JP2004107777A - Austenitic heat resistant alloy, production method therefor and steam turbine parts - Google Patents

Austenitic heat resistant alloy, production method therefor and steam turbine parts Download PDF

Info

Publication number
JP2004107777A
JP2004107777A JP2002275485A JP2002275485A JP2004107777A JP 2004107777 A JP2004107777 A JP 2004107777A JP 2002275485 A JP2002275485 A JP 2002275485A JP 2002275485 A JP2002275485 A JP 2002275485A JP 2004107777 A JP2004107777 A JP 2004107777A
Authority
JP
Japan
Prior art keywords
heat
temperature
austenitic
resistant alloy
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002275485A
Other languages
Japanese (ja)
Inventor
Yoichi Tsuda
津 田 陽 一
Ryuichi Ishii
石 井 龍 一
Masayuki Yamada
山 田 政 之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002275485A priority Critical patent/JP2004107777A/en
Publication of JP2004107777A publication Critical patent/JP2004107777A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an austenitic heat resistant alloy which has excellent strength, high temperature tensile strength, high temperature ductility and creep fracture strength, to provide a production method therefor, and to provide steam turbine parts. <P>SOLUTION: The austenitic heat resistant alloy consists, by mass, of ≤0.10% C, 10.0 to 20.0% Cr, 37.0 to 47.0% Ni, 2.0 to 5.0% W, 1.0 to 2.5% Al, 0.4 to 1.5% Ti and 1.0 to 2.5% Nb, and the balance Fe with inevitable impurities. As for the method for producing an austenitic heat resistant alloy, the solution heat treatment temperature of the stock is controlled to 950 to 1,050°C in a heat treatment stage of the above austenitic heat resistant alloy. The steam turbine parts consist of the above austenitic heat resistant alloy. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、蒸気温度が650℃を超える高温で運転される蒸気タービンに使用される材料として好適な、高温強度および時効特性に優れるオーステナイト系耐熱合金とその製造方法および蒸気タービン部品に関する。
【0002】
【従来の技術】
従来、蒸気タービンは、蒸気温度610℃以下の蒸気が使用されることが多いことから、高温部品の材料としては低合金鋼や12%Cr系マルテンサイト系ステンレス鋼などが主として使用されてきた。
【0003】
【発明が解決しようとする課題】
近年、地球環境保護の観点から、蒸気タービンの蒸気条件を高温化し、熱効率を向上させる方向にある。この場合、蒸気温度が650℃を超える高温蒸気タービンにおいては、低合金鋼や12%Cr系マルテンサイト系ステンレス鋼はクリープ破断強度が低く、より優れた高温強度を持つ材料が必要となる。650℃を超える高温で優れた高温強度を持つ材料としてはγ’相(Ni(Al,Ti))やγ”相(NiNb)によって強化されたオーステナイト系耐熱合金がある。
【0004】
これらオーステナイト系耐熱合金のうち、Feを比較的多く含むNi−Fe基耐熱合金は大型部品の製造性も比較的良好で、高温蒸気タービン材料として好適である。しかし、Ni−Fe基耐熱合金は高温蒸気タービンの過酷な環境下で使用するにはクリープ破断強度が十分でないという問題がある。また、この種の材料には一般に溶体化処理、時効処理という2段階熱処理が行われるが、使用温度域が時効温度に近いため、使用中に時効が進行し、軟化が起こるという問題点がある。
【0005】
本発明は、上述した問題点に鑑みてなされたもので、高温蒸気タービン用材料として好適な高温強度および時効特性に優れるオーステナイト系耐熱合金とその製造方法および蒸気タービン部品を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明のオーステナイト系耐熱合金は、質量%で、C:0.10%以下、Cr:10.0〜20.0%、Ni:37.0〜47.0%、W:2.0〜5.0%、Al:1.0〜2.5%、Ti:0.4〜1.5%、Nb:1.0〜2.5%を含み、残部がFeおよび不可避的不純物からなるNi−Fe基合金で構成される。
【0007】
また、上記Ni−Fe基合金においては、質量%で、Re:0.2〜3.0%、B:0.003〜0.010%、Zr:0.005〜0.100%、Hf:0.05〜0.20%のうち一種以上を添加することで、より高温強度の優れるオーステナイト系耐熱合金を構成することができる。
【0008】
そして、本発明のオーステナイト系耐熱合金の製造方法は、上記のオーステナイト系耐熱合金の熱処理工程において、素材の溶体化処理温度を950〜1050℃としたこと、を特徴とする。
【0009】
【発明の実施の形態】
以下に各元素の限定理由を説明する。
本発明によるオーステナイト系耐熱合金において、Cは、Crと化合して粒界にCr23として析出しやすい。この炭化物が析出すると粒界近傍のCr濃度が低下し、粒界近傍の耐食性が局所的に低下する。また、多量のCr23は延性や靭性にも悪影響を及ぼす。従って、Cは含有量が低いことが望ましい。後述するNbの添加により、Cは微細なNbC炭化物として固定され、Cr23として粒界析出することを防止できるが、この固定作用にも限度があるため、Cの上限を0.10%に制限する。
【0010】
Crは、健全な耐酸化性皮膜を形成し、材料に耐酸化・耐腐食性を付与するのに有効な元素であるため、10.0%以上必要である。一方、20.0%を超えて添加すると高温で長時間使用に際し、脆化相であるσ相を生成するため、添加量を10.0〜20.0%とする。
【0011】
Niは、オーステナイト安定化のために必要な元素であり、かつAl、Ti、Nbと結合してγ′相(Ni(Al,Ti))、η相(NiTi)およびδ相(NiNb)を形成して高温強度を高めるために必要な元素であり、Cr添加量とのバランスから37.0%以上必要である。Ni添加量は多いほど好ましいが、高価となるので採算上47.0%を上限とし、その添加量を37.0〜47.0%とする。
【0012】
Wは、固溶強化元素として働いて高温強度を高めるとともに、高温使用中の各種元素の拡散を抑制して時効軟化を遅らせるために必要な元素であり、2.0%以上添加する。一方、5.0%を超えて添加するとオーステナイト母相を不安定にして高温延性を低下させるため、添加量を2.0〜5.0%とする。
【0013】
Alは、Ni、Tiとともにγ′相(Ni(Al,Ti))を形成して高温強度を高めるために必要な元素であり、1.0%以上添加する。一方、2.5%を超えて添加すると延性や製造性を害するため、添加量を1.0〜2.5%とする。
【0014】
Tiは、Ni、Alとともにγ′相(Ni(Al,Ti))やη相(NiTi)を形成して高温強度を高めるために必要な元素であり、0.4%以上添加する。一方、1.5%を超えて添加すると過剰なη相が粒界から層状に析出して延性を低下させるため、添加量を0.4〜1.5%とする。
【0015】
Nbは、不可避的不純物として含有されるCをNbC化合物として固定するとともに、δ相(NiNb)を形成して高温強度を高めるために必要な元素であり、1.0%以上添加する。一方、2.5%を超えて添加すると過剰なδ相が析出して延性を低下させるため、添加量を1.0〜2.5%とする。
【0016】
Reは、強力な固溶強化元素として働いて高温強度を高めるとともに、高温使用中の各種元素の拡散を抑制して時効軟化を遅らせる元素であり、より優れた特性が必要な場合に添加する。0.2%未満の添加ではその効果が十分でなく、3.0%を超えて添加すると延性を害するため、添加量を0.2〜3.0%とする。
【0017】
Bは、結晶粒界に偏析して粒界を強化する元素であり、より優れた高温強度が必要な場合に添加する。0.003%未満の添加ではその効果が十分でなく、0.010%を超えて添加すると熱間加工性を害するため、添加量を0.003〜0.010%とする。
【0018】
Zr並びにHfは、粒界を強化して高温強度とともに高温延性を向上させるのに有効な元素であり、必要に応じて添加する。それぞれ0.005%未満、0.05%未満の添加ではその効果が十分ではなく、それぞれ0.100%、0.20%を超えて添加すると熱間加工性を害するため、添加量をZr:0.005〜0.100%、Hf:0.05〜0.20%とする。
【0019】
本発明のオーステナイト系耐熱合金の製造方法は、前記Ni−Fe基合金の熱処理工程において、素材の溶体化処理温度を950〜1050℃とすることを特徴とする。
【0020】
溶体化処理は、本発明のオーステナイト系耐熱合金に優れた高温強度を付与するために必要な熱処理であるが、その温度が950℃未満では溶体化処理中の各合金元素の固溶が十分に起こらず、引き続き時効処理を行ってもγ′相(Ni(Al,Ti))、η相(NiTi)およびδ相(NiNb)の析出が不足して所望の高温強度が得られない。また、溶体化処理温度が1050℃を超えるとオーステナイト結晶粒が著しく粗大化し、延性を低下させる。
【0021】
また、本発明のオーステナイト系耐熱合金の製造方法は、前記Ni−Fe基合金の熱処理工程において、溶体化処理後に素材を820〜880℃の範囲で加熱保持し、引き続き時効処理を行うことを特徴とする。
【0022】
一般にオーステナイト系耐熱合金においては、溶体化処理および時効処理の2段階熱処理が行われるが、本発明のオーステナイト系耐熱合金では、溶体化処理と時効処理の間にもう一つの加熱処理(安定化処理)を行い、η相(NiTi)およびδ相(NiNb)を粒界に析出させることにより、優れた高温強度が得られる。この加熱処理の温度が820℃未満ではη相およびδ相の析出が十分に起こらず、一方880℃を超えるとη相およびδ相が粗大化して逆に高温強度や高温延性が低下する。
【0023】
また、本発明のオーステナイト系耐熱合金の製造方法は、前記Ni−Fe基合金の熱処理工程において、素材の時効処理温度を700〜760℃とすることを特徴とする。
【0024】
時効処理は、本発明のオーステナイト系耐熱合金に優れた高温強度を付与するために必要な熱処理であるが、その温度が700℃未満では主強化相であるγ′相(Ni(Al,Ti))の析出が十分起こらず、一方760℃を超えると逆にγ′相が粗大化して、高温強度が低下するとともに時効中に軟化が生じてしまう。
【0025】
本発明のオーステナイト系耐熱合金は、例えば蒸気温度が650℃を超える高温蒸気タービン部品として好適である。例えば本発明のオーステナイト系耐熱合金をディスク形状に鍛造成型し、ボルト締め構造や溶接構造とすることによりタービンロータを構成できる。また、鍛造成型性に優れるため、長尺のボルトに対しても適している。更に、本発明のオーステナイト系耐熱合金を中空円筒形状に鍛造成型し、それらを溶接で接合してタービンケーシングとすることもできる。
【0026】
なお、本発明に係わる高温強度、延性などの特性は、以下に説明する引張試験、クリープ破断試験などによって評価することが出来る。
【0027】
引張試験は、供試材の引張強さ、耐力、伸び、絞りなどを求めることを目的とする材料試験である。引張強さおよび耐力は、供試材の引張強度を、伸びおよび絞りは供試材の延性を表し、それぞれの値が大きい方が特性としては優れている。
【0028】
クリープ破断試験は、供試材のクリープ破断強度などを求めることを目的とする材料試験である。クリープ破断強度はクリープ破断時間と対応する特性であり、クリープ破断時間が長ければ、それに応じてクリープ破断強度も高くなる。また、複数の試験片のクリープ破断試験結果(試験温度、試験応力、破断時間)をラーソン・ミラー・パラメータで整理することにより、種々の温度におけるクリープ破断強度(10時間破断強度、等)を求めることができる。
【0029】
【実施例】
以下、本発明を実施例により説明する。
<実施例1>
実施例1では、特に化学組成の影響について説明する。
表1に示す素材No.1およびNo.37の材料を200kg準備し、真空高周波誘導電気炉にて溶解・鋳造した後、プレス鍛造を行い、直径80mmの丸棒に鍛伸し、No.1からNo.37までの供試材を作製した。
【0030】
No.1からNo.23までの供試材は、本発明の範囲内のオーステナイト系耐熱合金である。また、No.24、No.25はそれぞれ現用の市販Ni−Fe基耐熱合金であり、No.26からNo.37までの供試材は、本発明の組成範囲外とした。
【0031】
これらの供試材について、表2に示す条件にて熱処理を行った後、700℃における引張試験およびクリープ破断試験を実施し、また700℃で3000時間時効加熱後の硬さ低下測定(ビッカース硬さ)を実施した。これらの試験結果を表3に示す。
【0032】
表3において、まず本発明の実施例である供試材No.1からNo.23と現用の市販Ni−Fe基耐熱合金である比較例No.24、25を比較する。本発明の実施例である供試材No.1からNo.23と、比較例No.24、25は引張強さ、0.2%耐力、伸びおよび絞りはほぼ同等である。しかし、本発明の実施例である供試材No.1からNo.23に比べて、比較例No.24、25はクリープ破断強度が同等以下であり、また時効後の硬さ低下が大きい。すなわち、本発明の実施例は現用の市販Ni−Fe基耐熱合金と同等または優れたクリープ破断強度を示し、また時効特性に優れている。なお、本発明の実施例のうちNo.4からNo.23はNo.1からNo.3に比較して優れたクリープ破断強度を示しており、Re、B、Zr、Hfの添加により更に高温強度を高められることが明らかである。
【0033】
次に、本発明の実施例である供試材No.1からNo.23と本発明の組成範囲外の比較例No.26からNo.37を比較する。本発明の実施例である供試材No.1からNo.23に比べて、比較例No.28は引張強さおよび0.2%耐力の両方が大幅に低い。また、本発明の実施例である供試材No.1からNo.23に比べて、比較例No.26、27、30、32、34、36、37は伸びおよび絞りが大幅に低い。また、本発明の実施例である供試材No.1からNo.23に比べて、比較例No.27、28、29、31、33、35はクリープ破断強度が大幅に低い。すなわち本発明の組成範囲外の比較例は実施例に比べて、高温引張強度、高温延性、クリープ破断強度のいずれかにおいて、大幅に劣っている。
【0034】
従って、本実施例によれば、本発明の範囲内のオーステナイト系耐熱合金は、現用の市販Ni−Fe基耐熱合金と同等もしくは優れた引張強度およびクリープ破断強度を有し、更に現用の市販Ni−Fe基耐熱合金と比較して優れた時効特性を有しており、高温蒸気タービン用材料として好適であることを確認できた。
【0035】
【表1】

Figure 2004107777
【表2】
Figure 2004107777
【表3】
Figure 2004107777
<実施例2>
実施例2では、特に溶体化処理温度の影響について説明する。
素材として、本発明のオーステナイト系耐熱合金である表1の実施例のうち、No.1、9、23を用い、1190℃まで加熱してプレス鍛造を行い、直径80mmの丸棒に鍛伸し、供試材を作製した。これらの供試材について、それぞれ溶体化処理温度を変化させて保持時間2時間の溶体化処理を行い、引き続き850℃で3時間の安定化処理と730℃で8時間の時効処理を行った後、700℃における引張試験とクリープ破断試験を実施した。溶体化処理温度は920℃、950℃、980℃、1010℃、1050℃、1080℃とした。これらの試験結果を表4に示す。
【0036】
表4によれば、溶体化処理温度が950℃未満になると引張強さ、0.2%耐力およびクリープ破断強度が低下する。一方、溶体化処理温度が1050℃を超えると伸びおよび絞りが低下する。
【0037】
従って、本実施例によれば、本発明のオーステナイト系耐熱合金の熱処理工程において、溶体化処理温度を950℃以上、1050℃以下に制御することにより、高い高温引張強度、高温延性およびクリープ破断強度を同時に得ることができ、高温蒸気タービン用材料として好適なものが得られることが確認できた。
【0038】
【表4】
Figure 2004107777
<実施例3>
実施例3では、特に安定化処理温度の影響について説明する。
素材として、本発明のオーステナイト系耐熱合金である表1の実施例のうち、No.1、9、23を用い、1190℃まで加熱してプレス鍛造を行い、直径80mmの丸棒に鍛伸し、供試材を作製した。これらの供試材について、980℃で2時間の溶体化処理を行い、引き続き安定化処理温度を変化させて保持時間3時間の安定化処理を行い、更に730℃で8時間の時効処理を行った後、700℃における引張試験とクリープ破断試験を実施した。安定化処理温度は800℃、820℃、850℃、880℃、900℃とした。なお、安定化処理を行わない供試材も合わせて700℃における引張試験とクリープ破断試験を実施している。これらの試験結果を表5に示す。
【0039】
表5によれば、安定化処理温度が820℃未満になると、引張強さ、0.2%耐力およびクリープ破断強度が低下する。一方、安定化処理温度が880℃を超えると伸びおよび絞りが低下する。
【0040】
従って、本実施例によれば、本発明のオーステナイト系耐熱合金の熱処理工程において、安定化処理温度を820℃以上、880℃以下に制御することにより、高い高温引張強度、高温延性およびクリープ破断強度を同時に得ることができ、高温蒸気タービン用材料として好適なものが得られることが確認できた。
【0041】
【表5】
Figure 2004107777
<実施例4>
実施例4では、特に時効処理温度の影響について説明する。
素材として、本発明のオーステナイト系耐熱合金である表1の実施例のうち、No.1、9、23を用い、1190℃まで加熱してプレス鍛造を行い、直径80mmの丸棒に鍛伸し、供試材を作製した。これらの供試材について、980℃で2時間の溶体化処理と850℃で3時間の安定化処理を行い、その後、時効温度を変化させて8時間の時効処理を行った後、700℃における引張試験とクリープ破断試験を実施した。時効処理温度は680℃、700℃、730℃、760℃、780℃とした。これらの試験結果を表6に示す。
【0042】
表6によれば、時効処理温度が700℃未満になると引張強さ、0.2%耐力およびクリープ破断強度が低下する。一方、安定化処理温度が760℃を超えると引張強さ、0.2%耐力およびクリープ破断強度が低下する。
【0043】
従って、本実施例によれば、本発明のオーステナイト系耐熱合金の熱処理工程において、時効処理温度を700℃以上、760℃以下に制御することにより、高い高温引張強度、高温延性およびクリープ破断強度を同時に得ることができ、高温蒸気タービン用材料として好適なものが得られることが確認できた。
【0044】
【表6】
Figure 2004107777
【0045】
【発明の効果】
上記実施例にて明らかなように、本発明によれば、高温蒸気タービン用材料として好適な強度、高温引張強度、高温延性およびクリープ破断強度に優れたオーステナイト系耐熱合金その製造方法を提供できる。このオーステナイト系耐熱合金は高温高効率化された蒸気タービンのロータ、ボルト、ケーシングなどの部品として長時間にわたり高い信頼性を発揮し、蒸気タービンの性能、信頼性の向上に貢献できるなど、産業上有益な効果がもたらされる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat-resistant austenitic alloy excellent in high-temperature strength and aging characteristics, a method for manufacturing the same, and a steam turbine component, which is suitable as a material used for a steam turbine operated at a high temperature having a steam temperature exceeding 650 ° C.
