JPS5834129A - Heat-resistant metallic material - Google Patents

Heat-resistant metallic material

Info

Publication number
JPS5834129A
JPS5834129A JP13120581A JP13120581A JPS5834129A JP S5834129 A JPS5834129 A JP S5834129A JP 13120581 A JP13120581 A JP 13120581A JP 13120581 A JP13120581 A JP 13120581A JP S5834129 A JPS5834129 A JP S5834129A
Authority
JP
Japan
Prior art keywords
less
temperature
heat
alloy
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13120581A
Other languages
Japanese (ja)
Other versions
JPH0138848B2 (en
Inventor
Susumu Isobe
磯部 晋
Kenkichi Matsunaga
松永 健吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP13120581A priority Critical patent/JPS5834129A/en
Publication of JPS5834129A publication Critical patent/JPS5834129A/en
Publication of JPH0138848B2 publication Critical patent/JPH0138848B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Abstract

PURPOSE:To improve high-temp. characteristics, more particularly tensile strength and fatigue strength by heat-treating an alloy contained with prescribed ratios of Fe, C, Si, Mn, Ni, Cr, etc. under prescribed conditions. CONSTITUTION:A titled metallic material wherein the alloy contg. 0.01-0.2% C, <=2% Si, <=2% Mn, 25-50% Ni, 13-23% Cr, 1.5-3.5% Ti, 0.1-1.5% Al, >=2 Ti/Al, and the balance Fe or further contg. >=1 kind selected among <=3% Mo, <=3%, W, <=5% (Nb+Ta), <=1% V, <=3% Hf, <=0.5% Zr, <=0.05% B in addition to the above is preliminarily heat-treated at 700-975 deg.C, and is subjected the same to hot working at <=975 deg.C and further to solutionizing and aging treatments at <=975 deg.C. Such metallic material has excellent high temp. characteristics, more particularly tensile strength and fatigue strength.

Description

【発明の詳細な説明】 労性のすぐれた耐熱金属材料に関する。[Detailed description of the invention] Concerning heat-resistant metal materials with excellent workability.

たとえばガスタービンのブレードを植えるディスクや、
ジェットエンジンの耐熱性を要する部品を製作する材料
として、ニッケル基合金が使用されている。 しかし、
それらの高合金材料はきわめて高価であって、製品のコ
ストを押し上げる。
For example, disks for planting gas turbine blades,
Nickel-based alloys are used as materials for manufacturing jet engine parts that require heat resistance. but,
These high alloy materials are extremely expensive, increasing the cost of the product.

そこで、もつと廉価な、つまり、より低合金であって同
等の性能をもつ材料を得たいという要求が強かった。
Therefore, there was a strong desire to obtain a material that was less expensive, that is, had a lower alloy, but had the same performance.

本発明者らの一人は、さきに内燃機関の排気バルブ用材
料について研究し、下記の組成の合金が、C : 0.
0 1〜0.2 0%  Si:2.O%以下Mn:2
.Q%以下    Ni : 2 5〜5 0%Cr:
13〜23%   Ti:1.5〜3.5%At:0.
1〜1.5% 残余が実質的に Fe ニッケル基合金(たとえば Inconel 7’51
 )  に劣らない特性を示すことを見出して、すでに
開示した(特開昭56−念01 4 8 )。
One of the present inventors previously researched materials for exhaust valves of internal combustion engines, and found that an alloy with the following composition was obtained: C: 0.
0 1-0.2 0% Si:2. 0% or less Mn: 2
.. Q% or less Ni: 25-50% Cr:
13-23% Ti: 1.5-3.5% At: 0.
1-1.5% The remainder is substantially Fe Nickel-based alloy (e.g. Inconel 7'51
) and have already disclosed it (Japanese Patent Application Laid-Open No. 1982-0148).

