JP3073754B2 - Heat resistant steel for engine valves - Google Patents

Heat resistant steel for engine valves

Info

Publication number
JP3073754B2
JP3073754B2 JP02071110A JP7111090A JP3073754B2 JP 3073754 B2 JP3073754 B2 JP 3073754B2 JP 02071110 A JP02071110 A JP 02071110A JP 7111090 A JP7111090 A JP 7111090A JP 3073754 B2 JP3073754 B2 JP 3073754B2
Authority
JP
Japan
Prior art keywords
steel
strength
present
less
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02071110A
Other languages
Japanese (ja)
Other versions
JPH03166342A (en
Inventor
光司 佐藤
力蔵 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP02071110A priority Critical patent/JP3073754B2/en
Priority to US07/559,334 priority patent/US5064610A/en
Priority to EP90114689A priority patent/EP0411569B1/en
Priority to DE69007201T priority patent/DE69007201T2/en
Publication of JPH03166342A publication Critical patent/JPH03166342A/en
Application granted granted Critical
Publication of JP3073754B2 publication Critical patent/JP3073754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車等の内燃機関に用いられるエンジン
バルブ用耐熱鋼に関するものである。
Description: TECHNICAL FIELD The present invention relates to heat-resistant steel for an engine valve used in an internal combustion engine of an automobile or the like.

〔従来の技術〕[Conventional technology]

従来、排気バルブ鋼には、高温強度、ガソリン中に含
まれる鉛や硫黄に対する耐食性、および耐酸化性が適度
に優れ、しかも安価な利点を有する高Mn系耐熱鋼として
知られる21−4N鋼(0.55C−0.2Si−9Mn−4Ni−21Cr−0.
4N)が広く用いられてきた。しかし、近年、ガソリンエ
ンジンの高効率、高出力化による燃焼温度の上昇に伴
い、21−4N鋼より、さらに高温強度の優れたバルブ用耐
熱鋼に対する要求が高まり、これまでに、いくつかの鋼
が提案されている(特公昭61−20623号、特開昭60−779
64号、特開昭59−211557号、特開昭63−89645号、特開
平1−79351号。) 〔発明が解決しようとする課題〕 21−4N鋼の高温強度改良を目的とした、上述の鋼は、
いずれも21−4N鋼と比較してC量が高く、またV、Nb、
Mo、W等の合金元素の添加量を増加させているものであ
る。高温強度の向上には、これらの添加元素を基地に固
溶させた状態、あるいは微細な炭化物として析出強化さ
せた状態が望ましいので、これらの合金元素の粗大炭化
物の存在は好ましくない。そこで、これらの改良鋼は、
目的とする強度を得るため、通常行なわれている21−4N
鋼の溶体化処理温度である1050℃よりも高い1100〜1150
℃の固溶化処理を実施しなければならない。
Conventionally, exhaust valve steels include 21-4N steel (known as high-Mn heat-resistant steel, which has moderately high temperature strength, corrosion resistance to lead and sulfur contained in gasoline, and oxidation resistance, and has the advantage of low cost. 0.55C-0.2Si-9Mn-4Ni-21Cr-0.
4N) has been widely used. However, in recent years, with the increase in combustion temperature due to the high efficiency and high output of gasoline engines, the demand for heat-resistant steel for valves with even higher high-temperature strength than that of 21-4N steel has increased. (JP-B-61-20623, JP-A-60-779)
No. 64, JP-A-59-211557, JP-A-63-89645 and JP-A-1-79351. [Problems to be Solved by the Invention] The above-mentioned steels for the purpose of improving the high-temperature strength of 21-4N steel,
In each case, the C content is higher than that of 21-4N steel, and V, Nb,
The amount of addition of alloying elements such as Mo and W is increased. In order to improve the high-temperature strength, a state in which these additional elements are dissolved in a matrix in a matrix or a state in which the elements are precipitated and strengthened as fine carbides is desirable. Therefore, the presence of coarse carbides of these alloy elements is not preferable. Therefore, these improved steels
21-4N which is usually used to obtain the desired strength
1100-1150 higher than the solution heat treatment temperature of steel, 1050 ° C
A solution treatment at ℃ must be performed.

このような固溶化処理温度の高温化は、エンジンバル
ブの製造の観点からは消費熱量の増加、炉体の損傷、場
合によっては既存設備の改良を必要とし、製品のコスト
高につながるので、従来の1050℃付近の固溶化処理温度
でも十分な高温強度が得られる鋼が待ち望まれていた。
Such an increase in the solution treatment temperature requires an increase in heat consumption, damage to the furnace body and, in some cases, the need to improve existing equipment from the viewpoint of engine valve manufacturing, and leads to higher product costs. It has been desired to obtain a steel capable of obtaining sufficient high-temperature strength even at a solution treatment temperature of around 1050 ° C.

また、上記改良鋼は、高温強度の向上を図るために、
V、Nb等の耐酸化性に対し有害な元素を多く含むため、
21−4N鋼よりも耐酸化性が低下してしまう欠点があっ
た。
In addition, the above-mentioned improved steel, in order to improve the high-temperature strength,
Because it contains many elements harmful to oxidation resistance, such as V and Nb,
Oxidation resistance is lower than that of 21-4N steel.

21−4N鋼の既存の改良鋼の欠点を以下に述べる。特公
昭61−20623号に示される鋼はV、Nbを多く含むために
耐酸化性が21−4Nより劣化してしまう欠点があった。特
開昭60−77964号に示される合金もやはり、V、Nbの添
加量が多いために、耐酸化性が不十分で、またCの添加
量が多いために、固溶化処理を高温で行なった場合に
は、強度が出るものの、21−4N鋼と同じ固溶化処理温度
では、粗大な一次炭化物を十分に固溶することができ
ず、強度が低下してしまうという問題があった。
The disadvantages of the existing improved steel of 21-4N steel are described below. The steel disclosed in Japanese Examined Patent Publication No. 61-20623 has a disadvantage that its oxidation resistance is lower than that of 21-4N because it contains a lot of V and Nb. The alloy disclosed in Japanese Patent Application Laid-Open No. Sho 60-77964 also has an insufficient oxidation resistance because of the large amounts of V and Nb added, and a solution treatment at a high temperature because of the large amount of C added. In such a case, although the strength is obtained, there is a problem that at the same solution treatment temperature as that of the 21-4N steel, the coarse primary carbide cannot be sufficiently dissolved to form a solid solution, and the strength is reduced.

特開昭59−211557号に示される鋼もやはりVが必須添
加され、耐酸化性に問題がある。また、CとNはともに
炭窒化物をつくる目的で添加されているが、実施例中に
はNの添加量が示されてなく、とりわけCの含有量は、
0.65〜0.72%と高く、やはり低温の固溶化処理では、一
次炭化物が十分固溶することができず、高温強度が不足
してしまう。
The steel disclosed in JP-A-59-211557 also contains V as an essential component and has a problem in oxidation resistance. Further, both C and N are added for the purpose of forming carbonitrides, but the amount of N added is not shown in Examples, and particularly, the content of C is
In the solution treatment at a low temperature, which is as high as 0.65 to 0.72%, the primary carbides cannot be sufficiently dissolved to form a solid solution, and the high-temperature strength is insufficient.

特開昭63−89645号や特開平1−79351号に示される鋼
もやはりCが高く、低温の固溶化処理では強度が出ない
という問題があり、さらに固溶強化元素として、Moおよ
びWの作用効果が十分発揮されない難点があった。
The steels disclosed in JP-A-63-89645 and JP-A-1-79351 also have a problem that the C is high and the strength is not obtained by a solution treatment at a low temperature, and furthermore, Mo and W are used as solid solution strengthening elements. There was a drawback that the function and effect were not sufficiently exhibited.

本発明の目的は、従来用いられている21−4N鋼と同程
度の固溶化処理温度で熱処理できて、優れた高温強度と
21−4N鋼並みの耐食性、耐酸化性を兼備するエンジンバ
ルブ用耐熱鋼を提供することである。
An object of the present invention is to provide a heat treatment at a solution treatment temperature comparable to that of a conventionally used 21-4N steel, to provide excellent high-temperature strength and
An object of the present invention is to provide a heat-resistant steel for an engine valve having the same corrosion resistance and oxidation resistance as 21-4N steel.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者は、上述の問題点を鑑み、エンジンバルブ用
耐熱鋼の強化手段として従来の炭化物の析出強化より
も、むしろ各種元素の固溶強化による強化を試みた。そ
の結果、Cを必要最小限の添加にとどめ、固溶強化元素
として置換型固溶強化元素のうち、耐酸化性の劣化の度
合いが少なく、最もクリープ強度向上に効果のあったW
と侵入型固溶強化元素であるNの相互作用を組合せた強
化機構により、21−4N鋼と同じ従来の低い固溶化熱処理
温度(1050℃付近)において、良好な耐酸化性と高温強
度を兼ね備えた特性を有する鋼を新規に見出したもので
ある。
In view of the above-mentioned problems, the present inventor has tried to strengthen the heat-resistant steel for engine valves by solid solution strengthening of various elements rather than the conventional precipitation strengthening of carbide. As a result, C was added to the minimum necessary amount, and among substitutional solid solution strengthening elements as solid solution strengthening elements, the degree of deterioration of oxidation resistance was small, and W was most effective in improving creep strength.
Combines the interaction of N with the interstitial solid solution strengthening element to provide good oxidation resistance and high temperature strength at the same low solution heat treatment temperature (around 1050 ° C) as conventional 21-4N steel. It has newly discovered steel having the above characteristics.

本発明の耐熱鋼の特徴のひとつは、先に述べた21−4N
鋼の改良鋼と異なり、耐酸化性に対し有害な作用を及ぼ
す元素であるVを添加しない点にある。
One of the features of the heat-resistant steel of the present invention is the above-described 21-4N.
Unlike an improved steel, the point is that V, an element having an adverse effect on oxidation resistance, is not added.

すなわち、本発明のちの第1発明は、質量%で、C0.0
1%以上0.20%未満、Si0.05〜1.0%、Mn7.5〜15.0%、N
iとCoの1種または2種をNi+Coで2.0〜20.0%、Cr15.0
〜25.0%、Mo3.0%以下、W2.0%を越え10.0以下、Nb0.0
1%以上0.50%未満、N0.30%〜0.65%、B0.02%以下、
および不可避の不純物を含み、残部Feの組成の鋼からな
ることを特徴とするエンジンバルブ用耐熱鋼であり、第
3発明はCoの含有量がCo%=(Ni±5)%の範囲である
第1または第2発明に記載のエンジンバルブ用耐熱鋼で
ある。第4発明は大気中において、1000℃で100時間保
持したときの酸化減量が0.15mg/cm2/時間以下であり、
かつ1030〜1070℃の固溶化処理後に時効処理を行なった
鋼が900℃における引張強さで196MPa以上、また900℃に
おける59MPaの応力負荷時のクリープ破断寿命が25時間
以上である第1発明ないし第3発明のいずれかに記載の
エンジンバルブ用耐熱鋼である。
That is, the first invention after the present invention is C0.0
1% or more and less than 0.20%, Si 0.05 to 1.0%, Mn 7.5 to 15.0%, N
One or two of i and Co are Ni + Co 2.0 ~ 20.0%, Cr15.0
~ 25.0%, Mo3.0% or less, W over 2.0% and up to 10.0, Nb0.0
1% or more and less than 0.50%, N 0.30% to 0.65%, B 0.02% or less,
A heat-resistant steel for an engine valve, comprising a steel having a composition of Fe and a balance of Fe containing unavoidable impurities, wherein the Co content is in the range of Co% = (Ni ± 5)%. The heat-resistant steel for an engine valve according to the first or second invention. The fourth invention has an oxidative weight loss of 0.15 mg / cm 2 / hour or less when kept at 1000 ° C. for 100 hours in the atmosphere,
And the steel subjected to the aging treatment after the solution treatment at 1030 to 1070 ° C has a tensile strength at 900 ° C of 196MPa or more, and the creep rupture life under a stress load of 59MPa at 900 ° C of 25 hours or more. The heat-resistant steel for an engine valve according to any one of the third inventions.

〔作用〕[Action]

まず、本発明における数値の限定理由について述べ
る。
First, the reasons for limiting numerical values in the present invention will be described.

Cは極めて強いオーステナイト生成元素で、基地をオ
ーステナイトにし、強度を上げるために必要な元素であ
るので、最低0.01%を必要とする。しかし、C量が増加
するにつれて炭化物の生成量が増加し、0.20%以上にな
ると1050℃前後の低温の固溶化処理温度では、炭化物の
固溶が十分に行なわれず、添加合金元素が基地の強化に
役立たない。また、高温のクリープ強度向上に対して
は、結晶粒が適度な大きさに成長することが望ましく、
このような炭化物の増加は粒成長を抑制し、クリープ強
度に対し有効でない。
C is an extremely strong austenite-forming element, and is an element necessary for turning the matrix into austenite and increasing the strength, so that at least 0.01% is required. However, as the amount of C increases, the amount of carbides increases, and when it exceeds 0.20%, at a low solution treatment temperature of about 1050 ° C., the solid solution of carbides is not sufficiently performed, and the added alloy element strengthens the matrix. Useless. In order to improve the creep strength at high temperatures, it is desirable that the crystal grains grow to an appropriate size,
Such an increase in carbides suppresses grain growth and is ineffective for creep strength.

さらに、過度のCの添加は、本発明鋼の主要強化元素
であるNの固溶度を低下させることになるので、Cの範
囲を0.01〜0.20%未満に限定する。バブル用耐熱鋼にあ
って、C量をこのように低く限定していることは本合金
の1つの大きな特徴である。
Further, excessive addition of C will reduce the solid solubility of N, which is the main strengthening element of the steel of the present invention, so that the range of C is limited to 0.01 to less than 0.20%. One of the great features of the present alloy is that the amount of carbon is limited to such a low level in the heat-resistant steel for bubbles.

Siは、溶解時の脱酸剤、ならびに高温での耐酸化性を
付与するのに有効な元素であり、最低0.05%を必要とす
る。しかし、1.0%を越えるSiは有鉛ガソリン中に含ま
れるPbOの耐食性に対し、有害であり、また、高温強度
に対しても有効でないので、Siの範囲は0.05〜1.0%と
した。
Si is a deoxidizing agent at the time of dissolution and an element effective for imparting oxidation resistance at a high temperature, and requires at least 0.05%. However, Si exceeding 1.0% is harmful to the corrosion resistance of PbO contained in leaded gasoline and is not effective for high-temperature strength. Therefore, the range of Si is set to 0.05 to 1.0%.

Mnは、基地のオーステナイトを安定化させ、高価なN
i、Coの代替元素として作用する。さらに、MnはNとの
組合せで、PbOに対する耐食性の改善に顕著な効果を与
えるため、最低限7.5%必要である。しかし、15.0%を
越えるとCrとの相乗効果で有害なシグマ相を析出しやす
くなるので、Mnは7.5〜15.0%とする。
Mn stabilizes the austenite of the base and increases the cost of N
Acts as an alternative to i and Co. Further, Mn has a remarkable effect of improving the corrosion resistance to PbO in combination with N, so that at least 7.5% is required. However, if it exceeds 15.0%, a harmful sigma phase is likely to be precipitated due to a synergistic effect with Cr, so Mn is set to 7.5 to 15.0%.

Crはバルブ用耐熱鋼の耐食性、耐酸化性向上に不可欠
な元素で、最低15.0%を必要とする。しかし、25%を越
えるとシグマ相が析出しやすくなるのでCrは15.0〜25.0
%に限定する。
Cr is an element indispensable for improving the corrosion resistance and oxidation resistance of heat-resistant steel for valves, and requires at least 15.0%. However, if the content exceeds 25%, the sigma phase is likely to precipitate, so that Cr is 15.0 to 25.0.
%.

NiとCoは基地のオーステナイトを安定化するために必
要な元素であり、強度、耐食性、耐酸化性を保つため
に、NiおよびCoの少なくとも1種は2.0%以上必要であ
る。
Ni and Co are elements necessary for stabilizing austenite of the matrix, and at least one of Ni and Co is required to be 2.0% or more in order to maintain strength, corrosion resistance, and oxidation resistance.

しかし、過度のNiとCoの添加は、本発明鋼の主要強化
元素であるNの固溶度を減ずることと、鋼を高価にする
ことのために、NiとCoの1種または2種をNi+Coで2.0
〜20.0%に限定する。
However, excessive addition of Ni and Co reduces one or two of Ni and Co in order to reduce the solid solubility of N, which is the main strengthening element of the steel of the present invention, and to make the steel expensive. 2.0 with Ni + Co
Limited to ~ 20.0%.

また、本発明鋼においては、NiとCoは単独でも良好な
特性が得られるが、特に両者が重量比でほぼ1:1の割合
で含まれるときに最も強度が高くなることがわかったの
で、望ましくはCo%=(Ni±5)%の範囲内でNiとCoを
ほぼ等量に添加するとよい。
Also, in the steel of the present invention, Ni and Co can obtain good properties even when used alone, but it was found that the strength was highest when both were contained at a weight ratio of approximately 1: 1. Desirably, Ni and Co are added in substantially equal amounts within the range of Co% = (Ni ± 5)%.

Moは、基地に置換型原子として固溶すると同時に一部
が炭化物を形成して高温強度を保つ。しかし、その効果
については次に述べるように、Wの方が明らかに有効に
働くので、Moはかならずしも添加する必要はなく、添加
する場合でも3.0%以下に限定する。
Mo dissolves in the matrix as a substitutional atom, and at the same time, partially forms carbide to maintain high-temperature strength. However, as will be described below, since W works clearly more effectively, it is not always necessary to add Mo. Even when Mo is added, it is limited to 3.0% or less.

WはMoの同族の元素でMoと同様、基地に置換型原子と
して固溶すると同時に、一部が炭化物を生成して高温強
度を保つ。しかし、WはMoの2倍の原子量をもつがゆえ
に、高温における拡散速度が小さく、その結果、クリー
プ破断強度を向上する効果が大きい。また、置換型固溶
強化元素であるWは侵入型固溶強化元素であるNとの相
互作用により、それぞれ単独の添加の場合に比べ、より
一層高温強度向上に役立つ。
W is a homologous element of Mo and, like Mo, forms a solid solution in the matrix as a substitutional atom, and at the same time, partially forms carbide to maintain high-temperature strength. However, since W has twice the atomic weight of Mo, the diffusion rate at high temperatures is low, and as a result, the effect of improving the creep rupture strength is large. Further, W, which is a substitution type solid solution strengthening element, further contributes to improvement in high temperature strength by interaction with N which is an interstitial type solid solution strengthening element, as compared with the case of adding each alone.

以上の理由により、Wは本発明鋼の必須添加元素であ
り、2.0%以下では十分な高温強度が得られず、また、1
0.0%を越えるWの添加は十分な効果をもたらさず、い
たずらに鋼の比重と価格を高めるだけなので、Wは2.0
%を越え10.0%以下に限定する。
For the above reasons, W is an essential additive element of the steel of the present invention, and if it is 2.0% or less, sufficient high-temperature strength cannot be obtained.
Since the addition of W exceeding 0.0% does not bring about a sufficient effect and merely unnecessarily increases the specific gravity and the price of steel, W is 2.0%.
% To not more than 10.0%.

Nbは高温まで安定な微細一次炭化物を生成し、オース
テナイトの結晶粒粗大化を防止して、適度な結晶粒径が
得られ、その結果、良好な高温引張強度と、クリープ破
断強度が得られる。そのために、必要なNb量は0.01%以
上であるが、0.5%以上になると耐酸化性が著しく劣化
するので、Nbの含有量は0.01%以上0.5%未満とする。
Nb forms fine primary carbides that are stable up to high temperatures, prevents austenite from coarsening, and provides an appropriate crystal grain size. As a result, good high-temperature tensile strength and creep rupture strength are obtained. Therefore, the necessary amount of Nb is 0.01% or more, but if it is 0.5% or more, the oxidation resistance is significantly deteriorated. Therefore, the Nb content is made 0.01% or more and less than 0.5%.

NはCと並ぶ強いオーステナイト生成元素であるが、
本発明鋼においてCと異なってNb、Mo、W、Cr等の合金
元素とほとんど化合物を作らず、侵入型固溶強化元素と
して働く。そのために、本発明鋼が目的とする1050℃前
後の溶体化処理温度でも、添加したほぼ全量が基地の固
溶強化に役立ち、上述の置換型固溶強化元素とともに、
高温強度向上に対し非常に有効に働く。このような効果
を付与するために、Nは最低0.30%以上を必要とする
が、本発明鋼の組成範囲では、Nの固溶度は最大0.65%
であるので、Nは0.30〜0.65%に限定する。
N is a strong austenite forming element along with C,
In the steel of the present invention, unlike C, it hardly forms a compound with alloying elements such as Nb, Mo, W, and Cr, and works as an interstitial solid solution strengthening element. Therefore, even at the solution heat treatment temperature of around 1050 ° C., which is the purpose of the steel of the present invention, almost all the added amount is useful for solid solution strengthening of the matrix, and together with the substitutional solid solution strengthening element described above,
Works very effectively to improve high temperature strength. To provide such an effect, N must be at least 0.30% or more, but within the composition range of the steel of the present invention, the solid solubility of N is at most 0.65%.
Therefore, N is limited to 0.30 to 0.65%.

Bは微量添加により、結晶粒界に偏析し、クリープ破
断強度と熱間加工性改善に役立つが、そのために有効な
量は0.02%以下である。
When B is added in a small amount, it segregates at the crystal grain boundaries and contributes to improving the creep rupture strength and hot workability, but the effective amount for that purpose is 0.02% or less.

本発明にかかるエンジンバルブ用耐熱鋼は、上記した
主要元素と、下記に示す不可避の不純物と残部Feから構
成される鉄基の合金である。
The heat-resistant steel for an engine valve according to the present invention is an iron-based alloy composed of the above-mentioned main elements, the following unavoidable impurities, and the balance Fe.

P≦0.04% V≦0.1% Ca≦0.02% S≦0.03% Ta≦0.1% Cu≦0.30% Mg≦0.02 次に、本発明の第3発明の数値限定理由について解説
する。
P ≦ 0.04% V ≦ 0.1% Ca ≦ 0.02% S ≦ 0.03% Ta ≦ 0.1% Cu ≦ 0.30% Mg ≦ 0.02 Next, the reason for the numerical limitation of the third invention of the present invention will be described.

本発明は前記組成の鋼を、溶解精錬後、造塊し、鍛造
または圧延等で所望の形状に成形する。次いで、21−4N
鋼の標準的な溶体化処理温度である1030〜1070℃の温度
範囲で15分〜60分の溶体化処理後、急冷する。そして、
再び加熱して750℃前後にて1〜4時間の時効処理をし
て、使用する。
In the present invention, the steel having the above composition is formed into a desired shape by ingot casting, forging or rolling after melting and refining. Then, 21-4N
After a solution treatment for 15 minutes to 60 minutes in a temperature range of 1030 to 70 ° C. which is a standard solution treatment temperature of steel, the steel is rapidly cooled. And
It is heated again and aged at around 750 ° C for 1 to 4 hours before use.

このようにして得られたエンジンバルブ用耐熱鋼は、
21−4N鋼並みの耐食性、耐酸化性と、特公昭61−20623
号に開示される鋼と同等以上の高温強度とを兼備させる
ために、以下に示す特性を同時に満足することが望まし
い。すなわち、本発明鋼は大気中において、1000℃で10
0時間保持したときの酸化減量が0.15mg/cm2/時間以下で
あり、かつ1030〜1070℃の固溶化処理後に時効処理を行
なった鋼が900℃における引張強さで196MPa以上または9
00℃における59MPaの応力負荷時のクリープ破断寿命が2
5時間以上とする。上記高温特性のうちのひとつでも未
達の場合には、エンジンバルブ用耐熱鋼として不十分な
ため、それぞれの値を0.15mg/cm2/時間以下、196MPa以
上および25時間以上に限定する。
The heat-resistant steel for engine valves obtained in this way is
Corrosion and oxidation resistance comparable to that of 21-4N steel and Japanese Patent Publication No. 61-20623
In order to have high-temperature strength equal to or higher than that of the steel disclosed in the above-mentioned publication, it is desirable to simultaneously satisfy the following characteristics. That is, the steel of the present invention is
Oxidation weight loss after holding for 0 hours is 0.15 mg / cm 2 / hour or less, and steel subjected to aging treatment after solution treatment at 1030 to 1070 ° C. has a tensile strength at 900 ° C. of 196 MPa or more or 9%.
Creep rupture life under stress of 59MPa at 00 ℃ is 2
5 hours or more. If at least one of the above-mentioned high-temperature characteristics is not achieved, the value is limited to 0.15 mg / cm 2 / hour or less, 196 MPa or more, and 25 hours or more, because it is insufficient as heat-resistant steel for engine valves.

〔実施例〕〔Example〕

本発明鋼、比較鋼および従来鋼は、大気誘導炉にて溶
製し、10kgのインゴットにした後、1100℃加熱で30mm角
の棒材に鍛伸した。固溶化処理は、1050℃で30分保持
後、空冷とし、さらに750℃で4時間保持後、空冷の時
効処理を行なった。その後、所定の試験片形状に加工
し、実験に供した。各試料の組成を第1表に、また実験
結果を第2表に示す。試料No.1〜5および31〜37は本発
明鋼、No.11,12および41は比較鋼、No.21,22は従来鋼で
ある。従来鋼のうち、No.21は21−4N鋼であり、No.22は
21−4N鋼よりもクリープ破断強度に優れた特公昭61−20
623に記載された高Mn耐熱鋼である。
The steel of the present invention, the comparative steel and the conventional steel were melted in an air induction furnace, made into a 10 kg ingot, and then forged into a 30 mm square bar by heating at 1100 ° C. The solution treatment was carried out by air cooling after holding at 1050 ° C. for 30 minutes and further holding at 750 ° C. for 4 hours, followed by air cooling aging treatment. Then, it processed into a predetermined test piece shape, and was used for the experiment. Table 1 shows the composition of each sample, and Table 2 shows the experimental results. Samples Nos. 1 to 5 and 31 to 37 are steels of the present invention, Nos. 11, 12 and 41 are comparative steels, and Nos. 21 and 22 are conventional steels. Of the conventional steels, No. 21 is a 21-4N steel and No. 22 is
Japanese Patent Publication No. 61-20, superior in creep rupture strength to 21-4N steel
623 is a high Mn heat resistant steel.

本発明鋼はいずれも優れた高温強度と耐食、耐酸化性
を示す。No.1〜5はCが0.15%レベルのもので、No.31
〜37はCが0.05%レベルのものである。No.1〜5を比較
すると、NiとCoを3%ずつ含むNo.2は、それぞれNiとCo
を単独で6%ずつ含むNo.1やNo.5に比べ、900℃の耐
力、引張強さが高く、NiとCoは複合添加した方が効果が
大きい。また、9%Niと6%Coを含むNo.33は、12%Ni
と3%Coを含むNo.35より900℃の耐力、引張強さが高
く、No.33とNo.35を比較してみると、同じ(Ni+Co)の
場合でも、NiとCoの比がより1に近い方が、より高温強
度が高いことがわかる。これらの例から、Co%=(Ni±
5)%を満足すると強度がさらに高くなることがわか
る。
The steels of the present invention all exhibit excellent high-temperature strength, corrosion resistance, and oxidation resistance. Nos. 1 to 5 have a C level of 0.15%, and No. 31
-37 are those where C is at the 0.05% level. Comparing No. 1-5, No. 2 containing 3% each of Ni and Co is Ni and Co respectively.
No. 1 and No. 5 containing 6% each alone, have higher proof stress and tensile strength at 900 ° C., and the effect of adding Ni and Co in combination is greater. No. 33 containing 9% Ni and 6% Co is 12% Ni
No.35 containing No.3 and 3% Co has higher proof stress and tensile strength at 900 ℃ than No.33. When comparing No.33 and No.35, the ratio of Ni to Co is higher even for the same (Ni + Co). It can be seen that the closer to 1, the higher the high temperature strength. From these examples, Co% = (Ni ±
5) It can be seen that when the percentage is satisfied, the strength is further increased.

また、No.3のようにN量が低くなると高温強度は低下
する傾向にあり、Nは本発明鋼において、重要な役割を
果していることがわかる。No.31,No.32もNo.3と同等の
N量であるが、これらの合金の場合はC量の低下、W当
量の増加によってN低下による強度低下を最小限に留め
ている。
Also, as in the case of No. 3, when the amount of N decreases, the high-temperature strength tends to decrease, which indicates that N plays an important role in the steel of the present invention. No. 31 and No. 32 also have the same amount of N as No. 3, but in these alloys, a decrease in strength due to a decrease in N is minimized by a decrease in the C amount and an increase in the W equivalent.

比較鋼No.12は、本発明鋼のNo.1〜5のMo当量(Mo+1
/2W)=2.2より高いMo量(2.45%)であり、900℃の引
張強度は高いが、900℃のクリープ破断強度が本発明鋼
に比べ劣っている。これは、本発明鋼に含まれるWの効
果であり、Mo単独では、本発明の意図するバルブ材とし
ての良好な特性が得られないことがわかる。またNo.31
とNo.32の比較でもWを一部Moと置換することで、わず
かにクリープ破断寿命が低下することがわかる。さらに
No.36のようにW量が高いほど、クリープ破断寿命は高
くなっていることもわかる。
Comparative steel No. 12 is the Mo equivalent (Mo + 1) of Nos. 1 to 5 of the steel of the present invention.
/2W)=2.2 higher than 2.2 (2.45%). Although the tensile strength at 900 ° C. is high, the creep rupture strength at 900 ° C. is inferior to the steel of the present invention. This is the effect of W contained in the steel of the present invention, and it can be seen that good characteristics as a valve material intended by the present invention cannot be obtained with Mo alone. No.31
And No. 32 also show that the creep rupture life is slightly reduced by partially replacing W with Mo. further
It can also be seen that the creep rupture life is longer as the W amount is higher as in No.36.

比較鋼No.11は、本発明鋼No.1〜5と同等の(C+
N)量ではあるが、本発明鋼に比べCが高く、Nの低い
組成である。この合金No.11には、W、Mo、Crの粗大炭
化物が多く存在し、1050℃の固溶化処理ではこのような
粗大な炭化物は十分に固溶せず、基地の強化に十分役立
たない。また、この粗大炭化物は結晶粒成長を抑制する
ため、クリープ破断寿命が本発明鋼のレベルに比べ半分
以下であった。また、N量が低いため、PbOの腐食減量
値がやや大きくなっている。
Comparative steel No. 11 has the same (C +) as steel Nos. 1 to 5 of the present invention.
N) Although it is an amount, the composition is higher in C and lower in N than the steel of the present invention. This alloy No. 11 contains a large amount of coarse carbides of W, Mo, and Cr. In the solution treatment at 1050 ° C., such coarse carbides do not form a solid solution and do not sufficiently contribute to strengthening the matrix. In addition, since this coarse carbide suppresses crystal grain growth, the creep rupture life was less than half the level of the steel of the present invention. Further, since the N amount is low, the corrosion weight loss value of PbO is slightly large.

比較鋼No.41は、本発明鋼No.2のNb量を高めたもので
あり、高温強度は良好な値が得られるが、耐酸化性が本
発明鋼に比べ、大幅に劣り、Nbの過度の添加は耐酸化性
に対し、有害であることがわかる。
Comparative steel No. 41 is the steel of the present invention No. 2 in which the amount of Nb was increased, and a high temperature strength obtained a good value, but the oxidation resistance was significantly inferior to the steel of the present invention, It can be seen that excessive addition is harmful to the oxidation resistance.

本発明鋼は従来鋼No.21(21−4N鋼)に比べ、900℃の
耐力、引張強さ、クリープ破断強度において大幅な改良
がなされていることがわかる。
It can be seen that the steel of the present invention is significantly improved in proof stress, tensile strength and creep rupture strength at 900 ° C. as compared with the conventional steel No. 21 (21-4N steel).

従来鋼No.22は1050℃の固溶化処理では、900℃のクリ
ープ破断寿命が本発明鋼の半分以下であり、低温の固溶
化処理では十分に鋼No.22の本来の特性が引き出せな
い。また、この鋼には高温強度向上のためにV、Nb等の
耐酸化性に有害な元素が多く含まれ、他の鋼に比べ耐酸
化性が大幅に低下していることがわかる。
The conventional steel No. 22 has a creep rupture life at 900 ° C. of less than half that of the steel of the present invention in the solution treatment at 1050 ° C., and the original properties of the steel No. 22 cannot be sufficiently brought out by the solution treatment at low temperature. Further, it can be seen that this steel contains many elements harmful to oxidation resistance, such as V and Nb, for improving the high-temperature strength, and the oxidation resistance is greatly reduced as compared with other steels.

〔発明の効果〕〔The invention's effect〕

本発明によれば、従来から用いられている21−4N鋼と
同程度の比較的低い固溶化処理温度で熱処理することが
でき、従来の鋼よりも優れた高温強度を有する鋼を提供
することができる。しかも、本発明鋼は耐食、耐酸化性
においても21−4N鋼と同程度の特性を有し、既存の高温
強度改良鋼より優れた耐食、耐酸化性を兼備しているも
のである。したがって、本発明鋼を用いれば、自動車エ
ンジンバルブの使用温度を上昇させることができ、その
結果、高出力、高効率のエンジンが製造可能となる。
According to the present invention, it is possible to provide a steel which can be heat-treated at a relatively low solution treatment temperature comparable to that of a conventionally used 21-4N steel and has a high temperature strength superior to that of a conventional steel. Can be. In addition, the steel of the present invention has the same characteristics as the 21-4N steel in corrosion resistance and oxidation resistance, and has both excellent corrosion resistance and oxidation resistance as compared with existing high-temperature strength improved steel. Therefore, if the steel of the present invention is used, the operating temperature of the automobile engine valve can be raised, and as a result, a high-output, high-efficiency engine can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00-38/60

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】質量%で、C0.01%以上0.20%未満、Si0.0
5〜1.0%、Mn7.5〜15.0%、NiとCoの1種または2種をN
i+Coで2.0〜20.0%、Cr15.0〜25.0%、Mo3.0%以下、W
2.0%を越え10.0以下、Nb0.01%以上0.50%未満、N0.30
%〜0.65%、B0.02%以下、および不可避の不純物を含
み、残部Feの組成の鋼からなることを特徴とするエンジ
ンバルブ用耐熱鋼。
(1) In mass%, C 0.01% or more and less than 0.20%, Si 0.0
5 to 1.0%, Mn 7.5 to 15.0%, one or two of Ni and Co are N
2.0 to 20.0% for i + Co, 15.0 to 25.0% for Cr, 3.0% or less for Mo, W
2.0% or more and 10.0 or less, Nb0.01% or more and less than 0.50%, N0.30
A heat-resistant steel for an engine valve, comprising a steel having a composition of the balance of Fe containing 0.6% to 0.65%, B 0.02% or less, and unavoidable impurities.
【請求項2】Coの含有量がCo%=(Ni±5)%の範囲で
ある請求項1に記載のエンジンバルブ用耐熱鋼。
2. The heat-resistant steel for an engine valve according to claim 1, wherein the content of Co is in the range of Co% = (Ni ± 5)%.
【請求項3】大気中において、1000℃で100時間保持し
たときの酸化減量が0.15mg/cm2/時間以下であり、かつ1
030〜1070℃の固溶化処理後に時効処理を行なった鋼が9
00℃における引張強さで196MPa以上、また900℃におけ
る59MPaの応力負荷時のクリープ破断寿命が25時間以上
である請求項1または2に記載のエンジンバルブ用耐熱
鋼。
3. An oxidative weight loss of 0.15 mg / cm 2 / hour or less when held at 1000 ° C. for 100 hours in the atmosphere;
After the solution treatment at 300-70 ° C, 9
The heat-resistant steel for engine valves according to claim 1 or 2, having a creep rupture life of 25 hours or more under a stress load of 196 MPa or more at 00 ° C and 59 MPa at 900 ° C.
JP02071110A 1989-08-02 1990-03-20 Heat resistant steel for engine valves Expired - Fee Related JP3073754B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP02071110A JP3073754B2 (en) 1989-08-02 1990-03-20 Heat resistant steel for engine valves
US07/559,334 US5064610A (en) 1989-08-02 1990-07-30 Heat resistant steel for use as material of engine valve
EP90114689A EP0411569B1 (en) 1989-08-02 1990-07-31 Heat resistant steel for use as material of engine valve
DE69007201T DE69007201T2 (en) 1989-08-02 1990-07-31 Heat-resistant steel can be used for valves of internal combustion engines.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-200942 1989-08-02
JP20094289 1989-08-02
JP02071110A JP3073754B2 (en) 1989-08-02 1990-03-20 Heat resistant steel for engine valves

Publications (2)

Publication Number Publication Date
JPH03166342A JPH03166342A (en) 1991-07-18
JP3073754B2 true JP3073754B2 (en) 2000-08-07

Family

ID=26412241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02071110A Expired - Fee Related JP3073754B2 (en) 1989-08-02 1990-03-20 Heat resistant steel for engine valves

Country Status (4)

Country Link
US (1) US5064610A (en)
EP (1) EP0411569B1 (en)
JP (1) JP3073754B2 (en)
DE (1) DE69007201T2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2711674B1 (en) * 1993-10-21 1996-01-12 Creusot Loire Austenitic stainless steel with high characteristics having great structural stability and uses.
DE19620914A1 (en) * 1996-05-24 1997-11-27 Trw Deutschland Gmbh Stainless tempered steel for valves in internal combustion engines
US6139598A (en) 1998-11-19 2000-10-31 Eaton Corporation Powdered metal valve seat insert
US20020110476A1 (en) * 2000-12-14 2002-08-15 Maziasz Philip J. Heat and corrosion resistant cast stainless steels with improved high temperature strength and ductility
US6599345B2 (en) 2001-10-02 2003-07-29 Eaton Corporation Powder metal valve guide
US20060005899A1 (en) * 2004-07-08 2006-01-12 Sponzilli John T Steel composition for use in making tillage tools
SG190180A1 (en) 2011-05-26 2013-06-28 United Pipelines Asia Pacific Pte Ltd Austenitic stainless steel
JP5788360B2 (en) * 2011-08-24 2015-09-30 大同特殊鋼株式会社 Heat-resistant steel for exhaust valves
JP5769204B2 (en) * 2012-12-28 2015-08-26 株式会社日本製鋼所 Fe-Ni base alloy having excellent high temperature characteristics and hydrogen embrittlement resistance and method for producing the same
WO2015038406A1 (en) * 2013-09-13 2015-03-19 Eaton Corporation Wear resistant alloy

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB744599A (en) * 1952-05-30 1956-02-08 Armco Int Corp Stainless steel articles for use at high temperatures
FR91296E (en) * 1966-01-13 1968-05-17 Electro Chimie Soc D Improved steels
US3561953A (en) * 1968-03-19 1971-02-09 Toyota Motor Co Ltd Austenitic heat-resisting steel containing nickel, chromium and manganese
JPS5040099B1 (en) * 1971-03-09 1975-12-22
FR2174718B1 (en) * 1972-03-02 1976-06-11 Singer Co
JPS552775A (en) * 1978-06-22 1980-01-10 Hitachi Metals Ltd High manganese heat resistant steel
JPS6034630B2 (en) * 1981-01-22 1985-08-09 セイコーエプソン株式会社 Corrosion resistant alloy for die casting
JPS5921157A (en) * 1982-07-26 1984-02-03 Matsushita Electric Ind Co Ltd Data transmitter
DE3545182A1 (en) * 1985-12-20 1987-06-25 Krupp Gmbh AUSTENITIC, NITROGEN CRNIMOMN STEEL, METHOD FOR THE PRODUCTION THEREOF AND ITS USE
JPS6389645A (en) * 1986-10-01 1988-04-20 Toyota Motor Corp Valve steel
DE3720605A1 (en) * 1987-06-23 1989-01-05 Thompson Gmbh Trw AUSTENITIC STEEL FOR GAS EXCHANGE VALVES OF COMBUSTION ENGINES
JPS6479351A (en) * 1987-09-19 1989-03-24 Toyota Motor Corp Heat-resisting steel for valve

Also Published As

Publication number Publication date
EP0411569B1 (en) 1994-03-09
EP0411569A1 (en) 1991-02-06
DE69007201D1 (en) 1994-04-14
US5064610A (en) 1991-11-12
JPH03166342A (en) 1991-07-18
DE69007201T2 (en) 1994-07-28

Similar Documents

Publication Publication Date Title
JP4277113B2 (en) Ni-base alloy for heat-resistant springs
JP4830466B2 (en) Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys
JP3049767B2 (en) Ti alloy with excellent heat resistance
WO2012026354A1 (en) Co-based alloy
WO2010070949A1 (en) Spheroidal graphite cast iron
JPH0830251B2 (en) High temperature strength ferritic heat resistant steel
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
JP4222705B2 (en) Manufacturing method of high purity high Cr ferritic heat resistant steel and high purity high Cr ferritic heat resistant steel
JP3073754B2 (en) Heat resistant steel for engine valves
JPH083697A (en) Heat resistant steel
JP4972972B2 (en) Ni-based alloy
US20160215373A1 (en) Wear resistant alloy
JP3412234B2 (en) Alloy for exhaust valve
JPH10195587A (en) Spheroidal graphite cast iron and exhaust manifold excellent in intermediate temperature ductility, and production thereof
JPH07268522A (en) Electrode material for spark plug excellent in high temperature strength
JP2000192205A (en) Heat resistant alloy excellent in oxidation resistance
JP3068868B2 (en) Heat resistant steel for engine valves
JP3068867B2 (en) Heat resistant steel for engine valves
JPH07238349A (en) Heat resistant steel
JPH04193932A (en) Heat resistant alloy for engine valve
JPH1036944A (en) Martensitic heat resistant steel
JP3840762B2 (en) Heat resistant steel with excellent cold workability
CN117363955A (en) Multi-type precipitated phase cooperative strengthening heat-resistant alloy and preparation method thereof
JP3492848B2 (en) Exhaust valve steel with excellent high temperature fatigue strength, normal and high temperature corrosion resistance and oxidation resistance
JPS6147900B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees