JP2000192205A - Heat resistant alloy excellent in oxidation resistance - Google Patents

Heat resistant alloy excellent in oxidation resistance

Info

Publication number
JP2000192205A
JP2000192205A JP10364854A JP36485498A JP2000192205A JP 2000192205 A JP2000192205 A JP 2000192205A JP 10364854 A JP10364854 A JP 10364854A JP 36485498 A JP36485498 A JP 36485498A JP 2000192205 A JP2000192205 A JP 2000192205A
Authority
JP
Japan
Prior art keywords
less
oxidation resistance
resistant alloy
alloy
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10364854A
Other languages
Japanese (ja)
Inventor
Shigenori Ueda
茂紀 植田
Toshiharu Noda
俊治 野田
Michio Okabe
道生 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP10364854A priority Critical patent/JP2000192205A/en
Publication of JP2000192205A publication Critical patent/JP2000192205A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain an alloy exhibiting a reduced loss of oxidation and excellent oxidation resistance by allowing it to have a compsn. contg. specified ratios of C, Si, Mn, Ni, Cr, CuO, Ti, Al, and the balance Fe. SOLUTION: This heat resistant alloy is the one having a compsn. contg., by weight, 0.03 to 0.10% C, <=3.0% Si, <=1.5% Mn, 20 to 35% Ni, 12 to 25% Cr, 0.8 to 5.0% Cu, 0.1 to <0.5% Ti, 0.1 to <0.5% Al, and the balance Fe and excellent in oxidation resistance. Preferably, the alloy contains one or more kinds among the group of 0.1 to 0.5% Nb and Ta, <=1.5% Mo and <=3.0% W for increasing its high temp. strength, the group of 0.001 to 0.010% B and 0.001 to 0.1% Zr for increasing the grain boundaries and the group of 0.001 to 0.01% Ca and 0.001 to 0.01% Mg for reducing free S. Desirably, in the impurities, the content of P is controlled to <=0.025% and that of S to <=0.001%. It is suitable, e.g. for a member for a heating furnace in which heating at high temp. and cooling are repeated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、自動車排気ガス浄
化装置などの高温への加熱と冷却を繰り返す各種耐熱部
品に適した耐酸化性に優れた耐熱合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant alloy having excellent oxidation resistance suitable for various heat-resistant parts which repeatedly heat and cool to a high temperature, such as an automobile exhaust gas purifying apparatus.

【0002】[0002]

【従来の技術】従来、自動車排気ガス浄化装置、加熱炉
用部材などの加熱と冷却を繰り返す各種耐熱部品には、
JIS NCF800(C:0.10%以下、Si:
1.00以下、Mn:2.50%以下、P:0.030
以下、S:0.015%以下、Ni:30.00〜3
5.00%、Cr:19.00〜23.00%、Cu:
0.75%以下、Al:0.15〜0.60%、Ti:
0.15〜0.60%を含み、残部実質的にFe)が広
く使用されている。
2. Description of the Related Art Conventionally, various heat-resistant parts which repeat heating and cooling, such as automobile exhaust gas purifying devices, heating furnace members, etc., include:
JIS NCF800 (C: 0.10% or less, Si:
1.00 or less, Mn: 2.50% or less, P: 0.030
Hereinafter, S: 0.015% or less, Ni: 30.00 to 3
5.00%, Cr: 19.0 to 23.00%, Cu:
0.75% or less, Al: 0.15 to 0.60%, Ti:
0.15 to 0.60%, with the balance substantially Fe) being widely used.

【0003】また、さらに高温での耐酸化性が求められ
る場合には、JIS NCF601(C:0.10%以
下、Si:0.50%以下、Mn:1.00%以下、
P:0.030%以下、S:0.015%以下、Ni:
58.00〜63.00%、Cr:21.00〜25.
00%、Cu:1.00%以下、Al:1.00〜1.
70%、残部実質的にFe)などの鉄基超合金が用いら
れている。しかし、このJIS NCF601の耐熱合
金は、Niを多量に含有しており高価であるという欠点
がある。
In the case where oxidation resistance at higher temperatures is required, JIS NCF601 (C: 0.10% or less, Si: 0.50% or less, Mn: 1.00% or less,
P: 0.030% or less, S: 0.015% or less, Ni:
58.0-63.00%, Cr: 21.00-25.
00%, Cu: 1.00% or less, Al: 1.00-1.
An iron-based superalloy such as 70% with the balance being substantially Fe) is used. However, the heat-resistant alloy of JIS NCF601 has a disadvantage that it contains a large amount of Ni and is expensive.

【0004】[0004]

【発明が解決しようとする課題】本発明は、安価に製造
することができ、かつ高温への加熱と冷却を繰り返して
も酸化減量が少ない耐酸化性の優れた耐熱合金を提供す
ることを課題としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat-resistant alloy which can be manufactured at a low cost and has a small oxidation loss even after repeated heating and cooling to a high temperature and has excellent oxidation resistance. And

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明者達は、安価に製造することができ、かつ高
温で加熱と冷却を繰り返しても酸化減量が少ない耐酸化
性の優れた耐熱合金について種々検討していたところ、
JIS NCF800の耐熱合金およびこれに類似する
耐熱合金に安価なCuを0.8〜5.0%含有させる
と、スケールの剥離を抑制できるため、高温への加熱と
冷却を繰り返しても酸化減量を抑制できるとの知見を得
て本発明をなしたものである。すなわち、本発明の耐酸
化性に優れた耐熱合金においては、C:0.03〜0.
10%、Si:3.0%以下、Mn:1.5%以下、N
i:20〜35%、Cr:15〜25%、Cu0.8〜
5.0%、Ti:0.1〜0.5未満%およびAl:
0.1〜0.5未満%を含有し、残部実質的にFeから
なる合金組成を有するものとすることである。
In order to solve the above-mentioned problems, the present inventors have made it possible to manufacture at low cost, and have excellent oxidation resistance with little oxidation loss even after repeated heating and cooling at high temperatures. After various studies on heat-resistant alloys,
When inexpensive Cu is contained in a heat-resistant alloy of JIS NCF800 and a heat-resistant alloy similar thereto in an amount of 0.8 to 5.0%, scale peeling can be suppressed. The present invention has been made based on the finding that it can be suppressed. That is, in the heat-resistant alloy having excellent oxidation resistance according to the present invention, C: 0.03 to 0.
10%, Si: 3.0% or less, Mn: 1.5% or less, N
i: 20 to 35%, Cr: 15 to 25%, Cu 0.8 to
5.0%, Ti: 0.1 to less than 0.5% and Al:
The alloy has an alloy composition containing 0.1 to less than 0.5% and the balance substantially consisting of Fe.

【0006】また、上記課題を解決するため、本発明の
耐酸化性に優れた耐熱合金においては、上記合金組成
に、Nb:0.1〜0.5%およびTa:0.1〜0.
5%の1種又は2種の群と、Mo:1.5%以下および
W:3.0%以下の1種又は2種の群と、B:0.00
1〜0.010%およびZr:0.001〜0.1%の
1種又は2種の群とCa:0.001〜0.01%およ
びMg:0.001〜0.01%の1種又は2種の群の
うちの1種又は2種以上を含有する成分組成を有するも
のとすることである。
In order to solve the above-mentioned problems, in the heat-resistant alloy having excellent oxidation resistance according to the present invention, the alloy composition contains Nb: 0.1 to 0.5% and Ta: 0.1 to 0.5%.
5% of one or two groups, Mo: 1.5% or less and W: 3.0% or less, and B: 0.00
One or two groups of 1 to 0.010% and Zr: 0.001 to 0.1%, and one of Ca: 0.001 to 0.01% and Mg: 0.001 to 0.01% Alternatively, it is to have a component composition containing one or more of the two groups.

【0007】[0007]

【作用】次に、上記本発明の耐酸化性に優れた耐熱合金
の合金組成を上記のように限定している理由を説明す
る。 C:0.03〜0.10% Cは、Cr、Ti、Nb、Ta、Mo、Wと炭化物を形
成し、合金の高温強度を高くするために含有させる元素
であるが、0.03%未満では期待する高温強度が得ら
れず、0.10%を超えると粗大な炭化物が多量に生成
し、強度および靱性を低下するだけでなく基地中のCr
を減少して耐酸化性も劣化するので、その含有量を0.
03〜0.10%とする。 Si:3.0%以下 Siは、溶解精錬時の脱酸剤として含有させるととも
に、耐酸化性を向上するるために含有させる元素である
が、3.0%を超えると熱間加工性を低下するので、そ
の含有量を3.0%以下とする。
Next, the reason why the alloy composition of the heat-resistant alloy having excellent oxidation resistance of the present invention is limited as described above will be described. C: 0.03 to 0.10% C is an element that forms a carbide with Cr, Ti, Nb, Ta, Mo, and W and is contained in order to increase the high-temperature strength of the alloy. If it is less than 0.10%, the expected high-temperature strength cannot be obtained. If it exceeds 0.10%, a large amount of coarse carbides is formed, which not only decreases the strength and toughness but also reduces the Cr content in the matrix.
And the oxidation resistance is also deteriorated.
03 to 0.10%. Si: 3.0% or less Si is an element to be contained as a deoxidizing agent at the time of melting and refining and to be included in order to improve the oxidation resistance. Therefore, the content is set to 3.0% or less.

【0008】Mn:1.5%以下 Mnは、Siと同様に溶解精錬時の脱酸剤として含有さ
せる元素であるが、多量に含有すると耐酸化性、熱間加
工性および高温強度を低下するので、その含有量を1.
5%以下とする。 Ni:20〜35% Niは、オーステナイト相を安定し、高温クリープ強度
を高くするために含有させる元素であるが、20%未満
ではオーステナイト相が不安定となり、35%を超える
とコストを上昇するので、その含有量を20〜35%と
する。
Mn: 1.5% or less Mn is an element to be contained as a deoxidizing agent at the time of melting and refining like Si, but when contained in a large amount, oxidation resistance, hot workability and high-temperature strength are reduced. Therefore, the content is 1.
5% or less. Ni: 20 to 35% Ni is an element contained to stabilize the austenite phase and increase the high-temperature creep strength, but if it is less than 20%, the austenite phase becomes unstable, and if it exceeds 35%, the cost increases. Therefore, the content is set to 20 to 35%.

【0009】Cr:12〜25% Crは、耐酸化性を向上するとともにCr炭化物を形成
して高温強度を高くするために含有させる元素である
が、12%未満では期待する効果が得られず、25%を
超えるとシグマ相の析出を助長して高温強度、靱性およ
び熱間加工性を低下するので、その含有量を12〜25
%とする。 Cu:0.8〜5.0% Cuは、高温下で合金表面に生成する酸化スケールの剥
離を抑制し、特に加熱と冷却を繰り返す環境下での耐酸
化性を改善させるために含有させる元素であるが、0.
8%以下ではその効果が小さく、5.0%を超えると熱
間加工性を低下するので、その含有量を0.8〜5.0
%とする。
Cr: 12 to 25% Cr is an element contained to improve the oxidation resistance and to form a Cr carbide to increase the high-temperature strength. However, if it is less than 12%, the expected effect cannot be obtained. , More than 25%, promotes the precipitation of the sigma phase and lowers the high-temperature strength, toughness and hot workability.
%. Cu: 0.8 to 5.0% Cu is an element contained to suppress the separation of oxide scale generated on the alloy surface at a high temperature and to improve the oxidation resistance particularly in an environment where heating and cooling are repeated. , But 0.
If the content is less than 8%, the effect is small, and if it exceeds 5.0%, the hot workability is reduced, so that the content is 0.8 to 5.0.
%.

【0010】Ti:0.1〜0.5未満% Tiは、炭化物を形成して高温強度を高くするととも
に、550〜700℃の間に長時間保持するとAlとと
もにγ′相を析出して高温強度をより一層高くするの
で、そのために含有させる元素であるが、0.1%未満
では期待する高温強度が得られず、また0.5%以上に
すると熱間加工性が低下するので、その含有量を0.1
〜0.5未満%とする。 Al:0.1〜0.5未満% Alは、溶解精錬時の脱酸剤として含有させるととも
に、耐酸化性を向上し、また550〜700℃の間に長
時間保持すると金属間化合物のγ′(Ni3 Al)相を
析出して高温強度をより一層高くするので、そのために
含有させる元素であるが、0.1%未満では期待する耐
酸化性および高温強度が得られず、また0.5%以上に
なると熱間加工性が低下するので、その含有量を0.1
〜0.5未満%とする。
Ti: 0.1 to less than 0.5% Ti forms carbides to increase the high-temperature strength, and when held for a long time at 550 to 700 ° C., precipitates a γ ′ phase together with Al and causes a high temperature. Since the strength is further increased, it is an element to be contained. However, if it is less than 0.1%, the expected high-temperature strength cannot be obtained, and if it is 0.5% or more, the hot workability deteriorates. 0.1 content
To less than 0.5%. Al: 0.1 to less than 0.5% Al is contained as a deoxidizing agent at the time of melting and refining, improves oxidation resistance, and when held at 550 to 700 ° C. for a long time, γ of the intermetallic compound '(Ni 3 Al) phase is precipitated to further increase the high-temperature strength. Therefore, it is an element to be contained. However, if it is less than 0.1%, the expected oxidation resistance and high-temperature strength cannot be obtained. When the content exceeds 0.5%, the hot workability deteriorates.
To less than 0.5%.

【0011】Nb、Ta:0.1〜0.5% NbおよびTaは、Tiと同様に炭化物を形成して高温
強度を高くするとともに、550〜700℃の間に長時
間保持するとAlとともに金属間化合物のγ′を形成し
より一層高温強度を高くするので、そのために含有させ
る元素であるが、0.1%未満では期待する耐酸化性お
よび高温強度が得られず、また0.5%以上になると熱
間加工性や耐酸化性が低下するので、その含有量を0.
1〜0.5%とする。 Mo:1.5%以下、W:3.0%以下 MoとWは、一部を炭化物として形成させて高温強度を
高くするとともに、主に基地の固溶硬化による高温強度
を高くするために含有させる元素であるが、多量に含有
させるとコストを上昇するばかりでなく、耐酸化性や熱
間加工性を低下するので、その含有量をMoは1.5%
以下、Wは3.0%以下とする。
Nb and Ta: 0.1 to 0.5% Nb and Ta form carbides like Ti to increase the high-temperature strength, and when kept at 550 to 700 ° C. for a long time, metal together with Al Since the intermetallic compound forms γ 'and further increases the high-temperature strength, it is an element to be contained. However, if it is less than 0.1%, the expected oxidation resistance and high-temperature strength cannot be obtained. If the content exceeds the above, the hot workability and the oxidation resistance decrease, so that the content is set to 0.1.
1% to 0.5%. Mo: 1.5% or less, W: 3.0% or less Mo and W are formed in order to increase the high-temperature strength by partially forming carbides and to increase the high-temperature strength mainly by solid solution hardening of the matrix. Although it is an element to be contained, if it is contained in a large amount, not only does the cost rise, but also the oxidation resistance and hot workability decrease, so the content of Mo is 1.5%.
Hereinafter, W is set to 3.0% or less.

【0012】B:0.001〜0.010%、Zr:
0.001〜0.1% BとZrは、粒界に偏析して粒界を強化するために含有
させる元素であるが、0.001%より少ないとその効
果が得られず、Bが0.010%、Zrが0.1%より
多くなると熱間加工性を低下するので、その含有量をB
は0.001〜0.010%、Zrは0.001〜0.
1%とする。 Ca:0.001〜0.01%、Mg:0.001〜
0.01% CaとMgは、安定な硫化物を形成して遊離Sを低減し
て耐酸化性を向上するために含有させる元素であるが、
0.001%より少ないとその効果が得られず、また
0.01%より多いと逆に耐酸化性を低下するばかりで
なく、熱間加工性や高温強度を低下するので、その含有
量をCaは0.001〜0.01%、Mgは0.001
〜0.01%とする。
B: 0.001 to 0.010%, Zr:
0.001 to 0.1% B and Zr are elements contained to segregate at the grain boundaries and strengthen the grain boundaries. However, if the content is less than 0.001%, the effect is not obtained, and B is 0%. If the content exceeds 0.010% and Zr exceeds 0.1%, the hot workability deteriorates.
Is 0.001 to 0.010%, and Zr is 0.001 to 0.
1%. Ca: 0.001 to 0.01%, Mg: 0.001 to
0.01% Ca and Mg are elements contained to form stable sulfides to reduce free S and improve oxidation resistance.
If the amount is less than 0.001%, the effect cannot be obtained. If the amount is more than 0.01%, not only does the oxidation resistance decrease, but also the hot workability and high-temperature strength decrease. 0.001 to 0.01% of Ca, 0.001 of Mg
To 0.01%.

【0013】不純物について Pは、基地を脆化するとともに延性を低下するので、少
ないほど好ましいが、0.030%以下であれば、合金
に及ぼす影響が少なく、またコストを高くすることがな
いので、0.030%以下、できれば0.025%以下
にするのが好ましい。Sは、高温になると自身が酸化
し、さらにこの酸化物が合金の酸化速度を著しく促進さ
せ、酸化スケールの剥離を助長するるので、できるだけ
低減するのが好ましいが、0.01%以下になれば合金
に及ぼす影響が少なく、またコストの上昇もわずかであ
るので、その含有量を0.01%以下、できれば0.0
01以下にするのが好ましい。
Regarding impurities, P is preferable because it makes the matrix brittle and lowers the ductility. Therefore, it is preferable that the content of P is less than 0.030% because the influence on the alloy is small and the cost is not increased. , 0.030% or less, preferably 0.025% or less. S itself oxidizes at a high temperature, and furthermore, this oxide remarkably accelerates the oxidation rate of the alloy and promotes peeling of the oxide scale. Therefore, it is preferable to reduce S as much as possible. If the content is less than 0.01%, preferably less than 0.0%
It is preferably set to 01 or less.

【0014】本発明の耐酸化性に優れた耐熱合金は、N
i及びCrの含有量が同様な公知の合金、例えばJIS
NCF800の合金と同様な製造方法によって製造す
ることができる。また、本発明の耐酸化性に優れた耐熱
合金の用途は、自動車排気ガス浄化装置、加熱炉用部
材、ボイラー用部材、焼却炉用部材、暖房用機器の燃焼
部部材などの高温での加熱と冷却が繰り返される部分の
部品に最適である。
The heat-resistant alloy having excellent oxidation resistance according to the present invention comprises N
A known alloy having a similar content of i and Cr, for example, JIS
It can be manufactured by the same manufacturing method as the alloy of NCF800. The heat-resistant alloy having excellent oxidation resistance according to the present invention is used for heating at a high temperature such as a vehicle exhaust gas purification device, a heating furnace member, a boiler member, an incinerator member, and a combustion member of a heating device. And cooling are repeated.

【0015】[0015]

【発明の実施の形態】次に、本発明の実施例を説明す
る。
Next, embodiments of the present invention will be described.

【実施例】下記表1の成分組成の各合金を高周波誘導炉
で溶製し、鋳造して50kgのインゴットを得た。この
鋳塊を熱間鍛造および熱間圧延後、試験片を切り出し、
1050℃に1時間加熱した後油冷する熱処理をして酸
化試験用試験片とした。この試験片を用いて1000℃
における繰り返し酸化試験をJIS Z 2282に準
拠して行い、その酸化増量を測定した。その結果を下記
表2に示す。
EXAMPLES Each alloy having the composition shown in Table 1 was melted in a high-frequency induction furnace and cast to obtain a 50 kg ingot. After hot forging and hot rolling of this ingot, cut out a test piece,
A heat treatment of heating at 1050 ° C. for 1 hour followed by oil cooling was performed to obtain a test piece for an oxidation test. 1000 ° C using this test piece
Was carried out in accordance with JIS Z 2282, and the oxidation increase was measured. The results are shown in Table 2 below.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】これらの結果より、本発明の実施例の酸化
増量は、40.8〜69.6mg/cm2 であるのに対
して、比較例のものは46.4〜79.2mg/cm2
で、Cuを含有させた本発明の実施例のものは、Cuを
含有しない比較例のものより平均して約12%低下して
いた。さらに、詳細に検討すると、実施例の No.1 およ
び No.2 は、Cuを含有しない比較例の No.11および N
o.12と比較して酸化増量が約14%低下していた。ま
た、高Siの実施例の No.3 は、高SiでCuを含有し
ない比較例のNo.13と比較して酸化増量が約12%低下
しており、高Si合金においてもCuを含有させる効果
が認められた。
From these results, the oxidation weight gain of the examples of the present invention is 40.8 to 69.6 mg / cm 2 , while that of the comparative example is 46.4 to 79.2 mg / cm 2.
In the examples of the present invention containing Cu, the average was reduced by about 12% compared to the comparative example not containing Cu. Further, when examined in detail, No. 1 and No. 2 of the example were No. 11 and N of the comparative example containing no Cu.
Oxidation weight gain was reduced by about 14% as compared with o.12. In addition, in No. 3 of the high Si example, the oxidation increase was reduced by about 12% as compared with No. 13 of the comparative example which did not contain Cu, and Cu was contained even in the high Si alloy. The effect was recognized.

【0019】また、高温強度を向上させるためにNb、
Ta、Mo、Wを含有させた実施例の No.4〜 No.6
は、NbおよびMoを含有し、Cuを含有しない比較例
の No.14と比較して酸化増量が約12〜18%低下して
いた。また、粒界を強化するためにB、Zr含有させた
実施例の No.7、 No.8は、B、Zr含有しない実施例
の No.5 、 No.6 と比較して酸化増量が増加していなか
った。また、Sを大幅に低下するとともに、安定な硫化
物を形成して遊離Sを低減させるためにCa、Mgを含
有させた実施例の No.9、No.10は、Sを大幅に低下さ
せることなく、Ca、Mg、Cuを含有しない比較例の
No.14と比較して約26%低下しており、またSを大幅
に低下すことなく、Ca、Mgを含有しない実施例の N
o.8と比較すると約11%と約15%低下している。
In order to improve the high temperature strength, Nb,
Examples No. 4 to No. 6 containing Ta, Mo, and W
In the case of No. 14 which contained Nb and Mo and did not contain Cu, the oxidation weight gain was reduced by about 12 to 18%. In addition, No. 7 and No. 8 of the examples containing B and Zr in order to strengthen the grain boundaries have an increased oxidation weight increase compared to No. 5 and No. 6 of the examples not containing B and Zr. I didn't. In addition, in order to form a stable sulfide and reduce free S while reducing S significantly, No. 9 and No. 10 of the examples containing Ca and Mg significantly reduce S. Without the Ca, Mg, Cu
No. 14 was reduced by about 26% as compared with No. 14, and N of the example containing neither Ca nor Mg was not significantly reduced.
Compared with o.8, it is about 11% and about 15% lower.

【0020】[0020]

【発明の効果】本発明は、上記構成、すなわち安価なC
uを0.8〜5.0%含有させたことにより、Cuを含
有していないものと比較して高温での耐酸化性が改善さ
れるという優れた効果を奏する。
According to the present invention, the above structure, that is, inexpensive C
By containing 0.8 to 5.0% of u, there is an excellent effect that the oxidation resistance at high temperatures is improved as compared with those not containing Cu.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で(以下同じ)、C:0.03〜
0.10%、Si:3.0%以下、Mn:1.5%以
下、Ni:20〜35%、Cr:12〜25%、Cu
0.8〜5.0%、Ti:0.1〜0.5未満%および
Al:0.1〜0.5未満%を含有し、残部実質的にF
eからなる合金組成を有することを特徴とする耐酸化性
に優れた耐熱合金。
C .: 0.03 to 1% by weight (the same applies hereinafter)
0.10%, Si: 3.0% or less, Mn: 1.5% or less, Ni: 20 to 35%, Cr: 12 to 25%, Cu
0.8 to 5.0%, Ti: 0.1 to less than 0.5% and Al: 0.1 to less than 0.5%, the balance being substantially F
A heat-resistant alloy having excellent oxidation resistance, characterized by having an alloy composition of e.
【請求項2】 請求項1において、Nb:0.1〜0.
5%およびTa:0.1〜0.5%の1種又は2種を含
有することを特徴とする耐酸化性に優れた耐熱合金。
2. The method according to claim 1, wherein Nb: 0.1 to 0.1.
A heat-resistant alloy excellent in oxidation resistance, characterized by containing one or two kinds of 5% and Ta: 0.1 to 0.5%.
【請求項3】 請求項1又は請求項2において、Mo:
1.5%以下およびW:3.0%以下の1種又は2種を
含有することを特徴とする耐酸化性に優れた耐熱合金。
3. The method according to claim 1, wherein Mo:
A heat-resistant alloy excellent in oxidation resistance, comprising one or two kinds of 1.5% or less and W: 3.0% or less.
【請求項4】 請求項1、請求項2又は請求項3におい
て、B:0.001〜0.010%およびZr:0.0
01〜0.1%の1種又は2種を含有することを特徴と
する耐酸化性に優れた耐熱合金。
4. The method according to claim 1, wherein B: 0.001 to 0.010% and Zr: 0.0
A heat-resistant alloy excellent in oxidation resistance, characterized in that it contains one or two kinds of 01 to 0.1%.
【請求項5】 請求項1、請求項2、請求項3又は請求
項4において、Ca:0.001〜0.01%およびM
g:0.001〜0.01%の1種又は2種を含有する
ことを特徴とする耐酸化性に優れた耐熱合金。
5. The method according to claim 1, wherein the content of Ca is 0.001 to 0.01% and the content of M is
g: A heat-resistant alloy excellent in oxidation resistance, characterized by containing one or two kinds of 0.001 to 0.01%.
JP10364854A 1998-12-22 1998-12-22 Heat resistant alloy excellent in oxidation resistance Withdrawn JP2000192205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10364854A JP2000192205A (en) 1998-12-22 1998-12-22 Heat resistant alloy excellent in oxidation resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10364854A JP2000192205A (en) 1998-12-22 1998-12-22 Heat resistant alloy excellent in oxidation resistance

Publications (1)

Publication Number Publication Date
JP2000192205A true JP2000192205A (en) 2000-07-11

Family

ID=18482837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10364854A Withdrawn JP2000192205A (en) 1998-12-22 1998-12-22 Heat resistant alloy excellent in oxidation resistance

Country Status (1)

Country Link
JP (1) JP2000192205A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014570A1 (en) * 2000-08-17 2002-02-21 Ati Properties, Inc. Oxidation and corrosion resistant austenitic stainless steel including molybdenum
US7985304B2 (en) 2007-04-19 2011-07-26 Ati Properties, Inc. Nickel-base alloys and articles made therefrom
JP2015040717A (en) * 2013-08-20 2015-03-02 日本特殊陶業株式会社 Gas sensor
KR20170028457A (en) * 2003-02-06 2017-03-13 에이티아이 프로퍼티즈 엘엘씨 Austenitic stainless steels including molybdenum
CN109207852A (en) * 2018-09-29 2019-01-15 江阴祥瑞不锈钢精线有限公司 A kind of high temperature mesh belt stainless steel wire and its manufacturing method
CN110306128A (en) * 2019-06-13 2019-10-08 青岛经济技术开发区海尔热水器有限公司 A kind of stainless steel material and heating tube and its application using the material

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002014570A1 (en) * 2000-08-17 2002-02-21 Ati Properties, Inc. Oxidation and corrosion resistant austenitic stainless steel including molybdenum
KR20170028457A (en) * 2003-02-06 2017-03-13 에이티아이 프로퍼티즈 엘엘씨 Austenitic stainless steels including molybdenum
KR102042324B1 (en) 2003-02-06 2019-11-07 에이티아이 프로퍼티즈 엘엘씨 Austenitic stainless steels including molybdenum
US7985304B2 (en) 2007-04-19 2011-07-26 Ati Properties, Inc. Nickel-base alloys and articles made therefrom
US8394210B2 (en) 2007-04-19 2013-03-12 Ati Properties, Inc. Nickel-base alloys and articles made therefrom
JP2015040717A (en) * 2013-08-20 2015-03-02 日本特殊陶業株式会社 Gas sensor
CN109207852A (en) * 2018-09-29 2019-01-15 江阴祥瑞不锈钢精线有限公司 A kind of high temperature mesh belt stainless steel wire and its manufacturing method
CN110306128A (en) * 2019-06-13 2019-10-08 青岛经济技术开发区海尔热水器有限公司 A kind of stainless steel material and heating tube and its application using the material
CN110306128B (en) * 2019-06-13 2022-01-18 青岛经济技术开发区海尔热水器有限公司 Stainless steel material, heating pipe using same and application thereof

Similar Documents

Publication Publication Date Title
JP4277113B2 (en) Ni-base alloy for heat-resistant springs
JP4262414B2 (en) High Cr ferritic heat resistant steel
JPH09279309A (en) Iron-chrome-nickel heat resistant alloy
JP3951943B2 (en) High-strength heat-resistant alloy for exhaust valves with excellent anti-aging characteristics
JP3543366B2 (en) Austenitic heat-resistant steel with good high-temperature strength
JPH09165655A (en) Austenitic stainless steel for high temperature apparatus and is production
JP2005002451A (en) Fe-Ni-Cr ALLOY FOR HEAT-RESISTANT SPRING AND PRODUCTION METHOD OF HEAT-RESISTANT SPRING
JPS5834129A (en) Heat-resistant metallic material
JP3073754B2 (en) Heat resistant steel for engine valves
JP3412234B2 (en) Alloy for exhaust valve
JP2000192205A (en) Heat resistant alloy excellent in oxidation resistance
JP2001323323A (en) Method for producing automobile engine valve
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JPH11117020A (en) Production of heat resistant parts
JP3777421B2 (en) High chromium ferritic heat resistant steel
JPH11117019A (en) Production of heat resistant parts
JPH07238349A (en) Heat resistant steel
JPH05179378A (en) Ni-base alloy excellent in room temperature and high temperature strength
JP2004190060A (en) Heat-resistant alloy for engine valve
JP2001158943A (en) Heat resistant bolt
JP3492848B2 (en) Exhaust valve steel with excellent high temperature fatigue strength, normal and high temperature corrosion resistance and oxidation resistance
JPS6046353A (en) Heat resistant steel
JPH0741905A (en) Steel for automotive exhaust system
JPH0741917A (en) Steel for automotive exhaust system
JPH04193932A (en) Heat resistant alloy for engine valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070107