JP3068868B2 - Heat resistant steel for engine valves - Google Patents

Heat resistant steel for engine valves

Info

Publication number
JP3068868B2
JP3068868B2 JP3025727A JP2572791A JP3068868B2 JP 3068868 B2 JP3068868 B2 JP 3068868B2 JP 3025727 A JP3025727 A JP 3025727A JP 2572791 A JP2572791 A JP 2572791A JP 3068868 B2 JP3068868 B2 JP 3068868B2
Authority
JP
Japan
Prior art keywords
steel
present
strength
heat
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3025727A
Other languages
Japanese (ja)
Other versions
JPH04297555A (en
Inventor
光司 佐藤
新次 柴田
千芳利 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Toyota Motor Corp
Original Assignee
Hitachi Metals Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Toyota Motor Corp filed Critical Hitachi Metals Ltd
Priority to JP3025727A priority Critical patent/JP3068868B2/en
Publication of JPH04297555A publication Critical patent/JPH04297555A/en
Application granted granted Critical
Publication of JP3068868B2 publication Critical patent/JP3068868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、自動車等の内燃機関に
用いられるエンジンバルブ用耐熱鋼に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to heat-resistant steel for engine valves used in internal combustion engines of automobiles and the like.

【0002】[0002]

【従来の技術】従来、排気バルブ鋼には、高温強度、ガ
ソリン中に含まれる鉛や硫黄に対する耐食性、および耐
酸化性が適度に優れ、しかも安価な利点を有する高Mn
系耐熱鋼として知られる21−4N鋼(0.55C-0.2Si-9
Mn-4Ni-21Cr-0.4N)が広く用いられてきた。しか
し、近年、ガソリンエンジンの高効率、高出力化による
燃焼温度の上昇に伴い、21−4N鋼より、さらに高温
強度の優れたバルブ用耐熱鋼に対する要求が高まり、こ
れまでに、いくつかの鋼が提案されている(特公昭61-27
41号、特開昭60-77964号、特開昭59-211557号、特開昭6
3-89645号、特開平1-219147号)。
2. Description of the Related Art Conventionally, exhaust valve steel has a high Mn which has moderately excellent high-temperature strength, corrosion resistance to lead and sulfur contained in gasoline, and oxidation resistance, and is inexpensive.
21-4N steel (0.55C-0.2Si-9)
Mn-4Ni-21Cr-0.4N) has been widely used. However, in recent years, with the increase in combustion temperature due to the high efficiency and high output of gasoline engines, the demand for 21-4N steel for valve heat-resistant steel having even higher high-temperature strength has been increased. Has been proposed (Japanese Patent Publication No. 61-27)
No. 41, JP-A-60-77964, JP-A-59-211557, JP-A-6
3-89645, JP-A-1-219147).

【0003】[0003]

【発明が解決しようとする課題】21−4N鋼の高温強
度改良を目的とした、上述の鋼は、いずれも0.15%以上
のCを含み、またV,Nb,Mo,W等の合金元素の添加量
を増加させている。これらの公知鋼の合金元素は比較的
高いC量からも判るように、炭化物の析出強化を主な目
的として添加されている。しかしながら、このような炭
化物の析出強化は850℃以上の高温強度に対して、必ず
しも満足のいく強化機構ではなく、より優れた耐熱鋼の
開発が望まれていた。また、高温強度向上を目的として
添加されるV,Nb,Moといった合金元素はかえって21
−4N鋼より耐酸化性を低下させるといった問題点もあ
った。また、実際のエンジンバルブの疲労損傷は、酸化
鉛や硫黄による腐食がクラックの起点となることが多
く、耐食性、特に酸化鉛と硫黄に対する耐食性を同時に
評価できる酸化鉛と硫黄鉛による混合鉛の耐食性を改善
することはバルブの寿命向上に大きく寄与する。
The above-mentioned steels for the purpose of improving the high-temperature strength of 21-4N steels contain C of not less than 0.15% and contain alloying elements such as V, Nb, Mo and W. The amount added is increasing. The alloying elements of these known steels are added mainly for the purpose of strengthening the precipitation of carbides, as can be seen from the relatively high C content. However, such precipitation strengthening of carbide is not always a satisfactory strengthening mechanism for high-temperature strength of 850 ° C. or higher, and the development of a more excellent heat-resistant steel has been desired. Alloying elements such as V, Nb, and Mo added for the purpose of improving the high-temperature strength are instead of 21.
There is also a problem that the oxidation resistance is lower than that of -4N steel. In addition, the fatigue damage of actual engine valves often starts from corrosion due to lead oxide or sulfur, and the corrosion resistance, especially the corrosion resistance of mixed lead with lead oxide and sulfur lead, which can simultaneously evaluate the corrosion resistance to lead oxide and sulfur. Improving the value greatly contributes to improving the life of the valve.

