JPH11106871A - Heat resistant steel excellent in cold workability - Google Patents

Heat resistant steel excellent in cold workability

Info

Publication number
JPH11106871A
JPH11106871A JP27231797A JP27231797A JPH11106871A JP H11106871 A JPH11106871 A JP H11106871A JP 27231797 A JP27231797 A JP 27231797A JP 27231797 A JP27231797 A JP 27231797A JP H11106871 A JPH11106871 A JP H11106871A
Authority
JP
Japan
Prior art keywords
less
heat
resistant steel
alloy
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27231797A
Other languages
Japanese (ja)
Other versions
JP3840762B2 (en
Inventor
Shigenori Ueda
茂紀 植田
Toshiharu Noda
俊治 野田
Michio Okabe
道生 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP27231797A priority Critical patent/JP3840762B2/en
Publication of JPH11106871A publication Critical patent/JPH11106871A/en
Application granted granted Critical
Publication of JP3840762B2 publication Critical patent/JP3840762B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the heat resistance and cold workability of a steel by allowing it to have a compsn. contg. C, Si, Mn, Cr, Cr, Ni, Nb, Ta, Ti, Al and Cu, and the balance substantially Fe. SOLUTION: This steel is the one having a compsn. contg., by weight, 0.005 to 0.20% C, <=2.0% Si, <=2.0% Mn, 10.0 to 25.0% Cr and 20 to <25% Ni, furthermore contg. <=1.5% (Nb+Ta), 1.0 to <3.0% Ti, 0.7 to 2.0% Al and 0.1 to 5.0% Cu, and the balance Fe and withstands usage at >=700 deg.C. This alloy components may furthermore be incorporated with one or more kinds among <=3.0% W, <=3.0% Mo and <=1.0% V by the amt. of 0.5 W/%+Mo%+V% <=3, one ore more kinds of 0.001 to 0.02% B and 0.001 to 0.1% Zr and one or more kinds of Ca and Mg by 0.001 to 0.01%, and a part of Ni may be substituted with <=5.0% Co. It is preferable that the content of Nb+Ta+Ti+ Al is regulated to 5.2 to 7.0 atomic %, and the each content of P, S, O and N is regulated to prescribed value or below.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温強度および耐
高温酸化性が高く、かつ冷間加工性がすぐれた耐熱鋼に
関する。
[0001] The present invention relates to a heat-resistant steel having high high-temperature strength and high-temperature oxidation resistance and excellent cold workability.

【0002】[0002]

【従来の技術】エンジンの部品、タービンの部品、熱交
換器や加熱炉の部材、また原子力施設に使用する材料で
あって、耐熱性と耐食性とを要求されるものには、オー
ステナイト系耐熱鋼SUH660が多く使用されてい
る。 SUH660の使用上限温度は約700℃であ
り、これを超える高温では、Ni基超合金であるNCF
751およびNCF80Aなどが使用されている。
2. Description of the Related Art Materials used in engine parts, turbine parts, heat exchangers and heating furnaces, and nuclear facilities that require heat resistance and corrosion resistance include austenitic heat-resistant steel. SUH660 is frequently used. The upper limit temperature of SUH660 is about 700 ° C.
751 and NCF80A are used.

【0003】近年、エンジンの高出力化、タービンの熱
効率向上がはかられ、その結果として、排ガス温度やス
チーム温度が高くなる傾向にある。 このため、従来S
UH660を材料としていた部品や部材では、耐熱性が
不十分とされる場合が、しばしばみられる。
[0003] In recent years, efforts have been made to increase the output of the engine and the thermal efficiency of the turbine, and as a result, the exhaust gas temperature and the steam temperature tend to increase. For this reason, the conventional S
Parts and members made of UH660 often have insufficient heat resistance.

【0004】そこで、SUH660を改良して、700
℃を超える高温でも使用可能な材料を、コストを高くせ
ずに提供することが要望されている。 また、部品・部
材の製作過程でのコストを抑制することを意図して、冷
間加工が好んで行なわれる傾向にある。 そこで、SU
H660より更に冷間加工性の高い耐熱鋼が求められて
いる。
Therefore, the SUH660 was improved to 700
There is a demand to provide a material that can be used even at a high temperature exceeding ℃ without increasing the cost. In addition, cold working tends to be performed favorably for the purpose of suppressing costs in the process of manufacturing parts and members. So, SU
There is a demand for a heat-resistant steel having a higher cold workability than H660.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、耐熱
鋼に対するこのような要望を満たし、SUH660より
耐熱性が高く700℃を超える温度で使用可能であり、
かつ冷間加工性がすぐれたものを、コストを高くするこ
となく提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to satisfy such a demand for heat-resistant steel, and has higher heat resistance than SUH660 and can be used at a temperature exceeding 700 ° C.
Another object of the present invention is to provide a product having excellent cold workability without increasing the cost.

