JP3840762B2 - Heat resistant steel with excellent cold workability - Google Patents

Heat resistant steel with excellent cold workability Download PDF

Info

Publication number
JP3840762B2
JP3840762B2 JP27231797A JP27231797A JP3840762B2 JP 3840762 B2 JP3840762 B2 JP 3840762B2 JP 27231797 A JP27231797 A JP 27231797A JP 27231797 A JP27231797 A JP 27231797A JP 3840762 B2 JP3840762 B2 JP 3840762B2
Authority
JP
Japan
Prior art keywords
less
resistant steel
alloy
heat
heat resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27231797A
Other languages
Japanese (ja)
Other versions
JPH11106871A (en
Inventor
茂紀 植田
俊治 野田
道生 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP27231797A priority Critical patent/JP3840762B2/en
Publication of JPH11106871A publication Critical patent/JPH11106871A/en
Application granted granted Critical
Publication of JP3840762B2 publication Critical patent/JP3840762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、高温強度および耐高温酸化性が高く、かつ冷間加工性がすぐれた耐熱鋼に関する。
【0002】
【従来の技術】
エンジンの部品、タービンの部品、熱交換器や加熱炉の部材、また原子力施設に使用する材料であって、耐熱性と耐食性とを要求されるものには、オーステナイト系耐熱鋼SUH660が多く使用されている。 SUH660の使用上限温度は約700℃であり、これを超える高温では、Ni基超合金であるNCF751およびNCF80Aなどが使用されている。
【0003】
近年、エンジンの高出力化、タービンの熱効率向上がはかられ、その結果として、排ガス温度やスチーム温度が高くなる傾向にある。 このため、従来SUH660を材料としていた部品や部材では、耐熱性が不十分とされる場合が、しばしばみられる。
【0004】
そこで、SUH660を改良して、700℃を超える高温でも使用可能な材料を、コストを高くせずに提供することが要望されている。 また、部品・部材の製作過程でのコストを抑制することを意図して、冷間加工が好んで行なわれる傾向にある。 そこで、SUH660より更に冷間加工性の高い耐熱鋼が求められている。
【0005】
【発明が解決しようとする課題】
本発明の目的は、耐熱鋼に対するこのような要望を満たし、SUH660より耐熱性が高く700℃を超える温度で使用可能であり、かつ冷間加工性がすぐれたものを、コストを高くすることなく提供することにある。
【0006】
【課題を解決するための手段】
上記の冷間加工性のすぐれた耐熱鋼は、基本的な合金組成としては、重量で、C:0.005〜0.20%、Si:2.0%以下、Mn:2.0%以下、Cr:10.0〜25.0%およびNi:20%以上25%未満に加えて、Nb+Ta:1.5%以下、Ti:1.0%以上3.0%未満、Al:0.7〜2.0%およびCu:0.1〜5.0%を含有し、残部がFeおよび不可避的不純物からなる合金組成を有することを特徴とする。
【0007】
【発明の実施の形態】
本発明の耐熱鋼は、上記した基本的な合金成分に加えて、下記のグループのひとつまたはふたつ以上からえらんだ合金成分を、任意に添加することができる。
【0008】
1)W:3.0%以下、Mo:3.0%以下およびV:1.0%以下からえらんだ1種または2種以上。 ただし、0.5W%+Mo%+V%:3以下となるように含有する。
【0009】
2)B:0.001〜0.02%およびZr:0.001〜0.1%の1種または2種。
【0010】
3)CaおよびMgの1種または2種を、2種の場合は合計量で0.001〜0.01%。
【0011】
基本的な合金組成においても、また任意添加成分を含有する合金組成においても、Niの一部をCo:5.0%以下で置き換えることができる。 また、Nb+TaにTiおよびAlを合計した量は、原子%にして、5.2〜7.0が好適である。 いずれの組成の合金においても、不純物は、P:0.05%以下、S:0.01%以下、O:0.01%以下、N:0.01%以下に規制することが好ましい。
【0012】
上述の合金組成を構成する各成分のはたらきと組成範囲の限定理由とを説明すれば、つぎのとおりである。
【0013】
C:0.005〜0.20%
Cは、Ti,Nb,Crと結合して炭化物を形成し、合金の高温強度を高める。この効果は0.005%以上の存在で認められるが、多量になると析出する炭化物の量が過大になって加工性を損ね、耐食性をも低くするので、0.2%を上限とする。
【0014】
Si:2.0%以下
Siは脱酸元素として有用であり、適量の存在は耐酸化性を高くする。 多量に添加すると加工性を低下させ、発明の目的に沿わなくなるので、2.0%以内とする。
【0015】
Mn:2.0%以下
MnはSiと同様に脱酸作用をするが、多量に含有させると合金の加工性および耐酸化性を損なうだけでなく、靱性を害するη相(Ni3Ti)の析出を助長するので、上限値を2.0%とした。
【0016】
Cr:10.0〜25.0%
Crは合金の耐高温酸化性および腐食性を確保する上で必須の成分であり、10%以上の添加を要する。 含有量が25.0%を超えるとオーステナイト相が不安定になり、脆化相であるσ相(FeCr)が析出して合金の靱性が低下する。好ましい範囲は、10〜20%である。
【0017】
Ni:20%以上25%未満
Niは合金の素地であるオーステナイトを形成する元素であって、耐熱性・耐食性を担う。 また、強化相であるγ′相を析出させる上で必須の成分である。このような役割をはたすためには20%以上の添加を必要とする。しかし、Niは比較的高価な原料であるから、あまり多量に加えたくない。そこで、上限を25%までとした。 Niの一部は、Coで置き換えることができる。 Coが加われば強度の点から好ましいが、CoはNiにくらべてなお高価であるから、多量の使用はコスト的に不利になる。 5%の限界は、主としてこの観点から設けた。
【0018】
Nb+Ta:1.5%以下
これらはNiとともに重要な析出相である金属間化合物のγ′(ガンマプライム)相Ni3(Al,Ti,Nb,Ta)を形成する元素であり、このγ′相の析出が合金の高温強度を効果的に高める。 ただしNb+Taの含有量が1.5%をこえるとラーバス相(Fe2Nb)が多量に析出して、合金の靱性が低下する。
【0019】
Ti:1.0〜3.0%未満
Tiは上記Nb+Taおよび下記Alとともに、Niと結合して高温強度を向上させるのに有用な、γ′相を形成する。 含有量が1.0%に達しないとγ′相の固溶温度が低くなるので、少なくともこれ以上の量を添加する。 一方、3.0%以上になると、前記η相(Ni3Ti)が析出して高温強度および靱性を低下させるので、この値を上限とする。 好ましくは、1.5〜2.6%である。
【0020】
Al:0.7〜2.0%
AlもNiと結合して上記γ′相を形成する点で、最も重要な元素である。 Al含有量が0.7%に達しないとγ′相の析出が不十分であり、高温強度が確保できない。 しかし、含有量が2.0%を超えると、合金の熱間加工性が低下する。 そこで、上記の範囲内の添加量をえらぶ。 好ましい範囲は、1.0〜1.8%である。
【0021】
Nb+Ta+Ti+Al:5.2〜7.0原子%
Nb,Ta,TiおよびAlは、上述のように、いずれもγ′相を構成する元素である。 Ni量が十分(前記20%の下限値以上)である場合、γ′相の析出量は、これら元素の含有量の添加に比例する。 そして合金の高温強度は、γ′相の析出量が増大すればそれに応じて高くなる。 本発明の目的とする、700℃以上での高温強度を十分高くする上で、これら元素を合計した量が5.2原子%以上であることが望ましい。 一方、7.0原子%を超えると、強度は依然として増大するものの、熱間加工性の低下というデメリットがあらわれる。 上記好適範囲は、このような理由で選択した。
【0022】
Cu:0.1〜5.0%
Cuはオーステナイト中に固溶して積層欠陥エネルギーを高め、加工硬化を抑制するはたらきがあり、それによって合金の冷間加工性が向上する。 さらにCuは、この合金の高温における酸化被膜の密着性を高める作用があり、これが耐高温酸化性をよくするものと考えられる。 こうした効果は、含有量が0.1%に足らないと得られないから、この値を下限とする。 一方、5%を超えて含有させても、耐高温酸化性はそれ以上高くならない。 多量のCuは熱間加工性を低下させるので、5.0%を上限とした。 好ましい範囲は、0.5〜3.0%である。
【0023】
W:3.0%以下、Mo:3.0%以下、V:1.0%以下、ただし0.5W%+Mo%+V%:3以下
これらの元素の添加は任意であるが、添加すれば固溶強化により高温強度が向上する。 WおよびMoについては3%、Vについては1%を超えて添加しても、効果の増大は望めない。 加えて、コストが高くなり加工性が低下する。 そこで上記の限界を設けた。
【0024】
B:0.001〜0.02%、Zr:0.001〜0.1%
BおよびZrは結晶粒界に偏析して粒界を強化する。 この効果が得られるのは、それぞれの含有量が0.001%以上の領域である。 ただし、Bは0.02%、Zrは0.1%を超えて含有させると熱間加工性が損なわれるため、これらを上限とした。
【0025】
CaおよびMgの1種または2種(2種の場合は合計量で):0.001〜0.01%
これらの元素は、合金の溶製時に脱酸・脱硫剤として添加すれば、合金の熱間加工性の向上に役立つ。 この効果は、添加量が0.001%という微量でも認められるが、0.01%を超えると、かえって熱間加工性を低下させる傾向がある。
【0026】
P:0.05%以下、S:0.01%以下、O:0.01%以下、N:0.01%以下
これらはいずれも不純物であって、PおよびSは合金の熱間加工性を低下させ、またOおよびNは非金属介在物を形成して合金の機械的諸特性を悪くする。 上記の値は、各元素についてこのような影響が実質上あらわれない限界として定めた。
【0027】
【実施例】
〔実施例1〕
表1に示す組成(重量%、残部Fe)の合金各50kgを高周波誘導炉で溶製し、インゴットに鋳造した。 インゴットを1100℃で6時間ソーキングしたのち、1100〜900℃の温度範囲で鍛造、圧延して直径16mmの丸棒とした。この丸棒を、975℃×30分間加熱後油冷の条件で固溶化熱処理した。 熱処理を経た丸棒から、直径15mm、高さ22.5mmの試験片を切り出した。
【0028】

Figure 0003840762
【0029】
各試験片を用いて、室温において端面拘束圧縮試験を行なって、据え込み率を75%としたときの割れの有無をしらべた。 次に、前記の熱処理をした丸棒に対して、さらに750℃×4時間の時効熱処理を行ない、この処理を経た材料から直径10mm、厚さ5.5mmの試験片を切り出した。 それら試験片を対象に、800℃におけるビッカース硬さ(10kgf )を測定した。 別に、直径7mm×長さ15mmの試験片を切り出してアルミナルツボに入れ、大気中で850℃に400時間加熱したのち空冷し、酸化増量を測定した。 それらの結果を表2に示す。
【0030】
Figure 0003840762
【0031】
表2の結果から、本発明の実施例No.1〜11は据え込み率75%における割れの発生が50%未満であり、かつ800℃における高温硬さがHv200以上であることがわかる。 比較例No.1および2は、割れは避けられるが、高温硬さが所期のHv200に達しない。 No.3は高温硬さは高いが、加工性が低い。 また、850℃×400時間の酸化試験では、本発明の合金の酸化増量は比較例にくらべて小さく、耐酸化性がすぐれていることがわかる。
【0032】
〔実施例2〕
表3の合金組成(重量%、P,S,OおよびNはppm、残部Fe)をもつ鋼を溶製し、実施例1と同様に熱処理をして試験片を用意し、据え込み試験、高温硬さの測定および酸化増量の測定を行なった。
【0033】
Figure 0003840762
【0034】
Figure 0003840762
【0035】
【発明の効果】
本発明の耐熱鋼は、既知の耐熱鋼SUH660に対して改善された高温硬さを有し、700℃以上の使用に耐える耐熱性を示すとともに、耐酸化性もすぐれている。 まず高温強度の差は、両者の合金組成とくらべたとき、Nb+Taを適量含有するとともにより多量のAlを含有し、その結果としてNb+Ta+Ti+Alの合計量がより高くなって、十分な量のγ′相の析出をみることによるものと考えられる。 耐酸化性は、Cuの含有やAl量の増大によりもたらされたものであろう。 冷間加工性が高いことも利点であって、これは前述のように、Cuの添加に負うところが多い。
【0036】
このような高い性能を有しながら、本発明の耐熱鋼はNi含有量が低いレベルにあり(SUH660のNi量24〜27%に対し、本発明は20%以上〜25%未満)、材料の価格も低く抑えられる。 これが、冷間加工により部品を製造できて成形工程の費用を抑えられることとあいまって、耐熱部品の製造コストを低減することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat resistant steel having high high temperature strength and high temperature oxidation resistance and excellent cold workability.
[0002]
[Prior art]
Austenitic heat-resistant steel SUH660 is often used for engine parts, turbine parts, heat exchangers and furnace components, and materials used for nuclear facilities that require heat resistance and corrosion resistance. ing. The upper limit temperature of use of SUH660 is about 700 ° C., and at high temperatures exceeding this temperature, Ni-based superalloys such as NCF751 and NCF80A are used.
[0003]