[0002]
[Prior art]
Conventionally, steam having a steam temperature of 610 ° C. or less is often used in a steam turbine, and therefore, low alloy steel, 12% Cr-based martensitic stainless steel, or the like has been mainly used as a material for high-temperature components.
[0003]
[Problems to be solved by the invention]
In recent years, from the viewpoint of protection of the global environment, the steam conditions of steam turbines have been increasing in temperature to improve thermal efficiency. In this case, in a high-temperature steam turbine having a steam temperature exceeding 650 ° C., a low-alloy steel or a 12% Cr-based martensitic stainless steel has a low creep rupture strength and requires a material having better high-temperature strength. As a material having excellent high-temperature strength at a temperature higher than 650 ° C., there is an austenitic heat-resistant alloy reinforced by a γ ′ phase (Ni 3 (Al, Ti)) or a γ ″ phase (Ni 3 Nb).
[0004]
Among these austenitic heat-resistant alloys, Ni-Fe-based heat-resistant alloys containing relatively large amounts of Fe have relatively good manufacturability of large parts and are suitable as high-temperature steam turbine materials. However, there is a problem that the Ni-Fe-based heat-resistant alloy has insufficient creep rupture strength for use in a severe environment of a high-temperature steam turbine. Further, this type of material is generally subjected to a two-step heat treatment of a solution treatment and an aging treatment. However, since the operating temperature range is close to the aging temperature, there is a problem that aging proceeds during use and softening occurs. .
[0005]
The present invention has been made in view of the above-described problems, and has as its object to provide an austenitic heat-resistant alloy excellent in high-temperature strength and aging characteristics suitable as a material for a high-temperature steam turbine, a production method thereof, and a steam turbine component. I do.
[0006]
[Means for Solving the Problems]
The austenitic heat-resistant alloy of the present invention is, by mass%, C: 0.10% or less, Cr: 10.0 to 20.0%, Ni: 37.0 to 47.0%, W: 2.0 to 5%. Ni- containing 1.0% to 2.5%, Al: 1.0 to 2.5%, Ti: 0.4 to 1.5%, and Nb: 1.0 to 2.5%, with the balance being Fe and unavoidable impurities. It is composed of an Fe-based alloy.
[0007]
In the Ni-Fe-based alloy, Re: 0.2 to 3.0%, B: 0.003 to 0.010%, Zr: 0.005 to 0.100%, and Hf: By adding one or more of 0.05 to 0.20%, an austenitic heat-resistant alloy having more excellent high-temperature strength can be formed.
[0008]
The method for producing an austenitic heat-resistant alloy according to the present invention is characterized in that in the heat treatment step for the austenitic heat-resistant alloy, the material is subjected to a solution treatment temperature of 950 to 1050 ° C.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The reasons for limiting each element will be described below.
In the austenitic heat-resistant alloy according to the present invention, C is easily combined with Cr and precipitated as Cr 23 C 6 at grain boundaries. When this carbide precipitates, the Cr concentration near the grain boundaries decreases, and the corrosion resistance near the grain boundaries locally decreases. Further, a large amount of Cr 23 C 6 also has an adverse effect on ductility and toughness. Therefore, it is desirable that the content of C is low. By adding Nb described later, C is fixed as fine NbC carbide and can be prevented from being precipitated as Cr 23 C 6 at the grain boundary. However, since this fixing action has a limit, the upper limit of C is set to 0.10%. Restrict to
[0010]
Cr is an effective element for forming a sound oxidation-resistant film and imparting oxidation resistance and corrosion resistance to the material, so Cr is required to be 10.0% or more. On the other hand, if it is added in excess of 20.0%, the σ phase, which is an embrittlement phase, is generated during long-term use at a high temperature, so the addition amount is 10.0 to 20.0%.
[0011]
Ni is an element necessary for stabilizing austenite, and combines with Al, Ti, and Nb to form a γ ′ phase (Ni 3 (Al, Ti)), an η phase (Ni 3 Ti), and a δ phase (Ni 3 Nb) formed by a an element necessary for enhancing the high temperature strength is required than 37.0% from the balance between the amount of Cr added. The higher the amount of Ni added, the better, but it is expensive. Therefore, the upper limit is 47.0% for profitability, and the amount of Ni is 37.0-47.0%.
[0012]
W acts as a solid solution strengthening element to increase high-temperature strength, and is an element necessary for suppressing diffusion of various elements during high-temperature use and delaying aging softening, and is added in an amount of 2.0% or more. On the other hand, if added in excess of 5.0%, the austenite matrix becomes unstable and the high-temperature ductility is reduced, so the addition amount is made 2.0 to 5.0%.
[0013]
Al is an element necessary for forming a γ 'phase (Ni 3 (Al, Ti)) together with Ni and Ti to increase the high-temperature strength, and is added in an amount of 1.0% or more. On the other hand, if added in excess of 2.5%, ductility and manufacturability are impaired, so the amount added is set to 1.0-2.5%.
[0014]
Ti is an element necessary for forming a γ ′ phase (Ni 3 (Al, Ti)) or an η phase (Ni 3 Ti) together with Ni and Al to increase the high-temperature strength, and is added in an amount of 0.4% or more. . On the other hand, if it is added in excess of 1.5%, the excess η phase precipitates out of the grain boundaries in a layered form and lowers the ductility, so the addition amount is made 0.4 to 1.5%.
[0015]
Nb is an element necessary to fix C contained as an unavoidable impurity as an NbC compound and to form a δ phase (Ni 3 Nb) to increase high-temperature strength, and is added in an amount of 1.0% or more. On the other hand, if it is added in excess of 2.5%, an excessive δ phase is precipitated and ductility is reduced, so the addition amount is set to 1.0 to 2.5%.
[0016]
Re is an element that acts as a strong solid solution strengthening element to increase high-temperature strength, suppresses diffusion of various elements during high-temperature use, and delays aging softening. Re is added when more excellent properties are required. If the addition is less than 0.2%, the effect is not sufficient, and if the addition exceeds 3.0%, the ductility is impaired. Therefore, the addition amount is set to 0.2 to 3.0%.
[0017]
B is an element that segregates at the crystal grain boundaries and strengthens the grain boundaries, and is added when superior high-temperature strength is required. If the addition is less than 0.003%, the effect is not sufficient. If the addition exceeds 0.010%, the hot workability is impaired, so the addition amount is made 0.003 to 0.010%.
[0018]
Zr and Hf are effective elements for strengthening grain boundaries and improving high-temperature strength and high-temperature ductility, and are added as necessary. If the addition is less than 0.005% and less than 0.05%, respectively, the effect is not sufficient. If the addition exceeds 0.100% and 0.20%, respectively, the hot workability is impaired. 0.005 to 0.100%, Hf: 0.05 to 0.20%.
[0019]
The method for producing an austenitic heat-resistant alloy according to the present invention is characterized in that in the heat treatment step of the Ni-Fe-based alloy, the material is subjected to a solution treatment temperature of 950 to 1050C.
[0020]
The solution treatment is a heat treatment necessary to impart excellent high-temperature strength to the austenitic heat-resistant alloy of the present invention. If the temperature is less than 950 ° C., the solid solution of each alloy element during the solution treatment is insufficient. It does not occur, and even if aging treatment is continued, the precipitation of the γ 'phase (Ni 3 (Al, Ti)), the η phase (Ni 3 Ti) and the δ phase (Ni 3 Nb) is insufficient, and the desired high-temperature strength is obtained. I can't. On the other hand, when the solution treatment temperature exceeds 1050 ° C., austenite crystal grains are remarkably coarsened and ductility is reduced.
[0021]
Further, the method for producing an austenitic heat-resistant alloy of the present invention is characterized in that, in the heat treatment step of the Ni—Fe-based alloy, the material is heated and held in a range of 820 to 880 ° C. after the solution treatment, followed by aging treatment. And
[0022]
Generally, a two-step heat treatment of a solution treatment and an aging treatment is performed in an austenitic heat-resistant alloy, but in the austenitic heat-resistant alloy of the present invention, another heat treatment (stabilization treatment) is performed between the solution treatment and the aging treatment. ) To precipitate an η phase (Ni 3 Ti) and a δ phase (Ni 3 Nb) at the grain boundaries, thereby obtaining excellent high-temperature strength. If the temperature of this heat treatment is lower than 820 ° C., precipitation of the η phase and δ phase does not sufficiently occur, while if it exceeds 880 ° C., the η phase and δ phase are coarsened, and conversely, high-temperature strength and high-temperature ductility are reduced.
[0023]
In the method for producing an austenitic heat-resistant alloy according to the present invention, the aging temperature of the material is set to 700 to 760 ° C. in the heat treatment step of the Ni—Fe-based alloy.
[0024]
The aging treatment is a heat treatment necessary to impart excellent high-temperature strength to the austenitic heat-resistant alloy of the present invention. When the temperature is lower than 700 ° C., the γ ′ phase (Ni 3 (Al, Ti On the other hand, when the temperature exceeds 760 ° C., on the other hand, the γ ′ phase is coarsened, and the high-temperature strength is reduced, and softening occurs during aging.
[0025]
The austenitic heat-resistant alloy of the present invention is suitable as a high-temperature steam turbine component having a steam temperature exceeding 650 ° C., for example. For example, a turbine rotor can be formed by forging the austenitic heat-resistant alloy of the present invention into a disk shape and forming a bolted structure or a welded structure. Further, since it is excellent in forging moldability, it is suitable for long bolts. Furthermore, the austenitic heat-resistant alloy of the present invention may be forged into a hollow cylindrical shape, and these may be joined by welding to form a turbine casing.
[0026]
The properties such as high-temperature strength and ductility according to the present invention can be evaluated by a tensile test, a creep rupture test, and the like described below.
[0027]
The tensile test is a material test for the purpose of determining the tensile strength, proof stress, elongation, drawing, and the like of the test material. Tensile strength and proof stress indicate the tensile strength of the test material, and elongation and drawing indicate the ductility of the test material. The larger the respective value, the better the characteristics.
[0028]
The creep rupture test is a material test aimed at obtaining the creep rupture strength and the like of the test material. The creep rupture strength is a characteristic corresponding to the creep rupture time, and the longer the creep rupture time, the higher the creep rupture strength. Furthermore, the creep rupture test results of a plurality of test strips (test temperature, test stress and fracture time) by organizing in Larson Miller parameter, the creep rupture strength (10 5 h strength at break, etc.) at various temperatures You can ask.
[0029]
【Example】
Hereinafter, the present invention will be described with reference to examples.
<Example 1>
In Example 1, the influence of the chemical composition will be particularly described.
Material No. shown in Table 1 1 and No. After preparing 200 kg of the material No. 37 and melting and casting it in a vacuum high-frequency induction electric furnace, press forging was performed and forged into a round bar having a diameter of 80 mm. No. 1 to No. Up to 37 test materials were produced.
[0030]
No. No. 1 to No. The test materials up to 23 are austenitic heat-resistant alloys within the scope of the present invention. No. 24, no. No. 25 is a current commercially available Ni-Fe based heat-resistant alloy. 26 to No. 26 The test materials up to 37 were out of the composition range of the present invention.
[0031]
After heat-treating these test materials under the conditions shown in Table 2, a tensile test and a creep rupture test at 700 ° C. were performed, and a measurement of hardness decrease after aging heating at 700 ° C. for 3000 hours (Vickers hardness) Sa) was carried out. Table 3 shows the test results.
[0032]
In Table 3, first, the test material No. No. 1 to No. Comparative Example No. 23, which is a commercially available Ni-Fe-based heat-resistant alloy. 24 and 25 are compared. The test material No. which is an example of the present invention. No. 1 to No. 23 and Comparative Example No. 23. Nos. 24 and 25 have almost the same tensile strength, 0.2% proof stress, elongation and drawing. However, the test material Nos. No. 1 to No. 23, as compared with Comparative Example No. 23. Nos. 24 and 25 have the same or less creep rupture strength and a large decrease in hardness after aging. That is, the examples of the present invention show a creep rupture strength equivalent to or superior to that of a commercially available commercially available Ni—Fe-based heat-resistant alloy, and also have excellent aging characteristics. It should be noted that among the embodiments of the present invention, No. 4 to No. 4 No. 23 is No. No. 1 to No. 3 shows an excellent creep rupture strength as compared with No. 3, and it is clear that the high-temperature strength can be further increased by the addition of Re, B, Zr and Hf.
[0033]
Next, the test material Nos. No. 1 to No. 23 and Comparative Example No. 23 out of the composition range of the present invention. 26 to No. 26 Compare 37. The test material No. which is an example of the present invention. No. 1 to No. 23, as compared with Comparative Example No. 23. No. 28 has significantly lower both tensile strength and 0.2% proof stress. In addition, the test material No. which is an example of the present invention. No. 1 to No. 23, as compared with Comparative Example No. 23. 26, 27, 30, 32, 34, 36, 37 have significantly lower elongation and draw. In addition, the test material No. which is an example of the present invention. No. 1 to No. 23, as compared with Comparative Example No. 23. 27, 28, 29, 31, 33 and 35 have significantly lower creep rupture strengths. That is, Comparative Examples outside the composition range of the present invention are significantly inferior to Examples in any of high-temperature tensile strength, high-temperature ductility, and creep rupture strength.
[0034]
Therefore, according to this example, the austenitic heat-resistant alloy within the scope of the present invention has the same or superior tensile strength and creep rupture strength as the currently used commercially available Ni-Fe-based heat-resistant alloy, and furthermore, the currently used commercially available Ni-based heat-resistant alloy. -It has excellent aging characteristics as compared with the Fe-based heat-resistant alloy, and it has been confirmed that it is suitable as a material for a high-temperature steam turbine.
[0035]
[Table 1]
Figure 2004107777
[Table 2]
Figure 2004107777
[Table 3]
Figure 2004107777
<Example 2>
In the second embodiment, the influence of the solution treatment temperature will be particularly described.
As the material, of the examples in Table 1 which are the heat-resistant austenitic alloys of the present invention, Using 1, 9, and 23, it heated to 1190 degreeC and press-forged, and it forged and drawn into the round bar of diameter 80mm, and produced the test material. These test materials were subjected to a solution treatment at a holding time of 2 hours by changing the solution treatment temperature respectively, followed by a stabilization treatment at 850 ° C. for 3 hours and an aging treatment at 730 ° C. for 8 hours. , 700 ° C, a tensile test and a creep rupture test. The solution treatment temperature was 920 ° C, 950 ° C, 980 ° C, 1010 ° C, 1050 ° C, 1080 ° C. Table 4 shows the test results.
[0036]
According to Table 4, when the solution treatment temperature is lower than 950 ° C., the tensile strength, 0.2% proof stress and creep rupture strength decrease. On the other hand, when the solution treatment temperature exceeds 1050 ° C., the elongation and the drawing decrease.
[0037]
Therefore, according to this example, in the heat treatment step of the austenitic heat-resistant alloy of the present invention, by controlling the solution treatment temperature to 950 ° C. or more and 1050 ° C. or less, high high-temperature tensile strength, high-temperature ductility and creep rupture strength are obtained. Was obtained at the same time, and it was confirmed that a material suitable for a high-temperature steam turbine was obtained.
[0038]
[Table 4]
Figure 2004107777
<Example 3>
In the third embodiment, the effect of the stabilization processing temperature will be particularly described.
As the material, of the examples in Table 1 which are the heat-resistant austenitic alloys of the present invention, Using 1, 9, and 23, it heated to 1190 degreeC and press-forged, and it forged and drawn into the round bar of diameter 80mm, and produced the test material. These specimens were subjected to a solution treatment at 980 ° C. for 2 hours, followed by a stabilization treatment at a stabilization treatment temperature of 3 hours for a holding time of 3 hours, and an aging treatment at 730 ° C. for 8 hours. After that, a tensile test and a creep rupture test at 700 ° C. were performed. The stabilization temperatures were 800 ° C., 820 ° C., 850 ° C., 880 ° C., and 900 ° C. In addition, a tensile test and a creep rupture test at 700 ° C. are also performed on the test materials that are not subjected to the stabilization treatment. Table 5 shows the results of these tests.
[0039]
According to Table 5, when the stabilization treatment temperature is lower than 820 ° C., the tensile strength, 0.2% proof stress and creep rupture strength decrease. On the other hand, when the stabilization treatment temperature exceeds 880 ° C., elongation and drawing decrease.
[0040]
Therefore, according to this example, in the heat treatment step of the austenitic heat-resistant alloy of the present invention, the high-temperature tensile strength, high-temperature ductility and creep rupture strength are controlled by controlling the stabilization temperature to 820 ° C. or more and 880 ° C. or less. Was obtained at the same time, and it was confirmed that a material suitable for a high-temperature steam turbine was obtained.
[0041]
[Table 5]
Figure 2004107777
<Example 4>
In the fourth embodiment, the influence of the aging treatment temperature will be particularly described.
As the material, of the examples in Table 1 which are the heat-resistant austenitic alloys of the present invention, Using 1, 9, and 23, it heated to 1190 degreeC and press-forged, and it forged and drawn into the round bar of diameter 80mm, and produced the test material. These specimens were subjected to a solution treatment at 980 ° C. for 2 hours and a stabilization treatment at 850 ° C. for 3 hours, followed by an aging treatment for 8 hours by changing the aging temperature. A tensile test and a creep rupture test were performed. The aging treatment temperatures were 680 ° C, 700 ° C, 730 ° C, 760 ° C, and 780 ° C. Table 6 shows the test results.
[0042]
According to Table 6, when the aging treatment temperature is lower than 700 ° C., the tensile strength, 0.2% proof stress and creep rupture strength decrease. On the other hand, if the stabilization temperature exceeds 760 ° C., the tensile strength, 0.2% proof stress and creep rupture strength decrease.
[0043]
Therefore, according to this example, in the heat treatment step of the austenitic heat-resistant alloy of the present invention, by controlling the aging treatment temperature to 700 ° C. or more and 760 ° C. or less, high high-temperature tensile strength, high-temperature ductility and creep rupture strength can be obtained. At the same time, it was confirmed that a material suitable for a high-temperature steam turbine was obtained.
[0044]
[Table 6]
Figure 2004107777
[0045]
【The invention's effect】
As is clear from the above embodiments, according to the present invention, it is possible to provide a method for producing an austenitic heat-resistant alloy having excellent strength, high-temperature tensile strength, high-temperature ductility and creep rupture strength suitable as a material for a high-temperature steam turbine. This austenitic heat-resistant alloy exhibits high reliability over a long period of time as components such as rotors, bolts, and casings of steam turbines with high temperatures and high efficiency, and can contribute to improving the performance and reliability of steam turbines. A beneficial effect is provided.

Claims (10)

質量%で、C:0.10%以下、Cr:10.0〜20.0%、Ni:37.0〜47.0%、W:2.0〜5.0%、Al:1.0〜2.5%、Ti:0.4〜1.5%、Nb:1.0〜2.5%を含み、残部がFeおよび不可避的不純物からなることを特徴とする、オーステナイト系耐熱合金。In mass%, C: 0.10% or less, Cr: 10.0 to 20.0%, Ni: 37.0 to 47.0%, W: 2.0 to 5.0%, Al: 1.0 An austenitic heat-resistant alloy containing -2.5%, Ti: 0.4-1.5%, and Nb: 1.0-2.5%, with the balance being Fe and unavoidable impurities. 質量%で、Re:0.2〜3.0%を含む、請求項1に記載のオーステナイト系耐熱合金。The austenitic heat-resistant alloy according to claim 1, comprising Re: 0.2 to 3.0% by mass. 質量%で、B:0.003〜0.010%を含む、請求項1または請求項2に記載のオーステナイト系耐熱合金。The austenitic heat-resistant alloy according to claim 1 or 2, wherein the content of B is 0.003 to 0.010% by mass%. 質量%で、Zr:0.005〜0.100%およびHf:0.05〜0.20%のうち一種または二種を含む、請求項1〜3のいずれか1項に記載のオーステナイト系耐熱合金。The austenitic heat resistance according to any one of claims 1 to 3, which contains one or two of Zr: 0.005 to 0.100% and Hf: 0.05 to 0.20% by mass%. alloy. 請求項1〜4のいずれか1項に記載のオーステナイト系耐熱合金の熱処理工程において、素材の溶体化処理温度を950〜1050℃としたことを特徴とする、オーステナイト系耐熱合金の製造方法。The method for producing a heat-resistant austenitic alloy according to claim 1, wherein in the heat-treating step for the heat-resistant austenitic alloy according to claim 1, a solution heat treatment temperature of the material is set to 950 to 1050 ° C. 6. 溶体化処理後、素材を820〜880℃の範囲で加熱保持し、引き続き時効処理を行う、請求項5に記載のオーステナイト系耐熱合金の製造方法。The method for producing an austenitic heat-resistant alloy according to claim 5, wherein after the solution treatment, the material is heated and held in a range of 820 to 880 ° C., and subsequently subjected to an aging treatment. 素材の時効処理温度を700〜760℃とする、請求項5または請求項6に記載のオーステナイト系耐熱合金の製造方法。The method for producing an austenitic heat-resistant alloy according to claim 5 or 6, wherein the aging temperature of the material is 700 to 760 ° C. 請求項1〜4のいずれか1項に記載のオーステナイト系耐熱合金または請求項5〜7のいずれか1項に記載の製造方法で製造されたオーステナイト系耐熱合金からなる、蒸気タービンロータ。A steam turbine rotor comprising the heat-resistant austenitic alloy according to any one of claims 1 to 4 or the heat-resistant austenitic alloy manufactured by the method according to any one of claims 5 to 7. 請求項1〜4のいずれかに1項に記載のオーステナイト系耐熱合金または請求項5〜7のいずれか1項に記載の製造方法で製造されたオーステナイト系耐熱合金からなる、蒸気タービンケーシング。A steam turbine casing comprising the heat-resistant austenitic alloy according to any one of claims 1 to 4 or the heat-resistant austenitic alloy manufactured by the method according to any one of claims 5 to 7. 請求項1〜4のいずれか1項に記載のオーステナイト系耐熱合金または請求項5〜7のいずれか1項に記載の製造方法で製造されたオーステナイト系耐熱合金からなる、蒸気タービンボルト。A steam turbine bolt comprising the heat-resistant austenitic alloy according to any one of claims 1 to 4 or the heat-resistant austenitic alloy manufactured by the method according to any one of claims 5 to 7.