【0006】[0006]

【課題を解決するための手段】本発明の冷間加工性のす
ぐれた耐熱鋼は、基本的な合金組成としては、重量で、
C:0.005〜0.20%、Si:2.0%以下、M
n:2.0%以下、Cr:10.0〜25.0%およびN
i:20%以上25%未満に加えて、Nb+Ta:1.
5%以下、Ti:1.0%以上〜3.0%未満、Al:
0.7〜2.0%およびCu:0.1〜5.0%を含有
し、残部が実質上Feからなる合金組成を有することを
特徴とする。
Means for Solving the Problems The heat-resistant steel excellent in cold workability of the present invention has a basic alloy composition in terms of weight,
C: 0.005 to 0.20%, Si: 2.0% or less, M
n: 2.0% or less, Cr: 10.0 to 25.0% and N
i: In addition to 20% or more and less than 25%, Nb + Ta: 1.
5% or less, Ti: 1.0% or more to less than 3.0%, Al:
It has an alloy composition containing 0.7 to 2.0% and Cu: 0.1 to 5.0%, with the balance being substantially Fe.

【0007】[0007]

【発明の実施の形態】本発明の耐熱鋼は、上記した基本
的な合金成分に加えて、下記のグループのひとつまたは
ふたつ以上からえらんだ合金成分を、任意に添加するこ
とができる。
BEST MODE FOR CARRYING OUT THE INVENTION The heat-resistant steel of the present invention may optionally contain, in addition to the above-mentioned basic alloy components, alloy components selected from one or more of the following groups.

【0008】1)W:3.0%以下、Mo:3.0%以
下およびV:1.0%以下からえらんだ1種または2種
以上。 ただし、0.5W%+Mo%+V%:3以下と
なるように含有する。
1) One or more selected from W: 3.0% or less, Mo: 3.0% or less and V: 1.0% or less. However, it is contained so as to be 0.5 W% + Mo% + V%: 3 or less.

【0009】2)B:0.001〜0.02%およびZ
r:0.001〜0.1%の1種または2種。
2) B: 0.001-0.02% and Z
r: One or two kinds of 0.001 to 0.1%.

【0010】3)CaおよびMgの1種または2種を、
2種の場合は合計量で0.001〜0.01%。
3) One or two of Ca and Mg are
In the case of two types, the total amount is 0.001 to 0.01%.

【0011】基本的な合金組成においても、また任意添
加成分を含有する合金組成においても、Niの一部をC
o:5.0%以下で置き換えることができる。 また、
Nb+TaにTiおよびAlを合計した量は、原子%に
して、5.2〜7.0が好適である。 いずれの組成の
合金においても、不純物は、P:0.05%以下、S:
0.01%以下、O:0.01%以下、N:0.01%
以下に規制することが好ましい。
In both the basic alloy composition and the alloy composition containing optional components, part of Ni is converted to C
o: It can be replaced by 5.0% or less. Also,
The total amount of Ti and Al to Nb + Ta is preferably 5.2 to 7.0 in atomic%. In the alloys of any compositions, the impurities are P: 0.05% or less, S:
0.01% or less, O: 0.01% or less, N: 0.01%
It is preferable to regulate as follows.

【0012】上述の合金組成を構成する各成分のはたら
きと組成範囲の限定理由とを説明すれば、つぎのとおり
である。
The function of each component constituting the above-mentioned alloy composition and the reason for limiting the composition range will be described as follows.

【0013】C:0.005〜0.20% Cは、Ti,Nb,Crと結合して炭化物を形成し、合金
の高温強度を高める。この効果は0.005%以上の存
在で認められるが、多量になると析出する炭化物の量が
過大になって加工性を損ね、耐食性をも低くするので、
0.2%を上限とする。
C: 0.005 to 0.20% C combines with Ti, Nb, and Cr to form carbides and enhances the high-temperature strength of the alloy. This effect is recognized in the presence of 0.005% or more. However, when the amount is too large, the amount of the precipitated carbide becomes excessive, thereby impairing the workability and lowering the corrosion resistance.
The upper limit is 0.2%.

【0014】Si:2.0%以下 Siは脱酸元素として有用であり、適量の存在は耐酸化
性を高くする。 多量に添加すると加工性を低下させ、
発明の目的に沿わなくなるので、2.0%以内とする。
Si: 2.0% or less Si is useful as a deoxidizing element, and the presence of an appropriate amount increases the oxidation resistance. When added in large amounts, the workability is reduced,
Since it does not meet the purpose of the invention, the content is set to 2.0% or less.

【0015】Mn:2.0%以下 MnはSiと同様に脱酸作用をするが、多量に含有させ
ると合金の加工性および耐酸化性を損なうだけでなく、
靱性を害するη相(Ni3Ti)の析出を助長するので、
上限値を2.0%とした。
Mn: 2.0% or less Mn has a deoxidizing effect like Si, but when contained in a large amount, not only impairs the workability and oxidation resistance of the alloy,
Since it promotes precipitation of η phase (Ni 3 Ti) which impairs toughness,
The upper limit was set to 2.0%.

【0016】Cr:10.0〜25.0% Crは合金の耐高温酸化性および腐食性を確保する上で
必須の成分であり、10%以上の添加を要する。 含有
量が25.0%を超えるとオーステナイト相が不安定に
なり、脆化相であるσ相(FeCr)が析出して合金の靱
性が低下する。好ましい範囲は、10〜20%である。
Cr: 10.0 to 25.0% Cr is an essential component for ensuring high-temperature oxidation resistance and corrosion resistance of the alloy, and requires addition of 10% or more. If the content exceeds 25.0%, the austenite phase becomes unstable, the σ phase (FeCr), which is an embrittlement phase, precipitates, and the toughness of the alloy decreases. A preferred range is 10-20%.

【0017】Ni:20%以上25%未満 Niは合金の素地であるオーステナイトを形成する元素
であって、耐熱性・耐食性を担う。 また、強化相であ
るγ′相を析出させる上で必須の成分である。このよう
な役割をはたすためには20%以上の添加を必要とす
る。しかし、Niは比較的高価な原料であるから、あま
り多量に加えたくない。そこで、上限を25%までとし
た。 Niの一部は、Coで置き換えることができる。
Coが加われば強度の点から好ましいが、CoはNi
にくらべてなお高価であるから、多量の使用はコスト的
に不利になる。 5%の限界は、主としてこの観点から
設けた。
Ni: 20% or more and less than 25% Ni is an element forming austenite, which is a base material of the alloy, and has heat resistance and corrosion resistance. Further, it is an essential component for precipitating the γ 'phase as a strengthening phase. In order to fulfill such a role, addition of 20% or more is required. However, since Ni is a relatively expensive raw material, it is not desirable to add Ni in a large amount. Therefore, the upper limit is set to 25%. Part of Ni can be replaced by Co.
Co is preferred from the viewpoint of strength if Co is added, but Co is Ni
The use of a large amount is disadvantageous in terms of cost, since it is still more expensive than in the case of the above. The 5% limit was set primarily from this point of view.

【0018】Nb+Ta:1.5%以下 これらはNiとともに重要な析出相である金属間化合物
のγ′(ガンマプライム)相Ni3(Al,Ti,Nb,
Ta)を形成する元素であり、このγ′相の析出が合金
の高温強度を効果的に高める。 ただしNb+Taの含
有量が1.5%をこえるとラーバス相(Fe2Nb)が多
量に析出して、合金の靱性が低下する。
Nb + Ta: 1.5% or less These are important precipitation phases together with Ni. The intermetallic compound γ '(gamma prime) phase Ni 3 (Al, Ti, Nb,
Ta), and the precipitation of the γ 'phase effectively increases the high-temperature strength of the alloy. However, when the content of Nb + Ta exceeds 1.5%, a large amount of the Labus phase (Fe 2 Nb) precipitates, and the toughness of the alloy decreases.

【0019】Ti:1.0〜3.0%未満 Tiは上記Nb+Taおよび下記Alとともに、Niと
結合して高温強度を向上させるのに有用な、γ′相を形
成する。 含有量が1.0%に達しないとγ′相の固溶
温度が低くなるので、少なくともこれ以上の量を添加す
る。 一方、3.0%以上になると、前記η相(Ni3
i)が析出して高温強度および靱性を低下させるので、
この値を上限とする。 好ましくは、1.5〜2.6%
である。
Ti: 1.0 to less than 3.0% Ti, together with Nb + Ta and Al described below, combines with Ni to form a γ 'phase which is useful for improving high-temperature strength. If the content does not reach 1.0%, the solid solution temperature of the γ 'phase will be low, so at least an additional amount is added. On the other hand, when the content exceeds 3.0%, the η phase (Ni 3 T
i) precipitates and reduces high temperature strength and toughness,
This value is the upper limit. Preferably, 1.5 to 2.6%
It is.

【0020】Al:0.7〜2.0% AlもNiと結合して上記γ′相を形成する点で、最も
重要な元素である。Al含有量が0.7%に達しないと
γ′相の析出が不十分であり、高温強度が確保できな
い。 しかし、含有量が2.0%を超えると、合金の熱
間加工性が低下する。 そこで、上記の範囲内の添加量
をえらぶ。 好ましい範囲は、1.0〜1.8%であ
る。
Al: 0.7 to 2.0% Al is also the most important element in that it combines with Ni to form the γ 'phase. If the Al content does not reach 0.7%, the precipitation of the γ 'phase is insufficient and high temperature strength cannot be ensured. However, if the content exceeds 2.0%, the hot workability of the alloy decreases. Therefore, the addition amount within the above range is selected. A preferred range is 1.0-1.8%.

【0021】Nb+Ta+Ti+Al:5.2〜7.0
原子% Nb,Ta,TiおよびAlは、上述のように、いずれ
もγ′相を構成する元素である。 Ni量が十分(前記
20%の下限値以上)である場合、γ′相の析出量は、
これら元素の含有量の添加に比例する。 そして合金の
高温強度は、γ′相の析出量が増大すればそれに応じて
高くなる。 本発明の目的とする、700℃以上での高
温強度を十分高くする上で、これら元素を合計した量が
5.2原子%以上であることが望ましい。 一方、7.
0原子%を超えると、強度は依然として増大するもの
の、熱間加工性の低下というデメリットがあらわれる。
上記好適範囲は、このような理由で選択した。
Nb + Ta + Ti + Al: 5.2-7.0
Atomic% Nb, Ta, Ti and Al are all elements constituting the γ 'phase as described above. When the Ni content is sufficient (not less than the lower limit of 20%), the precipitation amount of the γ 'phase is
It is proportional to the addition of the content of these elements. The high-temperature strength of the alloy increases with an increase in the precipitation amount of the γ 'phase. In order to sufficiently increase the high-temperature strength at 700 ° C. or higher, which is the object of the present invention, it is desirable that the total amount of these elements is 5.2 atomic% or higher. On the other hand, 7.
If it exceeds 0 atomic%, although the strength is still increased, there is a disadvantage that the hot workability is reduced.
The preferred range was chosen for this reason.

【0022】Cu:0.1〜5.0% Cuはオーステナイト中に固溶して積層欠陥エネルギー
を高め、加工硬化を抑制するはたらきがあり、それによ
って合金の冷間加工性が向上する。 さらにCuは、こ
の合金の高温における酸化被膜の密着性を高める作用が
あり、これが耐高温酸化性をよくするものと考えられ
る。 こうした効果は、含有量が0.1%に足らないと
得られないから、この値を下限とする。 一方、5%を
超えて含有させても、耐高温酸化性はそれ以上高くなら
ない。 多量のCuは熱間加工性を低下させるので、
5.0%を上限とした。 好ましい範囲は、0.5〜
3.0%である。
Cu: 0.1 to 5.0% Cu forms a solid solution in austenite to increase stacking fault energy and suppress work hardening, thereby improving cold workability of the alloy. Further, Cu has an effect of improving the adhesion of the oxide film at a high temperature of this alloy, which is considered to improve the high-temperature oxidation resistance. Since such an effect cannot be obtained unless the content is less than 0.1%, this value is set as the lower limit. On the other hand, even if the content exceeds 5%, the high-temperature oxidation resistance does not increase further. Since a large amount of Cu deteriorates hot workability,
The upper limit was 5.0%. The preferred range is 0.5 to
3.0%.

【0023】W:3.0%以下、Mo:3.0%以下、
V:1.0%以下、ただし0.5W%+Mo%+V%:
3以下 これらの元素の添加は任意であるが、添加すれば固溶強
化により高温強度が向上する。 WおよびMoについて
は3%、Vについては1%を超えて添加しても、効果の
増大は望めない。 加えて、コストが高くなり加工性が
低下する。 そこで上記の限界を設けた。
W: 3.0% or less, Mo: 3.0% or less,
V: 1.0% or less, provided that 0.5W% + Mo% + V%:
Addition of these elements is optional, but if added, the high-temperature strength is improved by solid solution strengthening. Addition of more than 3% of W and Mo and more than 1% of V does not increase the effect. In addition, cost increases and workability decreases. Therefore, the above-mentioned limit is set.

【0024】B:0.001〜0.02%、Zr:0.
001〜0.1% BおよびZrは結晶粒界に偏析して粒界を強化する。
この効果が得られるのは、それぞれの含有量が0.00
1%以上の領域である。 ただし、Bは0.02%、Z
rは0.1%を超えて含有させると熱間加工性が損なわ
れるため、これらを上限とした。
B: 0.001 to 0.02%, Zr: 0.
001 to 0.1% B and Zr segregate at crystal grain boundaries to strengthen the grain boundaries.
This effect is obtained because the content of each is 0.00
This is an area of 1% or more. However, B is 0.02%, Z
If the content of r exceeds 0.1%, the hot workability is impaired, so these were made the upper limits.

【0025】CaおよびMgの1種または2種(2種の
場合は合計量で):0.001〜0.01% これらの元素は、合金の溶製時に脱酸・脱硫剤として添
加すれば、合金の熱間加工性の向上に役立つ。 この効
果は、添加量が0.001%という微量でも認められる
が、0.01%を超えると、かえって熱間加工性を低下
させる傾向がある。
One or two types of Ca and Mg (in the case of two types, in total): 0.001 to 0.01% These elements may be added as deoxidizing / desulfurizing agents during melting of the alloy. , Helps to improve the hot workability of the alloy. This effect is observed even when the amount of addition is as small as 0.001%, but when it exceeds 0.01%, the hot workability tends to be rather reduced.

【0026】P:0.05%以下、S:0.01%以
下、O:0.01%以下、N:0.01%以下 これらはいずれも不純物であって、PおよびSは合金の
熱間加工性を低下させ、またOおよびNは非金属介在物
を形成して合金の機械的諸特性を悪くする。上記の値
は、各元素についてこのような影響が実質上あらわれな
い限界として定めた。
P: 0.05% or less, S: 0.01% or less, O: 0.01% or less, N: 0.01% or less These are impurities, and P and S are heat of the alloy. O and N form non-metallic inclusions and degrade the mechanical properties of the alloy. The above values are defined as limits at which such effects do not substantially appear for each element.

【0027】[0027]

【実施例】【Example】

〔実施例1〕表1に示す組成(重量%、残部Fe)の合
金各50kgを高周波誘導炉で溶製し、インゴットに鋳造
した。 インゴットを1100℃で6時間ソーキングし
たのち、1100〜900℃の温度範囲で鍛造、圧延し
て直径16mmの丸棒とした。この丸棒を、975℃×3
0分間加熱後油冷の条件で固溶化熱処理した。 熱処理
を経た丸棒から、直径15mm、高さ22.5mmの試験片
を切り出した。
Example 1 50 kg of each alloy having the composition (% by weight, balance Fe) shown in Table 1 was melted in a high frequency induction furnace and cast into an ingot. After soaking the ingot at 1100 ° C for 6 hours, it was forged and rolled in a temperature range of 1100 to 900 ° C to obtain a round bar having a diameter of 16 mm. Insert this round bar at 975 ° C x 3
After heating for 0 minutes, solution heat treatment was performed under oil-cooling conditions. A test piece having a diameter of 15 mm and a height of 22.5 mm was cut out from the heat-treated round bar.

【0028】 表 1No. C Si Mn Cr Ni Nb+Ta Ti Al Cu その他 Ti等* 実施例 1 0.0050 0.20 0.21 16.0 23.9 0.81 2.45 0.98 2.02 - 5.30 2 0.049 0.21 0.20 16.1 24.0 0.80 2.46 1.15 0.99 - 5.64 3 0.030 0.21 0.20 15.0 22.2 0.47 2.88 1.47 2.97 - 6.56 4 0.031 0.20 0.20 14.2 24.0 0.24 2.60 1.24 3.02 Mo 0.5 5.67 5 0.010 0.11 0.10 12.1 23.9 0.09 2.90 1.25 2.00 W 1.0 5.98 B 0.003 6 0.010 0.09 0.09 12.0 24.1 0.06 2.87 1.20 1.98 W 0.5 5.82 Mo 0.3 B 0.02 7 0.031 0.20 0.21 15.1 21.2 0.51 2.33 1.12 2.01 Co 2.5 5.77 Zr 0.004 Mg+Ca 0.001 8 0.029 0.19 0.20 14.8 24.0 0.80 2.79 1.02 2.01 V 0.1 5.77 Zr 0.003 Mg+Ca 0.002 9 0.030 0.20 0.20 15.1 24.3 1.02 1.95 1.29 1.99 B 0.003 5.48 10 0.030 0.20 0.20 15.0 24.1 1.20 1.89 1.21 2.02 B 0.005 5.37 11 0.033 0.22 0.21 14.9 23.9 0.81 2.64 0.95 2.00 B 0.002 5.47 比較例 1**0.040 0.19 0.20 13.8 24.4 - 2.30 0.18 - M 01.1 3.03 V 0.2 B 0.002 2 0.057 1.69 0.42 18.5 24.6 - 2.03 0.56 - B 0.003 3.423 0.031 0.20 0.23 16.3 27.2 0.31 4.27 0.12 - - 5.36 * Ti+Al+Nb+Ta、原子% **SUH660。Table 1 No. C Si Mn Cr Ni Nb + Ta Ti Al Cu Other Ti etc. * Example 1 0.0050 0.20 0.21 16.0 23.9 0.81 2.45 0.98 2.02-5.30 2 0.049 0.21 0.20 16.1 24.0 0.80 2.46 1.15 0.99-5.64 3 0.030 0.21 0.20 15.0 22.2 0.47 2.88 1.47 2.97-6.56 4 0.031 0.20 0.20 14.2 24.0 0.24 2.60 1.24 3.02 Mo 0.5 5.67 5 0.010 0.11 0.10 12.1 23.9 0.09 2.90 1.25 2.00 W 1.0 5.98 B 0.003 6 0.010 0.09 0.09 12.0 24.1 0.06 2.87 1.20 1.98 W 0.5 5.82 Mo 0.3 B 0.02 7 0.031 0.20 0.21 15.1 21.2 0.51 2.33 1.12 2.01 Co 2.5 5.77 Zr 0.004 Mg + Ca 0.001 8 0.029 0.19 0.20 14.8 24.0 0.80 2.79 1.02 2.01 V 0.1 5.77 Zr 0.003 Mg + Ca 0.002 9 0.030 0.20 0.20 15.1 24.3 1.02 1.95 1.29 1.99 B 0.003 5.48 10 0.030 0.20 0.20 15.0 24.1 1.20 1.89 1.21 2.02 B 0.005 5.37 11 0.033 0.22 0.21 14.9 23.9 0.81 2.64 0.95 2.00 B 0.002 5.47 Comparative example 1 ** 0.040 0.19 0.20 13.8 24.4-2.30 0.18-M 01.1 3.03 V 0.2 B 0.002 2 0.057 1.69 0.42 18.5 24.6-2.03 0.56-B 0.003 3.42 3 0.031 0.20 0.23 16.3 27.2 0.31 4.27 0.12 - - 5.36 * Ti + Al + Nb + Ta, atomic% ** SUH660.

【0029】各試験片を用いて、室温において端面拘束
圧縮試験を行なって、据え込み率を75%としたときの
割れの有無をしらべた。 次に、前記の熱処理をした丸
棒に対して、さらに750℃×4時間の時効熱処理を行
ない、この処理を経た材料から直径10mm、厚さ5.5
mmの試験片を切り出した。 それら試験片を対象に、8
00℃におけるビッカース硬さ(10kgf )を測定し
た。 別に、直径7mm×長さ15mmの試験片を切り出し
てアルミナルツボに入れ、大気中で850℃に400時
間加熱したのち空冷し、酸化増量を測定した。 それら
の結果を表2に示す。
Each of the test pieces was subjected to an end face restraint compression test at room temperature, and the presence or absence of cracks at an upsetting ratio of 75% was examined. Next, the heat-treated round bar was further subjected to an aging heat treatment at 750 ° C. for 4 hours, and a material having a diameter of 10 mm and a thickness of 5.5 was obtained from the heat-treated material.
mm test pieces were cut out. For these test pieces, 8
Vickers hardness (10 kgf) at 00 ° C. was measured. Separately, a test piece having a diameter of 7 mm and a length of 15 mm was cut out, placed in an alumina crucible, heated at 850 ° C. in the atmosphere for 400 hours, air-cooled, and measured for oxidation weight gain. Table 2 shows the results.

【0030】 表 2 据え込み時の ビッカース硬さ 酸化増量 No. 割れの状況* 800℃ (Hv) (mg/cm2 実施例1 ○ 229 1.3 2 ○ 232 2.1 3 ○ 228 1.1 4 ○ 254 1.1 5 ○ 250 1.4 6 ○ 258 1.3 7 ○ 239 1.5 8 ○ 247 1.8 9 ○ 221 1.4 10 ○ 222 1.6 11 ○ 248 1.7 比較例1 ○ 181 5.6 2 ○ 192 5.2 3 × 288 6.1 *据え込み率75%における割れの発生率により区分し、50%未満のものを ○、50%以上のものを×とした。Table 2 Vickers hardness at the time of upsetting Oxidation weight increase No. Status of cracking 800 ° C. (Hv) (mg / cm 2 ) Example 1 ○ 229 1.3 2 ○ 232 2.1 3 ○ 228 14 * 254 1.15 * 250 1.46 * 258 1.37 * 239 1.58 * 247 1.89 * 2211.4 10 * 222 1.6 11 * 2481.7 Comparison Example 1 ○ 181 5.6 2 ○ 192 5.2 3 × 288 6.1 * Classification is based on the rate of occurrence of cracks at an upsetting rate of 75%. did.

【0031】表2の結果から、本発明の実施例No.1
〜11は据え込み率75%における割れの発生が50%
未満であり、かつ800℃における高温硬さがHv20
0以上であることがわかる。 比較例No.1および2
は、割れは避けられるが、高温硬さが所期のHv200
に達しない。 No.3は高温硬さは高いが、加工性が
低い。 また、850℃×400時間の酸化試験では、
本発明の合金の酸化増量は比較例にくらべて小さく、耐
酸化性がすぐれていることがわかる。
From the results shown in Table 2, it can be seen from Example No. 1
No. 11 to 50% crack generation at upsetting rate of 75%
And the high-temperature hardness at 800 ° C. is less than Hv20.
It turns out that it is 0 or more. Comparative Example No. 1 and 2
Can avoid cracks, but has a high-temperature hardness of Hv200
Does not reach. No. No. 3 has high hardness at high temperature but low workability. In the oxidation test at 850 ° C. × 400 hours,
The increase in oxidation of the alloy of the present invention is smaller than that of the comparative example, and it can be seen that the alloy has excellent oxidation resistance.

【0032】〔実施例2〕表3の合金組成(重量%、
P,S,OおよびNはppm、残部Fe)をもつ鋼を溶製
し、実施例1と同様に熱処理をして試験片を用意し、据
え込み試験、高温硬さの測定および酸化増量の測定を行
なった。
Example 2 The alloy composition in Table 3 (% by weight,
P, S, O and N are ppm, and the steel having the balance Fe) is melted and heat-treated in the same manner as in Example 1 to prepare a test piece, an upsetting test, a measurement of high-temperature hardness, and an increase in oxidation weight. A measurement was made.

【0033】 表 3 Nb+No. C Si Mn Cr Ni Ta Ti Al Cu P S O N 実施例 12 0.030 0.10 0.10 15.2 23.8 0.51 2.36 1.26 2.00 20 10 20 30 13 0.028 0.11 0.09 14.8 24.2 0.52 2.76 1.30 2.04 10 10 10 40 14 0.032 0.19 0.20 15.1 24.0 0.80 1.93 1.32 1.99 20 20 10 30 15 0.030 0.20 0.21 15.1 24.0 0.79 2.67 1.10 2.02 20 10 10 20 比較例 4 0.410 0.31 0.28 15.9 26.8 - 4.88 0.48 - 9 10 - -5 0.020 0.13 0.09 23.4 41.2 1.23 2.67 1.33 - 12 8 - - 試験の結果を表4に示す。Table 3 Nb + No. C Si Mn Cr Ni Ta Ti Al Cu P SON Example 12 0.030 0.10 0.10 15.2 23.8 0.51 2.36 1.26 2.00 20 10 20 30 13 0.028 0.11 0.09 14.8 24.2 0.52 2.76 1.30 2.04 10 10 10 40 14 0.032 0.19 0.20 15.1 24.0 0.80 1.93 1.32 1.99 20 20 10 30 15 0.030 0.20 0.21 15.1 24.0 0.79 2.67 1.10 2.02 20 10 10 20 Comparative Example 4 0.410 0.31 0.28 15.9 26.8-4.88 0.48-9 10--5 0.020 0.13 0.09 23.4 41.2 1.23 2.67 1.33-12 8-- Table 4 shows the test results.

【0034】 表 4 据え込み時の ビッカース硬さ 酸化増量 No. 割れの状況 800℃ (Hv) (mg/cm2 実施例12 ○ 233 1.5 13 ○ 254 1.1 14 ○ 218 1.3 15 ○ 255 1.5 比較例4 × 263 5.9 5 × 280 4.0 比較例は、高温硬さはHv200を上回っているが、加
工性が低く、耐食性もよくなかった。
Table 4 Vickers hardness at the time of upsetting Oxidation weight increase No. State of cracking 800 ° C. (Hv) (mg / cm 2 ) Example 12 ○ 233 1.5 13 ○ 254 1.1 14 ○ 218 1.3 15 ○ 255 1.5 Comparative Example 4 × 263 5.9 5 × 280 4.0 In Comparative Example, the high-temperature hardness was higher than Hv200, but the workability was low and the corrosion resistance was not good.

【0035】[0035]

【発明の効果】本発明の耐熱鋼は、既知の耐熱鋼SUH
660に対して改善された高温硬さを有し、700℃以
上の使用に耐える耐熱性を示すとともに、耐酸化性もす
ぐれている。 まず高温強度の差は、両者の合金組成と
くらべたとき、Nb+Taを適量含有するとともにより
多量のAlを含有し、その結果としてNb+Ta+Ti
+Alの合計量がより高くなって、十分な量のγ′相の
析出をみることによるものと考えられる。 耐酸化性
は、Cuの含有やAl量の増大によりもたらされたもの
であろう。 冷間加工性が高いことも利点であって、こ
れは前述のように、Cuの添加に負うところが多い。
The heat-resistant steel of the present invention is made of a known heat-resistant steel SUH.
It has improved high-temperature hardness compared to 660, shows heat resistance enough to be used at 700 ° C. or more, and has excellent oxidation resistance. First, the difference between the high-temperature strengths is that, when compared with the alloy composition of both alloys, the alloy contains not only an appropriate amount of Nb + Ta but also a larger amount of Al. As a result, Nb + Ta + Ti
This is considered to be due to the fact that the total amount of + Al became higher and a sufficient amount of γ 'phase was precipitated. The oxidation resistance may have been brought about by the inclusion of Cu or an increase in the amount of Al. Another advantage is that the cold workability is high, and as described above, this often depends on the addition of Cu.

【0036】このような高い性能を有しながら、本発明
の耐熱鋼はNi含有量が低いレベルにあり(SUH66
0のNi量24〜27%に対し、本発明は20%以上〜
25%未満)、材料の価格も低く抑えられる。 これ
が、冷間加工により部品を製造できて成形工程の費用を
抑えられることとあいまって、耐熱部品の製造コストを
低減することができる。
While having such high performance, the heat resistant steel of the present invention has a low Ni content (SUH66).
0 to 24% to 27%, the present invention is 20% or more.
(Less than 25%), and the material price can be kept low. This, together with the fact that components can be manufactured by cold working and the cost of the molding process can be suppressed, the manufacturing cost of heat-resistant components can be reduced.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 重量で、C:0.005〜0.20%、
Si:2.0%以下、Mn:2.0%以下、Cr:1
0.0〜25.0%およびNi:20%以上25%未満
に加えて、Nb+Ta:1.5%以下、Ti:1.0%
以上〜3.0%未満、Al:0.7〜2.0%およびC
u:0.1〜5.0%を含有し、残部が実質上Feから
なる合金組成を有することを特徴とする冷間加工性に優
れた耐熱鋼。
1. C: 0.005 to 0.20% by weight,
Si: 2.0% or less, Mn: 2.0% or less, Cr: 1
0.0-25.0% and Ni: 20% or more and less than 25%, Nb + Ta: 1.5% or less, Ti: 1.0%
Or more to less than 3.0%, Al: 0.7 to 2.0% and C
u: heat-resistant steel excellent in cold workability, characterized by containing 0.1 to 5.0% and having an alloy composition substantially consisting of Fe in the balance.
【請求項2】 請求項1に記載の合金成分に加えて、
W:3.0%以下、Mo:3.0%以下およびV:1.
0%以下の1種または2種以上を、0.5W%+Mo%
+V%:3以下の量含有する耐熱鋼。
2. In addition to the alloy component according to claim 1,
W: 3.0% or less, Mo: 3.0% or less, and V: 1.
0% or less of one or more of 0.5 W% + Mo%
+ V%: heat resistant steel containing 3 or less.
【請求項3】 請求項1または2に記載の合金成分に加
えて、B:0.001〜0.02%およびZr:0.0
01〜0.1%の1種または2種を含有する耐熱鋼。
3. In addition to the alloy component according to claim 1 or 2, B: 0.001 to 0.02% and Zr: 0.0
A heat-resistant steel containing one or two kinds of 01 to 0.1%.
【請求項4】 請求項1ないし3のいずれかに記載の合
金成分に加えて、CaおよびMgの1種または2種(2
種の場合は合計量で):0.001〜0.01%を含有
する耐熱鋼。
4. In addition to the alloy component according to claim 1, one or two of Ca and Mg (2
(In the case of seeds in total): heat-resistant steel containing 0.001 to 0.01%.
【請求項5】 請求項1ないし4のいずれかに記載の合
金組成をもつ耐熱鋼において、Niの一部をCo:5.
0%以下で置き換えた合金組成を有する耐熱鋼。
5. The heat-resistant steel having the alloy composition according to claim 1, wherein a part of Ni is Co: 5.
Heat resistant steel having an alloy composition replaced by 0% or less.
【請求項6】 請求項1ないし4のいずれかに記載の耐
熱鋼において、Nb+Ta+Ti+Al:5.2〜7.
0原子%である耐熱鋼。
6. The heat-resistant steel according to claim 1, wherein Nb + Ta + Ti + Al: 5.2-7.
Heat resistant steel with 0 atomic%.
【請求項7】 請求項1ないし4のいずれかに記載の耐
熱鋼において、P:0.05%以下、S:0.01%以
下、O:0.01%以下、かつN:0.01%以下であ
る耐熱鋼。
7. The heat-resistant steel according to claim 1, wherein P: 0.05% or less, S: 0.01% or less, O: 0.01% or less, and N: 0.01. % Heat-resistant steel.
JP27231797A 1997-10-06 1997-10-06 Heat resistant steel with excellent cold workability Expired - Fee Related JP3840762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27231797A JP3840762B2 (en) 1997-10-06 1997-10-06 Heat resistant steel with excellent cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27231797A JP3840762B2 (en) 1997-10-06 1997-10-06 Heat resistant steel with excellent cold workability

Publications (2)

Publication Number Publication Date
JPH11106871A true JPH11106871A (en) 1999-04-20
JP3840762B2 JP3840762B2 (en) 2006-11-01

Family

ID=17512205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27231797A Expired - Fee Related JP3840762B2 (en) 1997-10-06 1997-10-06 Heat resistant steel with excellent cold workability

Country Status (1)

Country Link
JP (1) JP3840762B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047409A (en) * 2012-09-03 2014-03-17 Nippon Steel & Sumitomo Metal High-strength austenitic stainless steel for high-pressure hydrogen gas
EP2940174A4 (en) * 2012-12-28 2016-09-07 Japan Steel Works Ltd Fe-Ni-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE CHARACTERISTICS AND HYDROGEN EMBRITTLEMENT RESISTANCE CHARACTERISTICS, AND METHOD FOR PRODUCING SAME

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047409A (en) * 2012-09-03 2014-03-17 Nippon Steel & Sumitomo Metal High-strength austenitic stainless steel for high-pressure hydrogen gas
EP2940174A4 (en) * 2012-12-28 2016-09-07 Japan Steel Works Ltd Fe-Ni-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE CHARACTERISTICS AND HYDROGEN EMBRITTLEMENT RESISTANCE CHARACTERISTICS, AND METHOD FOR PRODUCING SAME
US9994938B2 (en) 2012-12-28 2018-06-12 The Japan Steel Works, Ltd. Fe-Ni-based alloy having excellent high-temperature characteristics and hydrogen embrittlement resistance characteristics, and method for producing the same

Also Published As

Publication number Publication date
JP3840762B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
JP4830466B2 (en) Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys
EP0384433B1 (en) Ferritic heat resisting steel having superior high-temperature strength
JPH09279309A (en) Iron-chrome-nickel heat resistant alloy
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
JP2011219864A (en) Heat resistant steel for exhaust valve
JP4972972B2 (en) Ni-based alloy
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JP5788360B2 (en) Heat-resistant steel for exhaust valves
JP4830443B2 (en) Heat-resistant alloy for exhaust valves with excellent strength characteristics at high temperatures
JP5272020B2 (en) Heat resistant steel for engine valves with excellent high temperature strength
US4871512A (en) Alloys for exhaust valve
JP3412234B2 (en) Alloy for exhaust valve
JP5880836B2 (en) Precipitation strengthened heat resistant steel and processing method thereof
JP5011622B2 (en) Stainless cast steel with excellent heat resistance and machinability
JP5400140B2 (en) Heat resistant steel for engine valves with excellent high temperature strength
JPS5938365A (en) Heat-resistant cast steel
JP3424314B2 (en) Heat resistant steel
JP3840762B2 (en) Heat resistant steel with excellent cold workability
JPS61238942A (en) Heat resisting alloy
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JPH05179378A (en) Ni-base alloy excellent in room temperature and high temperature strength
JP3744084B2 (en) Heat-resistant alloy with excellent cold workability and overaging characteristics
JP3744083B2 (en) Heat-resistant alloy with excellent cold workability
JP3068868B2 (en) Heat resistant steel for engine valves
JPH0598397A (en) Ferrous heat resistant alloy excellent in high temperature corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100818

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130818

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees