JPH10130790A - Heat resistant alloy excellent in cold workability and overaging characteristic - Google Patents

Heat resistant alloy excellent in cold workability and overaging characteristic

Info

Publication number
JPH10130790A
JPH10130790A JP30122496A JP30122496A JPH10130790A JP H10130790 A JPH10130790 A JP H10130790A JP 30122496 A JP30122496 A JP 30122496A JP 30122496 A JP30122496 A JP 30122496A JP H10130790 A JPH10130790 A JP H10130790A
Authority
JP
Japan
Prior art keywords
heat
alloy
resistant alloy
cold workability
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30122496A
Other languages
Japanese (ja)
Other versions
JP3744084B2 (en
Inventor
Shigenori Ueda
茂紀 植田
Toshiharu Noda
俊治 野田
Michio Okabe
道生 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP30122496A priority Critical patent/JP3744084B2/en
Priority to DE69710409T priority patent/DE69710409T2/en
Priority to EP97118341A priority patent/EP0838533B1/en
Priority to US08/955,753 priority patent/US5951789A/en
Publication of JPH10130790A publication Critical patent/JPH10130790A/en
Priority to US09/114,494 priority patent/US6099668A/en
Application granted granted Critical
Publication of JP3744084B2 publication Critical patent/JP3744084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a precipitation hardening heat resistant alloy excellent in cold workability and capable of manufacturing heat resistant parts such as exhaust value for automobile engine by means of cold working, capable of direct aging treatment without application of solid solution heat treatment after cold working, capable of reducing manufacturing costs of heat resistant parts, and also capable of inhibiting overaging state even after long use in a high temp. state and, as a result, free from deterioration in properties. SOLUTION: This heat resistant alloy has a composition consisting of, by weight, 0.01-0.1% C, <=2% Si, <=2% Mn, 12-25% Cr, 0.2-2.0% (Nb+Ta), <1.5% Ti, 0.5-3.0% Al, 25-45% Ni, 0.1-5.0% Cu, and the balance Fe with inevitable impurities. Further, the ratio by atomic percentage between Ti and Al is regulated so that Ti/Al<=1.0 is satisfied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は自動車エンジン用
排気バルブ,耐熱ボルト,自動車エンジン用排気ガス触
媒ニットメッシュ等に用いて好適な析出硬化型の耐熱合
金、特に冷間加工性及び過時効特性に優れた耐熱合金に
関し、詳しくは冷間加工後において固溶化熱処理を施す
ことなく、そのまま時効処理して用いることのできる耐
熱合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a precipitation hardening type heat resistant alloy suitable for use in exhaust valves, heat resistant bolts for automobile engines, exhaust gas catalyst knit meshes for automobile engines, etc., and particularly to cold workability and overageing properties. The present invention relates to an excellent heat-resistant alloy, and more particularly to a heat-resistant alloy which can be used by aging without being subjected to solution heat treatment after cold working.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】自動車
エンジン用排気バルブ等に用いる耐熱材料としては、従
来高Mn系のオーステナイト耐熱鋼JIS SUH35
(Fe−9Mn−21Cr−4Ni−0.5C−0.4
N)或いはNi基超合金JIS NCF751(Ni−
15.5Cr−0.9Nb−1.2Al−2.3Ti−
7Fe−0.05C)等が使用されてきた。
2. Description of the Related Art As a heat-resistant material used for an exhaust valve or the like for an automobile engine, a conventional high Mn austenitic heat-resistant steel JIS SUH35 has been used.
(Fe-9Mn-21Cr-4Ni-0.5C-0.4
N) or Ni-base superalloy JIS NCF751 (Ni-
15.5Cr-0.9Nb-1.2Al-2.3Ti-
7Fe-0.05C) and the like have been used.

【0003】後者のNi基超合金は高温強度,高温酸
化,高温腐食に優れた合金であるが、Niを70%強含
んでいることからコストが高いといった問題がある。そ
こで高価なNi量を低減する試みが従来なされており、
Ni含有量40%或いはそれ以下の含有量の合金の開発
も行われている。
The latter Ni-base superalloy is an alloy excellent in high-temperature strength, high-temperature oxidation, and high-temperature corrosion, but has a problem of high cost because it contains more than 70% of Ni. Therefore, attempts to reduce the amount of expensive Ni have been made,
Alloys with a Ni content of 40% or less have also been developed.

【0004】しかしながらNi含有量を更に低減すると
なると性能的な問題が生じ、現実的にはそれ以上にNi
含有量を低減することは困難である。
[0004] However, if the Ni content is further reduced, a performance problem arises.
It is difficult to reduce the content.

【0005】Ni含有量を更に低減した場合、Feの増
加によって高温における組織安定性が劣化してしまい、
高温で長時間使用すると脆化相であるη相(Ni3
i)が析出し、高温強度の低下、室温での靱性低下をも
たらしてしまう。このようにNi含有量の低減は性能的
な問題から自ずと限界がある。
[0005] If the Ni content is further reduced, the stability of the structure at high temperatures is degraded due to the increase in Fe.
When used at high temperatures for a long time, the η phase (Ni 3 T
i) is precipitated, resulting in a decrease in high-temperature strength and a decrease in toughness at room temperature. Thus, the reduction of the Ni content is naturally limited due to performance problems.

【0006】ところで上記自動車エンジン用排気バルブ
等の耐熱部品は、従来これを熱間でのアプセット加工,
熱間押出加工等の熱間加工にて製造しているが、例えば
自動車エンジン用排気バルブ等の耐熱部品は表面傷その
他の要求特性が厳しく、熱処理後において機械加工によ
る仕上げ加工の加工量,加工工数が多くなって加工に要
する時間が長く、このことがコストを高めてしまう1つ
の要因となっていた。そこでこれを冷間加工にて製造で
きるようにすれば、コストを更に低減できて望ましい。
[0006] By the way, heat-resistant parts such as the exhaust valve for an automobile engine are conventionally subjected to hot upset processing,
It is manufactured by hot working such as hot extrusion, but heat-resistant parts such as exhaust valves for automobile engines have severe surface flaws and other required characteristics. The number of man-hours increases and the time required for processing is long, which is one factor that increases the cost. Therefore, it would be desirable to be able to manufacture this by cold working, since the cost could be further reduced.

【0007】しかしながら従来提供ないし提案されてい
る耐熱材料は熱間加工を前提としており、そのまま冷間
加工にて耐熱部品を製造することのできない材料であ
る。即ち冷間加工にて耐熱部品を製造するには、耐熱材
料が冷間加工性に優れたものであることが要求される。
However, conventionally provided or proposed heat-resistant materials are premised on hot working, and are materials from which a heat-resistant component cannot be directly produced by cold working. That is, in order to manufacture a heat-resistant component by cold working, it is required that the heat-resistant material has excellent cold workability.

【0008】ところで、析出硬化型の耐熱合金に優れた
冷間加工性を付与し、これを用いて冷間加工することを
可能となし得た場合であっても、通常はその後において
一旦固溶化熱処理を施した上で時効処理を行い、析出成
分を析出させて所要の強度を発現させることが必要で、
熱処理のための工数が多い問題がある。
By the way, even when excellent cold workability is imparted to a precipitation hardening type heat-resistant alloy, and it is possible to perform cold work using the same, usually, a solid solution is formed afterwards. It is necessary to perform aging treatment after applying heat treatment, to precipitate the precipitated components and express the required strength,
There is a problem that the number of steps for heat treatment is large.

【0009】これは、冷間加工をしてそのまま時効処理
を行うと冷間加工時に合金内部に残留した歪によって時
効が過度に促進されてしまい、Ni含有量が低く、Fe
が多くなるとピーク硬さに到達した後急激に軟化して脆
化相であるη相を析出させてしまうからであり、そこで
冷間加工後に一旦固溶化熱処理を施して歪を取り、その
上で時効処理を行うことが必要となるのである。
[0009] This is because, when cold working is performed and aging treatment is performed as it is, aging is excessively accelerated due to strain remaining in the alloy during cold working, so that the Ni content is low and the Fe content is low.
This is because when the peak hardness increases, the steel rapidly softens after reaching the peak hardness and precipitates the η phase, which is an embrittlement phase. It is necessary to perform aging treatment.

【0010】しかしながらこのようにした場合、熱処理
のための工数が多くなって、そのことが耐熱部品のコス
トを高める要因となってしまう。従って耐熱部品の製造
コストの更なる低減を図る上で、上記熱処理のための工
数を少なくすることが望ましい。
However, in such a case, the number of steps for the heat treatment is increased, which increases the cost of heat-resistant parts. Therefore, in order to further reduce the manufacturing cost of heat-resistant parts, it is desirable to reduce the number of steps for the heat treatment.

【0011】析出硬化型の耐熱合金を用いて自動車エン
ジン用排気バルブ等の耐熱部品を製造した場合、その他
に次のような問題点が内在する。即ち、この種の析出硬
化型の耐熱合金から成る耐熱部品を高温度で長時間使用
すると経時的に時効が進んでしまい、いわゆる過時効状
態となって合金が軟化・劣化してしまう。
When a heat-resistant component such as an exhaust valve for an automobile engine is manufactured using a precipitation hardening type heat-resistant alloy, the following other problems are inherent. That is, when a heat-resistant component made of this kind of precipitation hardening type heat-resistant alloy is used for a long time at a high temperature, aging proceeds over time, and the alloy is softened and deteriorated in a so-called overaged state.

【0012】従って耐熱部品に用いられる耐熱合金とし
ては、高温度で長時間使用され続けても軟化・劣化を特
に起さない、過時効特性に優れたものであることが求め
られる。
Therefore, a heat-resistant alloy used for heat-resistant parts is required to have excellent overaging characteristics, which does not cause softening and deterioration even when used at a high temperature for a long time.

【0013】[0013]

【課題を解決するための手段】本願の発明はこのような
課題を解決するためになされたものである。而して本願
の請求項1の耐熱合金は、重量%でC:0.01〜0.
1%,Si:≦2%,Mn:≦2%,Cr:12〜25
%,Nb+Ta:0.2〜2.0%,Ti:1.5%未
満,Al:0.5〜3.0%,Ni:25〜45%,C
u:0.1〜5.0%、残部不可避的不純物及びFeか
らなる合金組成を有することを特徴とする。
The invention of the present application has been made to solve such a problem. Thus, the heat-resistant alloy according to claim 1 of the present application has a C content of 0.01 to 0.1% by weight.
1%, Si: ≤ 2%, Mn: ≤ 2%, Cr: 12 to 25
%, Nb + Ta: 0.2 to 2.0%, Ti: less than 1.5%, Al: 0.5 to 3.0%, Ni: 25 to 45%, C
u: 0.1 to 5.0%, characterized by having an alloy composition consisting of unavoidable impurities and Fe.

【0014】本願の請求項2のものは、請求項1におい
て、更にW,Mo,Vの何れか1種若しくは2種以上を
重量%で、W:≦3%,Mo:≦3%,V:≦1%、且
つ1/2W+Mo+V:≦3%の範囲で含有しているこ
とを特徴とする。
According to a second aspect of the present invention, in the first aspect, one or more of W, Mo, and V are further expressed by weight%, and W: ≦ 3%, Mo: ≦ 3%, V : ≦ 1%, and WW + Mo + V: ≦ 3%.

【0015】本願の請求項3のものは、請求項1,2の
何れかにおいて、重量%でNi+Co:25〜45%,
Co:≦5%の範囲で含有することを特徴とする。
According to a third aspect of the present invention, there is provided the method according to any one of the first and second aspects, wherein Ni + Co: 25 to 45% by weight,
Co: characterized by being contained in the range of ≦ 5%.

【0016】本願の請求項4のものは、請求項1,2,
3の何れかにおいて、Ti,Al,Nb,Taが原子%
で、Ti+Al+Nb+Ta:4.5〜7.0%である
ことを特徴とする。
Claim 4 of the present application is directed to Claims 1, 2,
3, Ti, Al, Nb and Ta are in atomic%
And Ti + Al + Nb + Ta: 4.5 to 7.0%.

【0017】本願の請求項5のものは、請求項1,2,
3,4の何れかにおいて、TiとAlとの原子%の比率
Ti/AlがTi/Al:≦1.0であることを特徴と
する。
Claim 5 of the present application is directed to Claims 1, 2,
In any one of 3 and 4, the ratio Ti / Al in atomic% of Ti and Al is Ti / Al: ≦ 1.0.

【0018】本願の請求項6のものは、請求項1,2,
3,4,5の何れかにおいて、下記式で表されるMが
M:≦0.95であることを特徴とする。 M=(0.717Ni+0.858Fe+1.142C
r+1.90Al+2.271Ti+2.117Nb+
2.224Ta+1.001Mn+1.90Si+0.
615Cu)/100(但し各元素は原子%)
Claim 6 of the present application is directed to Claims 1, 2,
In any one of 3, 4, and 5, M represented by the following formula is M: ≦ 0.95. M = (0.717Ni + 0.858Fe + 1.142C)
r + 1.90Al + 2.271Ti + 2.117Nb +
2.224Ta + 1.001Mn + 1.90Si + 0.
615 Cu) / 100 (however, each element is atomic%)

【0019】本願の請求項7のものは、請求項1,2,
3,4,5,6の何れかにおいて、更にB,Zrの1種
若しくは2種を重量%でB:0.001〜0.01%,
Zr:0.001〜0.1%の範囲で含有することを特
徴とする。
The seventh aspect of the present invention relates to the first, second, and third aspects.
In any one of 3, 4, 5, and 6, one or two kinds of B and Zr may be further added by weight% of B: 0.001 to 0.01%,
Zr: characterized in that it is contained in the range of 0.001 to 0.1%.

【0020】本願の請求項8のものは、請求項1,2,
3,4,5,6,7の何れかにおいて、Ca+Mgを重
量%でCa+Mg:0.001〜0.01%の範囲で含
有することを特徴とする。
Claim 8 of the present application is directed to Claims 1, 2,
3, 4, 5, 6, or 7, characterized in that Ca + Mg is contained in a range of 0.001 to 0.01% by weight of Ca + Mg.

【0021】本願の請求項9のものは、請求項1,2,
3,4,5,6,7,8の何れかにおいて、P,S,
O,Nがそれぞれ重量%で、P:≦0.02%,S:≦
0.01%,O:≦0.01%,N:≦0.01%であ
ることを特徴とする。
Claim 9 of the present application is directed to Claims 1, 2,
In any one of 3, 4, 5, 6, 7, and 8, P, S,
O and N are weight%, respectively: P: ≦ 0.02%, S: ≦
0.01%, O: ≦ 0.01%, N: ≦ 0.01%.

【0022】[0022]

【作用】本発明の耐熱合金は、Ni含有量が低レベルで
コストが安価であり、加えて冷間加工性に優れたもの
で、自動車エンジン用排気バルブ等の耐熱部品を冷間加
工にて製造することが可能であり、耐熱部品の製造コス
トを低廉化することができる。即ち耐熱合金材料自体の
コストと、これを用いた耐熱部品の製造コストの両方を
低減することができる。
The heat-resistant alloy of the present invention has a low Ni content and is inexpensive, and has excellent cold workability. In addition, heat-resistant parts such as exhaust valves for automobile engines can be cold-worked. It is possible to manufacture, and the manufacturing cost of the heat-resistant component can be reduced. That is, it is possible to reduce both the cost of the heat-resistant alloy material itself and the manufacturing cost of a heat-resistant component using the same.

【0023】本発明の耐熱合金は、Cuを所定範囲で含
有させた点を1つの特徴とするもので、このCuが積層
欠陥エネルギーを高めて加工硬化を抑制する働きをなす
ことにより、耐熱合金における冷間加工性が効果的に高
められる。
The heat-resistant alloy of the present invention has one feature in that Cu is contained in a predetermined range. This Cu has a function of increasing stacking fault energy to suppress work hardening, thereby providing a heat-resistant alloy. The cold workability in is effectively improved.

【0024】本発明の耐熱合金はまた、次のような特長
を有する。即ちこの耐熱合金は、冷間加工後において固
溶化熱処理することなくそのまま直接時効処理したとき
に、過時効を起すことなく合金内部に残留した歪によっ
て時効が適正に進行する。
The heat-resistant alloy of the present invention also has the following features. That is, when this heat-resistant alloy is directly subjected to aging treatment without solution heat treatment after cold working, aging proceeds properly due to strain remaining inside the alloy without overaging.

【0025】また高温度で長時間使用されたときにも過
時効状態となるのが抑制され、耐熱部品の寿命が高寿命
化する。これは専らAl:0.5〜3.0%に対してT
i:1.5%未満と低く抑えられていることによるもの
であり、特にTi/Al:≦1.0(原子%の比率)と
した場合(請求項5)、より良好な時効特性及び過時効
抑制特性を与えることができる。
In addition, even when the battery is used at a high temperature for a long period of time, the overaging state is suppressed, and the life of the heat-resistant component is prolonged. This is mainly due to T:
i: less than 1.5%, especially when Ti / Al: ≦ 1.0 (atomic% ratio) (claim 5), better aging characteristics and excess Aging suppression properties can be provided.

【0026】このTiとAlとの比率(原子%の比率)
Ti/Alは、合金内部に残留した歪とともに合金の時
効速さを左右する重要な因子であり、Ti/Alの値が
大きくなるほど時効が促進され、また逆にTi/Alの
値が小さくなるほど時効が遅延する。
The ratio between Ti and Al (atomic% ratio)
Ti / Al is an important factor that affects the aging speed of the alloy together with the strain remaining inside the alloy. As the value of Ti / Al increases, aging is promoted, and conversely, as the value of Ti / Al decreases, The aging is delayed.

【0027】本発明では、冷間加工時に生じた歪を原動
力として時効処理時に時効が適正に進行するようにTi
/Alの値が小さく抑えられている。そして本発明にお
いて耐熱部品の製造時に冷間加工後の固溶化熱処理を省
略できることから、耐熱部品の製造コストをより一層低
廉化することができる。
According to the present invention, Ti is used so that the aging proceeds properly during the aging treatment by using the strain generated during the cold working as a driving force.
The value of / Al is kept small. In the present invention, the solution heat treatment after cold working can be omitted during the production of heat-resistant parts, so that the production cost of heat-resistant parts can be further reduced.

【0028】本発明においては、C,Si,Mn,C
r,Nb+Ta,Ti,Al,Ni,Cuに加えて、更
にW,Mo,Vの1種若しくは2種以上を、W:≦3
%,Mo:≦3%,V:≦1%且つ1/2W+Mo+
V:≦3%の範囲で含有させることができる(請求項
2)。これらは固溶強化元素であり、これら元素を含有
させることで耐熱合金の強度を効果的に高めることがで
きる。
In the present invention, C, Si, Mn, C
r, Nb + Ta, Ti, Al, Ni, Cu, and one or more of W, Mo, V,
%, Mo: ≤ 3%, V: ≤ 1% and 1 / 2W + Mo +
V: Can be contained in a range of ≦ 3% (claim 2). These are solid-solution strengthening elements, and by including these elements, the strength of the heat-resistant alloy can be effectively increased.

【0029】本発明では、更にNi+Co:25〜45
%の範囲内で、Co:≦5%の範囲で含有させることが
できる(請求項3)。CoはNiとほぼ同じような作用
があり、そこでNiの一部を置換する形でCoを5%の
範囲内まで含有させることができる。
In the present invention, Ni + Co: 25-45
%, Co: ≦ 5% (claim 3). Co has almost the same effect as Ni, and thus Co can be contained up to a range of 5% by partially substituting Ni.

【0030】本発明では、Ti,Al,Nb,Taを原
子%でTi+Al+Nb+Ta:4.5〜7.0%とす
ることができ(請求項4)、更にγ相の安定性を示す指
標であるM:≦0.95とすることができる(請求項
6)。また必要に応じてB,Zrの1種若しくは2種を
B:0.001〜0.01%,Zr:0.001〜0.
1%の範囲で含有させることができる(請求項7)。こ
れらB,Zrを含有させることによって粒界を強化する
ことができる。
In the present invention, Ti, Al, Nb, and Ta can be set to Ti + Al + Nb + Ta: 4.5 to 7.0% by atom% (claim 4), and is an index indicating the stability of the γ phase. M: ≦ 0.95 (claim 6). Further, if necessary, one or two of B and Zr may be used in an amount of 0.001 to 0.01% of B and 0.001 to 0% of Zr.
It can be contained in the range of 1% (claim 7). By containing these B and Zr, the grain boundaries can be strengthened.

【0031】本発明では、更に、Ca+MgをCa+M
g:0.001〜0.01%の範囲で含有させることが
でき(請求項8)、これによって熱間加工性も向上させ
ることができる。
In the present invention, Ca + Mg is further converted to Ca + M
g: 0.001 to 0.01% can be contained (claim 8), thereby improving hot workability.

【0032】更にP,S,O,NをP:≦0.02%,
S:≦0.01%,O:≦0.01%,N:≦0.01
%に規制することができる(請求項9)。これらは不純
物成分であり、そしてこれら不純物成分を上記範囲内に
規制することで、耐熱合金の特性を更に良好となすこと
ができる。
Further, if P, S, O, N are P: ≦ 0.02%,
S: ≦ 0.01%, O: ≦ 0.01%, N: ≦ 0.01
% (Claim 9). These are impurity components, and by controlling these impurity components within the above range, the properties of the heat-resistant alloy can be further improved.

【0033】本発明の耐熱合金は、上記説明から明らか
なように冷間加工後において固溶化熱処理を施すことな
く、直接時効処理した場合において本来の特長を発揮す
る。
As is clear from the above description, the heat-resistant alloy of the present invention exhibits its original features when subjected to direct aging treatment without performing solution heat treatment after cold working.

【0034】次に本発明における各化学成分の限定理由
を詳述する。 C:0.01〜0.1% Cは0.01%以上含有させることでTi,Nb,Cr
と結合して炭化物を形成することにより合金の高温強度
を改善する。一方において0.1%より多く含有させる
とMC炭化物を多量に析出して合金の熱間加工性を低下
させ、また加工時にその炭化物が起点と成って疵を発生
させる。従って本発明ではその含有量を0.01〜0.
1%の範囲内に規定する。
Next, the reasons for limiting each chemical component in the present invention will be described in detail. C: 0.01% to 0.1% C, by adding 0.01% or more of Ti, Nb, Cr
Improves the high temperature strength of the alloy by forming carbides in combination with the alloy. On the other hand, when the content is more than 0.1%, a large amount of MC carbide is precipitated to lower the hot workability of the alloy, and at the time of working, the carbide serves as a starting point to generate a flaw. Therefore, in the present invention, the content is 0.01 to 0.1.
Specify within the range of 1%.

【0035】Si:≦2% Siは脱酸元素として有用であり、耐酸化性を改善す
る。しかし2%を超えて含有させると合金の冷間加工性
が低下するため上限値を2%とする。
Si: ≦ 2% Si is useful as a deoxidizing element and improves oxidation resistance. However, if the content exceeds 2%, the cold workability of the alloy decreases, so the upper limit is set to 2%.

【0036】Mn:≦2% MnはSiと同様に脱酸元素として有用であるが、多量
に含有させると合金の高温酸化性を損なうばかりでな
く、靭性を害するη相(Ni3Ti)の析出を助長する
ため上限値を2%とする。
Mn: ≦ 2% Mn is useful as a deoxidizing element like Si, but when contained in a large amount, not only impairs the high-temperature oxidation properties of the alloy but also impairs the toughness of the η phase (Ni 3 Ti). The upper limit is set to 2% to promote precipitation.

【0037】Cr:12〜25% Crは合金の高温酸化及び腐食を改善する上で有用な元
素であり、そのために12%以上含有させることが必要
である。しかし含有量が25%を超えるとオーステナイ
ト相が不安定と成り、脆化相であるσ相が析出して合金
の靭性が低下する。そこで本発明ではCrの上限値を2
5%とする。Crの望ましい範囲は12〜20%であ
る。
Cr: 12 to 25% Cr is a useful element for improving the high-temperature oxidation and corrosion of the alloy. Therefore, it is necessary to contain 12% or more of Cr. However, when the content exceeds 25%, the austenite phase becomes unstable, the σ phase which is an embrittlement phase precipitates, and the toughness of the alloy decreases. Therefore, in the present invention, the upper limit of Cr is set to 2
5%. A desirable range of Cr is 12 to 20%.

【0038】Nb+Ta:0.2〜2.0% Nb及びTaは何れもNiとともに重要な析出相である
金属間化合物のγ´相(γプライム相)Ni9(Al,
Ti,Nb,Ta)を形成する元素であり、そのγ´相
の析出によって合金の高温強度を効果的に高くすること
ができる。但しその効果を得るためにはNb+Taとし
て0.2%以上含有させる必要がある。しかしながら含
有量が2.0%を超えるとδ相Ni3(Nb,Ta)が
析出して合金の靭性が低下する。そこで本発明では上限
値を2.0%とする。
Nb + Ta: 0.2 to 2.0% Nb and Ta are both γ 'phase (γ prime phase) and Ni 9 (Al,
Ti, Nb, Ta) is an element that forms the γ ′ phase, which can effectively increase the high-temperature strength of the alloy. However, in order to obtain the effect, it is necessary to contain Nb + Ta in an amount of 0.2% or more. However, if the content exceeds 2.0%, δ-phase Ni 3 (Nb, Ta) precipitates, and the toughness of the alloy decreases. Therefore, in the present invention, the upper limit is set to 2.0%.

【0039】Ti:1.5%未満 TiはAl,Nb,TaとともにNiと結合してγ´相
を形成する。但し1.5%以上含有させるとAl含有量
に対してTiの含有量が相対的に多くなり、時効が過度
に促進されてしまうようになる。そこで本発明ではTi
の含有量を1.5%を限度としてそれより少ない量に規
制する。
Ti: less than 1.5% Ti combines with Ni, Al, Nb and Ta to form a γ 'phase. However, when the content is 1.5% or more, the content of Ti becomes relatively larger than the content of Al, and aging is excessively promoted. Therefore, in the present invention, Ti
Is regulated to a smaller amount up to 1.5%.

【0040】Al:0.5〜3.0% AlはNiと結合してγ´相を形成する最も重要な元素
である。その含有量が0.5%未満であるとγ´相の析
出量が不十分となり、そこで本発明では下限値を0.5
%とする。一方において含有量が3.0%を超えて多く
なると合金の熱間加工性が低下する。そこで本発明では
上限値を3.0%とする。
Al: 0.5-3.0% Al is the most important element that combines with Ni to form a γ ′ phase. If the content is less than 0.5%, the precipitation amount of the γ ′ phase becomes insufficient.
%. On the other hand, when the content exceeds 3.0%, the hot workability of the alloy decreases. Therefore, in the present invention, the upper limit is set to 3.0%.

【0041】Ni:25〜45% Niは合金のマトリックスであるオーステナイトを形成
する元素であり、合金の耐熱性及び耐食性を向上させ
る。また強化相であるγ´相を析出させる上で必須の成
分である。加えてNiは高温における組織を安定させる
働きがあり、これらの効果を十分に発揮させる上で25
%以上含有させることが必要である。一方においてこれ
を45%を超えて多く含有させると、かかるNiが高価
な元素であることから合金のコストを高めてしまい、ひ
いては本発明の目的を達成できなくなる。加えてこのN
iは本合金では固溶化状態での硬さを上昇させてしま
い、冷間加工性を低下させる。そこで本発明ではその含
有量の上限値を45%とする。
Ni: 25 to 45% Ni is an element forming austenite which is a matrix of the alloy, and improves the heat resistance and corrosion resistance of the alloy. Further, it is an essential component for precipitating the γ ′ phase as a strengthening phase. In addition, Ni has a function of stabilizing the structure at a high temperature, and in order to sufficiently exhibit these effects, Ni is required.
% Or more. On the other hand, if it is contained in a large amount exceeding 45%, the cost of the alloy is increased because such Ni is an expensive element, so that the object of the present invention cannot be achieved. In addition, this N
In the present alloy, i increases the hardness in the solid solution state and lowers the cold workability. Therefore, in the present invention, the upper limit of the content is set to 45%.

【0042】Cu:0.1〜5.0% Cuは合金の冷間加工性を高める上で必須の成分であ
る。このCuは上述したように積層欠陥エネルギーを高
めて加工硬化を抑制する働きがあり、そしてその作用に
よって冷間加工性を効果的に向上させる。但しその含有
量が0.1%未満では十分な効果を期待できず、また
5.0%を超えて含有させても効果の向上が少なく、加
えて熱間加工性が劣化する。そこで本発明ではCuの含
有量を0.1〜5.0%とする。望ましい含有量範囲は
0.5〜3.0%である。
Cu: 0.1-5.0% Cu is an essential component for enhancing the cold workability of the alloy. As described above, Cu has the function of increasing stacking fault energy to suppress work hardening, and effectively improves cold workability by its action. However, if the content is less than 0.1%, a sufficient effect cannot be expected, and if the content exceeds 5.0%, the effect is little improved and the hot workability is deteriorated. Therefore, in the present invention, the content of Cu is set to 0.1 to 5.0%. A desirable content range is 0.5 to 3.0%.

【0043】W :≦3% Mo:≦3% V :≦1% 1/2W+Mo+V:≦3% W,Mo,Vは固溶強化により高温強度を向上させる元
素である。W,Moについては3%超、Vは1%超添加
しても効果は飽和傾向を示すとともに、コスト上昇,冷
間加工性低下となるためにその含有量を1/2W+Mo
+V:≦3%とする。
W: ≤ 3% Mo: ≤ 3% V: ≤ 1% 1 / 2W + Mo + V: ≤ 3% W, Mo, and V are elements that improve high-temperature strength by solid solution strengthening. When W and Mo are added in excess of 3% and V is added in excess of 1%, the effect tends to be saturated, and the cost increases and the cold workability decreases, so the content is reduced to 1 / 2W + Mo.
+ V: ≦ 3%

【0044】Ni+Co:25〜45% Co:≦5% CoはNiとほぼ同じような作用があり、そこでNiを
一部置換する形で合金に含有させることができる。即ち
Ni+Co:25〜45%の条件を満たす範囲内でCo
を合金中に含有させることができる。しかしながらCo
はNiに較べても高価な元素であるため上限を5.0%
とする。
Ni + Co: 25-45% Co: ≦ 5% Co has almost the same effect as Ni, and therefore Ni can be contained in the alloy in a form that partially replaces Ni. That is, Ni + Co: Co within a range satisfying the condition of 25 to 45%.
Can be contained in the alloy. However, Co
Is an expensive element compared to Ni, so the upper limit is 5.0%
And

【0045】 Ti+Al+Nb+Ta:4.5〜7.0原子% Ti,Al,Nb,Taは何れもγ´相の構成元素であ
る。十分なNi量が存在する場合、γ´相の析出量はこ
れら元素の含有量の総和に比例する。そして合金の高温
強度はγ´相の析出量に比例する。本発明において合金
の高温強度を十分に発現させる上で4.5原子%以上含
有させる必要がある。一方においてその総和が7.0原
子%を超えると強度は上昇するものの熱間加工性が低下
する。そこで本発明ではそれらの元素の総和の上限値を
7.0原子%とする。
Ti + Al + Nb + Ta: 4.5 to 7.0 atomic% Ti, Al, Nb, and Ta are all constituent elements of the γ ′ phase. If there is a sufficient amount of Ni, the amount of precipitation of the γ 'phase is proportional to the sum of the contents of these elements. The high temperature strength of the alloy is proportional to the amount of the γ 'phase precipitated. In the present invention, in order to sufficiently develop the high-temperature strength of the alloy, it is necessary to contain 4.5 atomic% or more. On the other hand, if the total exceeds 7.0 atomic%, the strength increases but the hot workability decreases. Therefore, in the present invention, the upper limit of the total sum of these elements is set to 7.0 atomic%.

【0046】Ti/Al:≦1.0(各元素は原子%) 高温下で長時間使用中に析出する金属間化合物のη相
(Ni3Ti)は合金の機械的性質を劣化させる。η相
の析出はTi含有量とAl含有量との比(Ti/Al)
に依存する。即ちTi/Alの比率が大きくなるほどη
相の析出が起こり易くなる。そこで本発明では長時間使
用後においてη相が析出しないように、また冷間加工後
において直接時効処理したときに時効が過度に進まない
ようにTi/Alの値を1.0以下とする。尚Ti/A
lの望ましい下限値は0.2である。
Ti / Al: ≦ 1.0 (atomic% of each element) The η phase (Ni 3 Ti) of the intermetallic compound which precipitates during long-time use at a high temperature deteriorates the mechanical properties of the alloy. The precipitation of the η phase depends on the ratio of the Ti content to the Al content (Ti / Al)
Depends on. That is, as the ratio of Ti / Al increases, η
Precipitation of the phase is likely to occur. Therefore, in the present invention, the value of Ti / Al is set to 1.0 or less so that the η phase does not precipitate after long-time use, and that aging does not excessively proceed when directly aging after cold working. Note that Ti / A
A desirable lower limit of 1 is 0.2.

【0047】M:≦0.95 ここでM=(0.717Ni+0.858Fe+1.1
42Cr+1.90Al+2.271Ti+2.117
Nb+2.224Ta+1.001Mn+1.90Si
+0.615Cu)/100(但し各元素は原子%) このMはγ相の安定性を示す指標であり、このMが0.
95より大きくなると金属間化合物σ相が析出するよう
になる。このσ相は合金の機械的性質を劣化させる。ま
たMが0.95より大きくなると熱間加工性も劣化す
る。そこで本発明ではMを0.95以下に規制する。
M: ≦ 0.95 where M = (0.717Ni + 0.858Fe + 1.1
42Cr + 1.90Al + 2.271Ti + 2.117
Nb + 2.224Ta + 1.001Mn + 1.90Si
+0.615 Cu) / 100 (where each element is atomic%) This M is an index indicating the stability of the γ phase, and this M is 0.1%.
If it exceeds 95, the intermetallic compound σ phase will precipitate. This σ phase degrades the mechanical properties of the alloy. When M is larger than 0.95, hot workability also deteriorates. Therefore, in the present invention, M is restricted to 0.95 or less.

【0048】B :0.001〜0.01% Zr:0.001〜0.1% B,Zrは結晶粒界に偏析して粒界を強化する。その効
果が十分現れるのはそれぞれ0.001%以上含有させ
た場合である。但しBについては0.01%、Zrにつ
いては0.1%を超えて含有させると熱間加工性を損な
うため、含有量をそれぞれの上限値以下とする。
B: 0.001 to 0.01% Zr: 0.001 to 0.1% B and Zr segregate at crystal grain boundaries to strengthen the grain boundaries. The effect is sufficiently exhibited when the content is 0.001% or more. However, if the content of B exceeds 0.01% and the content of Zr exceeds 0.1%, hot workability is impaired, so the content is set to the respective upper limit values or less.

【0049】Ca+Mg:0.001〜0.01% これらの元素は何れも合金の溶解時に脱酸,脱硫元素と
して添加される元素であり、合金の熱間加工性を改善す
る効果がある。その効果が現れるのはCa+Mgとして
0.001%からである。但し0.01%を超えて含有
させると熱間加工性を劣化させる。そこで上限値を0.
01%とする。
Ca + Mg: 0.001 to 0.01% These elements are all added as deoxidizing and desulfurizing elements when the alloy is melted, and have the effect of improving the hot workability of the alloy. The effect appears from 0.001% as Ca + Mg. However, when the content exceeds 0.01%, the hot workability is deteriorated. Therefore, the upper limit is set to 0.
01%.

【0050】P:≦0.02% S:≦0.01% O:≦0.01% N:≦0.01% これらは何れも不純物としてのものであって、このうち
P,Sは合金の熱間加工性を低下させる。またO,Nは
酸化物又は窒化物(非金属介在物)を形成し、合金の機
械的性質を劣化させる。そこで本発明ではそれぞれの上
限値を0.02%,0.01%,0.01%,0.01
%とした。
P: ≦ 0.02% S: ≦ 0.01% O: ≦ 0.01% N: ≦ 0.01% These are all impurities, and P and S are alloys. Reduces hot workability. O and N form oxides or nitrides (non-metallic inclusions) and deteriorate the mechanical properties of the alloy. Therefore, in the present invention, the respective upper limits are set to 0.02%, 0.01%, 0.01%, 0.01%.
%.

【0051】[0051]

【実施例】次に本発明の実施例を以下に詳しく説明す
る。表1に示す化学組成の各種合金50kgを図1の工
程に従って真空誘導炉にて溶解し、インゴットを得た。
そしてそのインゴットを1100℃で16時間ソーキン
グした後、引き続いて1100℃〜900℃の温度範囲
で鍛造,圧延し、直径16mmの丸棒とした。そしてそ
の丸棒を1050℃×30分加熱後油冷の条件で熱処理
し、次いでその熱処理した丸棒を用いて据込率70%,
75%で冷間圧縮試験(温度:室温)を行い、その際の
割れ発生率を調べることによって冷間加工性を調べた。
ここで冷間での圧縮試験は下記に示す日本塑性加工学会
冷間鍛造分科会基準に従って行った。
Next, embodiments of the present invention will be described in detail. 50 kg of various alloys having the chemical compositions shown in Table 1 were melted in a vacuum induction furnace according to the process of FIG. 1 to obtain an ingot.
Then, the ingot was soaked at 1100 ° C. for 16 hours, and subsequently forged and rolled in a temperature range of 1100 ° C. to 900 ° C. to obtain a round bar having a diameter of 16 mm. Then, the round bar is heated at 1050 ° C. for 30 minutes and then heat-treated under oil-cooling conditions.
A cold compression test (temperature: room temperature) was performed at 75%, and the cold workability was examined by examining the crack generation rate at that time.
Here, the cold compression test was performed in accordance with the following standards of the Japan Society for Technology of Plasticity Cold Forging Subcommittee.

【0052】[0052]

【表1】 [Table 1]

【表2】 [Table 2]

【0053】一方、上記熱処理した丸棒に対して750
℃×4時間又は100時間加熱後空冷の条件で時効処理
したものと、800℃×100時間加熱後空冷の条件で
時効処理したものとのそれぞれについて、室温における
ビッカース硬さ測定(荷重(P)1kgf)を行った。
On the other hand, the heat-treated round bar was 750
Measurement of Vickers hardness at room temperature (load (P)) for each of the specimens that had been aged under the conditions of heating and air cooling after heating for 4 hours at 100 ° C. × 100 hours and those that had been subjected to aging treatment under the conditions of air cooling after heating at 800 ° C. × 100 hours. 1 kgf).

【0054】また併せて上記熱処理した丸棒に対して据
込率70%で圧縮試験(冷間加工)を行い、その後これ
を用いて750℃×4時間又は100時間加熱後空冷の
条件で時効処理したものと、800℃×100時間加熱
後空冷の条件で時効処理したものとのそれぞれについて
室温におけるビッカース硬さ測定(荷重1kgf)を行
い、また併せて圧縮及び時効処理後の試料のミクロ組織
観察を行った。
In addition, a compression test (cold working) was performed on the heat-treated round bar at an upsetting rate of 70%, and thereafter, it was heated at 750 ° C. for 4 hours or 100 hours and then aged under air-cooling conditions. A Vickers hardness measurement (at a load of 1 kgf) at room temperature was performed on each of the treated sample and the sample that had been heated at 800 ° C. for 100 hours and then aged under the condition of air cooling, and together with the microstructure of the sample after compression and aging treatment Observations were made.

【0055】また上記熱処理した丸棒に対して絞り50
%の前方押出しを施し、その後750℃×4時間加熱
後、空冷の条件で時効処理したものについて800℃に
おける回転曲げ疲れ試験を行った。
The heat-treated round bar was drawn with a 50
% Forward extrusion, followed by heating at 750 ° C. × 4 hours, and then aging treatment under air-cooling conditions was performed on a rotating bending fatigue test at 800 ° C.

【0056】これらの結果が表2,表3に示してある。
尚各試験は下記の条件で行った。
The results are shown in Tables 2 and 3.
Each test was performed under the following conditions.

【0057】[0057]

【表3】 [Table 3]

【0058】[0058]

【表4】 [Table 4]

【0059】<試験条件> 冷間圧縮鍛造試験 直径15mm,高さ22.5mmの試験片を軸方向に据
込鍛造し、据込率70%,75%で加工を行ったときの
割れ発生率を調べることで冷間加工性の評価を行った。
ここで据込率εは次式で表される。 ε=(h0−hc)/h0×100 但しh0:試験片の元の高さ,hc:試験片の変形後の高
さ 尚各試験はn=5個の試験片についてそれぞれ行った。
<Test conditions> Cold compression forging test Crack generation rate when a test piece having a diameter of 15 mm and a height of 22.5 mm was axially upset forged and worked at an upset rate of 70% and 75%. Was evaluated to evaluate cold workability.
Here, the upsetting ratio ε is expressed by the following equation. ε = (h 0 −h c ) / h 0 × 100, where h 0 is the original height of the test piece, h c is the height of the test piece after deformation. Each test was performed for n = 5 test pieces. went.

【0060】硬さ測定 ビッカース式硬さ計を用い、測定荷重1kgでビッカー
ス硬さを測定した。
Measurement of Hardness The Vickers hardness was measured using a Vickers hardness meter at a measurement load of 1 kg.

【0061】疲れ試験 前方押出し後の各試験材より直径8mmの平滑試験片を
切り出し、小野式回転曲げ疲労試験機を用い、回転曲げ
疲れ試験を行った。応力振幅を294MPaとしたとき
の繰返し数を各試料2本の平均で求めた。
Fatigue Test A smooth test piece having a diameter of 8 mm was cut out from each test material after forward extrusion, and a rotary bending fatigue test was performed using an Ono-type rotary bending fatigue tester. The number of repetitions when the stress amplitude was 294 MPa was determined by averaging two samples.

【0062】表2の結果から、本発明例の耐熱合金の場
合冷間加工性に優れていること、また冷間加工を施した
後に時効処理することで十分な硬さが得られること、一
方において冷間加工後に直接時効処理を施してもη相が
析出せず過時効状態とならないこと、更に長時間高温状
態の下においても硬さがそれほど低下しないこと、即ち
過時効状態となるのが抑制されることが分る。また表3
の疲れ試験の結果から、本発明例の耐熱合金の場合、耐
疲労特性においても同等若しくは優れていることが分
る。
From the results in Table 2, it can be seen that the heat-resistant alloy of the present invention has excellent cold workability, and that sufficient hardness can be obtained by aging after cold working. In the case of direct aging treatment after cold working, the η phase does not precipitate and the overaged state does not occur, and the hardness does not decrease so much even under a high temperature state for a long time, that is, the overaged state is reached. It turns out that it is suppressed. Table 3
From the results of the fatigue test, the heat-resistant alloy of the present invention shows that the fatigue resistance is equal or superior.

【0063】以上本発明の実施例を詳述したがこれはあ
くまで一例示であり、本発明はその主旨を逸脱しない範
囲において種々変更を加えた態様で実施可能である。
Although the embodiment of the present invention has been described in detail, this is merely an example, and the present invention can be implemented in variously modified forms without departing from the gist thereof.

【0064】[0064]

【発明の効果】上記本発明の耐熱合金は、Ni含有量が
低レベルでコストが安価であり、加えて冷間加工性に優
れていて自動車エンジン用排気バルブ等の耐熱部品を冷
間加工にて製造することが可能であり、耐熱部品の製造
コストを低廉化することができる。即ち耐熱合金材料自
体のコストと、これを用いた耐熱部品の製造コストの両
方を低減することができる。
As described above, the heat-resistant alloy of the present invention has a low Ni content and is inexpensive, and has excellent cold workability, and is suitable for cold work of heat-resistant parts such as exhaust valves for automobile engines. , And the manufacturing cost of the heat-resistant component can be reduced. That is, it is possible to reduce both the cost of the heat-resistant alloy material itself and the manufacturing cost of a heat-resistant component using the same.

【0065】本発明の耐熱合金は、Cuを所定範囲で含
有させた点を1つの特徴とするもので、このCuが積層
欠陥エネルギーを高めて加工硬化を抑制する働きをなす
ことにより、耐熱合金における冷間加工性が効果的に高
められる。
The heat-resistant alloy according to the present invention has one feature in that Cu is contained in a predetermined range. This Cu has a function of increasing stacking fault energy and suppressing work hardening, thereby providing a heat-resistant alloy. The cold workability in is effectively improved.

【0066】また本発明の耐熱合金は、Al含有量に対
してTiの含有量を低くすることで時効速さが抑制され
ており、詳しくは冷間加工後に直接時効処理したときに
適正に時効が進むものとされており、特にTi/Al
値:≦1.0とした場合には、時効速度が最適化されて
冷間加工後直接時効処理したときに過時効を起すことな
く最適の硬さ・強度が発現され、また高温下で長時間使
用されたときに経時的に時効が進行して過時効状態とな
るのが抑制され、耐熱部品の寿命を高寿命化することが
できる。
In the heat-resistant alloy of the present invention, the aging speed is suppressed by lowering the content of Ti with respect to the content of Al. Specifically, when the aging treatment is performed directly after cold working, the aging is properly performed. , Especially Ti / Al
Value: When ≦ 1.0, the aging speed is optimized, and when aging treatment is performed directly after cold working, optimal hardness and strength are exhibited without overaging, and the aging speed is high at high temperatures. When used for a long time, aging progresses over time and the overaging state is suppressed, and the life of the heat-resistant component can be extended.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における耐熱合金の製造工程と
熱処理及び各種試験片の作成工程を説明する工程説明図
である。
FIG. 1 is a process explanatory diagram for explaining a heat-resistant alloy manufacturing process, a heat treatment, and a process of preparing various test pieces in an embodiment of the present invention.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 重量%で C :0.01〜0.1% Si:≦2% Mn:≦2% Cr:12〜25% Nb+Ta:0.2〜2.0% Ti:1.5%未満 Al:0.5〜3.0% Ni:25〜45% Cu:0.1〜5.0% 残部不可避的不純物及びFeからなる合金組成を有する
ことを特徴とする冷間加工性及び過時効特性に優れた耐
熱合金。
C: 0.01 to 0.1% Si: ≦ 2% Mn: ≦ 2% Cr: 12 to 25% Nb + Ta: 0.2 to 2.0% Ti: 1.5% by weight% Less than Al: 0.5-3.0% Ni: 25-45% Cu: 0.1-5.0% Cold workability and excess characteristic characterized by having an alloy composition consisting of the balance of unavoidable impurities and Fe. Heat resistant alloy with excellent aging characteristics.
【請求項2】 請求項1において、更にW,Mo,Vの
何れか1種若しくは2種以上を重量%で W :≦3% Mo:≦3% V :≦1% 且つ 1/2W+Mo+V:≦3% の範囲で含有していることを特徴とする冷間加工性及び
過時効特性に優れた耐熱合金。
2. The method according to claim 1, wherein at least one of W, Mo, and V is W: ≦ 3% Mo: ≦ 3% V: ≦ 1% and WW + Mo + V: ≦ A heat-resistant alloy having excellent cold workability and overageing properties, characterized in that it is contained in the range of 3%.
【請求項3】 請求項1,2の何れかにおいて、重量%
で Ni+Co:25〜45% Co:≦5% の範囲で含有することを特徴とする冷間加工性及び過時
効特性に優れた耐熱合金。
3. The method according to claim 1, wherein the weight percentage is
A heat-resistant alloy having excellent cold workability and overageing properties, characterized in that it contains Ni + Co: 25-45% Co: ≦ 5%.
【請求項4】 請求項1,2,3の何れかにおいて、T
i,Al,Nb,Taが原子%で Ti+Al+Nb+Ta:4.5〜7.0% であることを特徴とする冷間加工性及び過時効特性に優
れた耐熱合金。
4. The method according to claim 1, wherein
A heat-resistant alloy having excellent cold workability and overageing characteristics, wherein i, Al, Nb, and Ta are atomic% and Ti + Al + Nb + Ta is 4.5 to 7.0%.
【請求項5】 請求項1,2,3,4の何れかにおい
て、TiとAlとの原子%の比率Ti/Alが Ti/Al:≦1.0 であることを特徴とする冷間加工性及び過時効特性に優
れた耐熱合金。
5. The cold working according to claim 1, wherein a ratio Ti / Al of atomic percent of Ti and Al is Ti / Al: ≦ 1.0. Alloy with excellent heat resistance and overaging characteristics.
【請求項6】 請求項1,2,3,4,5の何れかにお
いて、下記式で表されるMが M:≦0.95 であることを特徴とする冷間加工性及び過時効特性に優
れた耐熱合金。 M=(0.717Ni+0.858Fe+1.142C
r+1.90Al+2.271Ti+2.117Nb+
2.224Ta+1.001Mn+1.90Si+0.
615Cu)/100(但し各元素は原子%)
6. The cold workability and overaging property according to claim 1, wherein M represented by the following formula is M: ≦ 0.95. Excellent heat resistant alloy. M = (0.717Ni + 0.858Fe + 1.142C)
r + 1.90Al + 2.271Ti + 2.117Nb +
2.224Ta + 1.001Mn + 1.90Si + 0.
615 Cu) / 100 (however, each element is atomic%)
【請求項7】 請求項1,2,3,4,5,6の何れか
において、更にB,Zrの1種若しくは2種を重量%で B :0.001〜0.01% Zr:0.001〜0.1% の範囲で含有することを特徴とする冷間加工性及び過時
効特性に優れた耐熱合金。
7. The method according to claim 1, wherein one or two of B and Zr are further contained by weight% of B: 0.001 to 0.01% and Zr: 0. A heat-resistant alloy excellent in cold workability and overaging characteristics, characterized in that it is contained in the range of 0.001 to 0.1%.
【請求項8】 請求項1,2,3,4,5,6,7の何
れかにおいて、Ca+Mgを重量%で Ca+Mg:0.001〜0.01% の範囲で含有することを特徴とする冷間加工性及び過時
効特性に優れた耐熱合金。
8. The method according to claim 1, wherein Ca + Mg is contained in a range of 0.001 to 0.01% by weight of Ca + Mg. Heat-resistant alloy with excellent cold workability and overageing properties.
【請求項9】 請求項1,2,3,4,5,6,7,8
の何れかにおいて、P,S,O,Nがそれぞれ重量%で P :≦0.02% S :≦0.01% O :≦0.01% N :≦0.01% であることを特徴とする冷間加工性及び過時効特性に優
れた耐熱合金。
9. The method of claim 1, 2, 3, 4, 5, 6, 7, 8, or 9.
Wherein P, S, O, and N are each in weight% and P: ≦ 0.02% S: ≦ 0.01% O: ≦ 0.01% N: ≦ 0.01% Heat-resistant alloy with excellent cold workability and overageing characteristics.
JP30122496A 1996-10-25 1996-10-25 Heat-resistant alloy with excellent cold workability and overaging characteristics Expired - Fee Related JP3744084B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP30122496A JP3744084B2 (en) 1996-10-25 1996-10-25 Heat-resistant alloy with excellent cold workability and overaging characteristics
DE69710409T DE69710409T2 (en) 1996-10-25 1997-10-22 Heat resistant alloy for exhaust valves and method of manufacturing such exhaust valves
EP97118341A EP0838533B1 (en) 1996-10-25 1997-10-22 Heat resisting alloy for exhaust valve and method for producing the exhaust valve
US08/955,753 US5951789A (en) 1996-10-25 1997-10-22 Heat resisting alloy for exhaust valve and method for producing the exhaust valve
US09/114,494 US6099668A (en) 1996-10-25 1998-07-13 Heat resisting alloy for exhaust valve and method for producing the exhaust valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30122496A JP3744084B2 (en) 1996-10-25 1996-10-25 Heat-resistant alloy with excellent cold workability and overaging characteristics

Publications (2)

Publication Number Publication Date
JPH10130790A true JPH10130790A (en) 1998-05-19
JP3744084B2 JP3744084B2 (en) 2006-02-08

Family

ID=17894283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30122496A Expired - Fee Related JP3744084B2 (en) 1996-10-25 1996-10-25 Heat-resistant alloy with excellent cold workability and overaging characteristics

Country Status (1)

Country Link
JP (1) JP3744084B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235573A (en) * 2008-03-07 2009-10-15 Jfe Steel Corp Ferritic stainless steel with excellent heat resistance and toughness
CN114990408A (en) * 2022-04-26 2022-09-02 沈阳航空航天大学 NiCoCrFeAlTi intermediate entropy alloy with excellent comprehensive mechanical property and preparation method thereof
CN115398015A (en) * 2020-04-09 2022-11-25 本田技研工业株式会社 Sealing member and method for manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7408347B2 (en) 2019-10-30 2024-01-05 日鉄ステンレス株式会社 High Ni alloy and method for producing high Ni alloy

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009235573A (en) * 2008-03-07 2009-10-15 Jfe Steel Corp Ferritic stainless steel with excellent heat resistance and toughness
CN115398015A (en) * 2020-04-09 2022-11-25 本田技研工业株式会社 Sealing member and method for manufacturing same
CN114990408A (en) * 2022-04-26 2022-09-02 沈阳航空航天大学 NiCoCrFeAlTi intermediate entropy alloy with excellent comprehensive mechanical property and preparation method thereof
CN114990408B (en) * 2022-04-26 2023-02-10 沈阳航空航天大学 NiCoCrFeAlTi intermediate entropy alloy with excellent comprehensive mechanical property and preparation method thereof

Also Published As

Publication number Publication date
JP3744084B2 (en) 2006-02-08

Similar Documents

Publication Publication Date Title
JP4830466B2 (en) Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys
EP0639654B1 (en) Fe-Ni-Cr-base super alloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
US5660938A (en) Fe-Ni-Cr-base superalloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
JPH09279309A (en) Iron-chrome-nickel heat resistant alloy
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
JP3308090B2 (en) Fe-based super heat-resistant alloy
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP4830443B2 (en) Heat-resistant alloy for exhaust valves with excellent strength characteristics at high temperatures
JPS5834129A (en) Heat-resistant metallic material
EP2503012B1 (en) Precipitation hardened heat-resistant steel
JP4116134B2 (en) Austenitic stainless steel excellent in high temperature sag resistance and method for producing the same
JPH07216482A (en) Alloy for exhaust valve
JP3977847B2 (en) Heat resistant alloy for engine valves
JP3744084B2 (en) Heat-resistant alloy with excellent cold workability and overaging characteristics
JP4057208B2 (en) Fe-base heat-resistant alloy for engine valves with good cold workability and high-temperature strength
JP4180753B2 (en) Fe-base heat-resistant alloy with excellent cold workability and high-temperature heat stability
JPH11117019A (en) Production of heat resistant parts
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JPH11117020A (en) Production of heat resistant parts
JP6787246B2 (en) Alloy original plate for heat-resistant parts, alloy plate for heat-resistant parts, and gasket for exhaust system parts of engine
JPH11199987A (en) Heat resistant alloy suitable for cold working
JP2001158943A (en) Heat resistant bolt
JP4315049B2 (en) Thin steel strip with excellent strength, fatigue strength, corrosion resistance and wear resistance, and manufacturing method thereof
JP3744083B2 (en) Heat-resistant alloy with excellent cold workability
JPH08176752A (en) Martensitic heat resistant steel excellent in cold forgeability

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040209

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040217

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20051003

Free format text: JAPANESE INTERMEDIATE CODE: A911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20091202

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20101202

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20111202

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees