JPS60155653A - Iron-base super alloy and its production - Google Patents

Iron-base super alloy and its production

Info

Publication number
JPS60155653A
JPS60155653A JP1016884A JP1016884A JPS60155653A JP S60155653 A JPS60155653 A JP S60155653A JP 1016884 A JP1016884 A JP 1016884A JP 1016884 A JP1016884 A JP 1016884A JP S60155653 A JPS60155653 A JP S60155653A
Authority
JP
Japan
Prior art keywords
vacuum
iron
less
strength
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1016884A
Other languages
Japanese (ja)
Other versions
JPH0559167B2 (en
Inventor
Katsumi Iijima
飯島 活巳
Norio Yamada
山田 範雄
Seishin Kirihara
桐原 誠信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1016884A priority Critical patent/JPS60155653A/en
Publication of JPS60155653A publication Critical patent/JPS60155653A/en
Publication of JPH0559167B2 publication Critical patent/JPH0559167B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable production of an iron-base super alloy having excellent high- temp. strength, toughness and high-temp. ductility by melting an Ni-Cr alloy steel in a vacuum atmosphere, decreasing considerably the content of oxygen and hydrogen and adding a specific desulfurizing agent to decrease the content of S. CONSTITUTION:An iron-base super alloy having the compsn. contg. <0.15% C, <2.0% Mn, <1.5% Si, 10-20% Cr, 20-30% Ni, 0.5-3% Mo, 1.5-3% Ti, 0.1- 0.5% Al, 0.002-0.01% B and <0.4% V and contg. <60ppm O2 and <2ppm H2 is melted in a vacuum induction melting device maintained under <=0.05Torr degree of vacuum or partial pressure of air; further 1 or >=2 kinds among Mg, Y, Zn and Zr are added at 0.001-0.05% thereto to fix S in the molten metal thereby preventing precipitation of S at the grain boundary and consequent decrease of ductility. The alloy is suitable as a material for a rotating machine and apparatus for a power plant to be used at 600-650 deg.C.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、高温強度・靭性のみならず高温延性に優れ高
温長時間側で切欠強化を示す鉄基超合金に係り、特番;
温度600〜650℃で使用される発電プラン1〜用回
転機器材として好適な材料並びにその製造法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an iron-based superalloy that is excellent in not only high-temperature strength and toughness but also high-temperature ductility and exhibits notch strengthening on the high-temperature long-term side.
The present invention relates to a material suitable as a rotating equipment material for power generation plan 1 to be used at a temperature of 600 to 650°C, and a manufacturing method thereof.

〔発明の背景〕[Background of the invention]

蒸気タービンは、従来、538〜566℃の主蒸気を使
用し、Cr −M o −V及び12Cr@によりロー
タ並びに動翼等の回転機器が形成されている。しかし、
石油資源の減少、これに原因した電力の安定供給に対す
る要請から主蒸気温度が′600℃以上の高温高圧発電
プラントあるいは大容量1!電プラントさらにはエネル
ギーの多様化を目的とした膨張タービン等が検討されて
いる。こうした発電プラントではいずれも運転条件が過
酷となる。使用温度の上昇について見れば、Cr−Mo
−V、12 Cr 6’f4等のフェライト系材料は5
50℃以上の温度域で粒界上りが顕著となりクリープ破
断強度が極端に低下する欠点が指摘され、新材料の提案
が必要とされる。
Conventionally, a steam turbine uses main steam at a temperature of 538 to 566° C., and rotating equipment such as a rotor and rotor blades are formed of Cr-Mo-V and 12Cr@. but,
Due to the decrease in oil resources and the demand for a stable supply of electricity due to this, high-temperature, high-pressure power generation plants with main steam temperatures of 600°C or higher or large-capacity 1! Expansion turbines and the like are being considered for the purpose of electric power plants and energy diversification. All of these power plants have harsh operating conditions. Looking at the rise in operating temperature, Cr-Mo
-V, 12 Cr 6'f4 and other ferrite materials are 5
It has been pointed out that in the temperature range of 50°C or higher, grain boundary climbing becomes noticeable and the creep rupture strength is extremely reduced, which calls for the proposal of a new material.

現在、600℃以上の温度域で使用される材料としでは
、FeにCr、Niを添加したオーステナイト系合金が
一般的である。したがって、600℃以上の温度条件で
使用される発電プラント用回転機器材料としては高温強
度の点から高Niオーステナイト系合金が有望視されて
いる。
Currently, austenitic alloys in which Cr and Ni are added to Fe are generally used as materials in the temperature range of 600° C. or higher. Therefore, from the viewpoint of high-temperature strength, high-Ni austenitic alloys are considered promising materials for rotating equipment for power plants used at temperatures of 600° C. or higher.

一方、前記の材料はこれまでジェットエンジン等比較的
短時間側の強度を重視した仕様に合せていたため、発電
プラント用機器材料に適用するには、103時間以上の
クリープ破断強度と共に切欠強度(高温延性と相関)を
改善する必要がある。
On the other hand, the above-mentioned materials have so far been tailored to specifications that emphasize strength for relatively short periods of time, such as jet engines, so in order to apply them to equipment materials for power generation plants, they must have creep rupture strength of 103 hours or more and notch strength (high temperature It is necessary to improve the ductility (correlation with ductility).

特に、ブレード・ロータの様に応力集中部が存在する機
器では長時間側において切欠材のクリープ破断強度が平
滑材のクリープ破断強度以上となる事(切欠強度)が重
要となる。
In particular, in equipment such as blades and rotors where stress concentration areas exist, it is important that the creep rupture strength of the notched material exceeds the creep rupture strength of the smooth material (notch strength) on the long-term side.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、引張強さ・クリープ破断強度等高温強
度に加え高温長時間側での破断延性に優れ切欠強化とな
る鉄基超合金、特に600〜650℃で使用される高効
率発電プラント用回転機器材料を提案することにある。
The purpose of the present invention is to develop an iron-based superalloy that exhibits high-temperature strength such as tensile strength and creep rupture strength, as well as fracture ductility on the high-temperature long-term side and is notch-strengthened, particularly for high-efficiency power generation plants used at 600-650℃. Our purpose is to propose materials for rotating equipment.

〔発明の概要〕[Summary of the invention]

本発明は、真空度あるいは空気分圧が0,05torr
以下の条件で溶製され重量でC0,15%以下、M n
 2%以下、S i 1.5%以下、6110〜20%
、N i 20〜30%、M o 0 、5〜3%、T
i1.5〜3%、AQo、1〜0.5%、B O,00
2〜0.01%、Vo、4%以下、060ppm以下、
H2ppm以下に制限し、さらに0.001〜0.05
%のMg、Y、Zn、Zrを1種もしくは2種以上添加
した残部がFe並びに不可避の不純物からなる鉄基超合
金に関する。
In the present invention, the vacuum degree or air partial pressure is 0.05 torr.
Melted under the following conditions, C0.15% or less by weight, M n
2% or less, Si 1.5% or less, 6110-20%
, N i 20-30%, M o 0, 5-3%, T
i1.5~3%, AQo, 1~0.5%, B O,00
2 to 0.01%, Vo, 4% or less, 060ppm or less,
Limit H2ppm or less, and further 0.001 to 0.05
% Mg, Y, Zn, and Zr are added, and the remainder consists of Fe and unavoidable impurities.

本発明では、溶製時あるいは原料より吸収されるO、H
は粒界に偏析し破断延性を低下し、その結果長時間側で
切欠劣化を生じさせるためこれらのガス量を制限する必
要がある事を見いだした。
In the present invention, O and H absorbed during melting or from raw materials are
It was found that it is necessary to limit the amount of these gases because they segregate at grain boundaries and reduce fracture ductility, resulting in notch deterioration over long periods of time.

さらに、Sも粒界に偏析し延性を低下させるがMg、Y
、Zn、Zrを添加するとこれらはSと結合しSの固定
に有効であ事を明らかにした。
Furthermore, S also segregates at grain boundaries and reduces ductility, but Mg, Y
, Zn, and Zr were found to bind to S and to be effective in fixing S.

以上の現象に基づき高真空化でo、H量を制限となおか
っMg+ Ye Zn、Zrを添加することで高温延性
に優れた鉄基超合金を提案する。
Based on the above phenomena, we propose an iron-based superalloy that has excellent high-temperature ductility by limiting the amount of o and H by increasing the vacuum and adding Mg + Ye Zn and Zr.

以下に各成分の限定理由を示す。The reasons for limiting each component are shown below.

Cは、炭化物を形成し高温強度、クリープ破断強度を向
上させるため重要である。しがし0.15%を越えて添
加すると靭性、溶接性を著しく低下させるため、その上
限を0.15% とする。
C is important because it forms carbides and improves high temperature strength and creep rupture strength. If added in excess of 0.15%, the toughness and weldability will be significantly reduced, so the upper limit is set at 0.15%.

Stは、溶解製造の脱酸剤として重要な成分である。し
かしC同様多量に添加すると靭性及び溶接性を低めるた
め上限を1.5% とする。
St is an important component as a deoxidizing agent in melt production. However, like C, when added in large amounts, toughness and weldability are reduced, so the upper limit is set at 1.5%.

Mnは、Siと同様に溶解製造の脱酸剤として、更に熱
間加工性を高めるものとして重要な成分である。しかし
、2%を越えると耐食性、耐酸化性を低めるため上限を
2%とする。
Like Si, Mn is an important component as a deoxidizing agent in melt production and as a component that further improves hot workability. However, if it exceeds 2%, corrosion resistance and oxidation resistance will decrease, so the upper limit is set at 2%.

Niは、オーステナイト組織を形成する重要な成分であ
る。しかし20%以下ではその効果が十分でなく不安定
なオーステナイト組織となる。一方、30%を越えると
熱間加工性を低める。そこで20〜30%の範囲で添加
する必要がある6Crは、高温強度、耐食性、耐酸化性
を向上させるために重要な添加元素でありこの効果を得
るため10%以上を添加すべきである。しかし20%を
越えると溶接性を低める事、フェライト相を形成し高温
長時間側での脆化を加速するためその上限を20%とす
る。
Ni is an important component that forms an austenite structure. However, if it is less than 20%, the effect is not sufficient and an unstable austenite structure results. On the other hand, if it exceeds 30%, hot workability will be reduced. Therefore, 6Cr, which needs to be added in a range of 20 to 30%, is an important additive element for improving high temperature strength, corrosion resistance, and oxidation resistance, and in order to obtain this effect, 6Cr should be added in an amount of 10% or more. However, if it exceeds 20%, the weldability will deteriorate and a ferrite phase will form, accelerating embrittlement at high temperatures and long periods of time, so the upper limit is set at 20%.

MOはオーステナイト地を強化すると共に炭化物を形成
しクリープ破断強度を向上させる。o、5%以下ではこ
の効果が期待できない事、また3、0%以上添加すると
融点の低い酸化物(Mob、)を形成し低酸化性が非常
に悪くなるため0.5〜3.0% が良好となる。
MO strengthens the austenite base and forms carbides to improve creep rupture strength. 0.5% to 3.0% because this effect cannot be expected if it is less than 5%, and if it is added more than 3.0%, it forms an oxide (Mob) with a low melting point and the low oxidation property becomes very poor. becomes good.

Tiは脱酸剤として作用する以外に高温強度・延性の向
上に有効なγ′相(N 1 s (AΩ、Ti))を析
出させるために必要な元素である。1.5%以下ではそ
の効果が十分期待できない事、また3%以上では時効硬
化性のないη相(Ni、Ti)を析出するため1.5〜
3.0%を添加する。
Ti is an element necessary for precipitating the γ' phase (N 1 s (AΩ, Ti)) which is effective in improving high temperature strength and ductility in addition to acting as a deoxidizing agent. If it is less than 1.5%, the effect cannot be fully expected, and if it is more than 3%, the η phase (Ni, Ti), which has no age hardening properties, will precipitate.
Add 3.0%.

AfiはTiと結合し金属間化合物γ′相を析出する。Afi combines with Ti and precipitates an intermetallic compound γ' phase.

しかし、多量に添加すると高温強度を低下させるためそ
の上限を0.5%とする。
However, if added in a large amount, the high temperature strength decreases, so the upper limit is set at 0.5%.

Bは結晶粒界を著しく強化し、がっ高温延性を向上する
ために有効である。しかし多量に含有すると加工性を低
下させるためその上限を0.01%とする。
B is effective in significantly strengthening grain boundaries and improving high-temperature ductility. However, if it is contained in a large amount, processability is reduced, so the upper limit is set at 0.01%.

VはVS、VN、VC等の析出物を形成する。V forms precipitates such as VS, VN, and VC.

このうちVCは時効硬化性があり引張強さ並びにクリー
プ破断強度を向上するために有効である。
Among these, VC has age hardening properties and is effective for improving tensile strength and creep rupture strength.

しかしV量が増加すると耐酸化性に悪影響を及ぼす。そ
こでv量は0.4%以下とすべきである。
However, an increase in the amount of V adversely affects oxidation resistance. Therefore, the v amount should be 0.4% or less.

Hの合金中での溶解度は低温において急激に低下し、そ
の結果これらの小間隙または小気泡は材料に微細な割れ
を発生させる。このためHの増加は特に破断伸び・絞り
を低下する傾向を示す。近年真空技術の進歩によって溶
鋼を真空処理し、脱Hする方法が広く行なわれているが
炉内雰囲気・スラグ及び耐火物中の水分からHを吸収す
るため完全な脱Hは不可能である。そこで前記のHによ
る延性低下を防止するためH量は2 ppm以下に制限
する。
The solubility of H in the alloy decreases rapidly at low temperatures, so that these small voids or bubbles cause microcracks in the material. Therefore, an increase in H tends to particularly reduce elongation at break and reduction of area. In recent years, advances in vacuum technology have led to a widespread method of vacuum-treating molten steel to remove hydrogen. However, complete hydrogen removal is impossible because hydrogen is absorbed from the furnace atmosphere, slag, and moisture in the refractories. Therefore, in order to prevent the deterioration of ductility due to H, the amount of H is limited to 2 ppm or less.

0は脱酸反応により減少する一方、脱酸反応によって溶
鋼中に生成された各種酸化物の一部は、溶鋼中から浮上
分離しないまま酸化物系非金属介在物として残存する。
0 is reduced by the deoxidation reaction, while some of the various oxides generated in the molten steel by the deoxidation reaction remain as oxide-based nonmetallic inclusions without floating and separating from the molten steel.

これら非金属介在物は粒界に偏析しやすくその結果クリ
ープ破断延性に著しい悪影響を及ぼす。そこでO量は6
0ppm以下に制限すべきである。
These nonmetallic inclusions tend to segregate at grain boundaries, resulting in a significant negative effect on creep rupture ductility. Therefore, the amount of O is 6
It should be limited to 0 ppm or less.

Mg、Y、Zn、Zr、SはOと並んで偏析係数(0,
98)が最大で、もつとも偏析しやすい元素の一つであ
る。またFeS・単独あるいは5in2と共存している
時割れ発生の要因となる。このSは脱硫技術技術の向上
とともに低減できる様になった。しかし本発明鋼の様な
析出硬化型の材料では相対的に粒界強度が低く、このた
めSあるいは硫化物の粒界偏析により高温での延性が低
下する傾向を示す。そこで、Sを固定するため結合力の
高いMg、Y、Zn、Zrを添加する。これらの元素は
いずれも0.001%以下では効果が十分でない事、ま
た0、05%以上では逆に延性を損なうため0.001
〜0.05%に限定すべきである。
Mg, Y, Zn, Zr, and S have segregation coefficients (0,
98) is one of the elements that is most likely to segregate. Moreover, FeS alone or coexisting with 5in2 becomes a factor in the occurrence of time cracking. This S content can now be reduced with the improvement of desulfurization technology. However, precipitation hardening materials such as the steel of the present invention have relatively low grain boundary strength, and as a result, ductility at high temperatures tends to decrease due to grain boundary segregation of S or sulfide. Therefore, in order to fix S, Mg, Y, Zn, and Zr, which have high binding strength, are added. If any of these elements is less than 0.001%, the effect will not be sufficient, and if it is more than 0.05%, the ductility will be impaired.
Should be limited to ~0.05%.

以上の成分範囲にO,H量を制限するには真空度は0.
05torr以下とすべきである。このため、真空度が
10−1torr以上となる減圧溶解あるいはそれ以上
の大気溶解では不十分であり、真空溶解による溶製が不
可避となる。
To limit the amount of O and H to the above component range, the degree of vacuum should be 0.
It should be less than 0.05 torr. For this reason, vacuum melting at a vacuum degree of 10 -1 torr or higher or atmospheric melting at a higher vacuum level is insufficient, and melting by vacuum melting becomes inevitable.

溶解法は、真空酸素脱炭、真空誘導溶解等が考えられる
。さらにこの様な方法で電極を作製した後、真空アーク
再溶解を実施すればさらにガス成分を低減できる。また
、これはエレクトロスラグ溶解で代用可能である。
Possible melting methods include vacuum oxygen decarburization and vacuum induction melting. Further, after producing the electrode by such a method, the gas component can be further reduced by performing vacuum arc remelting. Also, this can be replaced by electroslag melting.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明に依る蒸気タービンの実施例の断面図
である。図において12で示される部位が本発明のロー
タ、またロータに複数植設されているのが動翼10であ
る。動翼10間には複数の静翼14が設置され、さらに
ロータ12は静翼を固定する内部ケーシング16を貫通
している。そして、内部ケーシング16には、複数の凸
部18が形成されており、これら複数の凸部18が内部
ケーシングを内股している外部ケーシング20の凹部に
挿入されボルト等により固定されている。
FIG. 1 is a sectional view of an embodiment of a steam turbine according to the invention. In the figure, the portion indicated by 12 is the rotor of the present invention, and a plurality of rotor blades 10 are implanted in the rotor. A plurality of stator blades 14 are installed between the moving blades 10, and the rotor 12 passes through an inner casing 16 that fixes the stator blades. A plurality of protrusions 18 are formed on the inner casing 16, and these plurality of protrusions 18 are inserted into recesses of the outer casing 20 that encloses the inner casing and are fixed with bolts or the like.

また外部ケーシング20は、貫通孔部22においてロー
タ12の両端を回転自在に支持しており、図において左
下部に流出口24が形成され、上部には開口26が形成
されている。
Further, the external casing 20 rotatably supports both ends of the rotor 12 in the through hole portion 22, and has an outlet 24 formed at the lower left in the figure and an opening 26 at the upper portion.

主蒸気は、矢印に示す如く主蒸気管30内を流下し、ノ
ズルボックス28を経て内部ケーシング16内に流入す
る。その後、動翼10をロータ12と一体的に回転動作
させ内部ケーシング16と外部ケーシング20との間の
空間部に入り、流出口24から流出する。いま、主蒸気
の温度を650℃、圧力を350kgf/cJIとする
と、前記蒸気タービンは動翼表面において温度650〜
554.3℃、圧力350〜199 kg f / c
櫂の運転条件となる。
The main steam flows down in the main steam pipe 30 as shown by the arrow, passes through the nozzle box 28, and flows into the inner casing 16. Thereafter, the moving blades 10 are rotated integrally with the rotor 12 to enter the space between the inner casing 16 and the outer casing 20, and flow out from the outlet 24. Now, assuming that the temperature of the main steam is 650°C and the pressure is 350kgf/cJI, the steam turbine has a temperature of 650°C to 650°C on the rotor blade surface.
554.3℃, pressure 350-199 kg f/c
This is the operating condition for the paddle.

第1表は供試材の化学成分を示す。本鋼種のうち1〜7
が開発材、8〜11が比較材である。溶解法は、鋼種1
〜3が真空誘導溶解(V I M)、鋼種4が真空誘導
溶解(V I M)後エレクトロスラグ再溶解(ESR
)、鋼種5が真空酸素脱炭(VOD)後エレクトロスラ
グ再溶解(ESR)、鋼種6〜7が真空誘導溶解(V 
I M)後真空アーク再溶解(VAR)である。また鋼
種8〜11の場合、大気溶解がその大半を占る。
Table 1 shows the chemical composition of the test materials. 1 to 7 of this steel type
is the developed material, and 8 to 11 are comparative materials. The melting method is steel type 1
~3 is vacuum induction melting (VIM), and steel type 4 is electroslag remelting (ESR) after vacuum induction melting (VIM).
), steel grade 5 undergoes electroslag remelting (ESR) after vacuum oxygen decarburization (VOD), and steel grades 6 to 7 undergo vacuum induction melting (VOD).
IM) Post Vacuum Arc Remelt (VAR). Moreover, in the case of steel grades 8 to 11, atmospheric dissolution accounts for the majority.

また、いずれも980℃で1〜3時間加熱後水冷または
油冷の溶体化処理に引き続き700〜760℃で16時
間加熱後空冷の時効処理を施した。その組織はオーステ
ナイト基地にγ′相が析出したものである。
Further, in each case, solution treatment was performed by heating at 980° C. for 1 to 3 hours, followed by water or oil cooling, followed by aging treatment by heating at 700 to 760° C. for 16 hours, followed by air cooling. The structure consists of γ′ phase precipitated on an austenite base.

第2図は650℃−46kgf/n++n”における各
鋼種のクリープ破断絞りとO,H量との関係を示す。こ
の結果によれば本発明で規定したO量60ppm以下、
H量2 ppm以下を満足する鋼種はいずれもその破断
絞りが10%以上となる。これに対しO,H量のどちら
かがこの規定値以上となる鋼種(鋼種8〜11)では破
断絞りは10%以下となる。
Figure 2 shows the relationship between the creep rupture area of each steel type and the amount of O and H at 650°C - 46 kgf/n++n''.This result shows that when the amount of O specified in the present invention is 60 ppm or less,
All steel types that satisfy the H content of 2 ppm or less have an area of area at break of 10% or more. On the other hand, in steel types (steel types 8 to 11) in which either the O or H amount is greater than or equal to this specified value, the fracture area is 10% or less.

実機構造物の様に応力集中部を有する材料を対象とした
場合、切欠材のクリープ破断強度が平滑材の強度以上と
なる「切欠強化」が材料にとって必須条件となる。一般
に、破断延性が大きい場合応力集中にともないクリープ
変形量が増加し応力集中部で応力緩和が発生する。その
結果応力の集中が減少し、高延材料はど切欠強度となる
傾向を示す。この様に破断延性は切欠効果に対する一つ
の目安となり、切欠強化とするための破断絞りを10%
以上に保つ事が一般的に実施されている。
When dealing with materials that have stress concentration areas, such as actual machine structures, "notch reinforcement" is an essential condition for the material, in which the creep rupture strength of the notched material is greater than the strength of the smooth material. Generally, when the fracture ductility is large, the amount of creep deformation increases with stress concentration, and stress relaxation occurs in the stress concentration area. As a result, stress concentration decreases, and the high-strength material tends to have high notch strength. In this way, the fracture ductility is a guideline for the notch effect, and the fracture reduction for notch reinforcement is 10%.
It is generally practiced to maintain the

以上の様に、本発明材は切欠強化となるための一つの目
安である破断絞り10%以上を満足する事がわかる。
As described above, it can be seen that the material of the present invention satisfies the rupture area of 10% or more, which is one of the criteria for notch reinforcement.

一方、第3図は溶解時の真空度とクリープ破断絞りとの
関係を示す。
On the other hand, FIG. 3 shows the relationship between the degree of vacuum during melting and the creep rupture area.

この結果より、溶解時の真空度を0 、05torr以
下とした場合破断絞りはいずれも10%以上となること
がわかる。
From these results, it can be seen that when the degree of vacuum during melting is set to 0.05 torr or less, the rupture area becomes 10% or more in all cases.

第4図は開発材(鋼種1,4,5.6)並びに比較材9
のクリープ破断強度を示す。この結果によれば開発材は
破断時間104時間までの範囲で切欠材の強度が平滑材
の強度以上となる切欠強化を呈する。一方、比較材9は
約3000時間以降において切欠弱化(平滑材強度≧切
欠材強度)となる。この様に溶解時の真空度等を0.0
5torr以下としO,H量を制限する事はクリープ破
断延性を向上させその結果切欠強度を増加するのに有効
であることがわかる。
Figure 4 shows developed materials (steel types 1, 4, and 5.6) and comparative materials 9.
shows the creep rupture strength of According to the results, the developed material exhibits notch reinforcement in which the strength of the notch material exceeds that of the smooth material within a range up to 104 hours to fracture. On the other hand, Comparative Material 9 becomes weakened in the notch after approximately 3000 hours (smooth material strength≧notch material strength). In this way, the degree of vacuum etc. during melting is set to 0.0.
It can be seen that limiting the amount of O and H to 5 torr or less is effective in improving creep rupture ductility and, as a result, increasing notch strength.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、溶解時の真空度等を0.05torr
以下としOXを60ppm以下、H量を2r’P以下に
制限しさらにMg、Y、Zn、Zrを添加することによ
りクリープ破断延性を向上、その結果切欠材のクリープ
破断強度の良好な600〜650℃超々臨界圧タービン
用回転機器として好適なFe基超超合金提案できること
が明らかとなった
According to the present invention, the degree of vacuum during melting is set to 0.05 torr.
Creep rupture ductility is improved by limiting OX to 60 ppm or less and H amount to 2r'P or less, and further adding Mg, Y, Zn, and Zr, resulting in a good creep rupture strength of 600 to 650 for the notched material. It has become clear that a Fe-based superalloy suitable for rotating equipment for ultra-supercritical pressure turbines can be proposed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は超々臨界圧タービン断面図、第2図はクリープ
破断延性とO,H量との関係図、第3図は溶解時の真空
度とクリープ破断絞りとの関係図、第4図はクリープ破
断強度を示す図である。 10・・・動翼、12・・・ロータ、13・・・静翼、
16・・・内部ケーシング、18・・・内部ケーシング
(凹部)%20・・・外部ケーシング、22・・・貫通
孔部、24・・・流出口、26・・・開口、28・・・
ノズルボックス、30・・・主蒸気管。 代理人 弁理士 高橋明夫 $2図 H量 (prfrL)
Figure 1 is a cross-sectional view of an ultra-supercritical pressure turbine, Figure 2 is a diagram of the relationship between creep rupture ductility and O and H content, Figure 3 is a diagram of the relationship between degree of vacuum during melting and creep rupture restriction, and Figure 4 is a diagram of the relationship between creep rupture ductility and the amount of O and H. It is a figure showing creep rupture strength. 10... Moving blade, 12... Rotor, 13... Stationary blade,
16...Inner casing, 18...Inner casing (recess)%20...Outer casing, 22...Through hole portion, 24...Outlet, 26...Opening, 28...
Nozzle box, 30...main steam pipe. Agent Patent Attorney Akio Takahashi $2 Figure H amount (prfrL)

Claims (1)

【特許請求の範囲】 1、真空度もしくは空気分圧が0 、05torr以下
となる真空溶解法により溶製されたことを特徴とする鉄
基超合金の製造法。 2、重量比で0.15%以下のC12%以下のMn、1
.5%以下のSt、10〜20%のCr、20〜30%
のNi、0.5〜3%のMo、1.5〜3%のTi、0
.1〜0.5%のAΩ、0.002〜0.01%のB、
0.4%以下のVを含有し、さらにO,H量をそれぞれ
60ppn+以下、2 ppm以下に制限し残部が鉄並
びに不可避な不純物で構成されることを特徴とする鉄基
超合金。 3、特許請求の範囲第2項目において、o、ooi〜0
.05%のMg、Y、Zn、Zrを1種もしくは2種以
上添加したことを特徴とする鉄基超合金。
[Claims] 1. A method for producing an iron-based superalloy, characterized in that it is produced by a vacuum melting method in which the degree of vacuum or air partial pressure is 0.05 torr or less. 2. C of 0.15% or less by weight; Mn of 12% or less; 1
.. 5% or less St, 10-20% Cr, 20-30%
of Ni, 0.5-3% Mo, 1.5-3% Ti, 0
.. 1~0.5% AΩ, 0.002~0.01% B,
An iron-based superalloy characterized by containing 0.4% or less of V, further limiting the amounts of O and H to 60 ppn+ and 2 ppm or less, respectively, with the remainder being composed of iron and unavoidable impurities. 3. In the second claim, o, ooi ~ 0
.. An iron-based superalloy characterized by adding 0.5% of one or more of Mg, Y, Zn, and Zr.
JP1016884A 1984-01-25 1984-01-25 Iron-base super alloy and its production Granted JPS60155653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1016884A JPS60155653A (en) 1984-01-25 1984-01-25 Iron-base super alloy and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1016884A JPS60155653A (en) 1984-01-25 1984-01-25 Iron-base super alloy and its production

Publications (2)

Publication Number Publication Date
JPS60155653A true JPS60155653A (en) 1985-08-15
JPH0559167B2 JPH0559167B2 (en) 1993-08-30

Family

ID=11742747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1016884A Granted JPS60155653A (en) 1984-01-25 1984-01-25 Iron-base super alloy and its production

Country Status (1)

Country Link
JP (1) JPS60155653A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137146A (en) * 1986-11-28 1988-06-09 Hitachi Ltd Heat-resisting steel
JPH02200756A (en) * 1989-01-30 1990-08-09 Sumitomo Metal Ind Ltd High strength heat resisting steel excellent in workability
US5102619A (en) * 1989-06-06 1992-04-07 Latrobe Steel Company Ferrous alloys having enhanced fracture toughness and method of manufacturing thereof
US5945067A (en) * 1998-10-23 1999-08-31 Inco Alloys International, Inc. High strength corrosion resistant alloy
EP1085105A2 (en) * 1999-09-03 2001-03-21 Kiyohito Ishida Free cutting alloy
US7297214B2 (en) 1999-09-03 2007-11-20 Kiyohito Ishida Free cutting alloy
US7381369B2 (en) 1999-09-03 2008-06-03 Kiyohito Ishida Free cutting alloy

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879120A (en) * 1972-01-27 1973-10-24
JPS5218419A (en) * 1975-08-02 1977-02-12 Nippon Steel Corp Method of manufacturing si-cont. steel
JPS5266814A (en) * 1975-12-02 1977-06-02 Showa Denko Kk Preparation of high chrome steel
JPS5620148A (en) * 1979-07-25 1981-02-25 Daido Steel Co Ltd Alloy for exhaust valve
JPS5833293A (en) * 1981-08-21 1983-02-26 カシオ計算機株式会社 Power conservator for electronic musical instrument
JPS5834129A (en) * 1981-08-21 1983-02-28 Daido Steel Co Ltd Heat-resistant metallic material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879120A (en) * 1972-01-27 1973-10-24
JPS5218419A (en) * 1975-08-02 1977-02-12 Nippon Steel Corp Method of manufacturing si-cont. steel
JPS5266814A (en) * 1975-12-02 1977-06-02 Showa Denko Kk Preparation of high chrome steel
JPS5620148A (en) * 1979-07-25 1981-02-25 Daido Steel Co Ltd Alloy for exhaust valve
JPS5833293A (en) * 1981-08-21 1983-02-26 カシオ計算機株式会社 Power conservator for electronic musical instrument
JPS5834129A (en) * 1981-08-21 1983-02-28 Daido Steel Co Ltd Heat-resistant metallic material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137146A (en) * 1986-11-28 1988-06-09 Hitachi Ltd Heat-resisting steel
JPH02200756A (en) * 1989-01-30 1990-08-09 Sumitomo Metal Ind Ltd High strength heat resisting steel excellent in workability
US5102619A (en) * 1989-06-06 1992-04-07 Latrobe Steel Company Ferrous alloys having enhanced fracture toughness and method of manufacturing thereof
US5945067A (en) * 1998-10-23 1999-08-31 Inco Alloys International, Inc. High strength corrosion resistant alloy
EP1085105A2 (en) * 1999-09-03 2001-03-21 Kiyohito Ishida Free cutting alloy
EP1085105A3 (en) * 1999-09-03 2001-05-16 Kiyohito Ishida Free cutting alloy
EP1431411A1 (en) * 1999-09-03 2004-06-23 Kiyohito Ishida Free cutting alloy
EP1431409A1 (en) * 1999-09-03 2004-06-23 Kiyohito Ishida Free cutting alloy
US7297214B2 (en) 1999-09-03 2007-11-20 Kiyohito Ishida Free cutting alloy
US7381369B2 (en) 1999-09-03 2008-06-03 Kiyohito Ishida Free cutting alloy

Also Published As

Publication number Publication date
JPH0559167B2 (en) 1993-08-30

Similar Documents

Publication Publication Date Title
US5749228A (en) Steam-turbine power plant and steam turbine
CN100577988C (en) Steam turbine
US6129514A (en) Steam turbine power-generation plant and steam turbine
KR101173695B1 (en) Heat resistant steel, rotor shaft for steam turbine and steam turbine using the same, and steam turbine power generating plant
JPH0959747A (en) High strength heat resistant cast steel, steam turbine casing, steam turbine electric power plant, and steam turbine
JPH0563544B2 (en)
JP2005171339A (en) High strength high toughness high corrosion resistance martensite steel, steam turbine blade, and steam turbine power plant
US6358004B1 (en) Steam turbine power-generation plant and steam turbine
JPS60155653A (en) Iron-base super alloy and its production
EP0759499B2 (en) Steam-turbine power plant and steam turbine
JP3362369B2 (en) Steam turbine power plant and steam turbine
JP3716684B2 (en) High strength martensitic steel
JPS6123749A (en) Austenitic stainless steel having high strength at high temperature
JPH0524984B2 (en)
JP3661456B2 (en) Last stage blade of low pressure steam turbine
JP2001247942A (en) Rotor shaft for steam turbine
JPH09287402A (en) Rotor shaft for steam turbine, steam turbine power generating plant, and steam turbine thereof
JP3800630B2 (en) Final stage blades for steam turbine power plant and low pressure steam turbine and their manufacturing method
JPH07238349A (en) Heat resistant steel
JP2678263B2 (en) High-strength and high-corrosion-resistant martensitic stainless steel manufacturing method and its application
JPH07118812A (en) Heat-resistant cast steel turbine casting and its production
JPS6029453A (en) Cr-ni alloy for moving vane of steam turbine
JP3632272B2 (en) Rotor shaft for steam turbine and its manufacturing method, steam turbine power plant and its steam turbine
JPH1036944A (en) Martensitic heat resistant steel
JPS63183155A (en) High-strength austenitic heat-resisting alloy