【0004】さらに、従来、21−4N鋼より高級材料
として、排気エンジンバルブ用合金にNi基超耐熱合金
のインコネル751(INCONELは商標である)が使用されてき
た。インコネル751の問題点としては、析出強化元素
であるガンマプライム相(Ni3(Al,Ti,Nb))が、高温
長時間加熱中に粗大化してしまい、正規熱処理後に比
べ、高温強度の低下が大きすぎること、およびインコ
ネル751は、Ni含有量が高いために、Sを含む腐食環境
中での減量が大きく、従って混合鉛耐食性が悪いという
2つの問題点があった。本発明の目的は、21−4N系
の高Mn耐熱鋼を基本組成とし、かつNi基超耐熱合金で
あるインコネル751合金に限りなく近い、あるいは一部
の特性がインコネル751を越えるような優れた高温強度
と耐食性、耐酸化性を兼備するエンジンバルブ用耐熱鋼
を提供することである。
[0004] Further, as a higher grade material than 21-4N steel, Inconel 751 (INCONEL is a trademark) of a Ni-based super heat-resistant alloy has been used as an alloy for exhaust engine valves. The problem with Inconel 751 is that the gamma prime phase (Ni 3 (Al, Ti, Nb)), which is a precipitation strengthening element, becomes coarse during high-temperature and long-time heating, and the high-temperature strength decreases compared to after normal heat treatment. Inconel 751 has two problems that it is too large and that the Ni content is high, so that the weight loss in a corrosive environment containing S is large and therefore the mixed lead corrosion resistance is poor. It is an object of the present invention to provide an alloy having a basic composition of 21-4N high-Mn heat-resistant steel and being as close as possible to Inconel 751 alloy, which is a Ni-base super heat-resistant alloy, or having some properties exceeding Inconel 751. An object of the present invention is to provide a heat-resistant steel for an engine valve having both high-temperature strength, corrosion resistance, and oxidation resistance.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上述の問
題点を鑑み、エンジンバルブ用耐熱鋼の強化手段として
従来の炭化物の析出強化よりも、むしろ各種元素の固溶
強化による強化を試みた。その結果、本発明の第1の特
徴として、Cを必要最小限の添加にとどめ、固溶強化元
素として置換型固溶強化元素のうち、耐酸化性の劣化の
度合いが少なく、最もクリープ強度向上に効果のあった
Wと侵入型固溶強化元素であるNの相互作用を組合せた
強化機構により、良好な耐酸化性と高温強度を兼ね備え
た特性を有する鋼を新規に見出したものである。さらに
本発明者らは、第2の特徴として、21−4N系の高M
n耐熱鋼において、従来オーステナイト生成元素とし
て、有意な差が見出されていなかったNiとCoのうち、
Coの適度な添加は、高温疲労強度の向上に大いに役立
つことも明らかにした。また、本発明の耐熱鋼の第3の
特徴は、先に述べた21−4N鋼の改良鋼と異なり、耐
酸化性に対し有害な作用を及ぼす元素であるVやMoを
添加しない点にある。さらに、本発明の耐熱鋼の第4の
特徴は高温強度の向上と混合鉛耐食性、耐酸化性向上に
対し、MnとCrの最適な成分範囲を明らかにした点にあ
る。
In view of the above-mentioned problems, the present inventors have sought to strengthen the heat-resistant steel for engine valves by solid solution strengthening of various elements rather than the conventional precipitation strengthening of carbides. Tried. As a result, as a first feature of the present invention, C is added only to a minimum necessary amount, and among the substitutional solid solution strengthening elements, the degree of deterioration of oxidation resistance is small among the solid solution strengthening elements, and the creep strength is improved most. A steel having excellent oxidation resistance and high-temperature strength has been newly discovered by a strengthening mechanism combining the interaction between W and N, which is an interstitial solid solution strengthening element, which has been effective in the above. Further, the present inventors have as a second feature that the high M of the 21-4N system is
nIn Ni and Co where no significant difference has been found as an austenite forming element in heat resistant steels,
It has also been clarified that the proper addition of Co is very useful for improving the high temperature fatigue strength. A third feature of the heat-resistant steel of the present invention is that, unlike the above-described improved steel of 21-4N steel, V and Mo, which are elements that have a detrimental effect on oxidation resistance, are not added. . Further, a fourth feature of the heat-resistant steel of the present invention is that the optimum component ranges of Mn and Cr have been clarified with respect to the improvement of high-temperature strength and the improvement of mixed lead corrosion resistance and oxidation resistance.

【0006】すなわち、本発明のうちの第1発明は、重
量%で、C 0.02%以上0.15%未満、Si 0.05〜1.0%、Mn
4.5%以上7.5%未満、Ni 9.0〜15.0%、Co 1.0〜5.0%、
Cr22.0〜26.0%、W 4.0〜8.0%、Nb 0.01〜0.50%、N
0.40%を越え0.70%以下、B0.02%以下、および不可避の
不純物を含み、残部Feの組成の鋼からなることを特徴
とするエンジンバルブ用耐熱鋼であり、第2発明は大気
中において、1000℃で100時間保持したときの酸化減量
が2.0mg/cm2以下、重量%で60%PbOと40%PbSO4から
なる混合鉛中の耐食試験の腐食減量が920℃で1時間保持
したときに100mg/cm2以下、850℃の疲労強度が17kgf/mm
2以上、900℃における引張強さが24kgf/mm2以上、およ
び900℃における6kgf/mm2の応力負荷時のクリープ破断
寿命が50時間以上である第1発明に記載のエンジンバル
ブ用耐熱鋼であり、第3発明は、900℃で300時間保持後
の900℃における引張強さが18kgf/mm2以上であることを
特徴とする第1発明に記載のエンジンバルブ用耐熱鋼で
ある。
That is, the first invention of the present invention is characterized in that, by weight%, C is 0.02% or more and less than 0.15%, Si is 0.05-1.0%, and Mn is Mn.
4.5% or more and less than 7.5%, Ni 9.0-15.0%, Co 1.0-5.0%,
Cr 22.0-26.0%, W 4.0-8.0%, Nb 0.01-0.50%, N
A heat-resistant steel for an engine valve, comprising 0.40% or more and 0.70% or less, B 0.02% or less, and unavoidable impurities, the balance being Fe and having a composition of Fe. When the weight loss by oxidation after holding at 1000 ° C. for 100 hours is 2.0 mg / cm 2 or less, and the weight loss by corrosion test in a mixed lead consisting of 60% PbO and 40% PbSO 4 by weight is 1 hour at 920 ° C. to 100mg / cm 2 or less, the fatigue strength of 850 ℃ is 17kgf / mm
The heat-resistant steel for an engine valve according to the first invention, wherein a tensile strength at 900 ° C is 24 kgf / mm 2 or more, and a creep rupture life under a stress load of 6 kgf / mm 2 at 900 ° C is 50 hours or more. The third invention is the heat-resistant steel for an engine valve according to the first invention, wherein a tensile strength at 900 ° C. after holding at 900 ° C. for 300 hours is 18 kgf / mm 2 or more.