JP2002275485A 2002-09-20 2002-09-20 Austenitic heat resistant alloy, production method therefor and steam turbine parts Pending JP2004107777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275485A JP2004107777A (en) 2002-09-20 2002-09-20 Austenitic heat resistant alloy, production method therefor and steam turbine parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002275485A JP2004107777A (en) 2002-09-20 2002-09-20 Austenitic heat resistant alloy, production method therefor and steam turbine parts

Publications (1)

Publication Number Publication Date
JP2004107777A true JP2004107777A (en) 2004-04-08

Family

ID=32271672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275485A Pending JP2004107777A (en) 2002-09-20 2002-09-20 Austenitic heat resistant alloy, production method therefor and steam turbine parts

Country Status (1)

Country Link
JP (1) JP2004107777A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504487A (en) * 2011-11-30 2015-02-12 エイティーアイ・プロパティーズ・インコーポレーテッド Nickel-base alloy heat treatment, nickel-base alloy, and articles containing nickel-base alloy
CN104561665A (en) * 2014-12-30 2015-04-29 浙江振兴石化机械有限公司 Incone1718 alloy material and application thereof in slender shafts of electrical submersible pumps
JP2017061730A (en) * 2015-09-25 2017-03-30 新日鐵住金株式会社 Austenite stainless steel
JP2018188686A (en) * 2017-04-28 2018-11-29 新日鐵住金株式会社 Alloy original sheet for heat-resistant member, alloy sheet for heat-resistant member, and gasket for exhaust system member of engine
EP3401415A4 (en) * 2016-01-05 2019-08-07 Nippon Steel Corporation Austenitic heat-resistant alloy and method for manufacturing same
US10563293B2 (en) 2015-12-07 2020-02-18 Ati Properties Llc Methods for processing nickel-base alloys
EP3650560A1 (en) * 2018-11-08 2020-05-13 Qingdao NPA Industry Co., Ltd Oxidation-resistant heat-resistant alloy and preparing method
CN113737033A (en) * 2021-08-27 2021-12-03 西安交通大学 Preparation method and material of Ti-Ni-Co elastic thermal refrigeration plate
CN115141984A (en) * 2021-11-23 2022-10-04 燕山大学 High-entropy austenitic stainless steel and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015504487A (en) * 2011-11-30 2015-02-12 エイティーアイ・プロパティーズ・インコーポレーテッド Nickel-base alloy heat treatment, nickel-base alloy, and articles containing nickel-base alloy
CN104561665A (en) * 2014-12-30 2015-04-29 浙江振兴石化机械有限公司 Incone1718 alloy material and application thereof in slender shafts of electrical submersible pumps
JP2017061730A (en) * 2015-09-25 2017-03-30 新日鐵住金株式会社 Austenite stainless steel
US10563293B2 (en) 2015-12-07 2020-02-18 Ati Properties Llc Methods for processing nickel-base alloys
US11725267B2 (en) 2015-12-07 2023-08-15 Ati Properties Llc Methods for processing nickel-base alloys
EP3401415A4 (en) * 2016-01-05 2019-08-07 Nippon Steel Corporation Austenitic heat-resistant alloy and method for manufacturing same
JP2018188686A (en) * 2017-04-28 2018-11-29 新日鐵住金株式会社 Alloy original sheet for heat-resistant member, alloy sheet for heat-resistant member, and gasket for exhaust system member of engine
EP3650560A1 (en) * 2018-11-08 2020-05-13 Qingdao NPA Industry Co., Ltd Oxidation-resistant heat-resistant alloy and preparing method
CN113737033A (en) * 2021-08-27 2021-12-03 西安交通大学 Preparation method and material of Ti-Ni-Co elastic thermal refrigeration plate
CN113737033B (en) * 2021-08-27 2022-08-09 西安交通大学 Preparation method and material of Ti-Ni-Co elastic thermal refrigeration plate
CN115141984A (en) * 2021-11-23 2022-10-04 燕山大学 High-entropy austenitic stainless steel and preparation method thereof
CN115141984B (en) * 2021-11-23 2023-02-24 燕山大学 High-entropy austenitic stainless steel and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4800856B2 (en) Low thermal expansion Ni-base superalloy
JP4430974B2 (en) Method for producing low thermal expansion Ni-base superalloy
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
US6918972B2 (en) Ni-base alloy, heat-resistant spring made of the alloy, and process for producing the spring
JP4037929B2 (en) Low thermal expansion Ni-base superalloy and process for producing the same
JP6842316B2 (en) Manufacturing method of Ni-based alloy, gas turbine material and Ni-based alloy with excellent creep characteristics
JP6315319B2 (en) Method for producing Fe-Ni base superalloy
JP2012219339A (en) Ni-based superalloy material, turbine rotor, and method for manufacturing the ni-based superalloy material and turbine rotor
JP3308090B2 (en) Fe-based super heat-resistant alloy
JP3781402B2 (en) Low thermal expansion Ni-base superalloy
JPWO2016052423A1 (en) Ni-base superalloys
JP4768672B2 (en) Ni-base alloy excellent in structure stability and high-temperature strength and method for producing Ni-base alloy material
JP3559681B2 (en) Steam turbine blade and method of manufacturing the same
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP2014070230A (en) METHOD FOR PRODUCING Ni-BASED SUPERALLOY
JP5769204B2 (en) Fe-Ni base alloy having excellent high temperature characteristics and hydrogen embrittlement resistance and method for producing the same
JP2004107777A (en) Austenitic heat resistant alloy, production method therefor and steam turbine parts
JP2007009279A (en) Ni-Fe-BASE ALLOY, AND METHOD FOR MANUFACTURING Ni-Fe-BASE ALLOY MATERIAL
JP2004256840A (en) COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR
JP4315582B2 (en) Co-Ni base heat-resistant alloy and method for producing the same
JP4923996B2 (en) Heat-resistant spring and method for manufacturing the same
JP5283139B2 (en) Low thermal expansion Ni-base superalloy
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JP3424314B2 (en) Heat resistant steel
JP6337514B2 (en) Precipitation hardening type Fe-Ni alloy and manufacturing method thereof