さらに研究を進め、今回、上記組成の合金であってTi
/Atの比を2.0以上にえらんだものに特定の条件の
熱処理および加工を施すことにより、組織を微細にし、
高温特性を向上できることを見出して本発明に至った。
Further research progressed, and this time, an alloy with the above composition was made with Ti.
/At ratio of 2.0 or more is subjected to heat treatment and processing under specific conditions to make the structure finer.
The present invention was achieved by discovering that high-temperature properties can be improved.

本発明の耐熱金属材料は、C:0.01〜0.20%、
si:2.0%以下、Mn:2.0%以下、Ni:25
〜50%、Cr:13 〜23%、Ti : 1.5 
〜3.5%、At:0.1〜1.5% を含有し、ただ
しTi/At比2、0以上であって、残余が実質的にF
eからなる合金を、700〜975℃ の温度で予備熱
処理したのち975℃以下の温度で熱間加工し、さらに
975℃以下の温度で固溶化および時効処理を施したこ
とを特徴とする。
The heat-resistant metal material of the present invention has C: 0.01 to 0.20%,
Si: 2.0% or less, Mn: 2.0% or less, Ni: 25
~50%, Cr: 13 ~ 23%, Ti: 1.5
~3.5%, At: 0.1~1.5%, provided that the Ti/At ratio is 2.0 or more, and the remainder is substantially F.
The alloy consisting of E is preheat-treated at a temperature of 700 to 975°C, then hot worked at a temperature of 975°C or lower, and further subjected to solid solution treatment and aging treatment at a temperature of 975°C or lower.

上記の基本組成に加えて、本発明の耐熱金属材料は、M
O:3.0%以下、w:3.Q%以下、( Nb十Ta
 ) : 5.0%以下、V:1.0%以下、Hf:3
.0%以下、zr:0.5%以下1よびB:0、05%
以下がらえらんだ1種または2種以上を含有することが
でき、それにより一層すぐれた高温特性を発揮する。
In addition to the above basic composition, the heat-resistant metal material of the present invention has M
O: 3.0% or less, w: 3. Q% or less, (Nb+Ta
): 5.0% or less, V: 1.0% or less, Hf: 3
.. 0% or less, zr: 0.5% or less 1 and B: 0, 05%
It can contain one or more selected from the following, thereby exhibiting even better high temperature properties.

本発明の耐熱金属材料において高いTi/At比を選択
したのは、η相( N l 3 7 r )を多量に析
出させることを意図したものである。 析出硬化型のN
i基合金においては、微細な金属間化合物を生成させて
熱疲労性を向上させることが、すでに試みられた(特開
昭46 − 6003号)。 しかし、その対象は、I
nconel 718、Incoloy 901、Wa
spaloyのような高合金に限られており、一般に 
Ni  50%以下のFe基合金においては、η相を析
出させることは有害と考えられていた。
The reason why a high Ti/At ratio was selected in the heat-resistant metal material of the present invention is to precipitate a large amount of η phase (N l 3 7 r ). Precipitation hardening type N
In the case of i-based alloys, attempts have already been made to improve thermal fatigue properties by forming fine intermetallic compounds (Japanese Patent Application Laid-Open No. 46-6003). However, the target is I
nconel 718, Incoloy 901, Wa
Limited to high alloys such as spaloy, generally
In Fe-based alloys containing 50% or less Ni, precipitation of the η phase was considered harmful.

本発明は、従来の通念を破って、η相を積極的に利用し
ようとの企ての下に、上記の Ti/At比をえらび、
これに上記の熱処理−加工条件を組み合わせることによ
り成功に至ったものである。
The present invention breaks the conventional wisdom and selects the above Ti/At ratio in an attempt to actively utilize the η phase,
Success was achieved by combining this with the heat treatment and processing conditions described above.

前記の合金組成について説明すれば、次のとおりである
The above alloy composition will be explained as follows.

C:0.01〜0.20% CはCrおよびTiと結合して炭化物を形成し、高温強
度を高めるために必要である。
C: 0.01-0.20% C is necessary to combine with Cr and Ti to form carbide and increase high-temperature strength.

ただし、多量にあると靭延性を損なうので、上記の範囲
をえらぶ。
However, since a large amount impairs toughness and ductility, the above range should be selected.

Si:2.0%以下 脱酸剤として添加されるが、靭延性の観点から少ない方
がよく、20%以下に限定した。
Si: 2.0% or less Although added as a deoxidizing agent, it is better to have less from the viewpoint of toughness and ductility, so it was limited to 20% or less.

Mn:2.0%以下 Si  と同様に脱酸剤として入ってくるが、多量にな
ると高温における材料の耐酸化性を低下させるから、上
記限度内にすべきである。
Mn: 2.0% or less Like Si, Mn is used as a deoxidizing agent, but if the amount is too large, it will reduce the oxidation resistance of the material at high temperatures, so it should be kept within the above limit.

Ni:25〜50% オーステナイト組織の安定化と、後に言及する γ’ 
(Ni3(AtTi))相を形成するのに必要である。
Ni: 25-50% Stabilization of austenite structure and γ' mentioned later
It is necessary to form the (Ni3(AtTi)) phase.

  25%の下限は、高温で使用中に6相のような脆化
相の形成を避けるために設けたが、一方、必要以上の添
加をしても高温性能の向上は期待できないし、低価格の
材料を提供するという目的にも反するので、上限を50
%に市めた。
The lower limit of 25% was set to avoid the formation of brittle phases such as 6-phase during use at high temperatures, but on the other hand, adding more than necessary will not improve high-temperature performance, and Since it goes against the purpose of providing materials for
Marketed to %.

Cr:13〜23% 耐食性および耐酸化性の確保のために加える。Cr: 13-23% Added to ensure corrosion resistance and oxidation resistance.

多すぎるとど相の形成を招き、靭延性が低下するから、
上記範囲内にする。
If it is too much, it will lead to the formation of dust phase and reduce toughness and ductility.
Keep it within the above range.

Ti:1.5〜35% 前記のように、η相(Ni3Ti )を析出させるため
と、高温強度の向上に有効なγ′相(Ni3(A4 T
i))を形成させるために必要であり、含有量は上記の
範囲が適切である。
Ti: 1.5-35% As mentioned above, the γ' phase (Ni3(A4T) is effective for precipitating the η phase (Ni3Ti) and improving high temperature strength.
It is necessary to form i)), and the content is appropriately within the above range.

At : O81〜1.5% Ti  と同様に、γ′相の形成に必要である。At: O81~1.5% Like Ti, it is necessary for the formation of the γ' phase.

過大な存在はη相の析出を減らすうえ熱間加工性にとっ
て好ましくないので、上記の限界を設けた。
The above limit was set because the presence of an excessive amount reduces precipitation of the η phase and is also unfavorable for hot workability.

Ti/At: 2.0以上 前述のとおり、η相の析出のために必要である。 Ti
  とAt以外の成分については本発明の範囲内で代表
的な組成の種々の合金に対して、900°×24時間の
熱処理を行なったときの、金属間化合物の析出物のうち
η相の占める割合が、T i /A 1比によってどの
よ5に変化するかをしらべたところ、第1図の結果を得
た。 このグラフから、Ti/At比を2.0以上、好
ましくは3〜4またはそれ以上にすべきことがわかる。
Ti/At: 2.0 or more As mentioned above, it is necessary for the precipitation of the η phase. Ti
Regarding components other than At and At, various alloys with typical compositions within the scope of the present invention are heat-treated at 900° x 24 hours, and the η phase accounts for the precipitates of intermetallic compounds. When examining how the ratio changes to 5 depending on the T i /A 1 ratio, the results shown in FIG. 1 were obtained. From this graph it can be seen that the Ti/At ratio should be greater than 2.0, preferably 3-4 or more.

前掲の、所望により添加することのできる諸元素の主な
作用は、つぎのとおりである。
The main effects of the above-mentioned elements that can be added as desired are as follows.

Mo:3.Q%以下、w:3.Q%以下ともに、粒子内
に固溶し強化する。
Mo:3. Q% or less, w: 3. Q% and below are solid-dissolved in the particles and strengthened.

(Nb+Ta):5.0%以下、V:1.0%以下、Z
r:0.5%以下、Hf:3.0%以下これらの元素は
、炭化物を形成して粒界を強化する。 なお、(Nb+
Ta )およびHfは、MoおjびWと同じく、固溶強
化のはたらきもある。 また金属間化合物を形成して析
出、強化に寄与する。
(Nb+Ta): 5.0% or less, V: 1.0% or less, Z
r: 0.5% or less, Hf: 3.0% or less These elements form carbides and strengthen grain boundaries. In addition, (Nb+
Ta) and Hf, like Moj and W, also have the function of solid solution strengthening. It also forms intermetallic compounds that contribute to precipitation and strengthening.

B:0.05%以下 粒界に偏析して、粒界を強化する。B: 0.05% or less Segregates at grain boundaries and strengthens them.

上記の金属元素は、過大な量存在すると耐酸化性を損な
ったり、高温強度にマイナスとなる。
If the above metal elements are present in excessive amounts, they may impair oxidation resistance or have a negative effect on high-temperature strength.

多量のBは熱間加工性を下げる。 従って、いずれも上
記の限度内で添加する。
A large amount of B reduces hot workability. Therefore, both should be added within the above limits.

次に、熱処理および加工条件について述べれば、前記組
成の合金に対して、まず700〜975℃ の温度で行
なう予備熱処理は、もちろんη相を析出させるためであ
る。 本発明の範囲の代表的な組成の合金について、η
相(Ni3Ti)の析出曲線をえかいた結果は、第2図
に示すとおりであって、このグラフから、上記温度範囲
内、好ましくは800〜950℃に処理すべきことがわ
かる。
Next, regarding the heat treatment and processing conditions, the preliminary heat treatment performed on the alloy having the above composition at a temperature of 700 to 975°C is, of course, for precipitating the η phase. For alloys with representative compositions within the scope of the present invention, η
The result of drawing the precipitation curve of the phase (Ni3Ti) is as shown in FIG. 2, and from this graph it can be seen that the treatment should be within the above temperature range, preferably 800 to 950°C.

975℃以下の温度における熱間加工により、予備熱処
理により析出したη相が破壊され、組織中に均一かつ微
細に分散する。
By hot working at a temperature of 975° C. or lower, the η phase precipitated by the preliminary heat treatment is destroyed and dispersed uniformly and finely in the structure.

続<975℃ 以下の温度における固溶化および時効処
理により、微細(グレインサイズ・Nn8より細粒)で
粗大粒を合まない、良好な組織が得られる。 それは、
上記の均一かつ微細に分散したη相が、結晶粒界の移動
を妨げる効果である。
By solid solution treatment and aging treatment at temperatures below 975° C., a fine structure (grain size, finer than Nn8) with no coarse grains can be obtained. it is,
The above-mentioned uniform and finely dispersed η phase has the effect of inhibiting the movement of grain boundaries.

上記のようにして得られた本発明の耐熱金属材料が、す
ぐれた高温特性、ことに引張強度と疲労強度とを有する
ことを、以下の実例により示す。
The following examples demonstrate that the heat-resistant metal material of the present invention obtained as described above has excellent high-temperature properties, especially tensile strength and fatigue strength.

実施例 第1表に示す化学組成(残余はFe )の合金を高周波
真空誘導炉で溶製して、509インゴツトに鋳造した。
EXAMPLE An alloy having the chemical composition shown in Table 1 (the balance being Fe) was melted in a high frequency vacuum induction furnace and cast into a 509 ingot.

、ソーキング処理を施して、1150〜950°Cの温
度域で鍛伸して、径90Iuのビレットにした。 この
ビレットを長さ90mに切断して鍛造素材をつくった。
A billet with a diameter of 90 Iu was obtained by subjecting it to soaking treatment and forging in a temperature range of 1150 to 950°C. This billet was cut to a length of 90 m to produce a forged material.

素材を、次の条件で加工した。The material was processed under the following conditions.

〔プロセスX〕[Process X]

900℃×24時間の予備熱処理(η相析出)→加熱温
度950℃で1/2uの据込み鍛造→930℃×5時間
(再結晶)、水冷→750℃X20時間(γ−プライム
相析出一時効処理、空冷。
Preliminary heat treatment at 900°C for 24 hours (η phase precipitation) → 1/2U upsetting forging at heating temperature of 950°C → 930°C for 5 hours (recrystallization), water cooling → 750°C for 20 hours (γ-prime phase precipitation) Aging treatment, air cooling.

比較のため、本発明に従った組成の合金に対して下記の
、本発明に従わず従来一般的であった条件の加工 〔プロセスY〕 予備熱処理なし→加熱温度1,150℃で1/2Uの据
込み鍛造→1,000℃×1時間、水冷→750℃×2
0時間、空冷 を施した場合と、本発明に従わない組成の合金に対して
、前記゛プロセスXの加工を施した場合についても試験
した。
For comparison, an alloy having a composition according to the present invention was processed under the following conventional conditions that were not according to the present invention [Process Y] No preliminary heat treatment → 1/2 U at a heating temperature of 1,150°C Upsetting forging → 1,000℃ x 1 hour, water cooling → 750℃ x 2
Tests were also conducted in the case where the alloy was air-cooled for 0 hours and in the case where the process X was applied to an alloy having a composition not in accordance with the present invention.

(1)  ミクロ組織。(1) Microstructure.

本発明に従う合金組成を有する供試材Bに対して、プロ
セスXの加工を行なったものと、プロセスYの加工を行
なったものとについて、ミクロ組織をしらべた。
The microstructures of specimen B having an alloy composition according to the present invention subjected to process X and process Y were examined.

その結果を、第3図(本発明)および第4図(比較例)
に示す。(倍率は、ともに500倍)本発明によれば、
従来技術による比較例にくらべて、きわめて微細な組織
が得られる。
The results are shown in Figure 3 (present invention) and Figure 4 (comparative example).
Shown below. (The magnification is 500 times) According to the present invention,
An extremely fine structure can be obtained compared to the comparative example using the conventional technology.

(2)引張特性 本発明の材料と、比較例の材料とについて、600℃に
おける高温引張試験を行なった。 その結果は第2表に
示す。 表にみるとおり、本発明の材料の0.2%耐力
および引張強さは比較例の材料にくらべて格段に高く、
高価なニッケル基合金にくらべて遜色ない。
(2) Tensile properties A high-temperature tensile test at 600°C was conducted on the material of the present invention and the material of the comparative example. The results are shown in Table 2. As shown in the table, the 0.2% yield strength and tensile strength of the material of the present invention are much higher than those of the comparative example material.
Comparable to expensive nickel-based alloys.

また、伸びおよび絞り値で示される高温延性も、強度の
向上にもかかわらず、比較例と同等のレベルにある。
Furthermore, the high-temperature ductility shown by elongation and reduction of area is also at the same level as the comparative example, despite the improvement in strength.

(3)疲労特性 同じ<600℃における高温疲労試験を行なった。 結
果を第2表にあわせ掲げる。 ここでも、本発明による
効果が明らかによみとれる。
(3) Fatigue properties A high temperature fatigue test was conducted at the same temperature of <600°C. The results are listed in Table 2. Here again, the effects of the present invention can be clearly seen.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に関連する組成の合金を熱処理したと
きに析出する金属間化合物中の、η相(N + 3T 
r )が占める割合が合金中のTi/At比によりどの
ように変化するかを示すグラフである。 第2図は、本発明の代表的な組成の合金のη相析出曲線
であって、熱処理温度および保持時間との関連において
、η相の析出する程度を示すグラフである。 第3図および第4図は、本発明に従う組成の合金のミク
ロ組織を示す顕微鏡写真であって、第3図は本発明に従
う熱処理−加工−を施したもの、第4図は従来技術によ
る熱処理−加工を施したものをそれぞれあられす。(倍
率はともに500倍)特許出願人 大同特殊鋼株式会社 代理人 弁理士   須  賀  総  夫才1図 0   2   4   6   8   10Ti/
Al  え 第  3  図 第  4  図 −154−・
Figure 1 shows the η phase (N + 3T
FIG. 2 is a graph showing how the ratio occupied by r ) changes depending on the Ti/At ratio in the alloy. FIG. 2 is an η phase precipitation curve of an alloy having a typical composition of the present invention, and is a graph showing the degree of η phase precipitation in relation to heat treatment temperature and holding time. 3 and 4 are micrographs showing the microstructure of an alloy having a composition according to the present invention, in which FIG. 3 is a heat treatment according to the present invention (processing), and FIG. 4 is a heat treatment according to the prior art. - Each processed item is hailed. (Both magnifications are 500x) Patent applicant: Daido Steel Co., Ltd. Agent: Patent attorney: Suga Sofusai 1 Figure 0 2 4 6 8 10Ti/
Al Figure 3 Figure 4 Figure-154-・

Claims (2)

【特許請求の範囲】[Claims] (1)  C: 0.01〜0.20%、Si:2.0
%以下、Mn:2.0%以下、Ni:25〜50%、C
r:13〜23%、Ti:1.5〜3.5%、At:0
.1〜1.5%を含有し、ただし T i/Az : 
2.0以上であって、残余が実質的にFeからなる合金
を、700〜975℃の温度で予備熱処理したのち97
5℃以下の温度で熱間加工し、さらに975℃以下の温
度で固溶化および時効処理を施したことを特徴とする特
(1) C: 0.01-0.20%, Si: 2.0
% or less, Mn: 2.0% or less, Ni: 25-50%, C
r: 13-23%, Ti: 1.5-3.5%, At: 0
.. Contains 1 to 1.5%, provided that T i /Az:
2.0 or more, and the remainder is substantially Fe, is preheat-treated at a temperature of 700 to 975°C, and then
A patent characterized by hot working at a temperature of 5°C or lower, and further solid solution treatment and aging treatment at a temperature of 975°C or lower.
(2)  C : 0. 0 1〜0.20%、Si:
2.0%以下、Mn : 2, Q%以下、Ni:25
 〜50%、Cr:13〜23%、Ti:1,5〜3.
5%、At:0.1〜1、5%を含有し、ただし T 
i /At: 2. 0以上 であって、さらに、Mo
:3.0%以下、w:3.Q%以下、( Nb+Ta 
) : 5.0%以下、V’:1.0%以下、Hf:3
.0%以下、Zr:0.5%以下およびB:0.05%
以下からえらんだ1種または2種以上を含有し、残余が
実質的にFeからなる合金を、700〜975℃ の温
度で予備熱処理したのち 975℃以下の温度で熱間加
工し、さらに975℃以下の温度で固溶化および時効処
理を施したことを特徴とする高温特性のすぐれた耐熱金
属材料。
(2) C: 0. 0 1 to 0.20%, Si:
2.0% or less, Mn: 2, Q% or less, Ni: 25
~50%, Cr: 13-23%, Ti: 1.5-3.
5%, At: 0.1-1, Contains 5%, provided that T
i/At: 2. 0 or more, and furthermore, Mo
: 3.0% or less, w: 3. Q% or less, (Nb+Ta
): 5.0% or less, V': 1.0% or less, Hf: 3
.. 0% or less, Zr: 0.5% or less and B: 0.05%
An alloy containing one or more selected from the following, with the remainder substantially consisting of Fe, is preheat-treated at a temperature of 700 to 975°C, then hot worked at a temperature of 975°C or less, and then further heated to 975°C. A heat-resistant metal material with excellent high-temperature properties, characterized by having been subjected to solid solution treatment and aging treatment at the following temperatures.
JP13120581A 1981-08-21 1981-08-21 Heat-resistant metallic material Granted JPS5834129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13120581A JPS5834129A (en) 1981-08-21 1981-08-21 Heat-resistant metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13120581A JPS5834129A (en) 1981-08-21 1981-08-21 Heat-resistant metallic material

Publications (2)

Publication Number Publication Date
JPS5834129A true JPS5834129A (en) 1983-02-28
JPH0138848B2 JPH0138848B2 (en) 1989-08-16

Family

ID=15052496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13120581A Granted JPS5834129A (en) 1981-08-21 1981-08-21 Heat-resistant metallic material

Country Status (1)

Country Link
JP (1) JPS5834129A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166364A (en) * 1983-03-14 1984-09-19 Japan Steel Works Ltd:The Production of thick-walled superalloy casting ingot
JPS60155653A (en) * 1984-01-25 1985-08-15 Hitachi Ltd Iron-base super alloy and its production
JPS6350440A (en) * 1986-08-18 1988-03-03 インコ、アロイス、インタ−ナショナル インコ−ポレ−テッド Nickel-chromium alloy improved in fatique strength
JPS63137146A (en) * 1986-11-28 1988-06-09 Hitachi Ltd Heat-resisting steel
US5223053A (en) * 1992-01-27 1993-06-29 United Technologies Corporation Warm work processing for iron base alloy
US5948182A (en) * 1994-02-24 1999-09-07 Daido Tokushuko Kabushiki Kaisha Heat resisting steel
EP1464718A1 (en) * 2003-03-18 2004-10-06 HONDA MOTOR CO., Ltd. High-strength, heat-resistant alloy for exhaust valves with improved overaging-resistance
KR100466443B1 (en) * 2002-02-15 2005-01-14 주식회사 포스코 Manufacturing method of heat resisting alloy to prohibit the abnormal grain growh
CN102021486A (en) * 2011-01-13 2011-04-20 南昌硬质合金有限责任公司 High temperature resistant boat for reducing tungsten powder impurities
JP2012149343A (en) * 2011-01-03 2012-08-09 General Electric Co <Ge> Alloy
JP2014109053A (en) * 2012-11-30 2014-06-12 Toshiba Corp Austenitic heat resistant steel and turbine component
JP2015004125A (en) * 2013-05-21 2015-01-08 大同特殊鋼株式会社 PRECIPITATION HARDENED Fe-Ni ALLOY
KR20150092361A (en) * 2012-12-28 2015-08-12 더 재팬 스틸 워크스 엘티디 Fe-Ni-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE CHARACTERISTICS AND HYDROGEN EMBRITTLEMENT RESISTANCE CHARACTERISTICS, AND METHOD FOR PRODUCING SAME
CN106399800A (en) * 2016-09-18 2017-02-15 中国华能集团公司 Austenite heat-resisting steel and heat treatment technology thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184720A (en) * 1975-01-23 1976-07-24 Tokushu Seiko Co Ltd REIKANATSUZONOKANONAKOSEINOHAIKIBARUBUYOTAINETSUKO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184720A (en) * 1975-01-23 1976-07-24 Tokushu Seiko Co Ltd REIKANATSUZONOKANONAKOSEINOHAIKIBARUBUYOTAINETSUKO

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166364A (en) * 1983-03-14 1984-09-19 Japan Steel Works Ltd:The Production of thick-walled superalloy casting ingot
JPS60155653A (en) * 1984-01-25 1985-08-15 Hitachi Ltd Iron-base super alloy and its production
JPH0559167B2 (en) * 1984-01-25 1993-08-30 Hitachi Ltd
JPS6350440A (en) * 1986-08-18 1988-03-03 インコ、アロイス、インタ−ナショナル インコ−ポレ−テッド Nickel-chromium alloy improved in fatique strength
JP2575399B2 (en) * 1986-08-18 1997-01-22 インコ、アロイス、インタ−ナショナル インコ−ポレ−テッド Nickel-chromium alloy with excellent thermal fatigue resistance
JPS63137146A (en) * 1986-11-28 1988-06-09 Hitachi Ltd Heat-resisting steel
US5223053A (en) * 1992-01-27 1993-06-29 United Technologies Corporation Warm work processing for iron base alloy
US5948182A (en) * 1994-02-24 1999-09-07 Daido Tokushuko Kabushiki Kaisha Heat resisting steel
KR100466443B1 (en) * 2002-02-15 2005-01-14 주식회사 포스코 Manufacturing method of heat resisting alloy to prohibit the abnormal grain growh
EP1464718A1 (en) * 2003-03-18 2004-10-06 HONDA MOTOR CO., Ltd. High-strength, heat-resistant alloy for exhaust valves with improved overaging-resistance
JP2012149343A (en) * 2011-01-03 2012-08-09 General Electric Co <Ge> Alloy
CN102021486A (en) * 2011-01-13 2011-04-20 南昌硬质合金有限责任公司 High temperature resistant boat for reducing tungsten powder impurities
JP2014109053A (en) * 2012-11-30 2014-06-12 Toshiba Corp Austenitic heat resistant steel and turbine component
KR20150092361A (en) * 2012-12-28 2015-08-12 더 재팬 스틸 워크스 엘티디 Fe-Ni-BASED ALLOY HAVING EXCELLENT HIGH-TEMPERATURE CHARACTERISTICS AND HYDROGEN EMBRITTLEMENT RESISTANCE CHARACTERISTICS, AND METHOD FOR PRODUCING SAME
US9994938B2 (en) 2012-12-28 2018-06-12 The Japan Steel Works, Ltd. Fe-Ni-based alloy having excellent high-temperature characteristics and hydrogen embrittlement resistance characteristics, and method for producing the same
JP2015004125A (en) * 2013-05-21 2015-01-08 大同特殊鋼株式会社 PRECIPITATION HARDENED Fe-Ni ALLOY
CN106399800A (en) * 2016-09-18 2017-02-15 中国华能集团公司 Austenite heat-resisting steel and heat treatment technology thereof

Also Published As

Publication number Publication date
JPH0138848B2 (en) 1989-08-16

Similar Documents

Publication Publication Date Title
JP2778705B2 (en) Ni-based super heat-resistant alloy and method for producing the same
JP5988008B2 (en) Austenitic stainless steel sheet
JP4037929B2 (en) Low thermal expansion Ni-base superalloy and process for producing the same
US11718897B2 (en) Precipitation hardenable cobalt-nickel base superalloy and article made therefrom
US7507306B2 (en) Precipitation-strengthened nickel-iron-chromium alloy and process therefor
JP4262414B2 (en) High Cr ferritic heat resistant steel
JP2003253363A (en) Ni-BASE ALLOY FOR HEAT-RESISTANT SPRING, HEAT-RESISTANT SPRING USING THE ALLOY, AND ITS PRODUCTION METHOD
JP3058794B2 (en) Fe-Ni-Cr based super heat resistant alloy, knit mesh for engine valve and exhaust gas catalyst
JPS5834129A (en) Heat-resistant metallic material
JP3308090B2 (en) Fe-based super heat-resistant alloy
JPH09279309A (en) Iron-chrome-nickel heat resistant alloy
JP2003113434A (en) Superalloy excellent in high-temperature sulfur corrosion resistance and manufacturing method therefor
US3065068A (en) Austenitic alloy
JP3412234B2 (en) Alloy for exhaust valve
JP2001323323A (en) Method for producing automobile engine valve
JP4923996B2 (en) Heat-resistant spring and method for manufacturing the same
JP2004256840A (en) COMPOSITE REINFORCED TYPE Ni BASED SUPERALLOY, AND PRODUCTION METHOD THEREFOR
JP4315582B2 (en) Co-Ni base heat-resistant alloy and method for producing the same
JPS61238942A (en) Heat resisting alloy
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JP3744084B2 (en) Heat-resistant alloy with excellent cold workability and overaging characteristics
JP2000192205A (en) Heat resistant alloy excellent in oxidation resistance
JP2001158943A (en) Heat resistant bolt
JPH07238349A (en) Heat resistant steel
JP2000204449A (en) Iron base superalloy excellent in cold workability and high temperature thermal stability