【0007】[0007]

【作用】まず、本発明における数値の限定理由について
述べる。Cは極めて強いオーステナイト生成元素で、基
地をオーステナイトにし、強度を上げるために必要な元
素であるので、最低0.02%を必要とする。しかし、C量
が増加するにつれて炭化物の生成量が増加し、0.15%以
上になると添加合金元素の多くが炭化物を生成し、850
℃以上の温度での基地の強化に役立たない。また、高温
のクリープ強度向上に対しては、結晶粒が適度な大きさ
に成長することが望ましく、このような炭化物の増加は
粒成長を抑制し、クリープ強度に対し有効でない。さら
に、過度のCの添加は、本発明鋼の主要強化元素である
Nの固溶度を低下させることになるので、Cの範囲を0.
02%以上0.15%未満に限定する。バルブ用耐熱鋼にあっ
て、C量をこのように低く限定していることは本合金の
1つの大きな特徴である。
First, the reasons for limiting numerical values in the present invention will be described. C is an extremely strong austenite-forming element, and is an element necessary for turning the matrix into austenite and increasing the strength, so that at least 0.02% is required. However, as the amount of C increases, the amount of carbides increases, and when it exceeds 0.15%, many of the added alloy elements generate carbides, resulting in 850%.
It does not help to strengthen the base above ℃. In order to improve the creep strength at high temperatures, it is desirable that the crystal grains grow to an appropriate size. Such an increase in carbides suppresses grain growth and is not effective for creep strength. Furthermore, since excessive addition of C lowers the solid solubility of N, which is the main strengthening element of the steel of the present invention, the range of C is set to 0.
Limited to 02% or more and less than 0.15%. One of the great features of the present alloy is that the amount of carbon is limited to such a low level in heat-resistant steel for valves.

【0008】Siは、溶解時の脱酸剤、ならびに高温で
の耐酸化性を付与するのに有効な元素であり、最低0.05
%を必要とする。しかし、1.0%を越えるSiは高温強度に
対して有効でないので、Siの範囲は0.05〜1.0%とし
た。
Si is a deoxidizing agent at the time of dissolution and an element effective for imparting oxidation resistance at a high temperature.
Requires%. However, since Si exceeding 1.0% is not effective for high-temperature strength, the range of Si is set to 0.05 to 1.0%.

【0009】Mnは、基地のオーステナイトを安定化さ
せ、高価なNi、Coの代替元素として作用する。また、
MnはNの溶解度も高めるので、最低限4.5%必要であ
る。しかし、7.5%以上のMnは耐酸化性、耐食性に対し
て有害なスピネル構造の酸化皮膜を生成し、高温強度も
低下させる。また、Crとの相乗作用で有害なシグマ相
を析出しやすくなるので、Mnは4.5%以上7.5%未満とす
る。
Mn stabilizes austenite in the matrix and acts as an alternative to expensive Ni and Co. Also,
Since Mn also increases the solubility of N, a minimum of 4.5% is required. However, 7.5% or more of Mn forms an oxide film having a spinel structure that is harmful to oxidation resistance and corrosion resistance, and lowers the high-temperature strength. Further, since a harmful sigma phase is easily precipitated by synergistic action with Cr, Mn is set to 4.5% or more and less than 7.5%.

【0010】Crは密着性の高い酸化皮膜を生成するた
め、バルブ用耐熱鋼の耐食性、耐酸化性向上に不可欠な
元素で、MnよりもさらにNの溶解度を高める作用も大
きく、本発明鋼においてCrは最低22.0%を必要とする。
しかし、26%を越えるとMnとの相乗作用によりシグマ相
が析出しやすくなるのでCrは22.0〜26.0%に限定する。
上述のような低いMn量と高いCr量の打合せによって、
高温強度と耐食性、耐酸化性をともに向上させたところ
が本発明の特徴のひとつである。
[0010] Cr is an element indispensable for improving the corrosion resistance and oxidation resistance of heat-resisting steel for valves because it forms an oxide film with high adhesion, and has a greater effect of further increasing the solubility of N than Mn. Cr requires at least 22.0%.
However, if it exceeds 26%, a sigma phase is likely to be precipitated due to a synergistic effect with Mn, so Cr is limited to 22.0 to 26.0%.
By meeting the low Mn amount and the high Cr amount as described above,
One of the features of the present invention is that both high-temperature strength and corrosion resistance and oxidation resistance are improved.

【0011】Niは基地のオーステナイトを安定化する
ために必要な元素であり、強度、耐食性、耐酸化性を保
つために、9.0%以上必要である。しかし、15%を超える
Niの添加は、本発明鋼の主要強化元素であるNの固溶
度を減ずることと、鋼を高価にすることのために、Ni
は9.0〜15.0%に限定する。
Ni is an element necessary for stabilizing austenite of the matrix, and is required to be 9.0% or more in order to maintain strength, corrosion resistance and oxidation resistance. However, the addition of Ni in excess of 15% reduces the solid solubility of N, which is the main strengthening element of the steel of the present invention, and makes Ni expensive.
Is limited to 9.0-15.0%.

