JP2004256840A - COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR - Google Patents

COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR Download PDF

Info

Publication number
JP2004256840A
JP2004256840A JP2003046174A JP2003046174A JP2004256840A JP 2004256840 A JP2004256840 A JP 2004256840A JP 2003046174 A JP2003046174 A JP 2003046174A JP 2003046174 A JP2003046174 A JP 2003046174A JP 2004256840 A JP2004256840 A JP 2004256840A
Authority
JP
Japan
Prior art keywords
temperature
less
alloy
treatment
based superalloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003046174A
Other languages
Japanese (ja)
Inventor
Tatsuya Takahashi
達也 高橋
Takashi Shibata
尚 柴田
Tsukasa Azuma
司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2003046174A priority Critical patent/JP2004256840A/en
Publication of JP2004256840A publication Critical patent/JP2004256840A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an Ni based superalloy which has excellent strength, ductility and toughness in a range from a room temperature to a high temperature, and is used for the stock to be exposed to a high temperature such as a turbine rotor and a turbine disk. <P>SOLUTION: The composite reinforced type Ni based superalloy comprises 13 to 21% Cr, 5 to 15% Co, 1.0 to 5.0% Mo, 1.0 to 5.0% Al, 0.005 to 0.1% C, ≤0.015% B and one or two kinds of metals selected from ≤3.0% Re and 0.1 to 5.0% W, and, if required, comprises <3.0% Ti and ≤0.1% Zr, and the balance substantially Ni. The alloy is hot-forged, is thereafter subjected to solution treatment in the range from a recrystallization temperature to a carbide solid solution temperature, and is subsequently subjected to prescribed stabilization treatment and aging treatment. The Ni based superalloy has tensile strength higher than that of the conventional alloy of the same componential system, combines sufficient tensile ductility and toughness, and additionally has excellent high temperature properties. The solution treatment temperature range is more expanded than that of the conventional alloy of the same componential system, and the degree of freedom in the production increases. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、タービンロータやタービンディスクのような高温に曝される素材に用いて、特に室温から高温度域において優れた強度、延性、靱性を有するNi基超合金とその製造方法に関する。
【0002】
【従来の技術】
近年、化石燃料の消費量低減および地球温暖化防止などの観点から、発電プラントの更なる高効率化に期待が寄せられている。また、ジェットエンジンや発電用ガスタービンにおいても燃焼効率の向上により二酸化炭素の削減が図れる事から運転温度の高温化が求められている。このため、使用される耐熱材料にはより高温強度の優れた材料が求められている。
【0003】
従来、発電機部材や航空機部材など特に高温で用いられる部材には、室温から高温まで高い強度を有するNi基超合金が広く用いられ、その代表例としては、インコネル718合金(Incoalloys社の商標)やワスパロイ(United Technologie社の商標)があげられる。
【0004】
Ni基耐熱合金は良好な高温強度を得るために、TiおよびAlを少量添加してオーステナイト(以下γと記す)のマトリクス中にNi(Al、Ti)からなるガンマプライム相(FCCライクのL1構造、以後γ’と記す)あるいは/およびガンマダブルプライム相(BCTライクのDO22構造、以後γ”と記す)と呼ばれる析出相を整合的に微細析出させて強化するものが多い。インコネル718はこれに当たる。
【0005】
一方、γ’相の析出強化に加え、固溶強化と炭化物の分散強化による複合的に強化するタイプの合金も存在する。ワスパロイがこれに当たり、既存の鍛造型Ni基超合金の中でも最高クラスの高温強度を有している。
【0006】
また、上記成分を基本として成分の調整を図ることによって強度等の特性の向上を意図したNi基合金が開示されている。
特許文献1〜3では、Cr、Co、Mo、Al、Tiを含有するNi基合金によって高温での硫化腐食性を改善したものが開示されている。
特許文献4では、ワスパロイに比較して低CrのNi基合金にTa等を添加してワスパロイに匹敵する疲労亀裂成長抵抗、ワスパロイより高い引っ張り強さを有するものが開示されている。
さらに、特許文献5では、実質的にMoを含まない離散的な炭化物を含むことにより切削性を向上させたNi基合金が開示されている。
【0007】
【特許文献1】
特開平9−227975号公報
【特許文献2】
特開2000−204426号公報
【特許文献3】
特開2002−88455号公報
【特許文献4】
特開平10−46278号公報
【特許文献5】
特開平10−195564号公報
【0008】
【発明が解決しようとする課題】
前述のように、発電機部材や航空機部材などの性能向上には構成部材の耐熱温度に対する一層の向上が不可欠であり、特に、耐熱性に関する性質の1つである高温強度の一層の向上が求められている。しかしながら、一般的に析出強化により高強度化を図っているNi基超合金では、引張強度と引張延性および靱性は、相反する特性である事が知られている。即ち、引張強度が向上すると引張延性および靱性は低下する事になり、強度と延性、靱性を全て向上させた合金は容易に得る事は出来ない。この知見は、複合強化型合金であるワスパロイにも当てはまる。
【0009】
強度の向上にはγ’相やγ”相の構成元素であるTiやAlの添加量増加が有効であるが、Ti+Al量の増加に伴って熱間加工性は低下するため、鍛造にて成型するのは極めて困難となる。通常、Ti+Al量が6%を越えると鋳造品として供される事が多い。更にTi量の増加は、高温での析出相の安定性を損なうと共に、イータ相(HCPライクのDO24構造、以後ηと記す)などの第2相が析出し延性や靱性を大幅に低下させる。上記各特許文献においても、強度と延性、靱性の全てを向上させた合金は得られていない。
【0010】
そこで本発明では上記のような課題に鑑み、引張強度を向上させたうえで、更に十分な引張延性と靱性を確保出来る、特に高温特性に優れた合金を提供する事を目的とするものである。
【0011】
【課題を解決するための手段】
前述の目的を達成するために、本願発明者らはワスパロイをベース組成とする多くの試験材を用いて鋭意研究した結果、ワスパロイ以上の高い引張強度を有すると同時に、引張延性および靱性も同時に大幅に向上させ、更により好適な溶体化処理温度範囲が拡く、工業的な製造性に優れた新規な合金の発明に至った。
【0012】
すなわち、本発明のうちの第1の発明は、質量%で、Crを13〜21%、Coを5〜15%、Moを1.0〜5.0%、Wを0.1〜5.0%、Alを1.0〜5.0%、Cを0.005〜0.1%、Bを0.015%以下含み、残部は不可避的不純物を除き実質的にNiからなることを特徴とする複合強化型Ni基超合金である。
【0013】
また、第2の発明は、質量%で、Crを13〜21%、Coを5〜15%、Moを1.0〜5.0%、Reを3.0%以下、Alを1.0〜5.0%、Cを0.005〜0.1%、Bを0.015%以下含み、残部は不可避的不純物を除き実質的にNiからなることを特徴とする複合強化型Ni基超合金である。
【0014】
また、第3の発明は、質量%で、Crを13〜21%、Coを5〜15%、Moを1.0〜5.0%、Wを0.1〜5.0%、Reを3.0%以下、Alを1.0〜5.0%、Cを0.005〜0.1%、Bを0.015%以下含み、残部は不可避的不純物を除き実質的にNiからなることを特徴とする複合強化型Ni基超合金である。
【0015】
また、第4の発明は、請求項1〜3のいずれかに記載の発明において、さらに質量%でTiを3.0%未満含有することを特徴とする。
【0016】
また、第5の発明は、請求項1〜4のいずれかに記載の発明において、さらに質量%でZrを0.1%以下含有することを特徴とする。
【0017】
また、第6の発明は、請求項の1〜5の何れかの合金組成を有し、熱間鍛造後、再結晶温度以上、且つ炭化物固溶温度以下で溶体化処理を行い、その後、所定の安定化処理、および時効処理を行うことを特徴とする複合強化型Ni基超合金の製造方法である。
【0018】
【発明の実施の形態】
以下、本発明における成分の限定範囲について詳細に説明する。
【0019】
Crは合金の耐酸化性、耐食性、強度を高めるに不可欠な元素である。また、Cと結びついてCrやCr23などの炭化物を析出させ、高温強度を高める。それらの効果を発揮させるためには、最低13%以上の添加量が必要である。しかしながら、多すぎる添加量はマトリクスの安定性を阻害し、σ相などの有害なTCP相の生成を助長することになり、延性や靱性に悪影響を及ぼす。従って、Crの添加量は13〜21%の範囲に限定する。なお、同様の理由で下限を15%とするのが望ましい。
【0020】
CoはNi基において主としてそれ自体が固溶体としてのマトリクスの強化作用を持つと共に、マトリクス中へのγ’相の固溶量を減少させ、γ’相の析出量を増加させる事によって強化作用を示す。また、高温において、マトリクス中のγ’相固溶量を増加させることによって、熱間加工性を向上させることが出来る。しかしながら、Coが5%未満では上記効果が不十分であり、15%を越えるとσ相などの有害なTCP相を生成して、クリープ強度を低下させる。従って、Coの添加量は5〜15%の範囲に限定する。なお、同様の理由で下限を10%とするのが望ましい。
【0021】
Moは主にマトリクスに固溶してマトリクス自体を強化する固溶強化元素として有効であると共に、γ’相にも固溶し高温での強度を高めるのに有効である。Moが1.0%未満では上記効果が不十分であり、5.0%を越えるとマトリクスの組織を不安定にすると共にTCP相を生成しやすくなる。従って、Moの添加量は1.0〜5.0%の範囲に限定する。なお、同様の理由で下限を2.0%とするのが望ましい。
また、WもMoと同様の挙動を示す事が知られており所望により添加する。Wの添加量は0.1〜5.0%の範囲に限定する。同様の理由で下限を2.0%とするのが望ましい。
【0022】
AlはNiと結合してγ’相を析出し、合金の強化に寄与する。Alが1.0%未満では十分な固溶強化を得る事が出来ないが、多すぎる添加はγ’相の粗大化を招き、それに伴って延性が低下する。従って、Alの添加量は1.0〜5.0%の範囲に限定する。なお、同様の理由で下限を1.2%越、上限を3.0%とするのが望ましい。
【0023】
Tiは主にMC炭化物を形成して合金の結晶粒の粗大化を抑制すると共に、Alと同様、Niと結合してγ’相を析出し、合金の強化に寄与するので所望により含有させる。しかしながら、多すぎる含有は、高温におけるγ’相の安定性を低下させるため強度と延性の低下を招く。従って、Tiの添加量は3.0%未満に限定する。なお、同様の理由で上限を2.5%以下とするのが望ましい。
また、Tiを含有させる場合、上記効果を十分に得るために、その下限を1.0%とするのが望ましい。
【0024】
CはTiとはTiCを形成し、またCr、MoとはMC、M、およびM23タイプの炭化物を形成し、合金の結晶粒の粗大化を抑制する。更に、MCやM23は結晶粒界に適量の炭化物を析出させることで粒界を強化するために、本発明では必須の元素である。Cが0.005%以上含まれないと上記の効果が得られず、0.1%を越えると析出強化に必要なTi量が減少するだけでなく、安定化処理時に粒界へ析出するCr炭化物が多くなりすぎて粒界が脆弱化し、延性が低下する。従って、Cの添加量は0.005〜0.1%の範囲に限定する。なお、同様の理由で下限を0.02%とするのが望ましい。
【0025】
Bは粒界に偏析して高温特性に寄与する。但し、多過ぎる添加は硼化物を形成し易くなり、逆に粒界脆化を招く。従って、Bの添加量は0.015%以下の範囲に限定する。なお、上記効果を十分に得るために、下限を0.001%とするのが望ましい。
【0026】
ZrもBと同様に、粒界に析出して粒界強度を高める効果があるため、所望により少量含有させる。しかしながら、多すぎる添加は粒界に金属間化合物を析出して高温強度を低下させる。従って、Zrの添加量は0.1%以下に限定する。なお、Zrを含有させる場合、上記効果を十分に得るために、下限を0.05%とするのが望ましい。
【0027】
Reは上述したW、Moよりもマトリクスへの固溶強化効果が高い元素であるため、高温強度および高温耐食性を一段と向上させる作用があり、所望により含有させる。ただし、Wを含有しない場合には、Reの含有は必須である。
なお、Reの含有は、多すぎる添加は有害な脆化相を生成し強度の低下を招く。また、Reは非常に高価な元素であるため合金の製造コストを著しく高める。従って、Reの含有量は3.0%以下の範囲に限定する。なお、上記効果を十分に得るため、Re含有に際しては、下限を0.2%とするのが望ましい。
【0028】
上記組成分を有する合金は、常法により溶製することができ、例えば、その後、熱間鍛造、安定化化処理、時効処理に供する。熱間鍛造後の溶体化処理では、該合金の再結晶温度以上で、かつ炭化物固溶温度以下とするのが望ましい。上記安定化処理および時効処理は、合金の組成によって条件が異なってくるが、安定化処理としては、例えば830〜860℃、3〜5時間の加熱により行うことができ、時効処理では、例えば、750〜770℃、12〜24時間の加熱により行うことができる。これら処理は、多段に行うものであってもよい。
【0029】
【実施例】
以下、本発明の実施例を詳細に説明する。表1に示す組成を有し真空誘導溶解炉により溶製した50kg鋼塊を、拡散熱処理後、熱間鍛造により厚さ30mmの板材とし供試材を得た。なお、供試材No.15は従来材であるワスパロイ相当の化学成分を有している。各供試材毎に再結晶温度以上、炭化物固溶温度以下の範囲で最適な溶体化処理を選定し、さらに845℃で4時間の安定化処理、および760℃で16時間の時効処理を実施した。なお、各供試材の溶体化処理温度の決定に際しては、各供試材を1000〜1160℃で3時間保持した後空冷した試材を用いて、ミクロ組織観察と硬さ測定結果から求めた再結晶挙動、粒成長挙動に基づいて判断した。
【0030】
【表1】

Figure 2004256840
【0031】
表2に、1000〜1160℃で3時間保持した各供試材の結晶粒度を示す。表2から明らかなように、全ての供試材は1040℃以上で再結晶を開始するため、溶体化処理温度はそれ以上の温度を選択する事が可能である。しかしながら、従来材は炭化物固溶温度である1060℃以上で結晶粒が急激に成長してしまうのに対し、本発明材に関しては1080℃、あるいは1100℃まで結晶粒は微細な状態を維持している。結晶粒が粗大化すると、延性、靱性、疲労強度が大幅に低下する事より、溶体化処理温度は再結晶温度以上で且つ炭化物固溶温度(粒成長開始温度)以下を選択するのが好ましい。即ち、従来材の最適溶体化処理温度は1040℃のみであるのに対し、本発明材では1040〜1080℃、あるいは1040〜1100℃とその範囲が大幅に拡大している。この事は、熱処理の自由度を大きく拡げるため、工業的には非常に有用な手段として活用出来る。
【0032】
【表2】
Figure 2004256840
【0033】
次いで、上記熱処理後の各々の供試材について、室温および700℃での引張試験を行った。その結果から求めた室温と700℃における0.2%耐力と引張強さを図1および図2に示す。図1および図2から明らかなように、本発明材は、従来材を含む比較材とほぼ同程度、あるいはそれ以上の強度を有している事が明らかである。
【0034】
また、同様に室温および700℃での引張試験結果から求めた室温と700℃における伸びと絞りを図3および図4に示す。図3および図4から明らかなように、本発明材は、従来材を含む比較材とほぼ同程度、あるいはそれ以上の延性を有している事が明らかである。特に700℃における伸びと絞りは大きく比較材を上回っている。また、比較材のうちTiの含有量が3.0%以上である供試材No.12、13、14に関しては、700℃における伸びと絞りの低下が著しい。
【0035】
また、図5に室温におけるシャルピー衝撃試験結果から求めた、室温での衝撃吸収エネルギーを示す。図5から明らかなように、本発明材は、従来材を含む比較材とほぼ同程度、あるいはそれ以上の靱性を有している事が明らかである。また、比較材のうちTiの含有量が3.0%以上である供試材No.12、13、14に関しては、靱性は大きく低下している。
【0036】
【発明の効果】
以上の説明から明らかなように、本発明によれば、従来の同成分系の合金よりも引張強度を向上させたうえで、更に十分な引張延性と靱性を兼ね揃え、加えて高温特性に優れた合金を提供する事が出来る。また、従来の同成分系の合金よりも溶体化処理温度範囲が拡大し、製造上の自由度が増すことより産業上極めて有用である。
【0037】
【図面の簡単な説明】
【図1】本発明の実施例における各供試材の室温における0.2%耐力と引張強さを示すグラフである。
【図2】同じく各供試材の700℃における0.2%耐力と引張強さを示すグラフである。
【図3】同じく各供試材の室温における伸びと絞りを示すグラフである。
【図4】同じく各供試材の700℃における700℃での伸びと絞りを示すグラフである。
【図5】同じく各供試材の室温における衝撃吸収エネルギーを示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a Ni-based superalloy having excellent strength, ductility, and toughness particularly in a temperature range from room temperature to a high temperature, and a method for producing the Ni-based superalloy, which is used for a material exposed to a high temperature such as a turbine rotor or a turbine disk.
[0002]
[Prior art]
2. Description of the Related Art In recent years, from the viewpoint of reducing fossil fuel consumption and preventing global warming, there are expectations for further increasing the efficiency of power plants. Further, in a jet engine or a gas turbine for power generation, an increase in operating temperature is required because carbon dioxide can be reduced by improving combustion efficiency. For this reason, a material having higher high-temperature strength is required for the heat-resistant material to be used.
[0003]
2. Description of the Related Art Conventionally, Ni-based superalloys having high strength from room temperature to high temperature are widely used for members particularly used at high temperatures such as generator members and aircraft members, and a representative example thereof is Inconel 718 alloy (a trademark of Incoalloys). And Waspaloy (a trademark of United Technology).
[0004]
For Ni-base heat-resistant alloy to obtain good high-temperature strength, Ni 3 (Al, Ti) consisting of gamma prime phase in a matrix of small amount of Ti and Al austenite (hereinafter referred to as gamma) (the FCC Like L1 2 structure, referred to hereafter as gamma ') or / and gamma double prime phase (BCT -like DO 22 structure, hereinafter gamma "and denoted) and precipitated phase alignment manner to what is often reinforced by fine precipitates called. Inconel 718 Corresponds to this.
[0005]
On the other hand, in addition to precipitation strengthening of the γ 'phase, there is also an alloy of a type that strengthens in a complex manner by solid solution strengthening and carbide dispersion strengthening. Waspaloy, which has the highest class of high-temperature strength among existing forged Ni-base superalloys.
[0006]
Further, there is disclosed a Ni-based alloy intended to improve properties such as strength by adjusting components based on the above components.
Patent Literatures 1 to 3 disclose those in which a Ni-based alloy containing Cr, Co, Mo, Al, and Ti has improved sulfidation corrosion resistance at high temperatures.
Patent Literature 4 discloses a Ni-based alloy having a low Cr content compared to Waspaloy, which has a fatigue crack growth resistance comparable to Waspaloy and a higher tensile strength than Waspaloy by adding Ta or the like.
Further, Patent Literature 5 discloses a Ni-based alloy having improved machinability by containing a discrete carbide substantially not containing Mo.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-227975 [Patent Document 2]
JP 2000-204426 A [Patent Document 3]
JP 2002-88455 A [Patent Document 4]
JP-A-10-46278 [Patent Document 5]
JP-A-10-195564
[Problems to be solved by the invention]
As described above, in order to improve the performance of generator members, aircraft members, and the like, it is essential to further improve the heat-resistant temperature of the constituent members. In particular, further improvement in high-temperature strength, which is one of the properties related to heat resistance, is required. Have been. However, it is known that, in general, in a Ni-based superalloy in which high strength is achieved by precipitation strengthening, tensile strength, tensile ductility, and toughness are contradictory properties. That is, when the tensile strength is improved, the tensile ductility and the toughness are reduced, and an alloy in which the strength, ductility and toughness are all improved cannot be easily obtained. This finding also applies to Waspaloy, a composite strengthened alloy.
[0009]
To increase the strength, it is effective to increase the addition amount of Ti or Al, which is a constituent element of the γ ′ phase or γ ″ phase. However, the hot workability decreases with the increase in the amount of Ti + Al. Usually, when the amount of Ti + Al exceeds 6%, it is often provided as a cast product, and the increase in the amount of Ti impairs the stability of the precipitated phase at a high temperature and the eta phase ( A second phase, such as HCP-like DO 24 structure (hereinafter referred to as η), precipitates and significantly reduces ductility and toughness. In each of the above patent documents, an alloy having improved strength, ductility, and toughness is obtained. Not been.
[0010]
In view of the above problems, it is an object of the present invention to provide an alloy having improved tensile strength and further ensuring sufficient tensile ductility and toughness, and particularly excellent in high-temperature properties. .
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have conducted extensive studies using many test materials based on Waspaloy, and as a result, have high tensile strength higher than that of Waspaloy, and at the same time, significantly increase tensile ductility and toughness. , And the temperature range of the solution treatment further expanded, and the invention of a novel alloy excellent in industrial manufacturability was attained.
[0012]
That is, in the first invention of the present invention, Cr is 13 to 21%, Co is 5 to 15%, Mo is 1.0 to 5.0%, and W is 0.1 to 5% by mass%. 0%, 1.0-5.0% of Al, 0.005-0.1% of C, 0.015% or less of B, and the balance is substantially made of Ni excluding unavoidable impurities. Is a composite strengthened Ni-base superalloy.
[0013]
In the second invention, 13% to 21% of Cr, 5% to 15% of Co, 1.0% to 5.0% of Mo, 3.0% or less of Re, and 1.0% A composite strengthened Ni-base super-comprising characterized by containing up to 5.0%, 0.005 to 0.1% of C and 0.015% or less of B, and the balance substantially consisting of Ni excluding unavoidable impurities. Alloy.
[0014]
In the third invention, Cr is 13 to 21%, Co is 5 to 15%, Mo is 1.0 to 5.0%, W is 0.1 to 5.0%, and Re is 0.1% by mass. 3.0% or less, 1.0 to 5.0% of Al, 0.005 to 0.1% of C, 0.015% or less of B, and the balance substantially consisting of Ni excluding unavoidable impurities This is a composite strengthened Ni-base superalloy characterized by the above.
[0015]
A fourth invention is characterized in that, in the invention according to any one of claims 1 to 3, the composition further contains less than 3.0% by mass of Ti.
[0016]
A fifth invention is characterized in that, in the invention according to any one of claims 1 to 4, Zr is further contained in an amount of 0.1% or less by mass%.
[0017]
The sixth invention has the alloy composition according to any one of claims 1 to 5, and after hot forging, performs a solution treatment at a temperature equal to or higher than a recrystallization temperature and equal to or lower than a carbide solid solution temperature. A method for producing a composite strengthened Ni-base superalloy characterized by performing a stabilization treatment and an aging treatment.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the limited range of the components in the present invention will be described in detail.
[0019]
Cr is an element indispensable for improving the oxidation resistance, corrosion resistance, and strength of the alloy. In addition, it combines with C to precipitate carbides such as Cr 7 C 3 and Cr 23 C 6 to increase high-temperature strength. In order to exhibit these effects, the addition amount must be at least 13% or more. However, an excessively large amount impairs the stability of the matrix and promotes the formation of a harmful TCP phase such as the σ phase, which adversely affects ductility and toughness. Therefore, the amount of Cr added is limited to the range of 13 to 21%. It is desirable to set the lower limit to 15% for the same reason.
[0020]
Co mainly has a strengthening effect of the matrix itself as a solid solution in the Ni base, and also has a strengthening effect by decreasing the solid solution amount of the γ ′ phase in the matrix and increasing the precipitation amount of the γ ′ phase. . At a high temperature, the hot workability can be improved by increasing the amount of γ 'phase solid solution in the matrix. However, if the content of Co is less than 5%, the above effect is insufficient. If the content of Co exceeds 15%, a harmful TCP phase such as a σ phase is generated, and the creep strength is reduced. Therefore, the amount of Co added is limited to the range of 5 to 15%. It is desirable to set the lower limit to 10% for the same reason.
[0021]
Mo is mainly effective as a solid solution strengthening element for forming a solid solution in the matrix and strengthening the matrix itself, and is also effective for forming a solid solution in the γ ′ phase and increasing the strength at a high temperature. If the Mo content is less than 1.0%, the above effect is insufficient. If the Mo content exceeds 5.0%, the matrix structure becomes unstable and a TCP phase is easily generated. Therefore, the amount of Mo added is limited to the range of 1.0 to 5.0%. In addition, it is desirable to set the lower limit to 2.0% for the same reason.
Also, W is known to exhibit the same behavior as Mo, and is added if desired. The addition amount of W is limited to the range of 0.1 to 5.0%. For the same reason, it is desirable to set the lower limit to 2.0%.
[0022]
Al combines with Ni to precipitate a γ 'phase, which contributes to strengthening of the alloy. If the Al content is less than 1.0%, sufficient solid solution strengthening cannot be obtained. However, too much addition causes coarsening of the γ 'phase, and the ductility decreases accordingly. Therefore, the amount of Al added is limited to the range of 1.0 to 5.0%. For the same reason, it is desirable that the lower limit is set to exceed 1.2% and the upper limit is set to 3.0%.
[0023]
Ti mainly forms MC carbides and suppresses coarsening of crystal grains of the alloy, and, like Al, combines with Ni to precipitate a γ 'phase and contributes to strengthening of the alloy, so that Ti is contained as desired. However, too much content lowers the stability of the γ 'phase at high temperatures, leading to a reduction in strength and ductility. Therefore, the amount of Ti added is limited to less than 3.0%. For the same reason, it is desirable to set the upper limit to 2.5% or less.
When Ti is contained, the lower limit is desirably set to 1.0% in order to sufficiently obtain the above effects.
[0024]
C forms TiC with Ti, and forms M 6 C, M 7 C 3 , and M 23 C 6 type carbides with Cr and Mo, and suppresses coarsening of crystal grains of the alloy. Further, M 6 C and M 23 C 6 are essential elements in the present invention in order to strengthen a grain boundary by precipitating an appropriate amount of carbide at a crystal grain boundary. If the content of C is not more than 0.005%, the above effect cannot be obtained. If the content of C exceeds 0.1%, not only the amount of Ti required for precipitation strengthening is reduced, but also Cr which precipitates at the grain boundary during stabilization treatment. Too much carbide causes brittle grain boundaries and lowers ductility. Therefore, the amount of C added is limited to the range of 0.005 to 0.1%. For the same reason, it is desirable to set the lower limit to 0.02%.
[0025]
B segregates at the grain boundaries and contributes to high-temperature characteristics. However, too much addition tends to form borides, which in turn causes grain boundary embrittlement. Therefore, the amount of B added is limited to the range of 0.015% or less. Note that the lower limit is desirably 0.001% in order to sufficiently obtain the above effects.
[0026]
Like Zr, Zr also has the effect of precipitating at the grain boundaries and increasing the grain boundary strength, and therefore, is contained in a small amount as desired. However, too much addition precipitates intermetallic compounds at grain boundaries and lowers high-temperature strength. Therefore, the addition amount of Zr is limited to 0.1% or less. When Zr is contained, the lower limit is desirably set to 0.05% in order to sufficiently obtain the above effects.
[0027]
Re is an element having a higher solid solution strengthening effect on the matrix than W and Mo described above, and therefore has an effect of further improving high-temperature strength and high-temperature corrosion resistance, and is contained as desired. However, when W is not contained, Re must be contained.
In addition, if the content of Re is too large, a harmful embrittlement phase is generated and the strength is reduced. In addition, Re is a very expensive element, which significantly increases the production cost of the alloy. Therefore, the content of Re is limited to the range of 3.0% or less. In order to sufficiently obtain the above effects, it is desirable that the lower limit be 0.2% when Re is contained.
[0028]
The alloy having the above composition can be melted by a conventional method, for example, then subjected to hot forging, stabilizing treatment, and aging treatment. In the solution treatment after the hot forging, it is desirable that the temperature be equal to or higher than the recrystallization temperature of the alloy and equal to or lower than the carbide solid solution temperature. Conditions for the stabilizing treatment and the aging treatment vary depending on the composition of the alloy. The stabilizing treatment can be performed, for example, by heating at 830 to 860 ° C. for 3 to 5 hours. In the aging treatment, for example, It can be performed by heating at 750 to 770 ° C. for 12 to 24 hours. These processes may be performed in multiple stages.
[0029]
【Example】
Hereinafter, embodiments of the present invention will be described in detail. A 50 kg steel ingot having the composition shown in Table 1 and produced by a vacuum induction melting furnace was subjected to diffusion heat treatment, and then hot forged into a 30 mm thick plate to obtain a test material. The test material No. No. 15 has a chemical component equivalent to Waspaloy, which is a conventional material. The optimum solution treatment is selected within the range from the recrystallization temperature to the carbide solid solution temperature for each test material, and the stabilization treatment is performed at 845 ° C for 4 hours and the aging treatment is performed at 760 ° C for 16 hours. did. In determining the solution heat treatment temperature of each test material, it was determined from the microstructure observation and the hardness measurement result using the test material which was kept at 1000 to 1160 ° C. for 3 hours and then air-cooled. The judgment was made based on the recrystallization behavior and the grain growth behavior.
[0030]
[Table 1]
Figure 2004256840
[0031]
Table 2 shows the crystal grain size of each test material kept at 1000 to 1160 ° C. for 3 hours. As is clear from Table 2, since all the test materials start recrystallization at 1040 ° C. or higher, it is possible to select a solution treatment temperature higher than that. However, in the conventional material, the crystal grains grow rapidly at a carbide solid solution temperature of 1060 ° C. or higher, whereas in the case of the material of the present invention, the crystal grains maintain a fine state up to 1080 ° C. or 1100 ° C. I have. When the crystal grains become coarse, ductility, toughness, and fatigue strength are significantly reduced. Therefore, the solution treatment temperature is preferably selected to be equal to or higher than the recrystallization temperature and equal to or lower than the carbide solid solution temperature (grain growth starting temperature). That is, while the optimum solution heat treatment temperature of the conventional material is only 1040 ° C., the range of the material of the present invention is greatly expanded to 1040 to 1080 ° C. or 1040 to 1100 ° C. Since this greatly expands the degree of freedom of the heat treatment, it can be utilized as a very useful means industrially.
[0032]
[Table 2]
Figure 2004256840
[0033]
Next, a tensile test was performed at room temperature and 700 ° C. on each of the test materials after the heat treatment. FIGS. 1 and 2 show the 0.2% proof stress and the tensile strength at room temperature and 700 ° C. obtained from the results. As is clear from FIGS. 1 and 2, it is apparent that the material of the present invention has almost the same strength as the comparative material including the conventional material or higher.
[0034]
Similarly, the elongation and drawing at room temperature and 700 ° C. obtained from the tensile test results at room temperature and 700 ° C. are shown in FIGS. 3 and 4. As is clear from FIGS. 3 and 4, it is clear that the material of the present invention has almost the same or higher ductility as the comparative material including the conventional material. In particular, the elongation and drawing at 700 ° C. greatly exceeded the comparative material. In addition, among the comparative materials, the test material No. having a Ti content of 3.0% or more was used. With respect to 12, 13, and 14, the elongation at 700 ° C. and the reduction in drawing are remarkable.
[0035]
FIG. 5 shows the impact absorption energy at room temperature obtained from the results of the Charpy impact test at room temperature. As is clear from FIG. 5, it is clear that the material of the present invention has almost the same or higher toughness as the comparative material including the conventional material. In addition, among the comparative materials, the test material No. having a Ti content of 3.0% or more was used. As for 12, 13, and 14, the toughness is greatly reduced.
[0036]
【The invention's effect】
As is clear from the above description, according to the present invention, after improving the tensile strength as compared with the conventional alloys of the same component type, the present invention also has both sufficient tensile ductility and toughness, and additionally has excellent high temperature properties. Alloys can be provided. Further, the solution treatment temperature range is expanded as compared with a conventional alloy of the same component system, and the degree of freedom in production is increased, which is extremely useful in industry.
[0037]
[Brief description of the drawings]
FIG. 1 is a graph showing 0.2% proof stress and tensile strength at room temperature of each test material in an example of the present invention.
FIG. 2 is a graph showing 0.2% proof stress and tensile strength of each test material at 700 ° C.
FIG. 3 is a graph showing the elongation at room temperature and the drawing of each test material.
FIG. 4 is a graph showing the elongation at 700 ° C. of each test material at 700 ° C. and the drawing.
FIG. 5 is a graph showing the impact absorption energy of each test material at room temperature.

Claims (6)

質量%で、Crを13〜21%、Coを5〜15%、Moを1.0〜5.0%、Wを0.1〜5.0%、Alを1.0〜5.0%、Cを0.005〜0.1%、Bを0.015%以下含み、残部は不可避的不純物を除き実質的にNiからなることを特徴とする複合強化型Ni基超合金。13 to 21% of Cr, 5 to 15% of Co, 1.0 to 5.0% of Mo, 0.1 to 5.0% of W, and 1.0 to 5.0% of Al by mass%. , C in an amount of 0.005 to 0.1% and B in an amount of 0.015% or less, with the balance substantially consisting of Ni excluding unavoidable impurities. 質量%で、Crを13〜21%、Coを5〜15%、Moを1.0〜5.0%、Reを3.0%以下、Alを1.0〜5.0%、Cを0.005〜0.1%、Bを0.015%以下含み、残部は不可避的不純物を除き実質的にNiからなることを特徴とする複合強化型Ni基超合金。In mass%, Cr is 13 to 21%, Co is 5 to 15%, Mo is 1.0 to 5.0%, Re is 3.0% or less, Al is 1.0 to 5.0%, and C is A composite strengthened Ni-base superalloy comprising 0.005 to 0.1% and B of 0.015% or less, with the balance substantially consisting of Ni excluding unavoidable impurities. 質量%で、Crを13〜21%、Coを5〜15%、Moを1.0〜5.0%、Wを0.1〜5.0%、Reを3.0%以下、Alを1.0〜5.0%、Cを0.005〜0.1%、Bを0.015%以下含み、残部は不可避的不純物を除き実質的にNiからなることを特徴とする複合強化型Ni基超合金。In mass%, Cr is 13 to 21%, Co is 5 to 15%, Mo is 1.0 to 5.0%, W is 0.1 to 5.0%, Re is 3.0% or less, and Al is 1.0 to 5.0%, C: 0.005 to 0.1%, B: 0.015% or less, and the balance is substantially composed of Ni excluding unavoidable impurities. Ni-base superalloy. さらに質量%でTiを3.0%未満含有することを特徴とする請求項1〜3のいずれかに記載の複合強化型Ni基超合金。The composite-strengthened Ni-base superalloy according to any one of claims 1 to 3, further comprising less than 3.0% by mass of Ti. さらに質量%でZrを0.1%以下含有することを特徴とする請求項1〜4のいずれかに記載の複合強化型Ni基超合金。The composite strengthened Ni-base superalloy according to any one of claims 1 to 4, further comprising 0.1% or less by mass of Zr. 請求項の1〜5の何れかの合金組成を有し、熱間鍛造後、再結晶温度以上、且つ炭化物固溶温度以下で溶体化処理を行い、その後、所定の安定化処理、および時効処理を行う事を特徴とする複合強化型Ni基超合金の製造方法。It has an alloy composition according to any one of claims 1 to 5, and after hot forging, solution treatment is performed at a recrystallization temperature or more and a carbide solid solution temperature or less, and thereafter, a predetermined stabilization treatment and an aging treatment A method for producing a composite strengthened Ni-base superalloy.
JP2003046174A 2003-02-24 2003-02-24 COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR Pending JP2004256840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046174A JP2004256840A (en) 2003-02-24 2003-02-24 COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046174A JP2004256840A (en) 2003-02-24 2003-02-24 COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR

Publications (1)

Publication Number Publication Date
JP2004256840A true JP2004256840A (en) 2004-09-16

Family

ID=33112790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046174A Pending JP2004256840A (en) 2003-02-24 2003-02-24 COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR

Country Status (1)

Country Link
JP (1) JP2004256840A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225756A (en) * 2005-01-19 2006-08-31 Daido Steel Co Ltd Heat resistant alloy for exhaust valve enduring use at 900°c and exhaust valve using the alloy
WO2007119832A1 (en) * 2006-04-14 2007-10-25 Mitsubishi Materials Corporation Ni-BASED HEAT-RESISTANT ALLOY FOR GAS TURBINE COMBUSTOR
JP2009097052A (en) * 2007-10-19 2009-05-07 Hitachi Ltd Ni-BASED CAST ALLOY
JP2009242902A (en) * 2008-03-31 2009-10-22 Toshiba Corp Ni based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine
JP2012177372A (en) * 2012-04-24 2012-09-13 Hitachi Ltd Turbine rotor
JP2012177370A (en) * 2012-04-19 2012-09-13 Hitachi Ltd Steam turbine rotor
US8524149B2 (en) 2009-09-04 2013-09-03 Hitachi, Ltd. Nickel base wrought alloy
CN103422038A (en) * 2013-09-04 2013-12-04 上海康晟特种合金有限公司 Method for heat treatment of lining die sleeve of high-temperature copper alloy extruding machine
GB2565063A (en) * 2017-07-28 2019-02-06 Oxmet Tech Limited A nickel-based alloy
CN115572861A (en) * 2022-09-23 2023-01-06 北京北冶功能材料有限公司 Nickel-based high-temperature alloy easy to machine and form and preparation method and application thereof
CN116065056A (en) * 2021-11-04 2023-05-05 宝武特种冶金有限公司 Large-specification nickel-based superalloy bar difficult to deform and preparation method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006225756A (en) * 2005-01-19 2006-08-31 Daido Steel Co Ltd Heat resistant alloy for exhaust valve enduring use at 900°c and exhaust valve using the alloy
EP2009123A4 (en) * 2006-04-14 2013-09-04 Mitsubishi Materials Corp Ni-BASED HEAT-RESISTANT ALLOY FOR GAS TURBINE COMBUSTOR
WO2007119832A1 (en) * 2006-04-14 2007-10-25 Mitsubishi Materials Corporation Ni-BASED HEAT-RESISTANT ALLOY FOR GAS TURBINE COMBUSTOR
JP2007284734A (en) * 2006-04-14 2007-11-01 Mitsubishi Materials Corp Ni-BASE HEAT-RESISTANT ALLOY FOR GAS-TURBINE COMBUSTOR
EP2009123A1 (en) * 2006-04-14 2008-12-31 Mitsubishi Materials Corporation Ni-BASED HEAT-RESISTANT ALLOY FOR GAS TURBINE COMBUSTOR
US8211360B2 (en) 2006-04-14 2012-07-03 Mitsubishi Materials Corporation Nickel-based heat resistant alloy for gas turbine combustor
JP2009097052A (en) * 2007-10-19 2009-05-07 Hitachi Ltd Ni-BASED CAST ALLOY
US9567656B2 (en) 2007-10-19 2017-02-14 Mitsubishi Hitachi Power Systems, Ltd. Nickel based alloy for forging
US8956471B2 (en) 2007-10-19 2015-02-17 Mitsubishi Hitachi Power Systems, Ltd. Nickel based alloy for forging
JP2009242902A (en) * 2008-03-31 2009-10-22 Toshiba Corp Ni based alloy for turbine rotor of steam turbine, and turbine rotor of steam turbine
JP4585578B2 (en) * 2008-03-31 2010-11-24 株式会社東芝 Ni-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
US8524149B2 (en) 2009-09-04 2013-09-03 Hitachi, Ltd. Nickel base wrought alloy
JP2012177370A (en) * 2012-04-19 2012-09-13 Hitachi Ltd Steam turbine rotor
JP2012177372A (en) * 2012-04-24 2012-09-13 Hitachi Ltd Turbine rotor
CN103422038A (en) * 2013-09-04 2013-12-04 上海康晟特种合金有限公司 Method for heat treatment of lining die sleeve of high-temperature copper alloy extruding machine
GB2565063A (en) * 2017-07-28 2019-02-06 Oxmet Tech Limited A nickel-based alloy
GB2565063B (en) * 2017-07-28 2020-05-27 Oxmet Tech Limited A nickel-based alloy
US11634792B2 (en) 2017-07-28 2023-04-25 Alloyed Limited Nickel-based alloy
CN116065056A (en) * 2021-11-04 2023-05-05 宝武特种冶金有限公司 Large-specification nickel-based superalloy bar difficult to deform and preparation method thereof
CN115572861A (en) * 2022-09-23 2023-01-06 北京北冶功能材料有限公司 Nickel-based high-temperature alloy easy to machine and form and preparation method and application thereof
CN115572861B (en) * 2022-09-23 2024-02-23 北京北冶功能材料有限公司 Nickel-based superalloy easy to machine and form and preparation method and application thereof

Similar Documents

Publication Publication Date Title
US9945019B2 (en) Nickel-based heat-resistant superalloy
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
JP4430974B2 (en) Method for producing low thermal expansion Ni-base superalloy
JP5696995B2 (en) Heat resistant superalloy
JP5657964B2 (en) High-strength Ni-base forged superalloy and manufacturing method thereof
JP5278936B2 (en) Heat resistant superalloy
JP6839401B1 (en) Manufacturing method of Ni-based super heat-resistant alloy and Ni-based super heat-resistant alloy
KR20200002965A (en) Precipitation Hardening Cobalt-Nickel Base Superalloys and Articles Made therefrom
JP5323162B2 (en) Polycrystalline nickel-based superalloy with excellent mechanical properties at high temperatures
JP2014070230A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
JP2002088455A (en) METHOD FOR MANUFACTURING Ni-BASE ALLOY HAVING EXCELLENT HIGH TEMPERATURE SULFIDATION CORROSION RESISTANCE
JP4387331B2 (en) Ni-Fe base alloy and method for producing Ni-Fe base alloy material
JP4768672B2 (en) Ni-base alloy excellent in structure stability and high-temperature strength and method for producing Ni-base alloy material
JP2018131667A (en) Ni-BASED ALLOY, GAS TURBINE MATERIAL, AND METHOD FOR PRODUCING Ni-BASED ALLOY HAVING EXCELLENT CREEP PROPERTY
JP2006118016A (en) Ni-Fe-BASED SUPERALLOY, ITS PRODUCTION METHOD AND GAS TURBINE
JP5395516B2 (en) Nickel-based alloy for steam turbine turbine rotor and steam turbine turbine rotor
JP6293682B2 (en) High strength Ni-base superalloy
JP2004256840A (en) COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR
JP2009013450A (en) Nickel-based alloy
JP4923996B2 (en) Heat-resistant spring and method for manufacturing the same
JP2905473B1 (en) Method for producing Ni-based directionally solidified alloy
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JP2009221545A (en) Ni-BASED ALLOY FOR TURBINE ROTOR OF STEAM TURBINE, AND TURBINE ROTOR OF STEAM TURBINE
JP6095237B2 (en) Ni-base alloy having excellent high-temperature creep characteristics and gas turbine member using this Ni-base alloy