JP2018188686A - Alloy original sheet for heat-resistant member, alloy sheet for heat-resistant member, and gasket for exhaust system member of engine - Google Patents

Alloy original sheet for heat-resistant member, alloy sheet for heat-resistant member, and gasket for exhaust system member of engine Download PDF

Info

Publication number
JP2018188686A
JP2018188686A JP2017090418A JP2017090418A JP2018188686A JP 2018188686 A JP2018188686 A JP 2018188686A JP 2017090418 A JP2017090418 A JP 2017090418A JP 2017090418 A JP2017090418 A JP 2017090418A JP 2018188686 A JP2018188686 A JP 2018188686A
Authority
JP
Japan
Prior art keywords
less
heat
content
intermetallic compound
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017090418A
Other languages
Japanese (ja)
Other versions
JP6787246B2 (en
Inventor
文崇 市川
Fumitaka Ichikawa
文崇 市川
木村 謙
Ken Kimura
謙 木村
慎一 寺岡
Shinichi Teraoka
慎一 寺岡
正美 澤田
Masami Sawada
正美 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017090418A priority Critical patent/JP6787246B2/en
Publication of JP2018188686A publication Critical patent/JP2018188686A/en
Application granted granted Critical
Publication of JP6787246B2 publication Critical patent/JP6787246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gasket Seals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alloy sheet for a heat-resistant member that has a smaller Ni content and has a 0.2% proof stress and settling resistance in a high temperature tensile test equal to or superior to those as compared with the conventional Ni-based heat-resistant alloy.SOLUTION: An alloy sheet for a heat-resistant member has a chemical composition containing C: 0.0020 to 0.10%, Si: 0.020 to 3.0%, Mn: 0.020 to 2.0%, P: less than 0.050%, S: less than 0.010%, Cr: not less than 12.0% to less than 25.0%, Ni: more than 35.0% to less than 50.0%, N: 0.0005 to 0.020%, Al: more than 3.0% to not more than 5.0%, Ti: more than 1.5% to less than 3.0%, Mo: 1.0 to 2.5%, Nb: 2.25 to 4.00% and Cu: less than 0.3% and satisfying the relationship of [Ti]/[Al]≥0.50 and [Nb]/[Al]≥0.75. The alloy sheet has a metal structure in which a Ni-based intermetallic compound is present in a host phase composed of austenite and has the chemical composition of Ni, Ti and Nb contained in the Ni-based intermetallic compound which occupies, by atom%, more than 60% of Ni, not less than 3.5% of Ti and not less than 0.8% of Nb, respectively, based on the entire chemical composition constituting the Ni-based intermetallic compound.SELECTED DRAWING: None

Description

本発明は、耐熱部材用合金原板、耐熱部材用合金板、およびエンジンの排気系部材用のガスケットに関する。   The present invention relates to an alloy original plate for a heat-resistant member, an alloy plate for a heat-resistant member, and a gasket for an engine exhaust system member.

自動車のエンジン等において耐熱部材として用いられるガスケットは、厚さ0.1〜0.3mm程度の金属薄板にビードと呼ばれる段差部が形成されたシール材(パッキン)の一種である。   A gasket used as a heat-resistant member in an automobile engine or the like is a kind of sealing material (packing) in which a step portion called a bead is formed on a thin metal plate having a thickness of about 0.1 to 0.3 mm.

ガスケットは、エンジンの排気系部材の連結部に挟み込まれた際に、弾性変形したビードの反発力によって連結部からの排気ガスの漏洩をシールする。ガスケットは、高温の排ガスが存在する環境に長時間かつ断続的に晒されるという苛酷な条件で使用されるため、ガスケットの素材には、高温でのビードの耐へたり性が高く、高強度を維持できることが求められる。   The gasket seals the leakage of the exhaust gas from the connecting portion by the repulsive force of the elastically deformed bead when sandwiched between the connecting portions of the exhaust system member of the engine. Gaskets are used in harsh conditions where they are exposed to an environment where high-temperature exhaust gas is present for a long period of time, so the gasket material has high bead sag resistance at high temperatures and high strength. It must be maintained.

自動車エンジンに使われるガスケットの中でも、700℃程度の高温で用いられるターボ用のガスケットの材料は、現状、NiをベースとしてCrやFe、さらには相当量のNbおよびMo、ならびにより少量のAlおよびTi等の合金元素を含有する析出硬化型のインコネル(登録商標)718といった、高価なNi基合金の冷延板が用いられている。   Among gaskets used in automobile engines, turbo gasket materials used at a high temperature of about 700 ° C. are currently based on Ni, Cr and Fe, a considerable amount of Nb and Mo, and a smaller amount of Al and An expensive Ni-based alloy cold-rolled sheet such as precipitation hardening type Inconel (registered trademark) 718 containing an alloy element such as Ti is used.

このため、インコネル718やインコネル625等の耐熱Ni基合金よりもNi組成が低く安価であり、かつ高温強度に優れ、耐へたり性が高い代替材料を求めるニーズが高い。   For this reason, there is a high need for an alternative material that has a lower Ni composition and is lower than heat-resistant Ni-based alloys such as Inconel 718 and Inconel 625, is excellent in high-temperature strength, and has high sag resistance.

特許文献1には、質量%で、C:0.15%以下、Si:1.0%以下、Mn:0.3%以下、Ni:30〜49%、Cr:10〜18%、Al:1.6〜3.0%を含有し、IVa族とVa族から選ばれる1種または2種以上の元素を合計で1.5〜8.0%含有し、残部はFeおよび不純物である化学組成を有するFe−Ni−Cr基耐熱合金が開示されている。   In Patent Document 1, in mass%, C: 0.15% or less, Si: 1.0% or less, Mn: 0.3% or less, Ni: 30 to 49%, Cr: 10 to 18%, Al: A chemical containing 1.6 to 3.0%, containing one or more elements selected from IVa group and Va group in total 1.5 to 8.0%, the balance being Fe and impurities An Fe—Ni—Cr based heat resistant alloy having a composition is disclosed.

特許文献2には、質量%で、C:0.02〜0.30%、Si:0.02〜3.5%、Mn:0.02〜2.5%、Ni:10〜50%、Cr:12〜25%、Ti:1.0〜5.0%、Al:0.002〜1.0%を含有し、かつNb:0.1〜3.0%、B:0.001〜0.01%、Mo:0.1〜4.0%から選択された1種以上を含有し、Ti、AlおよびNbの合計含有量が3.0〜7.0%であり、粒界に析出するη相(NiTi)と基地であるγ相結晶粒内に析出するガンマプライムγ’相(Ni(Al,Ti,Nb))の重量比率を0.01〜30.00%とし、600℃での熱間引張強さが800N/mm以上である耐熱ステンレス鋼が開示されている。 In Patent Document 2, in mass%, C: 0.02 to 0.30%, Si: 0.02 to 3.5%, Mn: 0.02 to 2.5%, Ni: 10 to 50%, Cr: 12-25%, Ti: 1.0-5.0%, Al: 0.002-1.0%, Nb: 0.1-3.0%, B: 0.001- Containing one or more selected from 0.01%, Mo: 0.1-4.0%, the total content of Ti, Al and Nb is 3.0-7.0%, The weight ratio of the precipitated η phase (Ni 3 Ti) and the gamma prime γ ′ phase (Ni 3 (Al, Ti, Nb)) precipitated in the base γ phase crystal grains is 0.01 to 30.00%. , A heat resistant stainless steel having a hot tensile strength at 600 ° C. of 800 N / mm 2 or more is disclosed.

特開平7−109539号公報JP-A-7-109539 特開2000−109955号公報JP 2000-109955 A

しかし、これらの従来の技術では、インコネル718等のNi基耐熱合金よりもNi含有量が少なく、安価に製造できる利点があるものの、高温強度および耐へたり性の面ではインコネル718等よりも劣っていた。Niの添加量を節約しつつ、高温特性がインコネル718等と比較して遜色のないガスケットおよびその素材が求められている。   However, these conventional techniques have the advantage that the Ni content is lower than Ni-based heat-resistant alloys such as Inconel 718 and can be manufactured at low cost, but they are inferior to Inconel 718 in terms of high-temperature strength and sag resistance. It was. There is a need for a gasket and its material that are comparable in quality to Inconel 718 and the like, while saving the amount of Ni added.

本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、Ni含有量を低減し、ガンマプライムγ’相(Ni(Al,Ti,Nb))の生成元素であるAl,Ti,Nbの含有量を最適化することにより、Ni含有量を低減しても耐熱性の維持および向上を図ることができることを知見した。 As a result of intensive studies in order to solve the above problems, the present inventors have reduced the Ni content, and Al, which is a formation element of the gamma prime γ ′ phase (Ni 3 (Al, Ti, Nb)), It has been found that by optimizing the Ti and Nb contents, the heat resistance can be maintained and improved even if the Ni content is reduced.

すなわち、排気系部材用のガスケットの使用温度である700℃で1〜400時間の時効後の機械的特性が、従来材であるインコネル718と比べて優れているために、排気系部材、特にガスケット用の耐熱合金板として用いることができることを知見し、さらに検討を重ねて本発明を完成した。本発明は、以下に列記の通りである。   That is, since the mechanical properties after aging for 1 to 400 hours at 700 ° C., which is the operating temperature of the gasket for exhaust system members, are superior to those of Inconel 718 which is a conventional material, exhaust system members, particularly gaskets The present invention has been completed through further investigations after finding out that it can be used as a heat-resistant alloy plate for use. The present invention is listed below.

(1)質量%で、C:0.0020〜0.10%、Si:0.020〜3.0%、Mn:0.020〜2.0%、P:0.050%未満、S:0.010%未満、Cr:12.0%以上25.0%未満、Ni:35.0%超50.0%未満、N:0.0005〜0.020%、Al:3.0%超5.0%以下、Ti:1.5%超3.0%未満、Mo:1.0〜2.5%、Nb:2.25〜4.00%、Cu:0.3%未満を含有し、Ti、NbおよびAlの含有量(質量%)をそれぞれ[Ti]、[Nb]および[Al]としたとき、[Ti]/[Al]≧0.50、[Nb]/[Al]≧0.75の関係を満足し、残部がFeおよび不純物である化学組成を有し、オーステナイト相のみからなる金属組織を呈する耐熱部材用合金原板であって、
700℃で1時間加熱処理した場合に、オーステナイト母相中にNi系金属間化合物が存在する金属組織を呈し、前記Ni系金属間化合物を構成する化学組成全体に対して、前記Ni系金属間化合物に含まれるNi、TiおよびNbの化学組成が、原子%で、それぞれ60%超、3.5%以上および0.8%以上を占めることを特徴とする、耐熱部材用合金原板。
(1) By mass%, C: 0.0020 to 0.10%, Si: 0.020 to 3.0%, Mn: 0.020 to 2.0%, P: less than 0.050%, S: Less than 0.010%, Cr: 12.0% or more and less than 25.0%, Ni: more than 35.0% and less than 50.0%, N: 0.0005 to 0.020%, Al: more than 3.0% 5.0% or less, Ti: more than 1.5% and less than 3.0%, Mo: 1.0 to 2.5%, Nb: 2.25 to 4.00%, Cu: less than 0.3% When the contents (mass%) of Ti, Nb and Al are [Ti], [Nb] and [Al], respectively, [Ti] / [Al] ≧ 0.50, [Nb] / [Al] An alloy base plate for a heat-resistant member that satisfies a relationship of ≧ 0.75, has a chemical composition with the balance being Fe and impurities, and exhibits a metal structure consisting only of an austenite phase. ,
When heat-treated at 700 ° C. for 1 hour, the Ni-based intermetallic compound is present in the austenite matrix, and the Ni-based intermetallic compound is formed with respect to the entire chemical composition constituting the Ni-based intermetallic compound. An alloy base plate for a heat-resistant member, wherein the chemical composition of Ni, Ti and Nb contained in the compound occupies more than 60%, 3.5% or more and 0.8% or more, respectively, in atomic%.

(2)700℃で1時間加熱処理した後、さらに700℃で400時間保持する前後の硬さ低下代が40HV以下である、(1)に記載の耐熱部材用合金原板。   (2) The alloy base plate for a heat-resistant member according to (1), wherein a heat reduction margin before and after holding at 700 ° C. for 400 hours after heat treatment at 700 ° C. for 1 hour is 40 HV or less.

(3)質量%で、Co:3.0%以下、およびW:3.0%未満の1種以上を含有する、(1)または(2)に記載の耐熱部材用合金原板。   (3) The alloy base plate for a heat-resistant member according to (1) or (2), which contains one or more of Co: 3.0% or less and W: less than 3.0% by mass%.

(4)質量%で、B:0.01%以下、Ca:0.005%以下、およびMg:0.002%以下の1種以上を含有する、(1)〜(3)のいずれかに記載の耐熱部材用合金原板。   (4) In any one of (1) to (3), containing one or more of B: 0.01% or less, Ca: 0.005% or less, and Mg: 0.002% or less in mass% The alloy original plate for heat-resistant members as described.

(5)質量%で、C:0.0020〜0.10%、Si:0.020〜3.0%、Mn:0.020〜2.0%、P:0.050%未満、S:0.010%未満、Cr:12.0%以上25.0%未満、Ni:35.0%超50.0%未満、N:0.0005〜0.020%、Al:3.0%超5.0%以下、Ti:1.5%超3.0%未満、Mo:1.0〜2.5%、Nb:2.25〜4.00%、Cu:0.3%未満を含有し、Ti、NbおよびAlの含有量(質量%)をそれぞれ[Ti]、[Nb]および[Al]としたとき、[Ti]/[Al]≧0.50、[Nb]/[Al]≧0.75の関係を満足し、残部がFeおよび不純物である化学組成を有する耐熱部材用合金板であって、オーステナイト母相中にNi系金属間化合物が存在する金属組織を呈し、前記Ni系金属間化合物を構成する化学組成全体に対して、前記Ni系金属間化合物に含まれるNi、TiおよびNbの化学組成が、原子%で、それぞれ60%超、3.5%以上および0.8%以上を占めることを特徴とする、耐熱部材用合金板。   (5) By mass%, C: 0.0020 to 0.10%, Si: 0.020 to 3.0%, Mn: 0.020 to 2.0%, P: less than 0.050%, S: Less than 0.010%, Cr: 12.0% or more and less than 25.0%, Ni: more than 35.0% and less than 50.0%, N: 0.0005 to 0.020%, Al: more than 3.0% 5.0% or less, Ti: more than 1.5% and less than 3.0%, Mo: 1.0 to 2.5%, Nb: 2.25 to 4.00%, Cu: less than 0.3% When the contents (mass%) of Ti, Nb and Al are [Ti], [Nb] and [Al], respectively, [Ti] / [Al] ≧ 0.50, [Nb] / [Al] An alloy plate for a heat-resistant member that satisfies a relationship of ≧ 0.75 and has a chemical composition with the balance being Fe and impurities, and a Ni-based intermetallic compound is present in the austenite matrix. The chemical composition of Ni, Ti and Nb contained in the Ni-based intermetallic compound is more than 60% in atomic percent with respect to the entire chemical composition constituting the Ni-based intermetallic compound. , 3.5% or more and 0.8% or more, an alloy plate for heat-resistant members.

(6)700℃で400時間保持する前後の硬さ低下代が40HV以下である、(5)に記載の耐熱部材用合金板。   (6) The alloy plate for a heat-resistant member according to (5), wherein a hardness reduction before and after holding at 700 ° C. for 400 hours is 40 HV or less.

(7)質量%で、Co:3.0%以下、およびW:3.0%未満の1種以上を含有する、(5)または(6)に記載の耐熱部材用合金板。   (7) The alloy plate for a heat-resistant member according to (5) or (6), which contains one or more of Co: 3.0% or less and W: less than 3.0% by mass%.

(8)質量%で、B:0.01%以下、Ca:0.005%以下、およびMg:0.002%以下の1種以上を含有する、(5)〜(7)のいずれかに記載の耐熱部材用合金板。   (8) In any one of (5) to (7), containing at least one of B: 0.01% or less, Ca: 0.005% or less, and Mg: 0.002% or less, by mass% The alloy plate for heat-resistant members as described.

(9)質量%で、C:0.0020〜0.10%、Si:0.020〜3.0%、Mn:0.020〜2.0%、P:0.050%未満、S:0.010%未満、Cr:12.0%以上25.0%未満、Ni:35.0%超50.0%未満、N:0.0005〜0.020%、Al:3.0%超5.0%以下、Ti:1.5%超3.0%未満、Mo:1.0〜2.5%、Nb:2.25〜4.00%、Cu:0.3%未満を含有し、Ti、NbおよびAlの含有量(質量%)をそれぞれ[Ti]、[Nb]および[Al]としたとき、[Ti]/[Al]≧0.50、[Nb]/[Al]≧0.75の関係を満足し、残部がFeおよび不純物である化学組成を有するエンジンの排気系部材用のガスケットであって、オーステナイト母相中にNi系金属間化合物が存在する金属組織を呈し、前記Ni系金属間化合物を構成する化学組成全体に対して、前記Ni系金属間化合物に含まれるNi、TiおよびNbの化学組成が、原子%で、それぞれ60%超、3.5%以上および0.8%以上を占めることを特徴とする、エンジンの排気系部材用のガスケット。   (9) By mass%, C: 0.0020 to 0.10%, Si: 0.020 to 3.0%, Mn: 0.020 to 2.0%, P: less than 0.050%, S: Less than 0.010%, Cr: 12.0% or more and less than 25.0%, Ni: more than 35.0% and less than 50.0%, N: 0.0005 to 0.020%, Al: more than 3.0% 5.0% or less, Ti: more than 1.5% and less than 3.0%, Mo: 1.0 to 2.5%, Nb: 2.25 to 4.00%, Cu: less than 0.3% When the contents (mass%) of Ti, Nb and Al are [Ti], [Nb] and [Al], respectively, [Ti] / [Al] ≧ 0.50, [Nb] / [Al] A gasket for an exhaust system member of an engine having a chemical composition in which a relation of ≧ 0.75 is satisfied, and the balance is Fe and impurities, and N in the austenite matrix The chemical composition of Ni, Ti and Nb contained in the Ni-based intermetallic compound is expressed in atomic% with respect to the entire chemical composition constituting the Ni-based intermetallic compound. A gasket for an exhaust system member of an engine, characterized by occupying more than 60%, 3.5% or more and 0.8% or more, respectively.

(10)700℃で400時間保持する前後の硬さ低下代が40HV以下である、(9)に記載のエンジンの排気系部材用のガスケット。   (10) The gasket for an exhaust system member of the engine according to (9), wherein a hardness reduction before and after holding at 700 ° C. for 400 hours is 40 HV or less.

(11)質量%で、Co:3.0%以下、およびW:3.0%未満の1種以上を含有する、(9)または(10)に記載のエンジンの排気系部材用のガスケット。   (11) The gasket for an exhaust system member of an engine according to (9) or (10), which contains at least one of Co: 3.0% or less and W: less than 3.0% by mass.

(12)質量%で、B:0.01%以下、Ca:0.005%以下、およびMg:0.002%以下の1種以上を含有する、(9)〜(11)のいずれかに記載のエンジンの排気系部材用のガスケット。   (12) In any one of (9) to (11), containing at least one of B: 0.01% or less, Ca: 0.005% or less, and Mg: 0.002% or less The gasket for the exhaust system member of the described engine.

本発明により、従来のNi基耐熱合金と比べてNi含有量が少なく、かつ耐熱性(高温引張試験の0.2%耐力および耐へたり性)が同等かそれ以上に優れた耐熱部材用合金原板、耐熱部材用合金板、およびエンジンの排気系部材用のガスケットを提供できる。   According to the present invention, an alloy for a heat-resistant member that has a lower Ni content than conventional Ni-base heat-resistant alloys and has the same or better heat resistance (0.2% proof stress and sag resistance in a high-temperature tensile test). An original plate, an alloy plate for a heat-resistant member, and a gasket for an engine exhaust system member can be provided.

本発明に係る耐熱部材用合金原板、耐熱部材用合金板、およびエンジンの排気系部材用のガスケットを説明する。以降の説明では、化学組成または濃度に関する「%」は特に断りがない限り「質量%」を意味する。なお、Ni系金属間化合物相中のNi、TiおよびNbの各化学組成に関する「%」は、「原子%」を意味する。   An alloy base plate for a heat-resistant member, an alloy plate for a heat-resistant member, and a gasket for an engine exhaust system member according to the present invention will be described. In the following description, “%” regarding chemical composition or concentration means “% by mass” unless otherwise specified. In addition, “%” regarding each chemical composition of Ni, Ti, and Nb in the Ni-based intermetallic compound phase means “atomic%”.

1.本発明に係る耐熱部材用合金原板および耐熱部材用合金板
(1)化学組成
はじめに必須元素を説明する。
1. Alloy base plate for heat-resistant member and alloy plate for heat-resistant member according to the present invention (1) Chemical composition First, essential elements will be described.

(1−1)C:0.0020〜0.10%
Cは、Ti、NbおよびCr等と結びついて炭化物を生成し、その炭化物は強化相として働くが、C含有量が0.10%を超えると、耐熱部材用合金板の加工性の劣化や、Cr炭化物の増加による耐食性の低下が引き起こされる。したがって、C含有量は、0.10%以下であり、耐熱部材用合金板に加工度が高い成形を行う場合には好ましくは0.030%以下であり、さらに好ましくは0.020%以下である。
(1-1) C: 0.0020 to 0.10%
C is combined with Ti, Nb, Cr and the like to generate carbides, and the carbides work as a strengthening phase, but when the C content exceeds 0.10%, deterioration of workability of the alloy plate for heat-resistant members, The increase in Cr carbide causes a decrease in corrosion resistance. Therefore, the C content is 0.10% or less, and preferably 0.030% or less, and more preferably 0.020% or less when forming a heat-resistant member alloy plate with a high degree of workability. is there.

一方、C含有量を0.0020%未満に低減するには、精錬時のコスト増加および、耐熱部材用合金板の常温強度の低下をもたらす。したがって、C含有量は、0.0020%以上であり、好ましくは0.004%以上である。   On the other hand, reducing the C content to less than 0.0020% results in an increase in cost during refining and a decrease in the room temperature strength of the alloy plate for heat-resistant members. Therefore, the C content is 0.0020% or more, preferably 0.004% or more.

(1−2)Si:0.020〜3.0%
Siは、精錬の際に脱酸元素として添加される元素であり、かつ耐熱部材用合金板の耐酸化性を改善させる元素である。Si含有量が0.020%を下回ると、精錬時のコストの増加、および耐熱部材用合金板の耐酸化性の低下をもたらす。したがって、Si含有量は、0.020%以上であり、好ましくは0.03%以上である。
(1-2) Si: 0.020 to 3.0%
Si is an element added as a deoxidizing element during refining, and is an element that improves the oxidation resistance of the alloy plate for a heat-resistant member. When the Si content is less than 0.020%, the cost during refining increases and the oxidation resistance of the alloy plate for heat-resistant members decreases. Therefore, the Si content is 0.020% or more, preferably 0.03% or more.

しかし、Si含有量が3.0%を超えると、耐熱部材用合金板を硬質化させ、加工性が劣化する恐れがある。したがって、Si含有量は、3.0%以下であり、耐熱部材用合金板に加工度の高い成形を行う場合には好ましくは1.0%以下である。   However, if the Si content exceeds 3.0%, the alloy plate for a heat-resistant member may be hardened and the workability may be deteriorated. Therefore, the Si content is 3.0% or less, and preferably 1.0% or less when forming a high-workability alloy sheet for a heat-resistant member.

(1−3)Mn:0.020〜2.0%
Mnも、Si同様に、精錬の際に脱酸元素として添加される場合がある。しかし、Mn含有量が0.020%を下回ると、精錬時のコスト増加をもたらす。したがって、Mn含有量は、0.020%以上であり、精錬コストの観点より好ましくは0.05%以上であり、さらに好ましくは0.07%以上である。
(1-3) Mn: 0.020 to 2.0%
Mn, like Si, may be added as a deoxidizing element during refining. However, if the Mn content is less than 0.020%, the cost during refining is increased. Therefore, the Mn content is 0.020% or more, preferably 0.05% or more from the viewpoint of refining costs, and more preferably 0.07% or more.

しかし、Mn含有量が2.0%を超えると、耐熱部材用合金板の高温での耐酸化性の劣化および材質の硬質化を引き起こす。したがって、Mn含有量は、2.0%以下であり、耐熱部材用合金板の耐酸化性および製造の安定性の観点から好ましくは1.5%以下である。   However, if the Mn content exceeds 2.0%, the oxidation resistance of the alloy plate for heat-resistant members at high temperatures is deteriorated and the material is hardened. Therefore, the Mn content is 2.0% or less, and preferably 1.5% or less from the viewpoint of the oxidation resistance of the alloy plate for a heat-resistant member and the production stability.

(1−4)P:0.050%未満
Pは、熱間加工性や靭性に対して有害な元素である。Pは、原料となるフェロクロムに不可避的に含有される不純物であるが、0.050%未満の含有は許容される。したがって、P含有量は、0.050%未満であり、耐熱部材用合金板の加工性の改善の観点から好ましくは0.035%以下である。
(1-4) P: Less than 0.050% P is an element harmful to hot workability and toughness. P is an impurity inevitably contained in ferrochrome as a raw material, but the content of less than 0.050% is allowed. Therefore, the P content is less than 0.050%, and preferably 0.035% or less from the viewpoint of improving the workability of the alloy plate for heat-resistant members.

精錬時に脱Pを行うことは大変困難であり、P含有量を抑制するためにはフェロクロム原料のP濃度が低いことが好ましいが、低Pのフェロクロムは高価であるため、P含有量は、好ましくは0.005%以上であり、さらに好ましくは0.010%以上である。   It is very difficult to remove P during refining, and in order to suppress the P content, it is preferable that the P concentration of the ferrochrome raw material is low. However, since the low P ferrochrome is expensive, the P content is preferably Is 0.005% or more, more preferably 0.010% or more.

(1−5)S:0.010%未満
Sは、耐熱部材用合金板の熱間加工性や耐食性に対して有害な元素である。Sは、原料に不可避的に含まれる不純物であり、S含有量が低いほど熱間加工性および耐食性が向上するが、0.010%未満の含有は許容される。したがって、S含有量は、0.010%未満であり、好ましくは0.0030%未満であり、さらに好ましくは0.0010%未満である。
(1-5) S: less than 0.010% S is an element harmful to the hot workability and corrosion resistance of the alloy plate for heat-resistant members. S is an impurity inevitably contained in the raw material, and the lower the S content, the better the hot workability and corrosion resistance, but the content of less than 0.010% is allowed. Accordingly, the S content is less than 0.010%, preferably less than 0.0030%, and more preferably less than 0.0010%.

しかし、S含有量を0.0002%未満に低減しようとすると、脱硫負荷が増大し、精錬コストが増大する。したがって、S含有量は、好ましくは0.0002%以上である。   However, if the S content is reduced to less than 0.0002%, the desulfurization load increases and the refining cost increases. Therefore, the S content is preferably 0.0002% or more.

(1−6)Cr:12.0以上25.0%未満
Crは、耐熱部材用合金板の耐酸化性および耐食性の確保のために必須な元素である。Cr含有量が12.0%未満であると、これらの効果が奏されない。したがって、Cr含有量は、12.0%以上であり、耐熱部材用合金板の耐酸化性および耐食性の確保の観点から好ましくは14.0%以上である。
(1-6) Cr: 12.0 or more and less than 25.0% Cr is an essential element for ensuring the oxidation resistance and corrosion resistance of the alloy plate for heat-resistant members. When the Cr content is less than 12.0%, these effects are not achieved. Therefore, the Cr content is 12.0% or more, and is preferably 14.0% or more from the viewpoint of ensuring oxidation resistance and corrosion resistance of the alloy plate for heat-resistant members.

一方、Cr含有量が25.0%以上であると、耐熱部材用合金板の加工性の低下や靭性の劣化をもたらす。したがって、Cr含有量は、25.0%未満であり、耐熱部材用合金板の製造の安定性の観点から好ましくは24.1%以下であり、さらに好ましくは23.5%以下である。   On the other hand, when the Cr content is 25.0% or more, the workability of the alloy plate for heat-resistant members is deteriorated and the toughness is deteriorated. Therefore, the Cr content is less than 25.0%, preferably 24.1% or less, and more preferably 23.5% or less from the viewpoint of the stability of the production of the alloy plate for heat-resistant members.

(1−7)Ni:35.0%超50.0%未満
Niは、母相オーステナイトを安定化させると同時に、析出強化相である金属間化合物ガンマプライムγ’(Ni(Al,Ti,Nb))、ガンマダブルプライムγ”(Ni(Nb,Ti))等を生成して耐熱部材用合金板の耐酸化性および耐熱性を確保する上で極めて重要な元素である。Ni含有量は、耐熱部材用合金板の耐熱性を十分に確保するため、35.0%超であり、さらなる耐熱性向上の観点から、好ましくは37.5%以上である。
(1-7) Ni: more than 35.0% and less than 50.0% Ni stabilizes the parent phase austenite and, at the same time, intermetallic compound gamma prime γ ′ (Ni 3 (Al, Ti, Nb)), gamma double prime γ ″ (Ni 3 (Nb, Ti)) and the like, which are extremely important elements for ensuring the oxidation resistance and heat resistance of the alloy plate for heat-resistant members. Is more than 35.0% in order to sufficiently secure the heat resistance of the alloy plate for a heat-resistant member, and is preferably 37.5% or more from the viewpoint of further improving the heat resistance.

一方、Ni含有量が50.0%以上であると、合金コストの増加に加えて熱間加工性を低下させる。したがって、Ni含有量は、50.0%未満であり、熱間加工性の観点から好ましくは46.0%以下である。   On the other hand, when the Ni content is 50.0% or more, hot workability is lowered in addition to an increase in alloy cost. Therefore, the Ni content is less than 50.0%, and is preferably 46.0% or less from the viewpoint of hot workability.

(1−8)N:0.0005〜0.020%
Nは、窒化物を生成して耐熱部材用合金板の加工性を低下させるおそれがある。したがって、N含有量は、0.020%以下であり、耐熱部材用合金板に求める加工度が厳しい場合には好ましくは0.010%未満である。
(1-8) N: 0.0005 to 0.020%
N may generate nitrides and reduce the workability of the alloy plate for heat-resistant members. Therefore, the N content is 0.020% or less, and is preferably less than 0.010% when the degree of processing required for the alloy plate for heat-resistant members is severe.

一方、N含有量を0.0005%未満に低減するには精錬コストの増加を招く。したがって、N含有量は、0.0005%以下であり、耐熱部材用合金板の製造の安定性の観点から好ましくは0.0010%以上である。   On the other hand, reducing the N content to less than 0.0005% causes an increase in refining costs. Therefore, the N content is 0.0005% or less, and preferably 0.0010% or more from the viewpoint of the stability of manufacturing the alloy plate for heat-resistant members.

(1−9)Al:3.0%超5.0%以下
Alは、析出強化に寄与するガンマプライムγ’やガンマダブルプライムγ”等のNi系金属間化合物を構成する元素であり、TiやNbに比べて熱間加工性を低下させずに耐熱部材用合金板の耐熱性を向上させる。したがって、Al含有量は、3.0%超であり、好ましくは3.1%以上である。
(1-9) Al: more than 3.0% to 5.0% or less Al is an element constituting Ni-based intermetallic compounds such as gamma prime γ ′ and gamma double prime γ ″ that contribute to precipitation strengthening, and Ti Therefore, the heat resistance of the alloy plate for a heat-resistant member is improved without degrading hot workability as compared with Nb, so the Al content is more than 3.0%, preferably 3.1% or more. .

一方、Al含有量が5.0%を超えると、Ni系金属間化合物中のTi,Nb組成を低下させ、粗大化により過時効を促進するおそれがあり、かつ耐熱部材用合金板の耐高温疲労特性を低下させるσ相の析出が増加する。したがって、Al含有量は、5.0%以下であり、十分な耐熱性確保の観点から好ましくは4.0%未満である。   On the other hand, if the Al content exceeds 5.0%, the Ti and Nb composition in the Ni-based intermetallic compound may be reduced, and overaging may be promoted by coarsening, and the high temperature resistance of the alloy plate for heat-resistant members. Precipitation of sigma phase, which degrades fatigue properties, increases. Therefore, the Al content is 5.0% or less, and preferably less than 4.0% from the viewpoint of ensuring sufficient heat resistance.

(1−10)Ti:1.5%超3.0%未満
Tiは、析出強化に寄与するガンマプライムγ′やガンマダブルプライムγ″等のNi系金属間化合物を構成する元素であり、Ni、Al、Nbとともに耐熱部材用合金板の耐熱性を確保する上で重要な元素である。耐熱部材用合金板が700℃での使用に耐え得る耐熱性を確保するために、Ti含有量は、1.5%超であり、好ましくは1.8%以上である。
(1-10) Ti: more than 1.5% and less than 3.0% Ti is an element constituting a Ni-based intermetallic compound such as gamma prime γ ′ and gamma double prime γ ″ that contributes to precipitation strengthening. In addition to Al, Nb, it is an important element for securing the heat resistance of the alloy plate for heat-resistant members.To ensure the heat resistance that the alloy plate for heat-resistant members can withstand use at 700 ° C., the Ti content is Over 1.5%, preferably over 1.8%.

一方、Ti含有量が3.0%を越えると、熱間加工性の劣化および圧延荷重の増加を招き、かつ耐熱部材用合金板の高温強度に寄与しない金属間化合物相の生成を促進する。したがって、Ti含有量は、3.0%未満であり、耐熱部材用合金板の製造の安定性および高温強度の確保の観点から、好ましくは2.5%未満である。   On the other hand, if the Ti content exceeds 3.0%, the hot workability is deteriorated and the rolling load is increased, and the formation of an intermetallic compound phase that does not contribute to the high temperature strength of the alloy plate for heat-resistant members is promoted. Therefore, the Ti content is less than 3.0%, and preferably less than 2.5% from the viewpoint of ensuring the stability of manufacturing the alloy plate for heat-resistant members and ensuring the high temperature strength.

(1−11)Mo:1.0〜2.5%
Moは、母相オーステナイトの固溶強化元素として、熱間加工性を大きく損なわずに耐熱部材用合金板の耐熱性を大きく向上させる元素である。耐熱部材用合金板が700℃程度の高温での使用に耐え得る耐熱性を確保するため、Mo含有量は、1.0%以上であり、好ましくは1.1%以上である。
(1-11) Mo: 1.0 to 2.5%
Mo is an element that greatly improves the heat resistance of the alloy plate for a heat-resistant member as a solid solution strengthening element of the parent phase austenite without greatly impairing hot workability. In order to ensure heat resistance that the alloy plate for heat-resistant members can withstand use at a high temperature of about 700 ° C., the Mo content is 1.0% or more, and preferably 1.1% or more.

一方、Mo含有量が2.5%を越えると、圧延荷重の増加および鋳造割れを引き起こすおそれがある。したがって、Mo含有量は、2.5%以下であり、好ましくは2.0%以下である。   On the other hand, if the Mo content exceeds 2.5%, the rolling load may increase and casting cracks may occur. Therefore, the Mo content is 2.5% or less, preferably 2.0% or less.

(1−12)Nb:2.25〜4.00%
Nbは、Tiとともに、析出強化に寄与するガンマプライムγ′やガンマダブルプライムγ″等のNi系金属間化合物を構成する元素である。耐熱部材用合金板が700℃での使用に耐え得る耐熱性を確保するために、Nb含有量は、2.25%以上であり、好ましくは2.31%以上である。
(1-12) Nb: 2.25 to 4.00%
Nb, together with Ti, is an element constituting a Ni-based intermetallic compound such as gamma prime γ ′ and gamma double prime γ ″ that contributes to precipitation strengthening. The heat-resistant member alloy plate can withstand use at 700 ° C. In order to ensure the properties, the Nb content is 2.25% or more, preferably 2.31% or more.

一方、Nbは凝固時に樹状晶の粒界の近傍に偏析し易く、粒界部における強度の局所的な増加および析出物の増加により、熱間加工性を低下させる。したがって、Nb含有量は、4.00%以下であり、熱間加工性の観点から好ましくは3.50%以下である。   On the other hand, Nb tends to segregate in the vicinity of the dendritic grain boundaries during solidification, and lowers hot workability due to a local increase in strength and an increase in precipitates at the grain boundaries. Therefore, the Nb content is 4.00% or less, and preferably 3.50% or less from the viewpoint of hot workability.

(1−13)Cu:0.3%未満
Cuは、融点が低く、高濃度で存在すると熱間鍛造および熱間圧延の際に溶融脆化を引き起こし、熱間加工性を低下させる。したがって、Cu含有量は、0.3%未満であり、Cu含有量が低いほど熱間加工性は改善されるため、好ましくは0.10%未満である。
(1-13) Cu: Less than 0.3% When Cu has a low melting point and exists in a high concentration, it causes melt embrittlement during hot forging and hot rolling, thereby reducing hot workability. Accordingly, the Cu content is less than 0.3%, and the hot workability is improved as the Cu content is lower, and therefore preferably less than 0.10%.

(1−14)[Ti]/[Al]≧0.50、[Nb]/[Al]≧0.75
Ti、NbおよびAlの含有量(質量%)をそれぞれ[Ti]、[Nb]および[Al]としたとき、上記関係を満足する。この理由を説明する。
(1-14) [Ti] / [Al] ≧ 0.50, [Nb] / [Al] ≧ 0.75
When the contents (mass%) of Ti, Nb, and Al are [Ti], [Nb], and [Al], respectively, the above relationship is satisfied. The reason for this will be explained.

本発明者らは、上述した課題を解決するため、耐熱部材用合金板の高温強化に有効なガンマプライムγ’やガンマダブルプライムγ”といったNi系金属間化合物相を活用した化学組成を検討し、冷延板を試作した。   In order to solve the above-mentioned problems, the present inventors have studied a chemical composition utilizing a Ni-based intermetallic compound phase such as gamma prime γ ′ or gamma double prime γ ″ effective for high-temperature strengthening of an alloy plate for a heat-resistant member. A cold-rolled sheet was prototyped.

その結果、ガンマプライムγ’やガンマダブルプライムγ”等のNi系金属間化合物相の構成元素であるAl、Ti、Nbのガンマプライムγ’内またはガンマダブルプライムγ”内での化学組成によって、Ni含有量を低減するにも拘らず、700℃における0.2%耐力および700℃時効前後の硬さ変化(耐へたり性)により示される耐熱部材用合金板の高温使用性能がインコネル718の高温使用性能と同等以上であることが判明した。   As a result, depending on the chemical composition in the gamma prime γ ′ or gamma double prime γ ″ of Al, Ti, Nb, which are constituent elements of the Ni-based intermetallic compound phase such as gamma prime γ ′ and gamma double prime γ ″, Despite reducing the Ni content, the high-temperature use performance of the alloy plate for heat-resistant members indicated by 0.2% proof stress at 700 ° C. and hardness change (sag resistance) before and after aging at 700 ° C. is that of Inconel 718. It was found to be equal to or better than the high temperature use performance.

具体的には、耐熱部材用合金板の化学組成をある所定の範囲内とし、かつ析出したNi系金属間化合物相中のNi組成が原子%にて60%超、Ti組成が3.5%以上、Nb組成が0.8%以上である場合に、700℃×400時間時効前後の硬さ低下代が40HV以下となる。   Specifically, the chemical composition of the alloy plate for heat-resistant members is within a predetermined range, and the Ni composition in the deposited Ni-based intermetallic compound phase is more than 60% in atomic%, and the Ti composition is 3.5%. As described above, when the Nb composition is 0.8% or more, the hardness reduction allowance before and after aging at 700 ° C. × 400 hours is 40 HV or less.

Ni系金属間化合物相中のNi組成、Ti組成およびNb組成をこのようにするには、耐熱部材用合金板の化学組成を、A値:[Ti]/[Al]≧0.50、B値:[Nb]/[Al]≧0.75とし、かつ、耐熱部材用合金板の熱間圧延工程における粗圧延と仕上げ圧延の間に、誘導加熱(IH)装置等を用いて被圧延材全体を再加熱するとともに、最終冷間圧延の冷延率を70%以下とし、さらに冷間圧延後に700℃1時間以上の時効処理を行えばよい。   In order to make the Ni composition, the Ti composition and the Nb composition in the Ni-based intermetallic compound phase in this way, the chemical composition of the alloy plate for a heat-resistant member is set to A value: [Ti] / [Al] ≧ 0.50, B Value: [Nb] / [Al] ≧ 0.75, and a material to be rolled using an induction heating (IH) apparatus or the like between rough rolling and finish rolling in the hot rolling step of the alloy plate for heat-resistant members The whole is reheated, the cold rolling rate of the final cold rolling is set to 70% or less, and an aging treatment at 700 ° C. for 1 hour or longer is further performed after the cold rolling.

このため、本発明では、A値:[Ti]/[Al]は、0.50以上であり、好ましくは0.51以上であり、さらに好ましくは0.53以上である。また、B値:[Nb]/[Al]は0.75以上であり、好ましくは0.76以上であり、さらに好ましくは0.77以上である。   For this reason, in this invention, A value: [Ti] / [Al] is 0.50 or more, Preferably it is 0.51 or more, More preferably, it is 0.53 or more. Moreover, B value: [Nb] / [Al] is 0.75 or more, Preferably it is 0.76 or more, More preferably, it is 0.77 or more.

次に、必要に応じて含有する任意元素を説明する。
(1−15)Co:3.0%以下、およびW:3.0%未満の1種
Coは、母相オーステナイトへの固溶強化元素として働き、また耐熱部材用合金板の使用温度域で析出強化に寄与するガンマプライムγ′の生成を促進する元素である。しかし、Co含有量が3.0%を超えると合金コストの増加に加え、鋳造割れを招く。したがって、Co含有量は、3.0%以下であり、好ましくは2.5%以下である。Coを含有することによる上述の効果を確実に得るために、Co含有量は、好ましくは0.10%以上である。
Next, the optional elements contained as necessary will be described.
(1-15) Co: 3.0% or less, and W: less than 3.0% One type Co acts as a solid solution strengthening element in the parent phase austenite, and in the operating temperature range of the alloy plate for heat-resistant members It is an element that promotes the formation of gamma prime γ 'that contributes to precipitation strengthening. However, if the Co content exceeds 3.0%, in addition to an increase in alloy costs, casting cracks are caused. Therefore, the Co content is 3.0% or less, preferably 2.5% or less. In order to surely obtain the above-described effect by containing Co, the Co content is preferably 0.10% or more.

Wも、Coと同様に、母相オーステナイトへの固溶強化元素として高温強度を向上させる元素である。しかし、W含有量が3.0%以上であると、合金コストの増加に加え、圧延荷重の増加および鋳造割れを引き起こす。したがって、W含有量は、3.0%未満であり、好ましくは2.0%以下である。Wを含有することによる上述の効果を確実に得るために、W含有量は、好ましくは0.02%以上である。
CoおよびWは、その一種を単独で含有してもよいし、二種を複合して含有してもよい。
W, like Co, is an element that improves the high-temperature strength as a solid solution strengthening element in the parent phase austenite. However, if the W content is 3.0% or more, in addition to an increase in alloy cost, an increase in rolling load and casting cracks are caused. Therefore, the W content is less than 3.0%, preferably 2.0% or less. In order to surely obtain the above-described effect by containing W, the W content is preferably 0.02% or more.
Co and W may be contained alone or in combination of two.

(1−16)B:0.01%以下、Ca:0.005%以下、およびMg:0.002%以下の1種以上   (1-16) B: 0.01% or less, Ca: 0.005% or less, and Mg: 0.002% or less

B、CaおよびMgは、いずれも、熱間加工性および耐熱部材用合金板の成形性の向上に寄与する元素である。しかし、B、CaおよびMgの含有量が過剰であると、熱間加工性を逆に低下させるばかりか、鋳造割れや鋳造設備における溶湯ノズルのノズル詰まりを引き起こすおそれがある。したがって、B含有量は0.01%以下であり、Ca含有量は0.005%以下であり、Mg含有量は0.002%以下である。B、Ca、Mgを含有することによる上述の効果を確実に得るために、B含有量は好ましくは0.0002%以上であり、Ca含有量は好ましくは0.0002%以上であり、Mg含有量は好ましくは0.0002%以上である。   B, Ca, and Mg are all elements that contribute to improvement of hot workability and formability of the alloy plate for a heat-resistant member. However, if the contents of B, Ca, and Mg are excessive, not only the hot workability is decreased, but there is a possibility of causing casting cracks and clogging of the molten metal nozzle in the casting equipment. Therefore, the B content is 0.01% or less, the Ca content is 0.005% or less, and the Mg content is 0.002% or less. In order to reliably obtain the above-described effects by containing B, Ca, and Mg, the B content is preferably 0.0002% or more, the Ca content is preferably 0.0002% or more, and Mg content is contained. The amount is preferably 0.0002% or more.

B、CaおよびMgは、その一種を単独で含有してもよいし、二種以上を複合して含有してもよい。   B, Ca and Mg may be contained singly or in combination of two or more.

(1−17)残部
上記以外の残部はFeおよび不純物である。不純物としては、鉱石やスクラップ等の原材料に含まれるものや、製造工程において含まれるものがある。
(1-17) Balance The balance other than the above is Fe and impurities. Impurities include those contained in raw materials such as ore and scrap and those contained in the manufacturing process.

(2)Ni系金属間化合物相中のNi、Ti、Nbの各化学組成
上述したように、本発明に係る耐熱部材用合金板は、700℃で1時間以上時効処理した後に、オーステナイト母相からNi系金属間化合物が析出する。そしてNi系金属間化合物を構成する化学組成全体に対して、Ni、TiおよびNbの化学組成が、原子%で、それぞれ60%超、3.5%以上および0.8%以上を占め、これにより、700℃×400h時効前後の耐熱部材用合金板断面における硬さ低下代が40HV以下となる。
(2) Each chemical composition of Ni, Ti, and Nb in the Ni-based intermetallic compound phase As described above, the alloy plate for a heat-resistant member according to the present invention is subjected to aging treatment at 700 ° C. for 1 hour or more, and then the austenite matrix phase. From this, Ni-based intermetallic compounds are precipitated. And the chemical composition of Ni, Ti, and Nb is more than 60%, 3.5% or more and 0.8% or more, respectively, with respect to the entire chemical composition constituting the Ni-based intermetallic compound. Therefore, the hardness reduction allowance in the cross section of the alloy plate for heat-resistant members before and after aging at 700 ° C. × 400 h is 40 HV or less.

Ni、Ti、Nb以外のNi系金属間化合物を構成する元素としては、Fe、Cr、Al、Mo、Cu等であり、上述の任意元素(Co、W、B、Ca、Mg)を含有する場合にはこれらの元素も含まれる。 なお、オーステナイト相およびNi系金属間化合物については、透過型電子顕微鏡(TEM)の電子線回折像によって相を同定する。また、Ni系金属間化合物に含まれるNi、TiおよびNbの化学組成については、走査型電子顕微鏡(SEM)に装着されたX線検出器を用いて、各試料に対し観察されるNi系金属間化合物を任意に5つずつ選んで、点分析を行い、その原子%の算術平均値でもって各元素の含有量とする。   Elements constituting the Ni-based intermetallic compound other than Ni, Ti, and Nb are Fe, Cr, Al, Mo, Cu, and the like, and include the above-described optional elements (Co, W, B, Ca, Mg). In some cases, these elements are also included. In addition, about an austenite phase and Ni type | system | group intermetallic compound, a phase is identified by the electron beam diffraction image of a transmission electron microscope (TEM). Regarding the chemical composition of Ni, Ti and Nb contained in the Ni-based intermetallic compound, the Ni-based metal observed for each sample using an X-ray detector attached to a scanning electron microscope (SEM) Five intercalation compounds are arbitrarily selected, point analysis is performed, and the content of each element is determined by the arithmetic average value of the atomic%.

(3)700℃で400時間保持する前後の硬さ低下代
700℃で400時間保持する前後の硬さ低下代は、本発明に係る耐熱部材用合金板およびガスケットの高温耐へたり性を示す指標である。ガスケットの一種であるターボガスケットは700℃近傍の高温の排気ガスに長期間曝されるため、そのような環境でもビードのへたりが少ない、十分な高温耐へたり性が求められる。
(3) Hardness reduction allowance before and after holding at 700 ° C. for 400 hours The hardness reduction allowance before and after holding at 700 ° C. for 400 hours indicates the high temperature sag resistance of the alloy plate for heat resistant members and gasket according to the present invention. It is an indicator. A turbo gasket, which is a kind of gasket, is exposed to a high-temperature exhaust gas near 700 ° C. for a long period of time. Therefore, sufficient high-temperature sag resistance with less bead sag is required even in such an environment.

ガスケットに用いられる合金板は、使用時にNi系金属間化合物の粗大化により硬さの低下が起こり、その硬さの低下がガスケットのへたりを引き起こすため、高温使用時の耐へたり性を示す指標として、700℃で400時間保持前後の硬さの低下代を用いることとする。   Alloy plates used for gaskets exhibit a reduction in hardness due to the coarsening of Ni-based intermetallic compounds during use, and the decrease in hardness causes the gasket to sag, thus exhibiting sag resistance when used at high temperatures. As an index, a reduction in hardness before and after holding at 700 ° C. for 400 hours is used.

保持時間を400時間に限定する理由は、700℃で保持した場合の硬さ低下は、特に200〜300時間経過後に硬さが変化する場合があるためであり、400時間経過後は、変化量が小さくなり時間の経過とともに硬さが徐々に低下する傾向にあるためである。   The reason for limiting the holding time to 400 hours is that the decrease in hardness when held at 700 ° C. may change particularly after 200 to 300 hours have elapsed, and the amount of change after 400 hours has elapsed. This is because the hardness tends to decrease and the hardness gradually decreases with time.

本発明に係るガスケットおよび耐熱部材用合金板においては、700℃で400時間の時効熱処理した際の硬さ低下代を、ビッカース硬度で40HV以下とする。硬さ低下代が40HV超である場合、ガスケットとしての使用時のへたりが大きく、燃費の低下、異音の発生等の原因となる。   In the gasket and the alloy plate for a heat-resistant member according to the present invention, the hardness reduction when subjected to aging heat treatment at 700 ° C. for 400 hours is set to 40 HV or less in terms of Vickers hardness. When the hardness reduction allowance is more than 40 HV, the sag during use as a gasket is large, which causes a decrease in fuel consumption, generation of abnormal noise, and the like.

使用時の硬さの低下は、強化を担うNi系金属間化合物の粗大化、及び強化に寄与しない別の金属間化合物へ変化することにより引き起こされる。この時のへたりの速度は、予め高温にて時効熱処理を行なった材料、あるいはガスケットとして一定期間使用後の材料においてもほとんど変化はない。   The decrease in hardness during use is caused by the coarsening of the Ni-based intermetallic compound responsible for strengthening and the change to another intermetallic compound that does not contribute to strengthening. The rate of sag at this time hardly changes even in a material that has been subjected to aging heat treatment at a high temperature in advance or a material that has been used for a certain period of time as a gasket.

そのため、600〜800℃の範囲で時効熱処理をすることで排気ガス環境を模擬した材料や、種々の排気ガス環境で使用したガスケットを、それぞれ700℃で400時間保持した前後の硬さ低下代を調査しても、硬さ低下代が40HVを上回ることはない。   For this reason, a material that simulates the exhaust gas environment by performing an aging heat treatment in the range of 600 to 800 ° C. and a gasket that is used in various exhaust gas environments are kept at 700 ° C. for 400 hours, respectively. Even if it investigates, the hardness reduction allowance does not exceed 40HV.

このようにへたりの速度の上昇を抑えるためには、γ´等の強化を担うNi系金属間化合物の粗大化の抑制のための組織制御が重要な要素であり、Ni系金属間化合物に含まれるNi、TiおよびNbの化学組成が、大きな影響を及ぼす。   In order to suppress the increase in the speed of sag in this way, the structure control for suppressing the coarsening of the Ni-based intermetallic compound responsible for strengthening γ ′ and the like is an important element. The chemical composition of Ni, Ti and Nb contained has a great influence.

2.本発明に係る耐熱部材用合金原板および耐熱部材用合金板の製造方法
上述した化学組成を有するスラブに、熱間で粗圧延および仕上げ圧延を行って熱延合金板とし、この熱延合金板に焼鈍(溶体化熱処理を含む)および冷間圧延を繰り返し行うことにより本発明に係る耐熱部材用合金原板を製造する。耐熱部材用合金原板の最終的な板厚は、0.1〜0.3mm程度である。
2. Production method of alloy base plate for heat-resistant member and alloy plate for heat-resistant member according to the present invention A hot-rolled alloy plate is obtained by subjecting the slab having the above-described chemical composition to hot rough rolling and finish rolling. The alloy base plate for heat-resistant members according to the present invention is manufactured by repeatedly performing annealing (including solution heat treatment) and cold rolling. The final plate thickness of the alloy base plate for heat-resistant members is about 0.1 to 0.3 mm.

この際に、粗圧延と仕上げ圧延との間で被圧延材を加熱(再加熱)するとともに、最終冷間圧延の冷延率を70%以下とする。耐熱部材用合金原板に時効処理を行うことにより、本発明に係る耐熱部材用合金板が製造される。時効処理は、例えば700℃で1時間以上加熱するとよい。   At this time, the material to be rolled is heated (reheated) between rough rolling and finish rolling, and the cold rolling rate of the final cold rolling is set to 70% or less. The alloy plate for heat-resistant members according to the present invention is produced by subjecting the alloy original plate for heat-resistant members to aging treatment. An aging treatment is good to heat at 700 degreeC for 1 hour or more, for example.

上述したように、Ni系金属間化合物相中のNi組成を原子%で60%超とし、Ti組成を原子%で3.5%以上とするとともに、Nb組成を原子%で0.8%以上とするために、上述したA値:[Ti]/[Al]≧0.50、B値:[Nb]/[Al]≧0.75とするとともに、熱間圧延工程における粗圧延と仕上げ圧延の間に、誘導加熱(IH)装置等を用いて素材全体を再加熱するとともに、最終冷間圧延の冷延率を70%以下とし、さらに冷間圧延後に700℃1時間以上の時効処理を行う。   As described above, the Ni composition in the Ni-based intermetallic compound phase is more than 60% in atomic%, the Ti composition is made 3.5% or more in atomic%, and the Nb composition is 0.8% or more in atomic%. Therefore, the above-described A value: [Ti] / [Al] ≧ 0.50, B value: [Nb] / [Al] ≧ 0.75, and rough rolling and finish rolling in the hot rolling process In the meantime, the whole material is reheated using an induction heating (IH) device or the like, the cold rolling rate of the final cold rolling is set to 70% or less, and further, an aging treatment at 700 ° C. for 1 hour or more is performed after the cold rolling. Do.

粗圧延後の再加熱は、熱間圧延時の温度低下を抑制して耳割れを防ぐとともに、冷間圧延後に析出するNi系金属間化合物相の化学組成に影響を及ぼす。すなわち、再加熱を利用することにより、熱間圧延の仕上げ圧延温度を高温化できる。これにより、熱間圧延後および最終冷間圧延後または最終焼鈍後の金属組織において結晶粒が粗大化するとともに、熱間圧延後の転位密度が減少する。   Reheating after rough rolling suppresses temperature drop during hot rolling to prevent ear cracks, and affects the chemical composition of the Ni-based intermetallic compound phase that precipitates after cold rolling. That is, by using reheating, the finish rolling temperature of hot rolling can be increased. Thereby, crystal grains coarsen in the metal structure after hot rolling and after final cold rolling or after final annealing, and the dislocation density after hot rolling is reduced.

このような金属組織は転位密度が少ないため、結晶粒界でのNi系金属間化合物相の生成率が上昇する。また、結晶粒界にはTiおよびNbが偏析し、かつ粗粒化により粒界の単位面積当たりのTi,Nb偏析量が増加すると考えられる。このため、よりTi,Nb組成が高いNi系金属間化合物相が結晶粒界から生成する。   Since such a metal structure has a low dislocation density, the generation rate of the Ni-based intermetallic compound phase at the grain boundary increases. Further, it is considered that Ti and Nb are segregated at the crystal grain boundaries, and the amount of Ti and Nb segregation per unit area of the grain boundaries is increased by the coarsening. For this reason, a Ni-based intermetallic compound phase having a higher Ti and Nb composition is generated from the crystal grain boundary.

このときに結晶粒内から析出するTi,Nb組成が低いNi系金属間化合物相は、一定量までならば析出しても耐熱部材用合金板の耐熱性に影響はないが、析出し過ぎると長時間時効時に過時効により耐熱部材用合金板が軟化する。このため、最終冷延率を70%以下とし、結晶粒内の核生成サイトとなる転位を一定量以下に抑制する。   At this time, the Ni-based intermetallic compound phase having a low Ti and Nb composition precipitated from within the crystal grains does not affect the heat resistance of the alloy plate for the heat-resistant member even if it is precipitated up to a certain amount. The alloy plate for heat-resistant members softens due to overaging when aging for a long time. For this reason, the final cold rolling rate is set to 70% or less, and dislocations serving as nucleation sites in the crystal grains are suppressed to a certain amount or less.

耐熱部材用合金板の化学組成およびNi系金属間化合物相中のTi、Nb組成が700℃時効前後の硬さ変化に影響を与える理由は明確ではないが、Al含有量を一定量以上とすることによりNi系金属間化合物相の析出量が大幅に増加すること、および、析出したNi系金属間化合物相の中にTi,Nb等の、700℃における母相中の拡散速度が遅い元素が多く固溶することの相乗効果により、Ni系金属間化合物相の成長速度が遅くなり、これにより、700℃時効前後の硬さ変化が小さくなると、推定される。   The reason why the chemical composition of the alloy plate for heat-resistant members and the Ti and Nb composition in the Ni-based intermetallic compound phase affect the hardness change before and after aging at 700 ° C. is not clear, but the Al content should be a certain amount or more. As a result, the amount of precipitation of the Ni-based intermetallic compound phase is greatly increased, and elements such as Ti, Nb and the like that have a slow diffusion rate in the parent phase at 700 ° C. are included in the precipitated Ni-based intermetallic compound phase. It is presumed that the growth rate of the Ni-based intermetallic compound phase is slowed by the synergistic effect of the solid solution, and thereby the change in hardness before and after aging at 700 ° C. is reduced.

3.本発明に係るガスケット
本発明に係るガスケットは、上述した本発明に係る耐熱部材用合金原板を素材として、所定のガスケット形状になるよう加工され、エンジンの排気系部材の一部として取り付けられる。エンジンを使用することによって排気系部材が700℃近傍に加熱されるため、加工された耐熱部材用合金原板は、時効処理されて、本発明に係るガスケットとなる。すなわち、本発明に係るガスケットは、上述した化学組成を有し、Ni系金属間化合物相中のNi、TiおよびNbの各組成が、原子%でそれぞれ60%超、3.5%以上および0.8%以上の特徴を有する。
3. Gasket according to the present invention The gasket according to the present invention is processed into a predetermined gasket shape using the above-described alloy base plate for heat-resistant members according to the present invention as a raw material, and is attached as a part of an exhaust system member of the engine. Since the exhaust system member is heated to around 700 ° C. by using the engine, the processed alloy original plate for a heat-resistant member is subjected to an aging treatment to become a gasket according to the present invention. That is, the gasket according to the present invention has the above-described chemical composition, and each composition of Ni, Ti and Nb in the Ni-based intermetallic compound phase is more than 60% in atomic percent, 3.5% or more and 0%, respectively. It has more than 8% characteristics.

さらに、本発明に係るガスケットは、700℃で400時間保持する前後の断面硬さの硬さ低下代が40HV以下である。   Furthermore, in the gasket according to the present invention, the hardness reduction margin of the cross-sectional hardness before and after being held at 700 ° C. for 400 hours is 40 HV or less.

本発明に係るガスケットは、他のガスケットと同様に、いわゆるハーフビードまたはフルビードといったビードが形成されている。本発明に係るガスケットは、エンジンの排気系部材の連結部に挟み込まれた際に、弾性変形したビードの反発力によって連結部からの排気ガスの漏洩をシールする。   In the gasket according to the present invention, a bead such as a so-called half bead or full bead is formed in the same manner as other gaskets. The gasket according to the present invention seals the leakage of exhaust gas from the connecting portion by the repulsive force of the elastically deformed bead when sandwiched between the connecting portions of the exhaust system member of the engine.

ガスケットの素材である耐熱部材用合金原板は、Ni系金属間化合物が析出する前の状態、すなわちオーステナイト単相の金属組織を呈しているため、加工性が良好である。本発明に係る耐熱部材用合金原板は、ガスケットの形状に機械加工を施したり、ビードを形成する際に、割れ等の発生が少なく、ガスケットの製造品質に寄与している。   The alloy base plate for a heat-resistant member, which is a material for the gasket, has a good workability because it exhibits a state before the Ni-based intermetallic compound is precipitated, that is, an austenite single-phase metal structure. The alloy base plate for heat-resistant members according to the present invention is less susceptible to cracking or the like when machining the gasket shape or forming a bead, contributing to the manufacturing quality of the gasket.

本発明に係るガスケットは、従来の例えばインコネル718等のNi基耐熱合金製のガスケットと比べて、Ni含有量が少なく、かつ耐熱性(700℃における0.2%耐力および700℃時効前後の硬さ変化(耐へたり性)で示される高温使用性能)が同等かそれ以上に優れている。   The gasket according to the present invention has a lower Ni content and heat resistance (0.2% proof stress at 700 ° C. and hardness before and after aging at 700 ° C. compared to conventional gaskets made of Ni-based heat resistant alloys such as Inconel 718. High temperature use performance indicated by change in thickness (sag resistance) is equivalent or better.

本発明を、実施例を参照しながら、より具体的に説明する。
表1,2に示す化学組成(質量%、残部はFeおよび不純物)を有する25kg合金塊を溶製した。表1,2には、上述したA,B値を示す。
The present invention will be described more specifically with reference to examples.
A 25 kg alloy lump having the chemical composition shown in Tables 1 and 2 (mass%, the balance being Fe and impurities) was melted. Tables 1 and 2 show the A and B values described above.

Figure 2018188686
Figure 2018188686

Figure 2018188686
Figure 2018188686

この合金塊に熱間鍛造を行って厚さ45mmの合金塊とし、さらに熱間圧延を行って板厚5.0mmの熱延板とした。この際、一部の試料について、実機での粗圧延後の再加熱(IH加熱)を模擬するため、粗圧延後直ちに試料を1100℃の大気炉に装入して30分間加熱し、その後抽出して直ちに仕上圧延を行った。   This alloy lump was hot forged to form an alloy lump having a thickness of 45 mm, and further hot-rolled to obtain a hot rolled sheet having a thickness of 5.0 mm. At this time, in order to simulate reheating (IH heating) after rough rolling with an actual machine, a part of the sample was immediately placed in an atmospheric furnace at 1100 ° C. and heated for 30 minutes, and then extracted. Then, finish rolling was performed immediately.

このようにして得られた熱延板について、1100℃での溶体化処理および冷間圧延を繰り返すことにより、板厚0.2mmの冷延板を製造した。   The hot-rolled sheet thus obtained was subjected to solution treatment at 1100 ° C. and cold rolling to produce a cold-rolled sheet having a thickness of 0.2 mm.

このようにして得られた冷延板について、700℃における引張試験、冷間圧延ままおよび700℃での400時間時効後の断面の硬さ測定を行った。700℃における引張試験については、JIS G 0567に準拠した試験方法で行った。断面の硬さ測定については、冷延板のL断面(圧延方向に並行な板厚断面)における板厚中央部を対象に、JIS Z 2244に準拠したビッカース硬さ試験を荷重500グラムの条件(HV0.5)で行った。この際、断面硬さ:425HV以上、700℃で400時間保持後の硬さ350HV以上での0.2%耐力:1100MPa以上、かつ時効前後の低下代:40HV以下を全て満足する場合に、耐熱性が良好であると判断した。なお、冷間圧延後の熱処理および700℃時効の熱処理では、昇温速度:3℃/s、冷却:空冷とした。 The cold-rolled sheet thus obtained was subjected to a tensile test at 700 ° C., as it was cold-rolled, and measured for the hardness of the cross section after aging at 700 ° C. for 400 hours. The tensile test at 700 ° C. was performed by a test method based on JIS G 0567. Regarding the hardness measurement of the cross section, the Vickers hardness test in accordance with JIS Z 2244 is performed under the condition of a load of 500 grams (in the L cross section of the cold rolled sheet (thickness cross section parallel to the rolling direction)). HV 0.5 ). At this time, the cross-sectional hardness is 425 HV or higher, 0.2% proof stress at a hardness of 350 HV or higher after being held at 700 ° C. for 400 hours: 1100 MPa or higher, and a reduction allowance before and after aging: 40 HV or lower is satisfied. Judgment was good. In the heat treatment after cold rolling and heat treatment at 700 ° C., the rate of temperature increase was 3 ° C./s, and cooling was air cooling.

このようにして製造された冷延板の最終冷延率、熱間での粗圧延後の再加熱条件、700℃1時間時効後におけるNi系金属間化合物相中のNi組成、Ti組成およびNb組成および評価結果を表3〜5に示す。表1〜5における下線は、本発明の範囲外であること、または試験結果が良好でないことを示す。   The final cold rolling ratio of the cold-rolled sheet thus manufactured, the reheating conditions after hot rough rolling, the Ni composition in the Ni-based intermetallic phase after aging at 700 ° C. for 1 hour, the Ti composition, and the Nb Compositions and evaluation results are shown in Tables 3-5. The underline in Tables 1-5 indicates that it is outside the scope of the present invention or that the test results are not good.

Figure 2018188686
Figure 2018188686

Figure 2018188686
Figure 2018188686

Figure 2018188686
Figure 2018188686

表3におけるNo.1〜23は本発明で規定する条件を全て満足する本発明例であり、表4,5におけるNo.24〜60は本発明で規定する条件を満足しない比較例である。   No. in Table 3 Nos. 1 to 23 are examples of the present invention that satisfy all the conditions defined in the present invention. 24 to 60 are comparative examples that do not satisfy the conditions defined in the present invention.

No.1〜23は、700℃高温引張試験0.2%耐力:1168〜1373MPa、室温での断面硬さ:406〜531HV0.5、700℃で400時間保持後に室温で測定した断面硬さ:372〜612HV0.5、断面硬さの低下代(耐へたり性):−120〜38HVであり、従来のNi基耐熱合金と比べてNi含有量が35.2〜49.7%と低減されているにも拘らず、耐熱性(高温引張試験の0.2%耐力および耐へたり性)が同等かそれ以上に優れていることが分かる。 No. 1 to 23, 700 ° C. high temperature tensile test 0.2% proof stress: 1168 to 1373 MPa, cross-sectional hardness at room temperature: 406 to 531 HV 0.5 , cross-sectional hardness measured at room temperature after holding at 700 ° C. for 400 hours: 372 ~ 612HV 0.5 , reduction in cross-section hardness (sag resistance): -120 ~ 38HV, compared with conventional Ni-based heat-resistant alloys, the Ni content is reduced to 35.2-49.7% Nevertheless, it can be seen that the heat resistance (0.2% proof stress and sag resistance of the high-temperature tensile test) is equivalent or superior.

これに対し、N0.24〜60は、本発明で規定する化学組成、A,B値を満足せず、または、最終冷延率を満足しないか、再加熱を行わないため、Ni系金属間化合物相中のTi組成:原子%で3.5%未満、Nb組成:原子%で0.8%未満となり、700℃での400時間時効熱処理後の硬さおよび時効前後の硬さ低下代のいずれかが良好ではなかった。具体的に説明する。   On the other hand, N0.24-60 does not satisfy the chemical composition, A and B values specified in the present invention, or does not satisfy the final cold rolling rate, or does not perform reheating. Ti composition in the compound phase: less than 3.5% in atomic%, Nb composition: less than 0.8% in atomic%, hardness after 700-hour aging heat treatment at 700 ° C. and hardness reduction before and after aging Either was not good. This will be specifically described.

No.24,26は、A値が本発明の範囲の下限を下回るためにNi系金属間化合物相中のTi含有量が本発明の範囲の下限を下回り、耐へたり性が低かった。
No.25は、B値が本発明の範囲の下限を下回るためにNi系金属間化合物相中のNb含有量が本発明の範囲の下限を下回り、耐へたり性が低かった。
No. In Nos. 24 and 26, since the A value was below the lower limit of the range of the present invention, the Ti content in the Ni-based intermetallic compound phase was below the lower limit of the range of the present invention, and the sag resistance was low.
No. No. 25, the B value was below the lower limit of the range of the present invention, so the Nb content in the Ni-based intermetallic compound phase was below the lower limit of the range of the present invention, and the sag resistance was low.

No.27は、C含有量が本発明の上限を上回るために700℃高温引張試験0.2%耐力が低かった。
No.28は、C含有量が本発明の下限を下回るために700℃高温引張試験0.2%耐力が低かった。
No. No. 27 had a low 0.2% yield strength at 700 ° C. high temperature tensile test because the C content exceeded the upper limit of the present invention.
No. No. 28 had a low 0.2% yield strength at 700 ° C high temperature tensile test because the C content was below the lower limit of the present invention.

No.29は、Si含有量が本発明の範囲の上限を上回るために耐へたり性が低かった。
No.30は、Si含有量が本発明の範囲の下限を下回るために700℃高温引張試験0.2%耐力が低かった。
No. No. 29 had low sag resistance because the Si content exceeded the upper limit of the range of the present invention.
No. No. 30, since the Si content was below the lower limit of the range of the present invention, the 700 ° C high temperature tensile test 0.2% proof stress was low.

No.31は、Mn含有量が本発明の範囲の上限を上回るために耐へたり性が低かった。
No.32は、Mn含有量が本発明の範囲の下限を下回るために700℃高温引張試験0.2%耐力が低かった。
No. No. 31 had low sag resistance because the Mn content exceeded the upper limit of the range of the present invention.
No. No. 32 had a Mn content lower than the lower limit of the range of the present invention, and the 700 ° C. high temperature tensile test 0.2% proof stress was low.

No.33は、P含有量が本発明の範囲の上限を上回るために700℃高温引張試験0.2%耐力が低かった。
No.34は、S含有量が本発明の範囲の上限を上回るために700℃高温引張試験0.2%耐力が低かった。
No. No. 33 had a low 0.2% yield strength at 700 ° C. high temperature tensile test because the P content exceeded the upper limit of the range of the present invention.
No. No. 34 had a low 0.2% yield strength at 700 ° C. high temperature tensile test because the S content exceeded the upper limit of the range of the present invention.

No.35は、Cr含有量が本発明の範囲の上限を上回るために耐へたり性が低かった。
No.36は、Cr含有量が本発明の範囲の下限を下回るために700℃高温引張試験0.2%耐力が低かった。
No. No. 35 had low sag resistance because the Cr content exceeded the upper limit of the range of the present invention.
No. No. 36 had a low 0.2% yield strength at 700 ° C. high temperature tensile test because the Cr content was below the lower limit of the range of the present invention.

No.37は、Ni含有量が本発明の範囲の上限を上回るために700℃高温引張試験0.2%耐力が低かった。
No.38は、Ni含有量が本発明の範囲の下限を下回るために700℃高温引張試験0.2%耐力が低かった。
No. No. 37 had a low 0.2% yield strength at 700 ° C. high temperature tensile test because the Ni content exceeded the upper limit of the range of the present invention.
No. No. 38 had a low 0.2% yield strength at 700 ° C. high temperature tensile test because the Ni content was below the lower limit of the range of the present invention.

No.39は、N含有量が本発明の範囲の上限を上回るために耐へたり性が低かった。
No.40は、N含有量が本発明の範囲の下限を下回るために700℃高温引張試験0.2%耐力が低かった。
No. No. 39 had low sag resistance because the N content exceeded the upper limit of the range of the present invention.
No. No. 40 had a low 0.2% yield strength at 700 ° C high temperature tensile test because the N content was below the lower limit of the range of the present invention.

No.41は、Al含有量が本発明の範囲の上限を上回るために耐へたり性が低かった。
No.42は、Al含有量が本発明の範囲の下限を下回るために700℃高温引張試験0.2%耐力が低かった。
No. No. 41 had low sag resistance because the Al content exceeded the upper limit of the range of the present invention.
No. No. 42 had a low 0.2% yield strength at 700 ° C high temperature tensile test because the Al content was below the lower limit of the range of the present invention.

No.43は、Ti含有量が本発明の範囲の上限を上回るために耐へたり性が低かった。
No.44は、Ti含有量が本発明の範囲の下限を下回るためにNi系金属間化合物相中のTi含有量が本発明の範囲の下限を下回り、700℃高温引張試験0.2%耐力および耐へたり性が低かった。
No. No. 43 had low sag resistance because the Ti content exceeded the upper limit of the range of the present invention.
No. 44, since the Ti content falls below the lower limit of the range of the present invention, the Ti content in the Ni-based intermetallic compound phase falls below the lower limit of the range of the present invention, and the 700 ° C. high temperature tensile test 0.2% yield strength and resistance It was not very lean.

No.45は、Mo含有量が本発明の範囲の上限を上回るために耐へたり性が低かった。
No.46は、Mo含有量が本発明の範囲の下限を下回るために700℃高温引張試験0.2%耐力および耐へたり性が低かった。
No. No. 45 had low sag resistance because the Mo content exceeded the upper limit of the range of the present invention.
No. No. 46 had a Mo content of less than the lower limit of the range of the present invention, so the 700 ° C. high temperature tensile test 0.2% proof stress and sag resistance were low.

No.47は、Nb含有量が本発明の範囲の上限を上回るために耐へたり性が低かった。
No.48は、Nb含有量が本発明の範囲の下限を下回るために700℃高温引張試験0.2%耐力および耐へたり性が低かった。
No. No. 47 had low sag resistance because the Nb content exceeded the upper limit of the range of the present invention.
No. In No. 48, the Nb content was below the lower limit of the range of the present invention, so the 700 ° C. high temperature tensile test 0.2% proof stress and sag resistance were low.

No.49は、Cu含有量が本発明の範囲の上限を上回るために700℃高温引張試験0.2%耐力および耐へたり性が低かった。
No.50は、Ni,Nb含有量が本発明の範囲の上限を上回るとともにAl,Ti含有量が本発明の範囲の下限を下回るためにNi系金属間化合物相中のTi含有量が本発明の範囲の下限を下回り、700℃高温引張試験0.2%耐力が低かった。
No. In No. 49, the Cu content exceeded the upper limit of the range of the present invention, so the 700 ° C. high temperature tensile test 0.2% proof stress and sag resistance were low.
No. 50, the Ni and Nb content exceeds the upper limit of the range of the present invention, and the Al and Ti content falls below the lower limit of the range of the present invention, so the Ti content in the Ni-based intermetallic compound phase is within the range of the present invention. The 700% high temperature tensile test 0.2% proof stress was low.

No.51〜56は、粗圧延後の再加熱を行わないために、さらに特に、No.55ではB値が本発明に範囲の下限を下回り、No.56ではNi,Nb含有量が本発明の範囲の上限を上回るとともにAl,Ti含有量が本発明の範囲の下限を下回るために、Ni系金属間化合物相中のTi,Nb含有量が本発明の範囲の下限を下回り、耐へたり性が低かった。   No. Nos. 51 to 56 are more particularly No. 51 because no reheating after rough rolling is performed. 55, the B value is below the lower limit of the range of the present invention. In No. 56, since the Ni and Nb contents exceed the upper limit of the range of the present invention and the Al and Ti contents are lower than the lower limit of the range of the present invention, the Ti and Nb contents in the Ni-based intermetallic compound phase are the present invention. It was below the lower limit of the range, and the sag resistance was low.

さらに、No.57〜60は、最終冷延率が高すぎるためにNi系金属間化合物相中のTi,Nb含有量が本発明の範囲の下限を下回り、耐へたり性が低かった。   Furthermore, no. In 57-60, since the final cold rolling rate was too high, the Ti and Nb contents in the Ni-based intermetallic compound phase were below the lower limit of the range of the present invention, and the sag resistance was low.

Claims (12)

質量%で、C:0.0020〜0.10%、Si:0.020〜3.0%、Mn:0.020〜2.0%、P:0.050%未満、S:0.010%未満、Cr:12.0%以上25.0%未満、Ni:35.0%超50.0%未満、N:0.0005〜0.020%、Al:3.0%超5.0%以下、Ti:1.5%超3.0%未満、Mo:1.0〜2.5%、Nb:2.25〜4.00%、Cu:0.3%未満を含有し、Ti、NbおよびAlの含有量(質量%)をそれぞれ[Ti]、[Nb]および[Al]としたとき、[Ti]/[Al]≧0.50、[Nb]/[Al]≧0.75の関係を満足し、残部がFeおよび不純物である化学組成を有し、オーステナイト相のみからなる金属組織を呈する耐熱部材用合金原板であって、
700℃で1時間加熱処理した場合に、オーステナイト母相中にNi系金属間化合物が存在する金属組織を呈し、前記Ni系金属間化合物を構成する化学組成全体に対して、前記Ni系金属間化合物に含まれるNi、TiおよびNbの化学組成が、原子%で、それぞれ60%超、3.5%以上および0.8%以上を占めることを特徴とする、耐熱部材用合金原板。
In mass%, C: 0.0020 to 0.10%, Si: 0.020 to 3.0%, Mn: 0.020 to 2.0%, P: less than 0.050%, S: 0.010 %: Cr: 12.0% or more and less than 25.0%, Ni: more than 35.0% and less than 50.0%, N: 0.0005 to 0.020%, Al: more than 3.0% 5.0 %, Ti: more than 1.5% and less than 3.0%, Mo: 1.0 to 2.5%, Nb: 2.25 to 4.00%, Cu: less than 0.3%, Ti , Nb and Al content (% by mass) are [Ti], [Nb] and [Al], respectively, [Ti] / [Al] ≧ 0.50, [Nb] / [Al] ≧ 0. An alloy base plate for a heat-resistant member that satisfies the relationship of 75, has a chemical composition in which the balance is Fe and impurities, and exhibits a metal structure consisting only of an austenite phase,
When heat-treated at 700 ° C. for 1 hour, the Ni-based intermetallic compound is present in the austenite matrix, and the Ni-based intermetallic compound is formed with respect to the entire chemical composition constituting the Ni-based intermetallic compound. An alloy base plate for a heat-resistant member, wherein the chemical composition of Ni, Ti and Nb contained in the compound occupies more than 60%, 3.5% or more and 0.8% or more, respectively, in atomic%.
700℃で1時間加熱処理した後、さらに700℃で400時間保持する前後の硬さ低下代が40HV以下である、請求項1に記載の耐熱部材用合金原板。   The alloy base plate for a heat-resistant member according to claim 1, wherein after the heat treatment at 700 ° C. for 1 hour, the hardness reduction before and after holding at 700 ° C. for 400 hours is 40 HV or less. 質量%で、Co:3.0%以下、およびW:3.0%未満の1種以上を含有する、請求項1または2に記載の耐熱部材用合金原板。   The alloy base plate for a heat-resistant member according to claim 1 or 2, comprising at least one of Co: 3.0% or less and W: less than 3.0% by mass. 質量%で、B:0.01%以下、Ca:0.005%以下、およびMg:0.002%以下の1種以上を含有する、請求項1〜3のいずれかに記載の耐熱部材用合金原板。   The heat-resistant member according to any one of claims 1 to 3, comprising at least one of B: 0.01% or less, Ca: 0.005% or less, and Mg: 0.002% or less in mass%. Alloy base plate. 質量%で、C:0.0020〜0.10%、Si:0.020〜3.0%、Mn:0.020〜2.0%、P:0.050%未満、S:0.010%未満、Cr:12.0%以上25.0%未満、Ni:35.0%超50.0%未満、N:0.0005〜0.020%、Al:3.0%超5.0%以下、Ti:1.5%超3.0%未満、Mo:1.0〜2.5%、Nb:2.25〜4.00%、Cu:0.3%未満を含有し、Ti、NbおよびAlの含有量(質量%)をそれぞれ[Ti]、[Nb]および[Al]としたとき、[Ti]/[Al]≧0.50、[Nb]/[Al]≧0.75の関係を満足し、残部がFeおよび不純物である化学組成を有する耐熱部材用合金板であって、
オーステナイト母相中にNi系金属間化合物が存在する金属組織を呈し、
前記Ni系金属間化合物を構成する化学組成全体に対して、前記Ni系金属間化合物に含まれるNi、TiおよびNbの化学組成が、原子%で、それぞれ60%超、3.5%以上および0.8%以上を占めることを特徴とする、耐熱部材用合金板。
In mass%, C: 0.0020 to 0.10%, Si: 0.020 to 3.0%, Mn: 0.020 to 2.0%, P: less than 0.050%, S: 0.010 %: Cr: 12.0% or more and less than 25.0%, Ni: more than 35.0% and less than 50.0%, N: 0.0005 to 0.020%, Al: more than 3.0% 5.0 %, Ti: more than 1.5% and less than 3.0%, Mo: 1.0 to 2.5%, Nb: 2.25 to 4.00%, Cu: less than 0.3%, Ti , Nb and Al content (% by mass) are [Ti], [Nb] and [Al], respectively, [Ti] / [Al] ≧ 0.50, [Nb] / [Al] ≧ 0. 75, an alloy plate for a heat-resistant member having a chemical composition with the balance of 75 and the balance being Fe and impurities,
Presents a metal structure in which a Ni-based intermetallic compound exists in the austenite matrix,
The chemical composition of Ni, Ti, and Nb contained in the Ni-based intermetallic compound with respect to the entire chemical composition that constitutes the Ni-based intermetallic compound is atomic%, more than 60%, 3.5% or more, respectively. An alloy plate for a heat-resistant member, which occupies 0.8% or more.
700℃で400時間保持する前後の硬さ低下代が40HV以下である、請求項5に記載の耐熱部材用合金板。   The alloy plate for a heat-resistant member according to claim 5, wherein a hardness reduction margin before and after holding at 700 ° C. for 400 hours is 40 HV or less. 質量%で、Co:3.0%以下、およびW:3.0%未満の1種以上を含有する、請求項5または6に記載の耐熱部材用合金板。   The alloy plate for a heat-resistant member according to claim 5 or 6, comprising at least one of Co: 3.0% or less and W: less than 3.0% by mass%. 質量%で、B:0.01%以下、Ca:0.005%以下、およびMg:0.002%以下の1種以上を含有する、請求項5〜7のいずれかに記載の耐熱部材用合金板。   For heat-resistant members according to any one of claims 5 to 7, containing at least one of B: 0.01% or less, Ca: 0.005% or less, and Mg: 0.002% or less in mass%. Alloy plate. 質量%で、C:0.0020〜0.10%、Si:0.020〜3.0%、Mn:0.020〜2.0%、P:0.050%未満、S:0.010%未満、Cr:12.0%以上25.0%未満、Ni:35.0%超50.0%未満、N:0.0005〜0.020%、Al:3.0%超5.0%以下、Ti:1.5%超3.0%未満、Mo:1.0〜2.5%、Nb:2.25〜4.00%、Cu:0.3%未満を含有し、Ti、NbおよびAlの含有量(質量%)をそれぞれ[Ti]、[Nb]および[Al]としたとき、[Ti]/[Al]≧0.50、[Nb]/[Al]≧0.75の関係を満足し、残部がFeおよび不純物である化学組成を有するエンジンの排気系部材用のガスケットであって、
オーステナイト母相中にNi系金属間化合物が存在する金属組織を呈し、
前記Ni系金属間化合物を構成する化学組成全体に対して、前記Ni系金属間化合物に含まれるNi、TiおよびNbの化学組成が、原子%で、それぞれ60%超、3.5%以上および0.8%以上を占めることを特徴とする、エンジンの排気系部材用のガスケット。
In mass%, C: 0.0020 to 0.10%, Si: 0.020 to 3.0%, Mn: 0.020 to 2.0%, P: less than 0.050%, S: 0.010 %: Cr: 12.0% or more and less than 25.0%, Ni: more than 35.0% and less than 50.0%, N: 0.0005 to 0.020%, Al: more than 3.0% 5.0 %, Ti: more than 1.5% and less than 3.0%, Mo: 1.0 to 2.5%, Nb: 2.25 to 4.00%, Cu: less than 0.3%, Ti , Nb and Al content (% by mass) are [Ti], [Nb] and [Al], respectively, [Ti] / [Al] ≧ 0.50, [Nb] / [Al] ≧ 0. A gasket for an exhaust system member of an engine having a chemical composition satisfying the relationship of 75, the balance being Fe and impurities,
Presents a metal structure in which a Ni-based intermetallic compound exists in the austenite matrix,
The chemical composition of Ni, Ti, and Nb contained in the Ni-based intermetallic compound with respect to the entire chemical composition that constitutes the Ni-based intermetallic compound is atomic%, more than 60%, 3.5% or more, respectively. A gasket for an exhaust member of an engine characterized by occupying 0.8% or more.
700℃で400時間保持する前後の硬さ低下代が40HV以下である、請求項9に記載のエンジンの排気系部材用のガスケット。   The gasket for exhaust system members of an engine according to claim 9, wherein a hardness reduction before and after holding at 700 ° C for 400 hours is 40 HV or less. 質量%で、Co:3.0%以下、およびW:3.0%未満の1種以上を含有する、請求項9または10に記載のエンジンの排気系部材用のガスケット。   The gasket for an exhaust system member of an engine according to claim 9 or 10, wherein the gasket contains at least one of Co: 3.0% or less and W: less than 3.0% by mass. 質量%で、B:0.01%以下、Ca:0.005%以下、およびMg:0.002%以下の1種以上を含有する、請求項9〜11のいずれかに記載のエンジンの排気系部材用のガスケット。

The exhaust of an engine according to any one of claims 9 to 11, containing at least one of B: 0.01% or less, Ca: 0.005% or less, and Mg: 0.002% or less in mass%. Gasket for system members.

JP2017090418A 2017-04-28 2017-04-28 Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine Active JP6787246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017090418A JP6787246B2 (en) 2017-04-28 2017-04-28 Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017090418A JP6787246B2 (en) 2017-04-28 2017-04-28 Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine

Publications (2)

Publication Number Publication Date
JP2018188686A true JP2018188686A (en) 2018-11-29
JP6787246B2 JP6787246B2 (en) 2020-11-18

Family

ID=64478210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017090418A Active JP6787246B2 (en) 2017-04-28 2017-04-28 Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine

Country Status (1)

Country Link
JP (1) JP6787246B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132919A (en) * 2019-02-14 2020-08-31 日本製鉄株式会社 Heat-resistant alloy and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107777A (en) * 2002-09-20 2004-04-08 Toshiba Corp Austenitic heat resistant alloy, production method therefor and steam turbine parts
WO2011013675A1 (en) * 2009-07-28 2011-02-03 公立大学法人大阪府立大学 High-temperature axle bearing formed from ni3(si,ti) intermetallic compound alloy and method for producing same
JP2015108177A (en) * 2013-12-05 2015-06-11 株式会社不二越 Nickel-based alloy
WO2016043199A1 (en) * 2014-09-19 2016-03-24 新日鐵住金株式会社 Austenitic stainless steel sheet
WO2017006843A1 (en) * 2015-07-03 2017-01-12 新日鐵住金株式会社 Sheet metal and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004107777A (en) * 2002-09-20 2004-04-08 Toshiba Corp Austenitic heat resistant alloy, production method therefor and steam turbine parts
WO2011013675A1 (en) * 2009-07-28 2011-02-03 公立大学法人大阪府立大学 High-temperature axle bearing formed from ni3(si,ti) intermetallic compound alloy and method for producing same
JP2015108177A (en) * 2013-12-05 2015-06-11 株式会社不二越 Nickel-based alloy
WO2016043199A1 (en) * 2014-09-19 2016-03-24 新日鐵住金株式会社 Austenitic stainless steel sheet
WO2017006843A1 (en) * 2015-07-03 2017-01-12 新日鐵住金株式会社 Sheet metal and method for manufacturing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020132919A (en) * 2019-02-14 2020-08-31 日本製鉄株式会社 Heat-resistant alloy and method for producing the same
JP7205277B2 (en) 2019-02-14 2023-01-17 日本製鉄株式会社 Heat-resistant alloy and its manufacturing method

Also Published As

Publication number Publication date
JP6787246B2 (en) 2020-11-18

Similar Documents

Publication Publication Date Title
CN107075629B (en) Austenitic stainless steel sheet
US9243306B2 (en) Ferritic stainless steel sheet excellent in oxidation resistance
JP5540637B2 (en) Ferritic stainless steel with excellent heat resistance
JP6160787B2 (en) Thin plate and manufacturing method thereof
KR20150021124A (en) Ferrite stainless steel sheet having high thermal resistance and processability, and method for manufacturing the same
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP6741876B2 (en) Alloy plate and gasket
WO2014104138A1 (en) Fe-Ni-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE CHARACTERISTICS AND HYDROGEN EMBRITTLEMENT RESISTANCE CHARACTERISTICS, AND METHOD FOR PRODUCING SAME
JP2019059995A (en) Austenitic stainless steel plate having excellent heat resistance and method for producing the same
JP5880836B2 (en) Precipitation strengthened heat resistant steel and processing method thereof
JP2019218588A (en) Austenite stainless steel sheet and manufacturing method therefor
JP7205277B2 (en) Heat-resistant alloy and its manufacturing method
JP2010138465A (en) Heat resistant steel having excellent creep strength, and method for producing the same
JP6787246B2 (en) Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine
JP6296435B2 (en) Manufacturing method of heat-resistant austenitic stainless steel for metal gasket
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JP6485692B2 (en) Heat resistant alloy with excellent high temperature strength, method for producing the same and heat resistant alloy spring
JP6690499B2 (en) Austenitic stainless steel sheet and method for producing the same
JPH05179378A (en) Ni-base alloy excellent in room temperature and high temperature strength
JP2014218687A (en) HIGH Mn AUSTENITIC STAINLESS STEEL AND METHOD FOR PRODUCING THE SAME
US11208707B2 (en) Ni-based alloy and heat-resistant sheet material obtained using same
JP6720828B2 (en) Austenitic stainless steel sheet and method for producing the same
JPH10130790A (en) Heat resistant alloy excellent in cold workability and overaging characteristic
JP2002173720A (en) Ni BASED ALLOY EXCELLENT IN HOT WORKABILITY
JP2021167436A (en) Seal member and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201012

R151 Written notification of patent or utility model registration

Ref document number: 6787246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350