【0012】Coは、従来21−4N系の高Mn耐熱鋼に
おいて、耐酸化鉛性の改良以外に特にオーステナイト生
成元素であるNiとの差を明確にはされていなかった。
本発明者らは、Coの影響を十分検討した結果、Coは積
層欠陥エネルギーを低下させ、疲労強度向上に対し、明
らかに効果をもたらすことがわかった。そのために必要
なCoは最低1.0%であるが、5.0%を超える過度の添加
は、さほど疲労強度の向上に役立たず、Nの固溶度を低
下させることと、いたずらに鋼の価格を高めるためにC
oは1.0〜5.0%とする。
[0012] In conventional 21-4N high Mn heat-resistant steels, the difference between Ni and Ni, which is an austenite-forming element, has not been clarified except for improvement in lead oxide resistance.
The present inventors have sufficiently studied the influence of Co and found that Co lowers the stacking fault energy and clearly has an effect on the improvement of the fatigue strength. The necessary Co is at least 1.0% for this purpose, but excessive addition exceeding 5.0% does not contribute to the improvement of the fatigue strength so much that it lowers the solid solubility of N and unnecessarily increases the price of steel. To C
o is 1.0 to 5.0%.

【0013】WはMoと同族の元素でMoと同様、基地に
置換型原子として固溶すると同時に、一部が炭化物を生
成して高温強度を保つ。しかし、WはMoの2倍の原子
量をもつがゆえに、高温における拡散速度が小さく、そ
の結果、クリープ破断強度を向上する効果が大きい。ま
た、置換型固溶強化元素であるWは侵入型固溶強化元素
であるNとの相互作用により、それぞれ単独の添加の場
合に比べ、より一層高温強度向上に役立つ。また、Wは
Moと異なり、鋼の耐酸化性をほとんど低下させない。
以上の理由により、Wは本発明鋼の必須添加元素であ
り、4.0%未満では十分な高温強度が得られず、また、8.
0%を越えるWの添加はWの窒化物を生成し、固溶強度に
対し十分な効果をもたらさず、いたずらに鋼の比重と価
格を高めるだけなので、Wは4.0〜8.0%に限定する。同
族元素であるWとMoの差を明確にし、合金元素として
Wのみを含有することもまた、本発明の1つの特徴であ
る。
W is an element belonging to the same family as Mo and, like Mo, forms a solid solution in the matrix as a substitutional atom, and at the same time, partially forms carbide to maintain high-temperature strength. However, since W has an atomic weight twice that of Mo, the diffusion rate at high temperatures is small, and as a result, the effect of improving the creep rupture strength is large. Further, W, which is a substitution type solid solution strengthening element, further contributes to improvement in high temperature strength by interaction with N which is an interstitial type solid solution strengthening element, as compared with the case of adding each alone. Further, unlike Mo, W hardly reduces the oxidation resistance of steel.
For the above reasons, W is an essential additive element of the steel of the present invention, and if it is less than 4.0%, sufficient high-temperature strength cannot be obtained, and 8.
The addition of W in excess of 0% produces nitrides of W, does not have a sufficient effect on the solid solution strength, and merely unnecessarily increases the specific gravity and price of the steel. Therefore, W is limited to 4.0 to 8.0%. Another feature of the present invention is to clarify the difference between the homologous elements W and Mo and to include only W as an alloying element.

【0014】Nbは高温まで安定な微細一次炭化物を生
成し、オーステナイトの結晶粒粗大化を防止して、適度
な結晶粒径が得られ、その結果、良好な高温引張強度
と、クリープ破断強度が得られる。そのために、必要な
Nb量は0.01%以上であるが、0.50%を越える添加は耐酸
化性を著しく低下させるので、Nbの含有量は0.01〜0.5
0%とする。
Nb forms fine primary carbides that are stable up to high temperatures, prevents austenite from coarsening, and provides an appropriate crystal grain size. As a result, good high-temperature tensile strength and creep rupture strength are obtained. can get. Therefore, the necessary amount of Nb is 0.01% or more, but the addition exceeding 0.50% remarkably lowers the oxidation resistance, so that the Nb content is 0.01 to 0.5%.
0%.

【0015】NはCと並ぶ強いオーステナイト生成元素
であるが、本発明鋼においてはCと異なってNb、W、
Cr等の合金元素とほとんど化合物を作らず、侵入型固
溶強化元素として働く。そのために、本発明鋼が目的と
する850℃以上の高温強度向上に対し上述の置換型固溶
強化元素とともに非常に有効に働く。より詳しくは、固
溶化処理+時効処理後の固溶窒素は、高温で長時間加熱
すると基地中に微細な窒化物を生成するが、その析出量
と成長速度が小さいために長時間高温に曝されても特性
の低下は比較的少ない。これに対して高級材料としてバ
ルブに使用されるインコネル751は正規の熱処理直後の
高温強度は本発明鋼より優れているものの、高温で長時
間加熱すると析出強化相であるガンマプライム相が凝集
する結果、本発明鋼を高温に長時間曝した後の高温強度
と同等になる。本発明鋼の組成範囲では、Nが0.40%以
下の場合には上記の効果が得られず、一方Nの固溶度は
最大0.70%であるので、Nは0.40%を越え0.70%以下に限
定する。
N is a strong austenite forming element in line with C, but in the steel of the present invention, Nb, W,
It hardly forms compounds with alloying elements such as Cr and works as an interstitial solid solution strengthening element. Therefore, the steel of the present invention works very effectively together with the above-mentioned substitutional solid solution strengthening element for improving the high-temperature strength of 850 ° C. or higher as intended. More specifically, the solute nitrogen after solid solution treatment and aging treatment forms fine nitrides in the matrix when heated at a high temperature for a long time, but the amount of the precipitate and the growth rate are small, so that the nitrogen is exposed to the high temperature for a long time. Even if it does, the deterioration of the characteristics is relatively small. On the other hand, Inconel 751, which is used for valves as a high-grade material, has higher high-temperature strength immediately after regular heat treatment than the steel of the present invention, but when heated for a long time at high temperature, the gamma prime phase, which is the precipitation strengthening phase, is agglomerated. This is equivalent to the high-temperature strength after the steel of the present invention has been exposed to a high temperature for a long time. In the composition range of the steel of the present invention, when N is 0.40% or less, the above effects cannot be obtained. On the other hand, since the maximum solid solubility of N is 0.70%, N is limited to more than 0.40% and 0.70% or less. I do.

