high-temperature strength and high-temperature corrosion resistance
JP2017137534A (en) Nickel-based alloy
JPH07300643A (en) Heat resistant cast cobalt-base alloy

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020528975

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899147

Country of ref document: EP

Kind code of ref document: A1