In recent years, engine output and turbine thermal efficiency have been improved, and as a result, exhaust gas temperature and steam temperature tend to increase. For this reason, in the parts and members which used SUH660 conventionally as the material, the heat resistance is often insufficient.
[0004]
Therefore, it is desired to improve the SUH660 and provide a material that can be used even at a high temperature exceeding 700 ° C. without increasing the cost. In addition, cold working tends to be performed with the intention of reducing costs in the process of manufacturing parts / members. Therefore, there is a demand for heat-resistant steel having higher cold workability than SUH660.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to satisfy such a demand for heat-resisting steel, can be used at a temperature higher than SUH660 and higher than 700 ° C., and has excellent cold workability without increasing the cost. It is to provide.
[0006]
[Means for Solving the Problems]
The above heat-resistant steel with excellent cold workability has a basic alloy composition of C: 0.005 to 0.20% by weight, Si: 2.0% or less, Mn: 2.0% or less. Cr: 10.0-25.0% and Ni: 20% or more and less than 25%, Nb + Ta: 1.5% or less, Ti: 1.0% or more and less than 3.0%, Al: 0.7 It is characterized by containing ~ 2.0% and Cu: 0.1-5.0%, with the balance having an alloy composition consisting of Fe and inevitable impurities .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In addition to the basic alloy components described above, the heat resistant steel of the present invention can optionally contain alloy components selected from one or more of the following groups.
[0008]
1) One or more selected from W: 3.0% or less, Mo: 3.0% or less, and V: 1.0% or less. However, it contains so that it may become 0.5 W% + Mo% + V%: 3 or less.
[0009]
2) One or two of B: 0.001 to 0.02% and Zr: 0.001 to 0.1%.
[0010]
3) If one or two of Ca and Mg are used, the total amount is 0.001 to 0.01%.
[0011]
In both the basic alloy composition and the alloy composition containing optional additive components, a part of Ni can be replaced with Co: 5.0% or less. Further, the total amount of Ti and Al in Nb + Ta is preferably atomic percent and is 5.2 to 7.0. In any alloy, impurities are preferably regulated to P: 0.05% or less, S: 0.01% or less, O: 0.01% or less, and N: 0.01% or less.
[0012]
The function of each component constituting the above alloy composition and the reason for limiting the composition range will be described as follows.
[0013]
C: 0.005-0.20%
C combines with Ti, Nb, and Cr to form carbides and increases the high temperature strength of the alloy. This effect is recognized in the presence of 0.005% or more. However, if the amount is too large, the amount of precipitated carbide becomes excessive and the workability is deteriorated and the corrosion resistance is lowered, so 0.2% is made the upper limit.
[0014]
Si: 2.0% or less Si is useful as a deoxidizing element, and the presence of an appropriate amount increases oxidation resistance. If added in a large amount, the processability is lowered and the purpose of the invention is not met.
[0015]
Mn: 2.0% or less Mn deoxidizes in the same manner as Si. However, if contained in a large amount, Mn not only deteriorates the workability and oxidation resistance of the alloy but also impairs the toughness of η phase (Ni 3 Ti) In order to promote precipitation, the upper limit value was set to 2.0%.
[0016]
Cr: 10.0-25.0%
Cr is an essential component for securing the high-temperature oxidation resistance and corrosion resistance of the alloy, and requires addition of 10% or more. When the content exceeds 25.0%, the austenite phase becomes unstable, and the sigma phase (FeCr), which is an embrittlement phase, precipitates and the toughness of the alloy decreases. A preferable range is 10 to 20%.
[0017]
Ni: 20% or more and less than 25% Ni is an element that forms austenite, which is an alloy base, and has heat resistance and corrosion resistance. Further, it is an essential component for precipitating the γ ′ phase, which is a reinforcing phase. In order to fulfill such a role, addition of 20% or more is required. However, since Ni is a relatively expensive raw material, it does not want to be added in a large amount. Therefore, the upper limit is set to 25%. A part of Ni can be replaced with Co. If Co is added, it is preferable from the viewpoint of strength, but since Co is still more expensive than Ni, use of a large amount is disadvantageous in terms of cost. The 5% limit was set mainly from this point of view.
[0018]
Nb + Ta: 1.5% or less These are elements that form a γ ′ (gamma prime) phase Ni 3 (Al, Ti, Nb, Ta) of an intermetallic compound which is an important precipitation phase together with Ni. This γ ′ phase Effectively increases the high temperature strength of the alloy. However, if the content of Nb + Ta exceeds 1.5%, a large amount of Rabas phase (Fe 2 Nb) precipitates and the toughness of the alloy decreases.
[0019]
Ti: Less than 1.0 to 3.0% Ti, together with the Nb + Ta and the following Al, forms a γ 'phase useful for improving the high temperature strength by combining with Ni. If the content does not reach 1.0%, the solid solution temperature of the γ 'phase becomes low, so at least an amount higher than this is added. On the other hand, when the content is 3.0% or more, the η phase (Ni 3 Ti) precipitates and lowers the high-temperature strength and toughness, so this value is the upper limit. Preferably, it is 1.5 to 2.6%.
[0020]
Al: 0.7-2.0%
Al is the most important element in that it combines with Ni to form the γ 'phase. If the Al content does not reach 0.7%, the precipitation of the γ 'phase is insufficient, and high temperature strength cannot be ensured. However, if the content exceeds 2.0%, the hot workability of the alloy decreases. Therefore, the addition amount within the above range is selected. A preferable range is 1.0 to 1.8%.
[0021]
Nb + Ta + Ti + Al: 5.2-7.0 atomic%
As described above, Nb, Ta, Ti, and Al are all elements that constitute the γ ′ phase. When the amount of Ni is sufficient (above the lower limit of 20%), the amount of precipitation of the γ ′ phase is proportional to the addition of the content of these elements. The high-temperature strength of the alloy increases with an increase in the amount of precipitation of the γ ′ phase. In order to sufficiently increase the high-temperature strength at 700 ° C. or higher, which is an object of the present invention, the total amount of these elements is desirably 5.2 atomic% or higher. On the other hand, when it exceeds 7.0 atomic%, although the strength still increases, there is a demerit that the hot workability is lowered. The preferred range was selected for this reason.
[0022]
Cu: 0.1 to 5.0%
Cu dissolves in austenite to increase stacking fault energy and suppress work hardening, thereby improving the cold workability of the alloy. Further, Cu has an effect of improving the adhesion of the oxide film at a high temperature of the alloy, and this is considered to improve the high temperature oxidation resistance. Since such an effect cannot be obtained unless the content is less than 0.1%, this value is set as the lower limit. On the other hand, even if the content exceeds 5%, the high-temperature oxidation resistance does not increase any more. A large amount of Cu reduces hot workability, so 5.0% was made the upper limit. A preferable range is 0.5 to 3.0%.
[0023]
W: 3.0% or less, Mo: 3.0% or less, V: 1.0% or less, but 0.5 W% + Mo% + V%: 3 or less The addition of these elements is optional. High-temperature strength is improved by solid solution strengthening. Even if W and Mo are added over 3% and V is added over 1%, an increase in the effect cannot be expected. In addition, the cost increases and the workability decreases. Therefore, the above limit was set.
[0024]
B: 0.001 to 0.02%, Zr: 0.001 to 0.1%
B and Zr segregate at the grain boundaries and strengthen the grain boundaries. This effect is obtained in a region where each content is 0.001% or more. However, when B is contained in an amount exceeding 0.02% and Zr exceeds 0.1%, the hot workability is impaired.
[0025]
1 type or 2 types of Ca and Mg (in the case of 2 types, it is a total amount): 0.001-0.01%
If these elements are added as a deoxidizing / desulfurizing agent during the melting of the alloy, it is useful for improving the hot workability of the alloy. This effect is observed even when the addition amount is as small as 0.001%, but when it exceeds 0.01%, the hot workability tends to be lowered.
[0026]
P: 0.05% or less, S: 0.01% or less, O: 0.01% or less, N: 0.01% or less These are all impurities, and P and S are hot workability of the alloy. In addition, O and N form non-metallic inclusions and deteriorate the mechanical properties of the alloy. The above values were determined as the limits at which such effects did not appear substantially for each element.
[0027]
【Example】
[Example 1]
50 kg of each alloy having the composition shown in Table 1 (wt%, balance Fe) was melted in a high frequency induction furnace and cast into an ingot. The ingot was soaked at 1100 ° C. for 6 hours, then forged and rolled in a temperature range of 1100 to 900 ° C. to obtain a round bar having a diameter of 16 mm. The round bar was heated at 975 ° C. for 30 minutes and then subjected to solution heat treatment under oil cooling conditions. A test piece having a diameter of 15 mm and a height of 22.5 mm was cut out from the round bar subjected to the heat treatment.
[0028]
Figure 0003840762
[0029]
Using each test piece, an end face constrained compression test was performed at room temperature, and the presence or absence of cracks when the upsetting rate was 75% was examined. Next, the round bar subjected to the above heat treatment was further subjected to an aging heat treatment at 750 ° C. for 4 hours, and a test piece having a diameter of 10 mm and a thickness of 5.5 mm was cut out from the material subjected to this treatment. Vickers hardness (10 kgf) at 800 ° C. was measured for these test pieces. Separately, a test piece having a diameter of 7 mm and a length of 15 mm was cut out, placed in an alumina crucible, heated in the atmosphere at 850 ° C. for 400 hours, and then air-cooled to measure the increase in oxidation. The results are shown in Table 2.
[0030]
Figure 0003840762
[0031]
From the results in Table 2, Example No. 1 to 11 show that the occurrence of cracks at an upsetting rate of 75% is less than 50%, and the high-temperature hardness at 800 ° C. is Hv 200 or more. Comparative Example No. In 1 and 2, cracking is avoided, but the high temperature hardness does not reach the desired Hv200. No. No. 3 has high high temperature hardness but low workability. Further, in the oxidation test at 850 ° C. × 400 hours, it can be seen that the oxidation increase of the alloy of the present invention is smaller than that of the comparative example, and the oxidation resistance is excellent.
[0032]
[Example 2]
Steel having the alloy composition shown in Table 3 (% by weight, P, S, O and N is ppm, balance Fe) is melted and heat-treated in the same manner as in Example 1 to prepare test pieces. High temperature hardness and oxidation gain were measured.
[0033]
Figure 0003840762
[0034]
Figure 0003840762
[0035]
【The invention's effect】
The heat-resistant steel of the present invention has improved high-temperature hardness compared to the known heat-resistant steel SUH660, exhibits heat resistance that can withstand use at 700 ° C. or higher, and also has excellent oxidation resistance. First, the difference in high-temperature strength is that when compared with the alloy composition of both, Nb + Ta is contained in a proper amount and a larger amount of Al, and as a result, the total amount of Nb + Ta + Ti + Al becomes higher, and a sufficient amount of γ ′ phase is obtained. This is thought to be due to the precipitation of slag. The oxidation resistance may have been brought about by the inclusion of Cu or an increase in the amount of Al. High cold workability is also an advantage, and this is often due to the addition of Cu as described above.
[0036]
While having such high performance, the heat resistant steel of the present invention has a low Ni content (the Ni content of SUH660 is 24 to 27%, the present invention is 20% or more to less than 25%), The price is also low. This, combined with being able to manufacture parts by cold working and reducing the cost of the molding process, can reduce the manufacturing cost of heat-resistant parts.

Claims (7)

重量で、C:0.005〜0.20%、Si:2.0%以下、Mn:2.0%以下、Cr:10.0〜25.0%およびNi:20%以上25%未満に加えて、Nb+Ta:1.5%以下、Ti:1.0%以上3.0%未満、Al:0.7〜2.0%およびCu:0.1〜5.0%を含有し、残部がFeおよび不可避的不純物からなる合金組成を有することを特徴とする冷間加工性に優れた耐熱鋼。By weight, C: 0.005 to 0.20%, Si: 2.0% or less, Mn: 2.0% or less, Cr: 10.0 to 25.0%, and Ni: 20% or more and less than 25% In addition, Nb + Ta: 1.5% or less, Ti: 1.0% or more and less than 3.0%, Al: 0.7-2.0% and Cu: 0.1-5.0%, the balance A heat-resistant steel excellent in cold workability, characterized in that has an alloy composition comprising Fe and inevitable impurities . 請求項1に記載の合金成分に加えて、W:3.0%以下、Mo:3.0%以下およびV:1.0%以下の1種または2種以上を、0.5W%+Mo%+V%:3以下の量含有する耐熱鋼。In addition to the alloy components according to claim 1, one or more of W: 3.0% or less, Mo: 3.0% or less, and V: 1.0% or less are added to 0.5 W% + Mo%. + V%: Heat-resistant steel containing an amount of 3 or less. 請求項1または2に記載の合金成分に加えて、B:0.001〜0.02%およびZr:0.001〜0.1%の1種または2種を含有する耐熱鋼。A heat-resisting steel containing one or two of B: 0.001 to 0.02% and Zr: 0.001 to 0.1% in addition to the alloy components according to claim 1 or 2. 請求項1ないし3のいずれかに記載の合金成分に加えて、CaおよびMgの1種または2種(2種の場合は合計量で):0.001〜0.01%を含有する耐熱鋼。In addition to the alloy component according to any one of claims 1 to 3, one or two kinds of Ca and Mg (in the case of two kinds, in a total amount): heat resistant steel containing 0.001 to 0.01% . 請求項1ないし4のいずれかに記載の合金組成をもつ耐熱鋼において、Niの一部をCo:5.0%以下で置き換えた合金組成を有する耐熱鋼。5. A heat resistant steel having an alloy composition according to claim 1, wherein a part of Ni is replaced with Co: 5.0% or less. 請求項1ないし4のいずれかに記載の耐熱鋼において、Nb+Ta+Ti+Al:5.2〜7.0原子%である耐熱鋼。The heat resistant steel according to any one of claims 1 to 4, wherein the heat resistant steel is Nb + Ta + Ti + Al: 5.2 to 7.0 atomic%. 請求項1ないし4のいずれかに記載の耐熱鋼において、P:0.05%以下、S:0.01%以下、O:0.01%以下、かつN:0.01%以下である耐熱鋼。The heat resistant steel according to any one of claims 1 to 4, wherein P: 0.05% or less, S: 0.01% or less, O: 0.01% or less, and N: 0.01% or less. steel.
JP27231797A 1997-10-06 1997-10-06 Heat resistant steel with excellent cold workability Expired - Fee Related JP3840762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27231797A JP3840762B2 (en) 1997-10-06 1997-10-06 Heat resistant steel with excellent cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27231797A JP3840762B2 (en) 1997-10-06 1997-10-06 Heat resistant steel with excellent cold workability

Publications (2)

Publication Number Publication Date
JPH11106871A JPH11106871A (en) 1999-04-20
JP3840762B2 true JP3840762B2 (en) 2006-11-01

Family

ID=17512205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27231797A Expired - Fee Related JP3840762B2 (en) 1997-10-06 1997-10-06 Heat resistant steel with excellent cold workability

Country Status (1)

Country Link
JP (1) JP3840762B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786830B2 (en) * 2012-09-03 2015-09-30 新日鐵住金株式会社 High-strength austenitic stainless steel for high-pressure hydrogen gas
JP5769204B2 (en) * 2012-12-28 2015-08-26 株式会社日本製鋼所 Fe-Ni base alloy having excellent high temperature characteristics and hydrogen embrittlement resistance and method for producing the same

Also Published As

Publication number Publication date
JPH11106871A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
JP4830466B2 (en) Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys
EP0384433B1 (en) Ferritic heat resisting steel having superior high-temperature strength
JPH09279309A (en) Iron-chrome-nickel heat resistant alloy
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
JP2542753B2 (en) Austenitic heat-resistant cast steel exhaust system parts with excellent high-temperature strength
JP4972972B2 (en) Ni-based alloy
JP5272020B2 (en) Heat resistant steel for engine valves with excellent high temperature strength
JP2947913B2 (en) Rotor shaft for high temperature steam turbine and method of manufacturing the same
JP5011622B2 (en) Stainless cast steel with excellent heat resistance and machinability
JP3412234B2 (en) Alloy for exhaust valve
JP3458971B2 (en) Austenitic heat-resistant cast steel with excellent high-temperature strength and machinability, and exhaust system parts made of it
JP5791640B2 (en) Nickel / chromium / cobalt / molybdenum alloy
JP5400140B2 (en) Heat resistant steel for engine valves with excellent high temperature strength
JP3424314B2 (en) Heat resistant steel
JP3840762B2 (en) Heat resistant steel with excellent cold workability
JPH05179378A (en) Ni-base alloy excellent in room temperature and high temperature strength
JP3744084B2 (en) Heat-resistant alloy with excellent cold workability and overaging characteristics
JPH06228713A (en) Austenitic heat resistant cast steel excellent in strength at high temperature and machinability and exhaust system parts using same
JPH07228950A (en) Austenitic heat resistant cast steel, excellent in strength at high temperature and machinability, and exhaust system parts made of the same
JP3744083B2 (en) Heat-resistant alloy with excellent cold workability
JP6745050B2 (en) Ni-based alloy and heat-resistant plate material using the same
JPH06228712A (en) Austenitic heat resistant cast steel excellent in strength at high temperature and machinability and exhaust system parts using same
JPH07228948A (en) Austenitic heat resistant cast steel, excellent in castability and machinability, and exhaust system parts made of the same
JP3417636B2 (en) Austenitic heat-resistant cast steel with excellent castability and machinability and exhaust system parts made of it
JP3282481B2 (en) Heat resistant steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees