JP3951943B2 - High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics - Google Patents

High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics Download PDF

Info

Publication number
JP3951943B2
JP3951943B2 JP2003073822A JP2003073822A JP3951943B2 JP 3951943 B2 JP3951943 B2 JP 3951943B2 JP 2003073822 A JP2003073822 A JP 2003073822A JP 2003073822 A JP2003073822 A JP 2003073822A JP 3951943 B2 JP3951943 B2 JP 3951943B2
Authority
JP
Japan
Prior art keywords
alloy
less
strength
exhaust valves
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003073822A
Other languages
Japanese (ja)
Other versions
JP2004277860A (en
Inventor
克彦 富永
庄一 中谷
克明 佐藤
茂紀 植田
俊治 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Daido Steel Co Ltd
Original Assignee
Honda Motor Co Ltd
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Daido Steel Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003073822A priority Critical patent/JP3951943B2/en
Priority to EP04006427A priority patent/EP1464718A1/en
Priority to US10/803,054 priority patent/US20040184946A1/en
Publication of JP2004277860A publication Critical patent/JP2004277860A/en
Application granted granted Critical
Publication of JP3951943B2 publication Critical patent/JP3951943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Silencers (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、自動車エンジンなどのエンジンの排気バルブ用材料として好適な、耐過時効特性にすぐれた高強度の排気バルブ用耐熱合金に関する。この合金は、排気ガス浄化触媒用メッシュの材料としても好適であり、「排気バルブ用」は主たる用途を示すものとして、限定的に解すべきでない。
【0002】
【従来の技術】
エンジンの排気バルブ用材料には、以前は耐熱鋼SUH35が広く用いられて来た。ところが、近年の排気ガス規制などからバルブへの負荷が大きくなり、SUH35では強度が不足することがあるので、より高い強度をもつバルブ材料が求められるようになった。そこで、NCF751のようなNi基合金が選択されるようになったが、Ni基合金は高価であるから、高級車でなければ、使用することは困難であった。バルブ材料の価格を低廉にするため、Ni量を減らした種々の合金が開発されている。
【0003】
出願人は、多年バルブ用材料の開発を続け、種々の合金や、その熱処理技術を開示してきた。その歴史を概観すれば、まず、特開昭56−20148は、C:0.01〜0.20%、Si:2.0%以下、Ni:25〜50%,Cr:13〜23%,Ti:1.5〜3.5%およびAl:0.1〜1.5%を含有し、残余が実質的にFeからなる排気バルブ用合金が挙げられる。この合金は、溶体化および時効処理によりオーステナイト基地中にγ’相Ni3(Al,Ti)を析出させて、高温強度および耐食性を確保したものである。TiおよびAlの含有量の範囲は広いが、実施データではTi/Al比が2.8〜7.8と高めであったため、γ’相が不安定になり、η相が析出していた。
【0004】
この点を改良した特開昭58−34129は、上記の合金であってTi/Al比を2.0以上に選んだものに対して、700〜975℃における予備熱処理、975℃以下の温度における熱間加工、および975℃以下の温度における固溶化および時効処理を行なうことを内容とし、すぐれた高温特性ことに引張強度と疲労強度とを実現したものである。
【0005】
特開昭60−13020もバルブ合金の熱処理方法を対象とし、γ’相が析出するFe−Ni基合金を、再結晶温度以上の高温で均質化したのち、再結晶温度以下の温度で加工歪みを与え、時効硬化処理して、γ’相の粒内析出を促進するとともに、粒界におけるη相Ni3Tiの析出を抑制するようにしたことが特徴である。これに続き特開昭60−13050は、上記のFe−Ni基合金において、強度および切り欠き感受性にとって有害なη相の析出を、適量のB(0.001〜0.05%)およびAl(0.1〜0.7%)の添加によって防止した発明である。
【0006】
特開昭60−46343は、C:0.01〜0.15%、Si:2.0%以下、Mn:2.5%以下、Ni:35〜65%、Cr:15〜25%、Mo:0.5〜3.0%,Nb:0.3〜3.0%,Ti:2.0〜3.5%、Al:0.2〜1.5%およびB:0.001〜0.020%を基本合金成分とし、Mg,CaおよびREMの1種を適量含有し、残余が実質的にFeからなる排気バルブ用合金を開示している。この材料は、比較的高合金であるが、それに伴って高温強度や耐食性が高く、熱間加工性がすぐれていることが利点である。
【0007】
特開昭60−162760は、前記の特開昭60−13020の系譜にある技術であって、C:0.01〜0.20%、Cr:13〜23%、Ti:1.5〜3.5%、Al:0.1〜4.5%で(Ti+Al):2.0%以上を基本合金成分とするNi基合金を、γ’相の固溶温度以上の温度で均熱したのち、再結晶温度以下20%以上の加工によって加工硬化させ、ついで600〜850℃で時効硬化させることを特徴とする。この製造法により得られる製品は、高強度かつ高靱性である。
【0008】
一方、特開昭60−211028は、高温耐食性とくにPbO+PbSO4耐性にすぐれた排気バルブ用合金として、C:0.01〜0.15%、Si:2.0%以下、Mn:2.5%以下、Ni:53〜65%、Cr:15〜25%、Nb:0.3〜3.0%,Ti:2.0〜3.5%、Al:0.1〜1.5%、B:0.001〜0.020%、残部が実質的にFeからなる組成を提案している。
【0009】
特開昭61−119640は、高温強度をいっそう高め、かつ熱間加工性がよいNi基耐熱合金を開示したもので、その合金の組成は、C:0.01〜0.15%、Si:2.0%以下、Mn:2.5%以下、Cr:15〜25%、Mo+1/2W:0.5〜5.0%、Ti:1.5〜3.5%、Al:0.5〜2.5%、B:0.001〜0.020%、Fe:5%以下、残部が実質的にNiからなる。
【0010】
上記のほか、排気バルブ用合金に関して、特開昭58−34129、特開平7−109539、特開平7−216482、特開平9−279309および特開平11−229059が知られている。これらのうちで、特開昭58−34129および特開平7−216482は、Niバランスが依然として高価な側にあって、低廉化が不十分である。特開平7−109539は、Ni量を最大49%に抑えたので、低廉化は実現したが、熱間加工性が低いという点で、十分満足できるものではない。その理由は、Al量が高いことにあると考えられる。特開平9−279309は、強度は高いものの、高い強度の発揮は短時間に止まり、高温で長時間使用したときの強度低下が著しく、耐過時効性において劣っている。特開平11−229059もまた、Al添加量が高いためか、熱間加工性がよくないのが弱点である。
【0011】
【発明が解決しようとする課題】
本発明の目的は、排気バルブ用耐熱合金において、材料コストの面からの制約としてNi量を最大で62%に制限し、強度を従来のNi基の排気バルブ合金に比べて同等以上のレベルに確保し、かつ、高温で長時間使用したのちも、その強度が保持されているものを提供することにある。
【0012】
【課題を解決するための手段】
上記の目的を達成する本発明の耐過時効特性にすぐれた高強度の排気バルブ用耐熱合金は、質量%で、C:0.01〜0.2%、Si:1%以下、Mn:1%以下、P:0.02%以下、S:0.01%以下、Ni:30〜62%、Cr:13〜20%、W:0.01〜3.0%、Mo:2%以下、(ただし、Mo+0.5W:1.0〜2.5%)、Al:0.7%以上1.6%未満、Ti:1.5〜3.0%、Nb:0.5〜1.5%およびB:0.001〜0.01%を含有し、ただし、%Ti/%A1:1.6以上2.0未満であって、残部がFeおよび不可避的不純物からなる合金組成を有する。
【0013】
【発明の実施形態】
本発明の排気バルブ用耐熱合金は、上記した基本的な合金成分に加えて、下記の個のグループに属する成分を、1種または2種以上、任意に添加することができる。
I)Mg:0.001〜0.03%およびCa:0.001〜0.03%の1種または2種
II)Zr:0.001〜0.1%
III)Cu:2.0%以下
IV)V:0.05〜1.0%
【0014】
本発明の排気バルブ用耐熱合金を構成する合金成分の作用と、組成範囲を上記のように限定した理由を、必須成分および任意成分の両方について示せば、つぎのとおりである。
【0015】
C:0.01〜0.2%
Cは、CrおよびTi、Nb、Taと結合して炭化物を形成することにより、母材の高温強度を高める。この効果を得るためには、0.01%以上のCの存在が必要であるが、多すぎると炭化物の生成量が多くなりすぎて、熱間・冷間の加工性を悪くし、靭延性が低下するので、0.2%を上限とした。
【0016】
Si:1.0%以下
Siは溶解精練時の脱酸剤として添加される元素であり、脱酸剤として効果がある程度の少量の添加は問題ないが、多量に添加すると靭性も加工性も低下するから1.0%以下に止める。
【0017】
Mn:1.0%以下
Mnも、Siと同様、脱酸剤として作用する。必要に応じて添加してよいが、多量に添加すると加工性および高温酸化性を損なうから、やはり1.0%以下の添加量を選ぶ。
【0018】
Ni:30〜62%
Niは、マトリックスをオーステナイトにする元素であり、耐熱性および耐食性を確保するために、また析出強化相のγ'を形成する上でも、合金にとって重要な成分である。Ni量が30%未満では、強度および相安定性が不足し、熱間加工性も低い。多量の添加はコスト増加を招くため、前述のように、あらかじめ上限値を62%と定めた。合金の性能とコストのバランスからみて好適な範囲は30〜54%、より好ましい範囲は35〜54%である。
【0020】
Cr:13〜20%
Crは、合金の耐熱性を確保するのに必要な元素であり、少なくとも13%の存在が必要である。しかし、20%を超えて添加すると、σ相が析出して靭性が低下するとともに高温強度が低下する。好ましくは18%以下である。
【0021】
Al:0.7%以上1.6%未満
AlはNiと結合してγ'相を形成する点で重要な元素である。0.7%未満であるとγ'相の析出が不十分で、高温強度の確保ができず、1.6%以上になると熱間加工性が低下する。
【0022】
Ti:1.5〜3.0%
TiはAl,Nb,TaとともにNiと結合して、高温強度を向上させるのに有効なγ'相を形成する。その含有量が1.5%未満であると、γ'の固溶温度が低下し、十分な高温強度が得られない。一方、3.0%を超えて過剰に添加すると、加工性が低下する上、η相(Ni3Ti)が析出しやすくなり、高温強度および靭性が低下する。
【0023】
W:0.01〜3.0%
Wは、固溶強化により合金の高温強度を向上させる作用があり、その効果を発揮させるために、0.01%以上の適量を添加するとよい。添加しすぎると、コストの上昇と加工性の低下を招くから、3.0%という限度内の添加量を選ぶ。
【0024】
Mo:2.0%以下、ただし、Mo+0.5W:1.0〜2.5%
MoもWと同様に、固溶強化により合金の高温強度を向上させる作用があり、適量を添加するとよい。よく知られているように、MoとWとを併用する場合には、Mo当量すなわち(Mo+0.5W)の値が問題であり、上記の効果を確実に得るためには、Mo当量にして1.0%以上を添加することが好ましい。Moもまた高価であって、多量の添加はコストの上昇を招き、加工性を低下させるから、2.0%以内の添加量を選ぶ。Mo当量としての上限は、2.5%である。
【0025】
Nb:0.5〜1.5%、好ましくは0.6〜1.5%
Nbはγ'相形成元素であり、γ'の形成により、合金の強度を一層高める作用をする。この効果を得るためには0.5%以上、なるべくは0.6%以上のNbを添加する必要がある。一方で、過剰な添加は、靭性を低下させるから避けるべきであって、1.5%が、この理由にもとづく上限である。Nbの一部は、同じ作用をするTaで置き換えることができる。それゆえ、上記のNb量の範囲は、Nb+Taのそれとして理解すべきである。
【0026】
B:0.001〜0.01%
Bは、熱間加工性の改善に寄与するとともに、η相の生成を抑制して高温強度および靭性の低下を防止し、さらに高温クリープ強度を高めるはたらきがある。この効果は、0.001%という少量の添加で得られるが、0.01%を超える添加は過剰であって、母材の融点を下げて熱間加工性を損う。
【0027】
%Ti/%Al:1.6以上2.0未満
この種の合金の強度は、γ'を均一微細に析出させることによる時効硬化がもたらすものである。このときに析出するγ'の量とその相安定性は、Ti/A1比によって支配されることがわかった。すなわち、この値が2.0以上になるとγ'が不安定になり、η相が析出してきて強度が低下してしまう。これが過時効の現象である。η相の析出を避け、耐過時効性を得るには、この比を2.0未満に止めなければならない。一方、この比が低すぎて、1.6を下回るようになると、合金の初期強度が低くて好ましくない。
【0028】
P:0.02%以下、S:0.01%以下
この合金はNi量を制限したため、熱間加工可能な範囲が狭い。したがって、できるだけ熱間加工性が高まる方向に合金設計すべきである。PもSも不可避的不純物であるが、ともに熱間加工性を悪くする元素であるから、その存在量は低いほどよい。上記の数値は、どちらも許容限度である。
【0029】
Mg:0.001〜0.03%およびCa:0.001〜0.03%の1種または2種
MgおよびCaは、脱酸・脱硫作用を有する元素であり、鋼の清浄度を高め、また粒界に偏析して粒界を強化する。こうした効果は、どちらも0.001%という少量の添加で得られ、一方で、多量の添加は熱間加工性を低下させるから、どちらも0.03%を上限とした。
【0030】
Zr:0.001〜0.1%
Zrは、Bと同様に、クリープ強度を高める作用があり、0.001%以上の添加で有効である。0.1%を超える添加量は、靭性の低下を招く。
【0031】
Cu:2.0%以下
ディーゼルエンジンでは、燃料に含まれるSに起因する硫酸腐食が問題になることがある。Cuの存在は、この硫酸腐食への耐性を与える点で、バルブの用途によっては有意義である。そのほか、耐酸化性の向上にも寄与する。添加しすぎると熱間加工性が低下するから、2.0%以内の添加量を選択する。
【0032】
V:0.05〜1.0%
Vは、MoやW同様に、固溶強化元素として有効である。また、MC型炭化物を形成し、炭化物を安定化させる効果もある。そこで、0.05%以上を添加するとよい。1.0%を超える過剰な添加は、靭性を低下させる。
【0033】
【実施例】
表1(実施例)および表2(比較例)に示す合金組成の排気バルブ用耐熱合金を、50kg高周波誘導炉で溶製したのち鋳造した。比較合金1および2は、前掲の特開昭60−46343および特開昭60−211028の材料、比較合金3は特開昭58−34129の材料、そして比較合金4は特開平9−279309の材料である。得られたインゴットを鍛造および圧延して、直径16mmの丸棒に加工した。それぞれの丸棒に対し、1050℃×1時間→水冷の固溶化処理および750℃×4時間→空冷の時効処理を施した。
【0034】
得られた素材を用いて、常温引張試験、高温高速引張試験、ロックウェル硬さ測定、高温引張試験、および回転曲げ疲労試験を行なって、表3(実施例)および表4(比較例)の結果を得た。試験方法は、つぎのとおりである。
[常温引張試験]
JIS Z 2241の方法に従った。
[高温高速引張試験]
800〜1250℃の温度域において、50℃間隔で、引張速度50mm/secで実施した。熱間加工性の目安として、60%以上の絞りが得られる温度の幅を記録した。
【0035】
別に、800℃×400時間→空冷の時効処理を施した素材を用いて、ロックウェル硬さ測定および回転曲げ疲労試験を行なった。その結果を表5(実施例)および表6(比較例)に示す。
【0036】

Figure 0003951943
【0037】
Figure 0003951943
【0038】
表3 成績1(実施例)
Figure 0003951943
【0039】
表4 成績1(比較例)
Figure 0003951943
【0040】
表5 成績2(実施例)
Figure 0003951943
【0041】
表6 成績2(比較例)
Figure 0003951943
【0042】
表3〜6に掲げた成績をみると、本発明に従った実施例A〜Hは、試験した諸特性がいずれも良好で、好ましいバランスをもって実現しているのに対し、本発明の範囲外の比較例1〜5は、なんらかの問題を含んでいる。比較例1は、高温における加工性がよくない。比較例2は、Ti/Alの比が低いにもかかわらず初期強度(常温強度)が高く、その理由はMo当量が高いことにあるが、その代り、硬さが高すぎ、熱間の加工性が低い。比較例3は、熱間の加工性が低い。比較例4は、疲労強度が不足である。比較例5は、硬さが足りず初期強度が低い。
【0043】
排気バルブ用材料の実用上の特性としては、鍛造の容易さが重要である。具体的には、鍛造可能な温度の幅が広いことであって、高温高速引張試験で絞り60%以上を与える温度の幅が250℃以上あることが要求される。この温度幅をみると、本発明の実施例では250〜300℃あるのに対し、比較例はそれより狭い。比較例2がとくに狭い(175℃)のは、Mo当量が3.5%と高いためである。温度幅250℃以上の条件を満たす比較例4は、上に指摘したとおり、強度が不足である。
【0044】
【発明の効果】
本発明の排気バルブ用耐熱合金は、Ni量をあらかじめ最大62%と限定したことによって、価格が安く製造できる。それにもかかわらず、上記した実施例のデータが示すとおり、同じ、またはより多量のNiを含有する従来合金より、高い強度をもっている。先行技術における過時効が生じやすいという問題は、本発明でTi/Al比を低い領域に選んだ結果、解消した。熱間加工性がよい点も、本発明の合金の特徴である。これは、Mo+0.5Wの値を低めに抑えることができ、したがって加工性に有利なFe量を高くすることができた合金組成により与えられたものである。
【0045】
はじめにことわったとおり、この合金はガソリンエンジンやディーゼルエンジンの排気バルブ用材料として好適なものであるが、同様な物性、すなわち熱間加工性、耐過時効性および高強度を必要とする種々の用途にとっても有用な材料である。[0001]
[Industrial application fields]
The present invention relates to a high-strength heat-resistant alloy for exhaust valves having excellent overaging resistance, which is suitable as an exhaust valve material for engines such as automobile engines. This alloy is also suitable as a material for the exhaust gas purifying catalyst mesh, and “for exhaust valve” should not be interpreted in a limited way as it indicates the main application.
[0002]
[Prior art]
In the past, heat-resistant steel SUH35 has been widely used as a material for engine exhaust valves. However, since the load on the valve has increased due to recent exhaust gas regulations and the like, the strength of the SUH 35 may be insufficient, so that a valve material having a higher strength has been demanded. Therefore, a Ni-based alloy such as NCF751 has been selected. However, since the Ni-based alloy is expensive, it is difficult to use it unless it is a high-class vehicle. In order to reduce the price of valve materials, various alloys having a reduced amount of Ni have been developed.
[0003]
The applicant has continued to develop materials for valves for many years and has disclosed various alloys and heat treatment techniques thereof. First, Japanese Patent Laid-Open No. 56-20148 describes C: 0.01-0.20%, Si: 2.0% or less, Ni: 25-50%, Cr: 13-23%, An exhaust valve alloy containing Ti: 1.5 to 3.5% and Al: 0.1 to 1.5%, and the balance being substantially Fe. In this alloy, γ ′ phase Ni 3 (Al, Ti) is precipitated in an austenite matrix by solution treatment and aging treatment to ensure high temperature strength and corrosion resistance. Although the range of the Ti and Al contents was wide, the Ti / Al ratio was as high as 2.8 to 7.8 in the practical data, so that the γ ′ phase became unstable and the η phase was precipitated.
[0004]
JP-A-58-34129 improved in this respect is a pre-heat treatment at 700 to 975 ° C., at a temperature of 975 ° C. or less, for the above-mentioned alloy having a Ti / Al ratio of 2.0 or more. The content is to perform hot working, solid solution and aging treatment at a temperature of 975 ° C. or lower, and realize excellent tensile strength and fatigue strength in terms of excellent high temperature characteristics.
[0005]
JP-A-60-13020 is also intended for a heat treatment method of a valve alloy. After homogenizing a Fe—Ni-based alloy in which a γ ′ phase is precipitated at a temperature higher than the recrystallization temperature, a processing strain is generated at a temperature lower than the recrystallization temperature. It is characterized in that it is age-hardened to promote intragranular precipitation of the γ 'phase and to suppress precipitation of η phase Ni 3 Ti at the grain boundary. Subsequently, Japanese Patent Laid-Open No. 60-13050 describes the precipitation of η phase, which is harmful to strength and notch sensitivity, in the above-described Fe—Ni-based alloy, with appropriate amounts of B (0.001 to 0.05%) and Al ( 0.1 to 0.7%).
[0006]
Japanese Patent Application Laid-Open No. 60-46343 includes C: 0.01 to 0.15%, Si: 2.0% or less, Mn: 2.5% or less, Ni: 35 to 65%, Cr: 15 to 25%, Mo : 0.5-3.0%, Nb: 0.3-3.0%, Ti: 2.0-3.5%, Al: 0.2-1.5% and B: 0.001-0 Disclosed is an exhaust valve alloy containing 0.020% as a basic alloy component, containing an appropriate amount of one of Mg, Ca, and REM, and the balance being substantially Fe. Although this material is a relatively high alloy, it is advantageous in that it has high temperature strength and corrosion resistance, and excellent hot workability.
[0007]
JP-A-60-162760 is a technique in the genealogy of the above-mentioned JP-A-60-13020, and C: 0.01 to 0.20%, Cr: 13 to 23%, Ti: 1.5 to 3 After soaking a Ni-based alloy containing 5%, Al: 0.1-4.5% and (Ti + Al): 2.0% or more as a basic alloy component at a temperature equal to or higher than the solid solution temperature of the γ ′ phase. Further, it is characterized in that it is work hardened by processing at a recrystallization temperature of 20% or lower and then age hardened at 600 to 850 ° C. The product obtained by this manufacturing method has high strength and high toughness.
[0008]
On the other hand, JP-A-60-211028 discloses an alloy for exhaust valves excellent in high temperature corrosion resistance, particularly PbO + PbSO 4 resistance, C: 0.01 to 0.15%, Si: 2.0% or less, Mn: 2.5% Hereinafter, Ni: 53 to 65%, Cr: 15 to 25%, Nb: 0.3 to 3.0%, Ti: 2.0 to 3.5%, Al: 0.1 to 1.5%, B : 0.001 to 0.020%, with the balance being substantially composed of Fe.
[0009]
Japanese Patent Application Laid-Open No. 61-119640 discloses a Ni-based heat-resistant alloy that further increases the high-temperature strength and has good hot workability. The composition of the alloy is C: 0.01 to 0.15%, Si: 2.0% or less, Mn: 2.5% or less, Cr: 15-25%, Mo + 1 / 2W: 0.5-5.0%, Ti: 1.5-3.5%, Al: 0.5 ~ 2.5%, B: 0.001 to 0.020%, Fe: 5% or less, the balance being substantially made of Ni.
[0010]
In addition to the above, JP-A-58-34129, JP-A-7-109539, JP-A-7-216482, JP-A-9-279309 and JP-A-11-229059 are known as exhaust valve alloys. Of these, Japanese Patent Laid-Open No. 58-34129 and Japanese Patent Laid-Open No. 7-216482 are insufficient in cost reduction because the Ni balance is still on the expensive side. In JP-A-7-109539, the amount of Ni is suppressed to 49% at the maximum, so that the cost reduction is realized, but it is not fully satisfactory in that the hot workability is low. The reason is considered to be that the amount of Al is high. Japanese Patent Application Laid-Open No. 9-279309 is high in strength, but the high strength is stopped in a short time, the strength is significantly lowered when used at a high temperature for a long time, and the overaging resistance is inferior. Japanese Patent Laid-Open No. 11-229059 also has a weak point that the hot workability is not good because the amount of Al added is high.
[0011]
[Problems to be solved by the invention]
The object of the present invention is to limit the Ni content to 62% at the maximum in the heat-resistant alloy for exhaust valves as a limitation in terms of material cost, and the strength is equal to or higher than that of conventional Ni-based exhaust valve alloys. It is intended to provide a product that maintains its strength even after being secured and used at a high temperature for a long time.
[0012]
[Means for Solving the Problems]
The heat-resistant alloy for exhaust valves having excellent overaging resistance according to the present invention that achieves the above-mentioned object is mass %, C: 0.01 to 0.2%, Si: 1% or less, Mn: 1 %: P: 0.02% or less, S: 0.01% or less, Ni: 30-62%, Cr: 13-20%, W: 0.01-3.0%, Mo: 2% or less, (However, Mo + 0.5W: 1.0-2.5%), Al: 0.7% or more and less than 1.6%, Ti: 1.5-3.0%, Nb: 0.5-1.5 % And B: 0.001 to 0.01%, provided that% Ti /% A1: 1.6 or more and less than 2.0, with the balance being Fe and an inevitable impurity alloy composition.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In addition to the basic alloy components described above, the heat-resistant alloy for exhaust valves of the present invention can be arbitrarily added with one or two or more components belonging to the following four groups.
I) One or two of Mg: 0.001 to 0.03% and Ca: 0.001 to 0.03%
II) Zr: 0.001 to 0.1%
III) Cu: 2.0% or less
IV) V: 0.05 to 1.0%
[0014]
The action of the alloy components constituting the heat-resistant alloy for exhaust valves of the present invention and the reason for limiting the composition range as described above are shown for both essential components and optional components as follows.
[0015]
C: 0.01 to 0.2%
C combines with Cr and Ti, Nb, and Ta to form a carbide, thereby increasing the high temperature strength of the base material. In order to obtain this effect, the presence of 0.01% or more of C is necessary. However, if the amount is too large, the amount of carbide generated becomes too large, resulting in poor hot / cold workability and toughness. Therefore, the upper limit was made 0.2%.
[0016]
Si: 1.0% or less Si is an element added as a deoxidizing agent during dissolution and scouring, and adding a small amount that is effective as a deoxidizing agent is not a problem, but adding a large amount reduces toughness and workability. Therefore, stop at 1.0% or less.
[0017]
Mn: 1.0% or less Mn also acts as a deoxidizer, similar to Si. Although it may be added as necessary, if it is added in a large amount, the workability and high-temperature oxidation properties are impaired, so an addition amount of 1.0% or less is also selected.
[0018]
Ni: 30-62%
Ni is an element that makes the matrix austenite, and is an important component for the alloy in order to secure heat resistance and corrosion resistance and also to form γ ′ as a precipitation strengthening phase. When the amount of Ni is less than 30%, strength and phase stability are insufficient, and hot workability is low. Since the addition of a large amount causes an increase in cost, the upper limit value is set to 62% in advance as described above. In view of the balance between the performance of the alloy and the cost, a preferable range is 30 to 54%, and a more preferable range is 35 to 54%.
[0020]
Cr: 13-20%
Cr is an element necessary for ensuring the heat resistance of the alloy, and at least 13% is required. However, if added over 20%, the σ phase precipitates and the toughness decreases and the high temperature strength decreases. Preferably it is 18% or less.
[0021]
Al: 0.7% or more and less than 1.6% Al is an important element in that it combines with Ni to form a γ 'phase. If it is less than 0.7%, the precipitation of the γ 'phase is insufficient, and high-temperature strength cannot be ensured. If it is 1.6% or more, hot workability deteriorates.
[0022]
Ti: 1.5-3.0%
Ti combines with Al, Nb and Ta together with Ni to form a γ 'phase effective for improving the high temperature strength. If the content is less than 1.5%, the solid solution temperature of γ ′ decreases, and sufficient high-temperature strength cannot be obtained. On the other hand, if excessively added beyond 3.0%, on the workability is decreased, eta phase (Ni 3 Ti) is easily precipitated, the high-temperature strength and toughness is reduced.
[0023]
W: 0.01-3.0%
W has an action of improving the high temperature strength of the alloy by solid solution strengthening, and in order to exert the effect, it is preferable to add an appropriate amount of 0.01% or more. If too much is added, the cost increases and the workability decreases, so an addition amount within the limit of 3.0% is selected.
[0024]
Mo: 2.0% or less, provided that Mo + 0.5W: 1.0 to 2.5%
Mo, like W, has the effect of improving the high temperature strength of the alloy by solid solution strengthening, and an appropriate amount may be added. As is well known, when Mo and W are used in combination, the Mo equivalent, that is, the value of (Mo + 0.5W) is a problem. To obtain the above effect, the Mo equivalent is set to 1 It is preferable to add 0.0% or more. Mo is also expensive, and adding a large amount causes an increase in cost and lowers workability, so an addition amount within 2.0% is selected. The upper limit as Mo equivalent is 2.5%.
[0025]
Nb: 0.5 to 1.5%, preferably 0.6 to 1.5%
Nb is a γ ′ phase forming element, and acts to further increase the strength of the alloy by forming γ ′. In order to obtain this effect, it is necessary to add 0.5% or more, preferably 0.6% or more of Nb. On the other hand, excessive addition should be avoided because it reduces toughness, and 1.5% is the upper limit based on this reason. Part of Nb can be replaced with Ta, which performs the same function. Therefore, the above range of Nb content should be understood as that of Nb + Ta.
[0026]
B: 0.001 to 0.01%
B contributes to the improvement of hot workability, suppresses the formation of the η phase, prevents the high temperature strength and toughness from decreasing, and further increases the high temperature creep strength. This effect can be obtained with addition of a small amount of 0.001%, but addition over 0.01% is excessive, and lowers the melting point of the base material to impair hot workability.
[0027]
% Ti /% Al: 1.6 or more and less than 2.0 The strength of this type of alloy is due to age hardening by uniformly and finely precipitating γ ′. It was found that the amount of γ ′ precipitated at this time and the phase stability thereof are governed by the Ti / A1 ratio. That is, when this value is 2.0 or more, γ ′ becomes unstable, the η phase is precipitated, and the strength is lowered. This is an overaging phenomenon. In order to avoid precipitation of the η phase and obtain overaging resistance, this ratio must be kept below 2.0. On the other hand, if this ratio is too low and falls below 1.6, the initial strength of the alloy is low, which is not preferable.
[0028]
P: 0.02% or less, S: 0.01% or less Since this alloy limited the amount of Ni, the hot workable range is narrow. Therefore, the alloy should be designed in such a direction that the hot workability is increased as much as possible. Both P and S are inevitable impurities, but both are elements that deteriorate the hot workability, so the lower the abundance, the better. Both of the above numbers are acceptable limits.
[0029]
One or two of Mg: 0.001 to 0.03% and Ca: 0.001 to 0.03% Mg and Ca are elements having a deoxidation / desulfurization action, and increase the cleanliness of steel. It also segregates at the grain boundaries and strengthens the grain boundaries. Both of these effects can be obtained by adding a small amount of 0.001%. On the other hand, since a large amount of addition deteriorates hot workability, the upper limit is set to 0.03% for both.
[0030]
Zr: 0.001 to 0.1%
Zr, like B, has the effect of increasing the creep strength, and is effective when added in an amount of 0.001% or more. An addition amount exceeding 0.1% causes a decrease in toughness.
[0031]
Cu: 2.0% or less In a diesel engine, sulfuric acid corrosion due to S contained in the fuel may be a problem. The presence of Cu is significant depending on the application of the valve in that it provides resistance to sulfuric acid corrosion. In addition, it contributes to the improvement of oxidation resistance. If too much is added, the hot workability decreases, so an addition amount within 2.0% is selected.
[0032]
V: 0.05-1.0%
V, like Mo and W, is effective as a solid solution strengthening element. In addition, there is an effect of forming MC type carbide and stabilizing the carbide. Therefore, 0.05% or more should be added. Excessive addition exceeding 1.0% reduces toughness.
[0033]
【Example】
Heat-resistant alloys for exhaust valves having the alloy compositions shown in Table 1 (Examples) and Table 2 (Comparative Examples) were melted and cast in a 50 kg high-frequency induction furnace. Comparative Alloys 1 and 2 are the materials disclosed in JP-A-60-46343 and JP-A-60-211028, Comparative Alloy 3 is the material disclosed in JP-A-58-34129, and Comparative Alloy 4 is a material disclosed in JP-A-9-279309. It is. The obtained ingot was forged and rolled into a round bar having a diameter of 16 mm. Each round bar was subjected to a solid solution treatment of 1050 ° C. × 1 hour → water cooling and an aging treatment of 750 ° C. × 4 hours → air cooling.
[0034]
Using the obtained material, a normal temperature tensile test, a high temperature high speed tensile test, a Rockwell hardness measurement, a high temperature tensile test, and a rotating bending fatigue test were performed, and Table 3 (Example) and Table 4 (Comparative Example) The result was obtained. The test method is as follows.
[Normal temperature tensile test]
The method of JIS Z 2241 was followed.
[High temperature high speed tensile test]
In the temperature range of 800 to 1250 ° C., the tensile speed was 50 mm / sec at intervals of 50 ° C. As a measure of hot workability, the temperature range at which a drawing of 60% or more was obtained was recorded.
[0035]
Separately, a Rockwell hardness measurement and a rotating bending fatigue test were performed using a material subjected to an aging treatment of 800 ° C. × 400 hours → air cooling. The results are shown in Table 5 (Example) and Table 6 (Comparative Example).
[0036]
Figure 0003951943
[0037]
Figure 0003951943
[0038]
Table 3 Grade 1 (Example)
Figure 0003951943
[0039]
Table 4 Grade 1 (comparative example)
Figure 0003951943
[0040]
Table 5 Grade 2 (Example)
Figure 0003951943
[0041]
Table 6 Grade 2 (comparative example)
Figure 0003951943
[0042]
Looking at the results listed in Tables 3-6, Examples A to H according to the present invention are all good in the properties tested and are realized in a favorable balance, but out of the scope of the present invention. Comparative Examples 1 to 5 include some problems. Comparative Example 1 has poor workability at high temperatures. Although the comparative example 2 has a high initial strength (room temperature strength) despite the low Ti / Al ratio, the reason is that the Mo equivalent is high, but instead, the hardness is too high and hot processing is performed. The nature is low. Comparative Example 3 has low hot workability. Comparative Example 4 has insufficient fatigue strength. In Comparative Example 5, the hardness is insufficient and the initial strength is low.
[0043]
As a practical characteristic of the exhaust valve material, ease of forging is important. Specifically, it is required that the temperature range for forging is wide, and the temperature range for giving a drawing of 60% or more in a high-temperature high-speed tensile test is 250 ° C. or more. When this temperature range is seen, in the Example of this invention, although it is 250-300 degreeC, a comparative example is narrower than it. The comparative example 2 is particularly narrow (175 ° C.) because the Mo equivalent is as high as 3.5%. As pointed out above, Comparative Example 4 that satisfies the temperature range of 250 ° C. or higher has insufficient strength.
[0044]
【The invention's effect】
The heat-resistant alloy for exhaust valves of the present invention can be manufactured at a low price by limiting the Ni content to a maximum of 62% in advance. Nevertheless, as the above example data shows, it has higher strength than conventional alloys containing the same or higher amounts of Ni. The problem of overaging in the prior art has been solved as a result of selecting the Ti / Al ratio in the low region in the present invention. A good hot workability is also a feature of the alloy of the present invention. This is given by the alloy composition in which the value of Mo + 0.5 W can be kept low, and thus the amount of Fe advantageous for workability can be increased.
[0045]
As mentioned at the outset, this alloy is suitable as an exhaust valve material for gasoline engines and diesel engines, but it can be used in various applications that require similar physical properties, namely hot workability, overaging resistance and high strength. It is also a useful material.

Claims (5)

質量%で、C:0.01〜0.2%、Si:1%以下、Mn:1%以下、Ni:30〜62%、Cr:13〜20%、W:0.01〜3.0%、Mo:2%以下、(ただし、Mo+0.5W:1.0〜2.5%)、Al:0.7%以上1.6%未満、Ti:1.5〜3.0%、(ただし、%Ti/%A1:1.6以上2.0未満)、Nb:0.5〜1.5%、およびB:0.001〜0.01%を含有し、P:0.02%以下、S:0.01%以下であって、残部がFeおよび不可避的不純物からなる合金組成を有する、耐過時効特性にすぐれた高強度の排気バルブ用耐熱合金。 In mass %, C: 0.01 to 0.2%, Si: 1% or less, Mn: 1% or less, Ni: 30 to 62%, Cr: 13 to 20%, W: 0.01 to 3.0 %, Mo: 2% or less (However, Mo + 0.5W: 1.0-2.5%), Al: 0.7% or more and less than 1.6%, Ti: 1.5-3.0%, ( However,% Ti /% A1: 1.6 or more and less than 2.0), Nb: 0.5 to 1.5%, and B: 0.001 to 0.01%, P: 0.02% Hereinafter, S: 0.01% or less, a high-strength heat-resistant alloy for exhaust valves having an excellent overaging resistance and having an alloy composition comprising Fe and inevitable impurities as the balance. 請求項1に記載の合金成分に加え、Mg:0.001〜0.03%、Ca:0.001〜0.03%およびZr:0.001〜0.1%の1種または2種以上を含有する耐過時効特性にすぐれた高強度の排気バルブ用耐熱合金。  In addition to the alloy components according to claim 1, one or more of Mg: 0.001-0.03%, Ca: 0.001-0.03% and Zr: 0.001-0.1% A high-strength heat-resistant alloy for exhaust valves with excellent overaging resistance. 請求項1または2に記載の合金成分に加え、Cu:2.0%以下を含有する耐過時効特性にすぐれた高強度の排気バルブ用耐熱合金。A high-strength heat-resistant alloy for exhaust valves with excellent overaging resistance, containing Cu: 2.0% or less in addition to the alloy components according to claim 1 or 2 . 請求項1ないし3のいずれかに記載の合金成分に加え、V:0.05〜1.0%を含有する耐過時効特性にすぐれた高強度の排気バルブ用耐熱合金。A high-strength heat-resistant alloy for exhaust valves having excellent overaging resistance and containing V: 0.05 to 1.0% in addition to the alloy components according to any one of claims 1 to 3 . Nbの全部または一部をTaで置き換えた合金組成を有する請求項1ないしのいずれかの排気バルブ用耐熱合金。The heat-resistant alloy for exhaust valves according to any one of claims 1 to 4 , having an alloy composition in which all or part of Nb is replaced with Ta.
JP2003073822A 2003-03-18 2003-03-18 High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics Expired - Lifetime JP3951943B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003073822A JP3951943B2 (en) 2003-03-18 2003-03-18 High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
EP04006427A EP1464718A1 (en) 2003-03-18 2004-03-17 High-strength, heat-resistant alloy for exhaust valves with improved overaging-resistance
US10/803,054 US20040184946A1 (en) 2003-03-18 2004-03-18 High-strength, heat-resistant alloy for exhaust valves with improved overaging-resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003073822A JP3951943B2 (en) 2003-03-18 2003-03-18 High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics

Publications (2)

Publication Number Publication Date
JP2004277860A JP2004277860A (en) 2004-10-07
JP3951943B2 true JP3951943B2 (en) 2007-08-01

Family

ID=32844569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003073822A Expired - Lifetime JP3951943B2 (en) 2003-03-18 2003-03-18 High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics

Country Status (3)

Country Link
US (1) US20040184946A1 (en)
EP (1) EP1464718A1 (en)
JP (1) JP3951943B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651575B2 (en) 2006-07-07 2010-01-26 Eaton Corporation Wear resistant high temperature alloy
JP4839388B2 (en) * 2009-03-31 2011-12-21 株式会社日立製作所 Welding material and welding rotor
US20110236247A1 (en) * 2010-03-25 2011-09-29 Daido Tokushuko Kabushiki Kaisha Heat resistant steel for exhaust valve
US20120051963A1 (en) * 2010-08-30 2012-03-01 General Electric Company Nickel-iron-base alloy and process of forming a nickel-iron-base alloy
JP5788360B2 (en) 2011-08-24 2015-09-30 大同特殊鋼株式会社 Heat-resistant steel for exhaust valves
CN103451559B (en) * 2012-05-31 2016-02-24 宝钢特钢有限公司 A kind of alloy material for gas valve and manufacture method thereof
DE102014001329B4 (en) 2014-02-04 2016-04-28 VDM Metals GmbH Use of a thermosetting nickel-chromium-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
DE102014001330B4 (en) * 2014-02-04 2016-05-12 VDM Metals GmbH Curing nickel-chromium-cobalt-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
DE102014001328B4 (en) * 2014-02-04 2016-04-21 VDM Metals GmbH Curing nickel-chromium-iron-titanium-aluminum alloy with good wear resistance, creep resistance, corrosion resistance and processability
CN104630597B (en) * 2015-01-27 2018-02-02 宝钢特钢有限公司 A kind of iron nickel and chromium high temperature alloy and its manufacture method
US11471929B2 (en) 2015-12-18 2022-10-18 Hitachi Metals, Ltd. Metal gasket and production method therefor
CN108193142B (en) * 2017-12-26 2019-10-25 钢铁研究总院 A kind of high hardness alloy air valve and preparation method thereof
CN109609858B (en) * 2018-12-31 2020-10-23 博众优浦(常熟)汽车部件科技有限公司 Production process of motor shell for automobile
JP7330132B2 (en) * 2020-04-09 2023-08-21 本田技研工業株式会社 Seal member and manufacturing method thereof
EP4278022A1 (en) * 2021-01-13 2023-11-22 Huntington Alloys Corporation High strength thermally stable nickel-base alloys
CN115707788A (en) * 2021-08-19 2023-02-21 大同特殊钢株式会社 Heat-resistant alloy material and elastic member obtained by processing and forming the same
CN113881904B (en) * 2021-10-11 2023-03-17 四川三鑫南蕾气门座制造有限公司 Chromium alloy for engine valve seat ring and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834129A (en) * 1981-08-21 1983-02-28 Daido Steel Co Ltd Heat-resistant metallic material
JPS6013020A (en) * 1983-07-05 1985-01-23 Daido Steel Co Ltd Heat treating method of heat resistant alloy
JPS6013050A (en) * 1983-07-05 1985-01-23 Daido Steel Co Ltd Heat-resistant alloy
JPS61119640A (en) * 1984-11-16 1986-06-06 Honda Motor Co Ltd Alloy for exhaust valve
JP3058794B2 (en) * 1993-08-19 2000-07-04 日立金属株式会社 Fe-Ni-Cr based super heat resistant alloy, knit mesh for engine valve and exhaust gas catalyst
JPH09279309A (en) * 1996-04-12 1997-10-28 Daido Steel Co Ltd Iron-chrome-nickel heat resistant alloy
JP4203609B2 (en) * 1997-02-07 2009-01-07 大同特殊鋼株式会社 Exhaust valve manufacturing method
JPH11199987A (en) * 1997-11-10 1999-07-27 Hitachi Metals Ltd Heat resistant alloy suitable for cold working
JP2001158943A (en) * 1999-12-01 2001-06-12 Daido Steel Co Ltd Heat resistant bolt
JP4277113B2 (en) * 2002-02-27 2009-06-10 大同特殊鋼株式会社 Ni-base alloy for heat-resistant springs

Also Published As

Publication number Publication date
US20040184946A1 (en) 2004-09-23
EP1464718A1 (en) 2004-10-06
JP2004277860A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JP4830466B2 (en) Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys
CN104278175B (en) The Ni base superalloys for capableing of warm and hot forging of having excellent high-temperature strength
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
EP0639654B1 (en) Fe-Ni-Cr-base super alloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
JP3308090B2 (en) Fe-based super heat-resistant alloy
US5660938A (en) Fe-Ni-Cr-base superalloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
JPH09279309A (en) Iron-chrome-nickel heat resistant alloy
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP4972972B2 (en) Ni-based alloy
JP2963842B2 (en) Alloy for exhaust valve
JP4830443B2 (en) Heat-resistant alloy for exhaust valves with excellent strength characteristics at high temperatures
JPS60211028A (en) Alloy for exhaust valve
US9745649B2 (en) Heat-resisting steel for exhaust valves
JP3412234B2 (en) Alloy for exhaust valve
JP3073754B2 (en) Heat resistant steel for engine valves
JPS61238942A (en) Heat resisting alloy
JP4057208B2 (en) Fe-base heat-resistant alloy for engine valves with good cold workability and high-temperature strength
JP3744084B2 (en) Heat-resistant alloy with excellent cold workability and overaging characteristics
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JP2000204449A (en) Iron base superalloy excellent in cold workability and high temperature thermal stability
JP2004190060A (en) Heat-resistant alloy for engine valve
JP2001158943A (en) Heat resistant bolt
JPH11117019A (en) Production of heat resistant parts
JPH11199987A (en) Heat resistant alloy suitable for cold working
JP3216837B2 (en) Iron-based super heat-resistant alloy for heat-resistant bolts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070416

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3951943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term