【0016】Bは微量添加により、結晶粒界に偏析し、
クリープ破断強度と熱間加工性改善に役立つが、そのた
めに有効な量は0.02%以下である。本発明に係わるエン
ジンバルブ用耐熱鋼は、上記した主要元素と、下記に示
す不可避の不純物と残部Feから構成される鉄基の合金
である。 P≦0.04% V≦0.1% Ca≦0.02% S≦0.03% Ta≦0.1% Cu≦0.30% Mg≦0.02%
B segregates at the crystal grain boundaries by adding a small amount,
It is useful for improving creep rupture strength and hot workability, but its effective amount is 0.02% or less. The heat-resistant steel for an engine valve according to the present invention is an iron-based alloy composed of the above-mentioned main elements, the following unavoidable impurities, and the balance Fe. P ≦ 0.04% V ≦ 0.1% Ca ≦ 0.02% S ≦ 0.03% Ta ≦ 0.1% Cu ≦ 0.30% Mg ≦ 0.02%

【0017】次に、本発明の第2発明の数値限定理由に
ついて解説する。本発明は前記組成の鋼を、溶解精錬
後、造塊し、鍛造または圧延等で所望の形状に成形す
る。次いで、21−4N鋼の標準的な溶体化処理温度で
ある1050〜1150℃の温度範囲で15〜60分の溶体化処理
後、急冷する。そして再び加熱して750℃前後にて1〜4
時間の時効処理をして、使用する。
Next, the reason for the numerical limitation of the second invention of the present invention will be described. In the present invention, the steel having the above composition is formed into a desired shape by ingot casting, forging or rolling after melting and refining. Next, it is quenched after a solution treatment of 15 to 60 minutes in a temperature range of 1050 to 1150 ° C. which is a standard solution treatment temperature of 21-4N steel. And heat it again and it will be 1-4 at around 750 ℃
Use with time aging.

【0018】このようにして得られたエンジンバルブ用
耐熱鋼は、21−4N鋼以上の耐食性、耐酸化性と、上
述の21−4N改良鋼以上の高温強度とを兼備させるた
めに、以下に示す特性を同時に満足することが望まし
い。すなわち、本発明鋼は大気中において、1000℃で10
0時間保持したときの酸化減量が2.0mg/cm2以下、重量%
で60%PbO+40%PbSO4の混合鉛耐食試験の腐食減量
が920℃で1時間(h)保持したときに100mg/cm2以下、850
℃の疲労強度が17kgf/mm2以上、900℃における引張強さ
が24kgf/mm2以上、900℃における6kgf/mm2の応力負荷時
のクリープ破断寿命が50時間以上とする。上記高温特性
のうちのひとつでも未達の場合には、エンジンバルブ用
耐熱鋼として不十分なため、それぞれの値を2.0mg/cm2
以下、100mg/cm2以下、17kgf/mm2以上、24kgf/mm2以上
および50時間以上に限定する。さらに、本発明の第3発
明の数値限定について解説する。本発明鋼は、前述の2
1−4N鋼の標準的な溶体化処理および時効処理を施し
た状態の特性だけでなく、前記熱処理の後、高温に長時
間曝した後の高温強度が高いことが望ましい。具体的に
は、Ni基のエンジンバルブ用合金として知られている
インコネル751を正規の熱処理後に900℃で300時間保持
後の900℃における引張強さとほぼ同等である18kgf/mm2
以上の強度が望ましい。したがって、本発明において
は、900℃で300時間保持後の900℃における引張強さが1
8kgf/mm2以上に限定する。
The heat-resistant steel for an engine valve thus obtained has the following properties in order to combine corrosion resistance and oxidation resistance higher than 21-4N steel and high-temperature strength higher than the above-mentioned 21-4N improved steel. It is desirable to satisfy the characteristics shown at the same time. That is, the steel of the present invention is
Oxidation weight loss when held for 0 hours is 2.0 mg / cm 2 or less, weight%
In 60% PbO + 40% corrosion weight loss of mixed lead corrosion test of PbSO 4 is 920 ° C. for 1 hour (h) 100mg / cm 2 or less when held at 850
The fatigue strength at 17 ° C is 17 kgf / mm 2 or more, the tensile strength at 900 ° C is 24 kgf / mm 2 or more, and the creep rupture life under the stress load of 6 kgf / mm 2 at 900 ° C is 50 hours or more. If at least one of the above high temperature characteristics is not achieved, the value is 2.0 mg / cm 2 because it is insufficient as heat resistant steel for engine valves.
Hereinafter, it is limited to 100 mg / cm 2 or less, 17 kgf / mm 2 or more, 24 kgf / mm 2 or more, and 50 hours or more. Further, the numerical limitation of the third invention of the present invention will be described. The steel of the present invention is the same as that of the aforementioned 2
It is desirable that the high-temperature strength after long-term exposure to a high temperature after the heat treatment besides the characteristics of the 1-4N steel in the state of being subjected to the standard solution treatment and aging treatment. More specifically, 18 kgf / mm 2, which is approximately equivalent to the tensile strength at 900 ° C. after holding at 900 ° C. for 300 hours after regular heat treatment of Inconel 751 known as an Ni-based alloy for engine valves.
The above strength is desirable. Accordingly, in the present invention, the tensile strength at 900 ° C after holding at 900 ° C for 300 hours is 1
Limited to 8 kgf / mm 2 or more.

【0019】[0019]

【実施例】表1に示す組成の本発明鋼、比較鋼および従
来合金は、大気誘導炉にて溶製し、10kgのインゴットに
した後、1100℃加熱で30mm角の棒材に鍛伸した。本発明
鋼および比較鋼の固溶化処理は、1150℃で30分保持後、
空冷とし、従来合金の固溶化処理は1050℃で30分保持後
空冷とした。さらに本発明鋼、比較鋼および従来合金は
750℃で4時間保持後、空冷の時効処理を行なった。その
後、所定の試験片形状に加工し、実験に供した。なお表
1のうち、比較鋼No.15はB無添加の組成であり、この
鋼のみ鍛伸中に疵の発生が多く、熱間加工性に問題があ
った。本発明鋼の熱間加工性は全く問題なかったことか
らBは本発明に必須の添加元素であることがわかる。確
性試験項目は、850℃−107回の回転曲げ疲労強度、900
℃の引張強さ、900℃−6kgf/mm2におけるクリープ破断
寿命、1000℃×100時間(h)加熱(大気中)後の酸化減量、
および60重量%PbO+40重量%PbSO4の混合鉛腐食剤
中で920℃における1時間(h)加熱後の腐食減量である。
さらに、本発明鋼No.1〜4と従来合金No.21および22に
ついては、900℃×300時間(h)加熱後の900℃における引
張強さの測定を実施した。これらの実験結果を表2およ
び表3に示す。
EXAMPLES The steels of the present invention, comparative steels and conventional alloys having the compositions shown in Table 1 were melted in an air induction furnace, turned into 10 kg ingots, and then forged into 30 mm square bars by heating at 1100 ° C. . Solution treatment of the steel of the present invention and the comparative steel, after holding at 1150 ° C. for 30 minutes,
Air cooling was carried out, and the solution treatment of the conventional alloy was kept at 1050 ° C. for 30 minutes, followed by air cooling. Furthermore, the steels of the present invention, comparative steels and conventional alloys
After holding at 750 ° C. for 4 hours, an air-cooling aging treatment was performed. Then, it processed into a predetermined test piece shape, and was used for the experiment. In Table 1, Comparative Steel No. 15 had a composition without B added, and only this steel had many flaws during forging and had a problem in hot workability. Since there was no problem in the hot workability of the steel of the present invention, it is clear that B is an essential element for the present invention. Accuracy test items were 850 ° C-107 rotating bending fatigue strength of 7 times, 900
° C. tensile strength, creep rupture life at 900 ℃ -6kgf / mm 2, 1000 ℃ × 100 hours (h) oxidation weight loss after heating (in air),
And weight loss after heating at 920 ° C. for 1 hour (h) in a mixed lead corrosive of 60% by weight PbO + 40% by weight PbSO 4 .
Further, for the steels Nos. 1 to 4 of the present invention and the conventional alloys Nos. 21 and 22, the tensile strength was measured at 900 ° C. after heating at 900 ° C. × 300 hours (h). Tables 2 and 3 show the results of these experiments.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】試料No.1〜4は本発明鋼、No.11〜16は比
較鋼、No.21,22は従来合金である。従来合金のうち、
No.21は21−4N鋼であり、No.22はインコネル751
である。表2より、本発明鋼は、いずれも第2発明に記
載の限定値を全て満足する。それに対し、比較鋼No.11
は高温強度は本発明鋼と同等の特性を示すが、耐酸化性
と混合鉛耐食性については、本発明鋼に劣っている。こ
れは、本発明鋼に対して、No.11のMnが高いこと、お
よびCrが低いことが原因であり、耐食性、耐酸化性に
対し、MnとCrの含有量がいかに影響を及ぼすことがわ
かる。比較鋼No.12は本発明鋼に対し、Cが高く、Nの
低い組成をもつが、この鋼は、各種高温強度がすべて本
発明鋼に劣っている。したがって、No.12のような高C
系の従来の炭化物の析出強化型鋼では、固溶強化型であ
る本発明鋼のような高い高温強度が得られないことがわ
かる。また、比較鋼No.13は本発明鋼No.1のCoをNi
で置換した組成を持つが、両者を比べると比較鋼No.13
の疲労強度は明らかに低く、本発明鋼における疲労強度
の向上にCoがいかに貢献しているかが明らかである。
また、比較鋼No.14のような高Nb含有鋼は、高温強度
こそ本発明鋼並みの値を示すが、耐酸化性および混合鉛
耐食性が著しく悪いことがわかる。比較鋼No.15は、本
発明鋼に対し、B無添加の組成を持つが、この鋼は粒界
強化に寄与するBを含有しないために前述したように熱
間加工性が低下すること、およびクリープ破断寿命が低
下する欠点がある。また、比較鋼No.16は、本発明鋼N
o.1のWの一部を当量(重量%換算でW 2%はMo 1%に相
当)のMoで置換した鋼であるが、この鋼もNo.1に比べ
ると高温強度は全て低く、特にクリープ破断寿命の差が
大きい。これは明らかに、WとMoの拡散速度に起因す
るものである。また、No.16の酸化減量と混合鉛腐食減
量は、No.1に比べて大きく、Moは本発明鋼の耐酸化
性、耐食性を劣化させることがわかる。
Samples Nos. 1 to 4 are steels of the present invention, Nos. 11 to 16 are comparative steels, and Nos. 21 and 22 are conventional alloys. Among conventional alloys,
No. 21 is 21-4N steel, No. 22 is Inconel 751
It is. From Table 2, all the steels of the present invention satisfy all the limit values described in the second invention. In contrast, comparative steel No. 11
Has high temperature strength equivalent to that of the steel of the present invention, but is inferior to the steel of the present invention in oxidation resistance and mixed lead corrosion resistance. This is because the steel of the present invention has a high Mn of No. 11 and a low Cr, and how the contents of Mn and Cr affect the corrosion resistance and oxidation resistance. Recognize. Comparative steel No. 12 has a higher C and lower N composition than the steel of the present invention, but this steel is inferior in all high-temperature strengths to the steel of the present invention. Therefore, high C such as No. 12
It can be seen that the conventional high-temperature precipitation-hardened steel of the carbide cannot obtain the high-temperature strength as high as the steel of the present invention which is the solid-solution-strengthened type. Further, the comparative steel No. 13 changed Ni of the present invention steel No. 1 to Ni.
The composition of the steel is compared with the comparative steel No. 13
The fatigue strength of the steel of the present invention is clearly low, and it is clear how Co contributes to the improvement of the fatigue strength in the steel of the present invention.
Further, it can be seen that a high Nb-containing steel such as the comparative steel No. 14 exhibits a high-temperature strength comparable to that of the steel of the present invention, but has extremely poor oxidation resistance and mixed lead corrosion resistance. Comparative steel No. 15 has a composition without B added to the steel of the present invention. However, since this steel does not contain B that contributes to grain boundary strengthening, the hot workability is reduced as described above; There is a disadvantage that the creep rupture life is reduced. Comparative steel No. 16 is the steel N of the present invention.
O.1 is a steel in which part of W is replaced by Mo of equivalent weight (W 2% is equivalent to Mo 1% in terms of weight%), but this steel also has lower high-temperature strength than No. 1, In particular, the difference in creep rupture life is large. This is clearly due to the diffusion rates of W and Mo. In addition, the oxidation weight loss and the mixed lead corrosion weight loss of No. 16 are larger than those of No. 1, and it can be seen that Mo deteriorates the oxidation resistance and corrosion resistance of the steel of the present invention.

【0024】本発明鋼と従来合金のNo.21(21−4N
鋼)とを比較すると全ての点において本発明鋼がNo.21
を上回る特性を示すことがわかる。また、本発明鋼は従
来合金のNo.22(インコネル751)と比較しても、本発明
鋼のクリープ破断寿命はNo.22を上回るほどであり、そ
の他の特性においても従来の21−4N改良鋼の特性を
上回り、インコネル751にかなり近づいていることがわ
かる。さらに、混合鉛耐食性に関して、No.22は本発明
鋼に対し、格段に悪い値を示す。これはNo.22がNiを
ベースとする合金で、ベースのNiと、混合鉛腐食剤に
よって生ずるNiの硫化物とが共晶反応を起し、混合鉛
耐食試験中に溶融するために生じるものであり、従来イ
ンコネル751の特性上、最も問題点とされてきたもので
ある。したがって、バルブの疲労損傷が表面の腐食反応
によって生じるクラックを起点とするような場合、本発
明鋼がインコネル751を上回るバルブの実機寿命をもつ
場合もあり得る。また、表3より、900℃×300時間保持
後の900℃における引張強さには、本発明鋼と従来合金
No.22の差はほとんど見られず、本発明鋼がいかに高温
長時間の安定性に優れた鋼であるかがわかる。
No. 21 (21-4N) of the steel of the present invention and the conventional alloy
In all respects, the steel of the present invention is No. 21
It can be seen that the characteristics are higher than the above. Also, the steel of the present invention has a creep rupture life of more than that of No. 22 compared with the conventional alloy No. 22 (Inconel 751). It can be seen that it exceeds the properties of steel and is quite close to Inconel 751. Further, with regard to the mixed lead corrosion resistance, No. 22 shows a markedly worse value than the steel of the present invention. No. 22 is an alloy based on Ni, which is generated because the base Ni and the sulfide of Ni produced by the mixed lead corrosive agent cause a eutectic reaction and melt during the mixed lead corrosion test. This is the most problematic in the characteristics of Inconel 751 conventionally. Therefore, when the fatigue damage of the valve starts from a crack generated by a corrosion reaction on the surface, the steel of the present invention may have a life of the actual valve exceeding that of Inconel 751 in some cases. According to Table 3, the tensile strength at 900 ° C after holding at 900 ° C for 300 hours shows almost no difference between the steel of the present invention and the conventional alloy No. 22. It can be seen that the steel has excellent properties.

【0025】[0025]

【発明の効果】本発明によれば、従来の21−4N系の
高Mn耐熱鋼より飛躍的に優れた高温強度と耐酸化性、
耐食性を有する鋼を提供することができる。しかも、本
発明鋼の長時間加熱後の高温強度は現用の排気バルブ材
であるNi基超耐熱合金のインコネル751並みを維持し、
酸化鉛や硫酸鉛を含む混合鉛腐食に対しては本発明鋼は
インコネル751より著しく改善された特性を有するもの
である。したがって、本発明鋼を用いれば、従来の21
−4N系やインコネル751に比べて自動車エンジンバル
ブの使用温度を上昇させることができ、しかも高温長時
間での特性が安定しているので、高出力・高効率のエン
ジンが製造可能となる。
According to the present invention, high-temperature strength and oxidation resistance, which are significantly better than conventional 21-4N high-Mn heat-resistant steel,
A steel having corrosion resistance can be provided. Moreover, the high-temperature strength of the steel of the present invention after prolonged heating is maintained at the same level as that of the current exhaust valve material, Inconel 751, which is a Ni-based super heat-resistant alloy.
The steel of the present invention has significantly improved characteristics against mixed lead corrosion containing lead oxide and lead sulfate as compared with Inconel 751. Therefore, if the steel of the present invention is used, the conventional 21
Since the operating temperature of an automobile engine valve can be raised as compared with the -4N series and Inconel 751, and the characteristics at high temperature and long time are stable, an engine with high output and high efficiency can be manufactured.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 前田 千芳利 愛知県豊田市トヨタ町1番地 トヨタ自 動車株式会社内 (56)参考文献 特開 昭63−210260(JP,A) 特開 昭56−84445(JP,A) 特開 昭60−77964(JP,A) 特開 昭64−79351(JP,A) 特開 平1−219147(JP,A) 特開 昭51−40321(JP,A) 特開 平3−166342(JP,A) 特開 昭58−224153(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 302 C22C 38/58 F01L 3/02 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Chiyoshi Toshima 1 Toyota Town, Toyota City, Aichi Prefecture Inside Toyota Motor Corporation (56) References JP-A-63-210260 (JP, A) JP-A-56 JP-A-84445 (JP, A) JP-A-60-77964 (JP, A) JP-A-64-79351 (JP, A) JP-A-1-219147 (JP, A) JP-A-51-40321 (JP, A) JP-A-3-166342 (JP, A) JP-A-58-224153 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00 302 C22C 38/58 F01L 3 / 02

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C 0.02%以上0.15%未満、Si
0.05〜1.0%、Mn 4.5%以上7.5%未満、Ni 9.0〜15.0%、
Co 1.0〜5.0%、Cr 22.0〜26.0%、W 4.0〜8.0%、Nb
0.01〜0.50%、N 0.40%を越え0.70%以下、B 0.02%以
下、および不可避の不純物を含み、残部Feの組成の鋼
からなることを特徴とするエンジンバルブ用耐熱鋼。
(1) In weight%, C is 0.02% or more and less than 0.15%;
0.05-1.0%, Mn 4.5% or more and less than 7.5%, Ni 9.0-15.0%,
Co 1.0 to 5.0%, Cr 22.0 to 26.0%, W 4.0 to 8.0%, Nb
A heat-resistant steel for an engine valve, comprising a steel having a composition of 0.01 to 0.50%, N exceeding 0.40%, 0.70% or less, B 0.02% or less, and unavoidable impurities, and a balance of Fe.
【請求項2】 大気中において、1000℃で100時間保持
したときの酸化減量が2.0mg/cm2以下、重量%で60%PbO
と40%PbSO4からなる混合鉛中の耐食試験の腐食減量
が920℃で1時間保持したときに100mg/cm2以下、850℃の
疲労強度が17kgf/mm2以上、900℃における引張強さが24
kgf/mm2以上、および900℃における6kgf/mm2の応力負荷
時のクリープ破断寿命が50時間以上である請求項1に記
載のエンジンバルブ用耐熱鋼。
2. An oxidative weight loss of not more than 2.0 mg / cm 2 when held at 1000 ° C. for 100 hours in the atmosphere, and 60% by weight of PbO 2
If when the corrosion loss of the corrosion test in the mixed lead consisting of 40% PbSO 4 was held 1 hour at 920 ℃ 100mg / cm 2 or less, 850 fatigue strength ° C. is 17 kgf / mm 2 or more, the tensile strength at 900 ° C. of Is 24
kgf / mm 2 or more, and 900 ° C. engine heat resistant steel valve of claim 1 creep rupture life at a stress load of 6 kgf / mm 2 for at least 50 hours at.
【請求項3】 900℃で300時間保持後の900℃における
引張強さが18kgf/mm2以上であることを特徴とする請求
項1に記載のエンジンバルブ用耐熱鋼。
3. The heat-resistant steel for an engine valve according to claim 1, wherein the tensile strength at 900 ° C. after holding at 900 ° C. for 300 hours is 18 kgf / mm 2 or more.
JP3025727A 1991-01-25 1991-01-25 Heat resistant steel for engine valves Expired - Fee Related JP3068868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3025727A JP3068868B2 (en) 1991-01-25 1991-01-25 Heat resistant steel for engine valves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3025727A JP3068868B2 (en) 1991-01-25 1991-01-25 Heat resistant steel for engine valves

Publications (2)

Publication Number Publication Date
JPH04297555A JPH04297555A (en) 1992-10-21
JP3068868B2 true JP3068868B2 (en) 2000-07-24

Family

ID=12173838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3025727A Expired - Fee Related JP3068868B2 (en) 1991-01-25 1991-01-25 Heat resistant steel for engine valves

Country Status (1)

Country Link
JP (1) JP3068868B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003062483A1 (en) 2002-01-24 2003-07-31 Sumitomo Electric Industries, Ltd. Steel wire for heat-resistant spring, heat-resistant spring and method for producing heat-resistant spring

Also Published As

Publication number Publication date
JPH04297555A (en) 1992-10-21

Similar Documents

Publication Publication Date Title
JP4277113B2 (en) Ni-base alloy for heat-resistant springs
JP4830466B2 (en) Heat-resistant alloy for exhaust valves that can withstand use at 900 ° C and exhaust valves using the alloys
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
US5660938A (en) Fe-Ni-Cr-base superalloy, engine valve and knitted mesh supporter for exhaust gas catalyzer
JPS60211028A (en) Alloy for exhaust valve
JP2010280950A (en) Heat resistant steel for exhaust valve and method for producing the same
JP3073754B2 (en) Heat resistant steel for engine valves
JP4972972B2 (en) Ni-based alloy
JP4830443B2 (en) Heat-resistant alloy for exhaust valves with excellent strength characteristics at high temperatures
JP2963842B2 (en) Alloy for exhaust valve
US4871512A (en) Alloys for exhaust valve
JP3412234B2 (en) Alloy for exhaust valve
JP5880836B2 (en) Precipitation strengthened heat resistant steel and processing method thereof
JP3975019B2 (en) Austenitic stainless steel wire for heat-resistant spring, heat-resistant spring, and method for producing heat-resistant spring
JP6738010B2 (en) Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties
JP3068868B2 (en) Heat resistant steel for engine valves
JPWO2019045001A1 (en) Alloy plate and gasket
JP3959659B2 (en) Heat resistant alloy for engine valves
JP3068867B2 (en) Heat resistant steel for engine valves
JP2004190060A (en) Heat-resistant alloy for engine valve
JP2000192205A (en) Heat resistant alloy excellent in oxidation resistance
JP2611871B2 (en) Heat resistant alloy for valves
JP3492848B2 (en) Exhaust valve steel with excellent high temperature fatigue strength, normal and high temperature corrosion resistance and oxidation resistance
JPH0364588B2 (en)
JP2002294411A (en) Steel for exhaust vale high in high-temperature strength and superior in resistances to corrosion and abrasion

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090519

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees