JPH07118812A - Heat-resistant cast steel turbine casting and its production - Google Patents

Heat-resistant cast steel turbine casting and its production

Info

Publication number
JPH07118812A
JPH07118812A JP5267032A JP26703293A JPH07118812A JP H07118812 A JPH07118812 A JP H07118812A JP 5267032 A JP5267032 A JP 5267032A JP 26703293 A JP26703293 A JP 26703293A JP H07118812 A JPH07118812 A JP H07118812A
Authority
JP
Japan
Prior art keywords
heat
cast steel
resistant cast
less
turbine casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5267032A
Other languages
Japanese (ja)
Inventor
Masao Shiga
正男 志賀
Mitsuo Kuriyama
光男 栗山
Kishio Hidaka
貴志夫 日高
Shigeyoshi Nakamura
重義 中村
Hiroshi Fukui
寛 福井
Toshio Fujita
利夫 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5267032A priority Critical patent/JPH07118812A/en
Publication of JPH07118812A publication Critical patent/JPH07118812A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

PURPOSE:To produce a heat-resistant cast steel casing high in creep fracture strength at a high temp., having good weldability and used for a supercritical turbine in which the main steam temp. and pressure are regulated to 621 deg.C and 250kgf/cm<2>, respectively. CONSTITUTION:This casing is constituted of a heat-resistant cast steel contg., by weight, 0.06 to 0.16% C, <0.4% Si, <1% Mn, 8 to 12% Cr, 0.2 to 0.9% Ni, 0.05 to 0.3% V, 0.01 to 0.15% Nb, 0.01 to 0.08% N, <1% Mo, >1 to <3% W, <0.0027% B, and the balance substantial Fe. The ratio of Ni/W is preferably regulated to 0.25 to 0.75, furthermore, at least one kind of <=0.15% Ta and <=0.1% Zr may be added, and moreover, the Cr equivalent calculated by the following formula is preferably regulated to 4 to 10: the Cr equivalent = Cr+6Si+4Mo+1.5W+11V+5Nb-40C-30N-30B-2Mn-4Ni-2Co.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な耐熱鋳鋼タービ
ンケーシングおよびその製造法に係り、特に621℃以上
における高いクリ−プ破断強度と、良好な溶接性を有
し、主蒸気温度及び圧力がそれぞれ621℃、250 kgf/cm2
の超々臨界圧タービンの高圧及び中圧内部ケーシング並
びに主蒸気止め弁及び加減弁ケーシングに好適な耐熱鋳
鋼で構成されたタ−ビンケーシングに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel heat-resistant cast steel turbine casing and a method for producing the same, and in particular, it has a high creep rupture strength at 621 ° C. or higher, good weldability, and main steam temperature and pressure. 621 ℃ and 250 kgf / cm 2 respectively
The present invention relates to a turbine casing made of heat-resistant cast steel, which is suitable for the high-pressure and medium-pressure inner casings of the ultra-supercritical turbine, the main steam stop valve and the control valve casing.

【0002】[0002]

【従来の技術】従来の蒸気タ−ビンは蒸気温度最大566
℃、蒸気最大圧力246 kgf/cm2 である。このケーシング
材としては1Cr−1Mo−1/4V 低合金鋳鋼や、11Cr−1
Mo−V−Nb−N鋳鋼が用いられている。
2. Description of the Related Art Conventional steam turbines have a maximum steam temperature of 566.
℃, maximum steam pressure 246 kgf / cm 2 . As this casing material, 1Cr-1Mo-1 / 4V low alloy cast steel or 11Cr-1
Mo-V-Nb-N cast steel is used.

【0003】しかし、石油、石炭などの化石燃料の枯渇
及び省エネの観点から、火力発電プラントの高効率化が
望まれている。発電効率を上げるためには蒸気タ−ビン
の蒸気温度を上げるのが最も有効な手段である。これら
の高効率タ−ビン用材料としては、現用ケーシング材で
は強度不足で、これよりも高強度の材料が必要である。
しかし、前述した鋳鋼はいずれも、蒸気温度621℃以
上の高温蒸気タ−ビンケーシングとしては、高温強度が
不足である。
However, from the viewpoint of depletion of fossil fuels such as oil and coal and energy saving, there is a demand for higher efficiency of thermal power plants. The most effective means to raise the power generation efficiency is to raise the steam temperature of the steam turbine. As a material for these high-efficiency turbines, the strength of the current casing material is insufficient, and a material having higher strength than this is required.
However, any of the above-mentioned cast steels lacks high-temperature strength as a high-temperature steam turbine casing having a steam temperature of 621 ° C or higher.

【0004】[0004]

【発明が解決しようとする課題】前述の従来ケーシング
材料よりも高温強度の高い材料としては、発明者らが開
発した、特開昭61-23749号公報に示されているオーステ
ナイト系鋳鋼が知られている。しかし、これらの合金は
高温クリ-プ破断強度に優れているが、コストが高い上
に熱膨張係数が大きいために、タ-ビンの起動停止時に
大きな熱応力を発生する問題があった。
The austenitic cast steel disclosed in Japanese Patent Laid-Open No. 61-23749 developed by the present inventors is known as a material having higher high temperature strength than the above-mentioned conventional casing material. ing. However, although these alloys are excellent in high temperature creep rupture strength, they have a problem that a large thermal stress is generated when the turbine is started and stopped because of high cost and large thermal expansion coefficient.

【0005】本発明の目的は、熱膨張係数が従来使用材
と同等で、621℃以上でのクリ-プ破断強度の高く、かつ
溶接性の良好なフェライト系耐熱鋳鋼タービンケーシン
グとその製造法を提供することにある。
An object of the present invention is to provide a ferritic heat-resistant cast steel turbine casing having a coefficient of thermal expansion equivalent to that of conventional materials, high creep rupture strength at 621 ° C. or higher, and good weldability, and a method for producing the same. To provide.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の耐熱鋳鋼タービンケーシングは、重量比で
C 0.06〜0.16%、Si 0.4%未満、Mn 1%未満、Cr 8
〜12%、Ni 0.2〜0.9%、V 0.05〜0.3%、Nb 0.01〜
0.15%、N 0.01〜0.08%、Mo 1%未満、W 1%を超え
3%未満、B 0.0027%未満を含み、残部がFe及び不可
避不純物からなる耐熱鋳鋼で構成されていることを特徴
とする。そしてNi/W比が0.25〜0.75であることが好
ましい。
In order to achieve the above object, the heat-resistant cast steel turbine casing of the present invention has a weight ratio of C 0.06 to 0.16%, Si less than 0.4%, Mn less than 1%, Cr 8
~ 12%, Ni 0.2 ~ 0.9%, V 0.05 ~ 0.3%, Nb 0.01 ~
0.15%, N 0.01-0.08%, Mo less than 1%, W over 1%
It is characterized by containing less than 3% and B less than 0.0027%, and the balance being composed of heat-resistant cast steel consisting of Fe and unavoidable impurities. And it is preferable that the Ni / W ratio is 0.25 to 0.75.

【0007】また本発明の別の耐熱鋳鋼タービンケーシ
ングは、重量比でC 0.09〜0.14%、Si 0.3%未満、M
n 0.40〜0.70%、Cr 8〜10%、Ni 0.4〜0.7%、V 0.
15〜0.25%、Nb 0.04〜0.08%、N 0.02〜0.06%、Mo
0.40〜0.80%、W 1.4〜1.9%、B 0.001〜0.0025%を
含み、残部がFe及び不可避不純物からなる耐熱鋳鋼で
構成されていることを特徴とする。
Another heat-resistant cast steel turbine casing according to the present invention has a weight ratio of C 0.09 to 0.14%, Si less than 0.3%, and M.
n 0.40 to 0.70%, Cr 8 to 10%, Ni 0.4 to 0.7%, V 0.
15-0.25%, Nb 0.04-0.08%, N 0.02-0.06%, Mo
It is characterized by containing 0.40 to 0.80%, W 1.4 to 1.9%, B 0.001 to 0.0025%, and the balance being heat-resistant cast steel composed of Fe and unavoidable impurities.

【0008】上記本発明の各耐熱鋳鋼タービンケーシン
グの組成にさらにTa 0.15%以下及びZr 0.1%以下の
うち少なくとも一種を含有させることが好ましい。また
次式で計算されるCr当量が4〜10であることが好まし
い。
It is preferable that the composition of each heat-resistant cast steel turbine casing of the present invention further contains at least one of Ta 0.15% or less and Zr 0.1% or less. Further, the Cr equivalent calculated by the following formula is preferably 4-10.

【0009】 Cr当量=Cr+6Si+4Mo+1.5W+11V+5Nb-40C-30N-30B-2Mn-4Ni-2Co (1) さらに、本発明の各耐熱鋳鋼タービンケーシングを構成
する耐熱鋳鋼は625 ℃、105 hクリープ破断強度を9 kgf
/mm2以上、室温衝撃吸収エネルギーを1 kgf-m以上を有
し、溶接性が良好なものとする。更に、より高い信頼性
を確保するには、625 ℃、105 hクリープ破断強度を10
kgf/mm2以上、室温衝撃吸収エネルギーを2 kgf-m以上で
あることが好ましい。
Cr equivalent = Cr + 6Si + 4Mo + 1.5W + 11V + 5Nb-40C-30N-30B-2Mn-4Ni-2Co (1) Further, the heat-resistant cast steel constituting each heat-resistant cast steel turbine casing of the present invention is 625 ℃, 10 5 h creep rupture strength 9 kgf
/ mm 2 or more, room temperature impact absorption energy of 1 kgf-m or more, and good weldability. Further, to secure higher reliability, 625 ° C., a 10 5 h creep rupture strength 10
kgf / mm 2 or more, it is preferable that the impact absorption energy at room temperature 2 kgf-m or more.

【0010】本発明は耐熱鋳鋼タービンケーシングの製
造法は、上記各耐熱鋳鋼ケーシング材を目標組成とする
合金原料を電気炉で溶解し、とりべ精錬後、砂型鋳型に
鋳込み成形することを特徴とする。そして鋳込み成形の
後に、1000〜1150℃で焼鈍し、1000〜1100℃に加熱し急
冷する焼準熱処理を行い、550〜750℃及び670〜770℃で
2回焼もどしを行うことが好ましい。
The present invention is characterized in that the method for producing a heat-resistant cast steel turbine casing is characterized in that an alloy raw material having the above-mentioned heat-resistant cast steel casing material as a target composition is melted in an electric furnace, and after ladle refining, it is cast into a sand mold. To do. Then, after the cast molding, it is preferable to perform a normalizing heat treatment of annealing at 1000 to 1150 ° C., heating to 1000 to 1100 ° C. and quenching, and then performing two tempering at 550 to 750 ° C. and 670 to 770 ° C.

【0011】[0011]

【作用】本発明にかかる耐熱鋳鋼の組成成分を次のよう
に限定した。Cは高い引張強さを得るために0.06%以上
必要な元素であるが、0.16%を超えると、高温に長時間
さらされた場合に金属組織が不安定になり、長時間クリ
−プ破断強度を低下させるので、0.06〜0.16%に限定さ
れる。特に0.09〜0.14%が好ましい。
The composition of the heat-resistant cast steel according to the present invention is limited as follows. C is an element necessary for 0.06% or more to obtain high tensile strength, but if it exceeds 0.16%, the metal structure becomes unstable when it is exposed to high temperature for a long time, and the creep rupture strength for a long time. Is limited to 0.06 to 0.16%. In particular, 0.09 to 0.14% is preferable.

【0012】Nはクリ−プ破断強度の改善及び有害な
(靭性及び疲労強度を低下させる)δフェライト組織の
生成防止に効果があるが、0.001%未満ではその効果が
十分でな0.08%を越えると靭性を低下させると共に、ク
リ−プ破断強度も低下させる。特に0.02〜0.06%が好ま
しい。
N is effective in improving creep rupture strength and preventing the formation of harmful δ ferrite structure (reducing toughness and fatigue strength), but if less than 0.001%, the effect is sufficient and exceeds 0.08%. And toughness and creep rupture strength. In particular, 0.02 to 0.06% is preferable.

【0013】Mnは脱酸剤として添加するものであり、
少量の添加でその効果は達成され、1%を越える多量の
添加はクリ−プ破断強度を低下させる。特に0.4〜0.7%
が好ましい。
Mn is added as a deoxidizer,
The effect is achieved with a small amount of addition, and a large amount of addition exceeding 1% lowers the creep rupture strength. Especially 0.4-0.7%
Is preferred.

【0014】Siも脱酸剤として添加するものである
が、真空カーボン脱酸法などの製鋼技術によれば、Si
脱酸は不要である。またSiを低くすることにより有害
なδフェライト組織生成防止効果がある。したがって、
添加する場合には0.4%以下に抑える必要があり、特に
0.3%未満が好ましい。
Although Si is also added as a deoxidizing agent, according to steelmaking technology such as vacuum carbon deoxidizing method, Si is added.
No deoxidation is necessary. Further, by lowering Si, there is an effect of preventing harmful δ ferrite structure formation. Therefore,
If added, it should be kept below 0.4%, especially
It is preferably less than 0.3%.

【0015】Vはクリ−プ破断強度を高める効果があ
る。0.05%未満ではその効果が不十分で0.3%を越える
とδフェライトを生成して疲労強度を低下させる。特
に、0.15〜0.25 %が好ましい。
V has the effect of increasing the creep rupture strength. If it is less than 0.05%, its effect is insufficient, and if it exceeds 0.3%, δ ferrite is formed to reduce the fatigue strength. Particularly, 0.15 to 0.25% is preferable.

【0016】Nb は高温強度を高めるのに非常に効果的
な元素であるが、あまり多量に添加すると、特に大型鋼
塊では粗大な共晶Nb炭化物が生じ、かえって強度を低
下させたり、疲労強度を低下させるδフェライトを析出
させる原因になるので0.15%以下に抑える必要がある。
また0.01%未満のNbでは効果が不十分である。特に大
型鋼塊の場合は0.02〜0.1%が、より0.04〜0.08%が好
ましい。
Nb is a very effective element for increasing the high temperature strength, but if added in a too large amount, coarse eutectic Nb carbides are produced especially in a large steel ingot, which rather lowers the strength or increases the fatigue strength. It causes the precipitation of δ-ferrite, which lowers the temperature, so it must be kept to 0.15% or less.
If the Nb content is less than 0.01%, the effect is insufficient. Particularly in the case of a large steel ingot, 0.02 to 0.1% is preferable, and 0.04 to 0.08% is more preferable.

【0017】Niは靭性を高め、かつ、δフェライトの
生成を防止するのに非常に有効な元素であるが、0.2%
未満ではその効果が十分でなく、0.9 %を越える添加は
クリ−プ破断強度を低下させるので好ましくない。特に
0.4〜0.7 %が好ましい。
Ni is a very effective element for increasing the toughness and preventing the formation of δ ferrite, but 0.2%
If it is less than 0.9%, the effect is not sufficient, and if it exceeds 0.9%, the creep rupture strength is lowered, which is not preferable. In particular
0.4 to 0.7% is preferable.

【0018】Crは高強度及び高温酸化を改善する効果
がある。12 %を越えると有害なδフェライト組織生成
の原因となり、8 %より少ないと高温高圧蒸気に対する
耐酸化性が不十分となる。またCr添加は、クリープ破
断強度を高める効果があるが、過剰の添加は有害なδフ
ェライト組織生成及び靭性低下の原因となる。特に8.0
〜10%、より8.5〜9.5%が好ましい。
Cr has the effect of improving high strength and high temperature oxidation. When it exceeds 12%, it causes harmful formation of δ-ferrite structure, and when it is less than 8%, the oxidation resistance to high temperature and high pressure steam becomes insufficient. Further, addition of Cr has an effect of increasing creep rupture strength, but excessive addition causes harmful formation of δ ferrite structure and deterioration of toughness. Especially 8.0
~ 10%, more preferably 8.5-9.5%.

【0019】Wは高温長時間強度を顕著に高める効果が
ある。1%より少ないWでは、621〜650℃で使用する耐
熱鋼としては効果が不十分である。またWが3%を越え
ると靭性が低くなる。1.2〜2.0 %が好ましく、特に1.4
〜1.8 %が好ましい。
W has the effect of significantly increasing the high temperature long-term strength. If less than 1% W, the effect is insufficient as a heat resistant steel used at 621 to 650 ° C. Further, if W exceeds 3%, the toughness becomes low. 1.2-2.0% is preferable, especially 1.4
~ 1.8% is preferred.

【0020】Mo添加は、高温強度向上のために行なわ
れる。しかし、本発明鋳鋼の様に1%を超えるWを含む
場合には、1%以上のMo添加は靭性及び疲労強度を低下
させるので、1%未満に制限される。特に0.4〜0.8%が
好ましく、より0.55〜0.70%が好ましい。
Mo is added to improve the high temperature strength. However, in the case where the cast steel of the present invention contains more than 1% W, addition of 1% or more of Mo lowers the toughness and fatigue strength, so it is limited to less than 1%. Particularly, 0.4 to 0.8% is preferable, and 0.55 to 0.70% is more preferable.

【0021】本発明において、重要な点はNi/W比の調
整である。Ni/W比を0.25〜0.75に調整することによ
り、621℃、250 kgf/cm2以上の超々臨界圧タービン高圧
および中圧内部ケーシング並びに主蒸気止め弁および加
減弁ケーシングに要求される、625℃、105hクリープ破
断強度9 kgf/mm2以上、室温衝撃吸収エネルギー1 kgf-m
以上の耐熱鋳鋼ケーシング材が得られる。
In the present invention, the important point is the adjustment of the Ni / W ratio. By adjusting the Ni / W ratio to 0.25 to 0.75, 625 ° C required for the super-supercritical turbine high pressure and medium pressure inner casing of 621 ° C, 250 kgf / cm 2 or more, main steam stop valve and control valve casing, 625 ° C. , 10 5 h Creep rupture strength 9 kgf / mm 2 or more, room temperature shock absorption energy 1 kgf-m
The above heat-resistant cast steel casing material is obtained.

【0022】Ta及びZrの添加は、低温靭性を高める効
果があり、Ta 0.15%以下及びZr0.1%以下の単独また
は複合添加で十分な効果が得られる。Taを0.1%以上添
加した場合には、Nbの添加を省略することができる。
The addition of Ta and Zr has the effect of enhancing the low temperature toughness, and a sufficient effect can be obtained by adding Ta 0.15% or less and Zr 0.1% or less alone or in combination. When Ta is added by 0.1% or more, the addition of Nb can be omitted.

【0023】本発明の耐熱鋳鋼ケーシング材は、δフェ
ライト組織が混在すると、高温クリープ破断強度及び低
温靭性が低くなるので、組織は均一な焼もどしマルテン
サイト組織が好ましい。焼もどしマルテンサイト組織を
得るために、(1)式で計算されるCr当量を、成分調整
により10以下にしなければならない。Cr当量をあまり
低くすると高温クリープ破断強度が低下してしまうの
で、4以上にしなければならない。特に、Cr当量 6〜9
が好ましい。
Since the high temperature creep rupture strength and the low temperature toughness of the heat-resistant cast steel casing material of the present invention are lowered when the δ ferrite structure is mixed, the structure is preferably a uniform tempered martensite structure. In order to obtain a tempered martensite structure, the Cr equivalent calculated by the formula (1) must be 10 or less by adjusting the composition. If the Cr equivalent is too low, the high temperature creep rupture strength will decrease, so it must be 4 or more. Especially, Cr equivalent 6-9
Is preferred.

【0024】B添加は高温(621℃以上)クリ-プ破断強度
を著しく高める。B含有量が0.0028%を超えると、溶接
性が悪くなるため、上限は0.0028%に制限される。大形
ケーシングのB含有量は0.0005〜0.0025%が好ましく、
特に0.001〜0.002%が好ましい。
The addition of B remarkably enhances the creep rupture strength at high temperature (621 ° C. or higher). If the B content exceeds 0.0028%, the weldability deteriorates, so the upper limit is limited to 0.0028%. The B content of the large casing is preferably 0.0005 to 0.0025%,
In particular, 0.001 to 0.002% is preferable.

【0025】タービンケーシングは、621℃以上の高圧
蒸気に曝されるので、内圧による高応力が作用する。そ
のため、クリープ破壊防止の観点から、ケーシング材は
9kgf/mm2以上の625℃、105hクリープ破断強度が要求さ
れる。また、タービン起動時には、メタル温度が低い時
に熱応力が作用するので、脆性破壊防止の観点から、1k
gf-m以上の室温衝撃吸収エネルギーが要求される。特
に、より高い信頼性を確保するためには、625℃、105h
クリープ破断強度 10kgf/mm2以上、室温衝撃吸収エネル
ギー 2kgf-m以上であることが好ましい。
Since the turbine casing is exposed to high-pressure steam at 621 ° C. or higher, high stress due to internal pressure acts. Therefore, the casing material should be
Creep rupture strength of 9 kgf / mm 2 or more at 625 ° C for 10 5 h is required. At the time of starting the turbine, thermal stress acts when the metal temperature is low.
Room temperature shock absorption energy of gf-m or more is required. Especially, in order to ensure higher reliability, 625 ℃, 10 5 h
It is preferable that the creep rupture strength is 10 kgf / mm 2 or more and the room temperature impact absorption energy is 2 kgf-m or more.

【0026】欠陥の少ないケーシングを作製するには、
鋳塊重量50トン前後と大形になるので、高度な製造技術
が要求される。上記の本発明にかかるフェライト系の耐
熱鋳鋼ケーシング材は、その耐熱鋳鋼を目標組成とする
合金原料を電気炉で溶解し、とりべ精錬後、砂型鋳型に
鋳込み成形することにより健全なものが作製できる。鋳
込み前に、十分な精錬及び脱酸を行うことにより、引け
巣等の鋳造欠陥の少ないものにできる。
To produce a casing with few defects,
Since the ingot weighs around 50 tons, it requires a high level of manufacturing technology. The ferritic heat-resistant cast steel casing material according to the present invention described above is prepared by melting the alloy raw material having the target composition of the heat-resistant cast steel in an electric furnace, ladle refining, and casting it into a sand mold to produce a sound product. it can. By performing sufficient refining and deoxidation before casting, it is possible to reduce casting defects such as shrinkage cavities.

【0027】また、成形された耐熱鋳鋼を1000〜1150℃
で焼鈍熱処理後、1000〜1100℃に加熱し急冷する焼準熱
処理、550〜750℃及び670〜770℃で2回焼もどしを行う
ことにより、621℃以上の蒸気中で使用可能な蒸気タ−
ビンケーシングが製造できる。焼鈍及び焼準温度は、10
00℃以下では炭窒化物を十分固溶させることが出来ず、
あまり高くすると結晶粒粗大化の原因になる。また、2
回焼もどしは、残留オーステナイトを完全に分解させ、
均一な焼きもどしマルテンサイト組織にすることができ
る。上記の製法で作製することにより、9kgf/mm2以上の
625℃、105hクリープ破断強度と1kgf-m以上の室温衝撃
吸収エネルギーが得られ、621℃以上の蒸気中で使用可
能な蒸気タ−ビンケーシングにできる。
Also, the molded heat-resistant cast steel is heated to 1000 to 1150 ° C.
After anneal heat treatment at 60 ° C., it is heated to 1000 to 1100 ° C. and rapidly cooled. Normal heat treatment at 550 to 750 ° C. and 670 to 770 ° C.
Bottle casings can be manufactured. The annealing and normalizing temperature is 10
Carbonitride cannot be sufficiently dissolved at 00 ° C or lower,
If it is too high, it may cause coarsening of crystal grains. Also, 2
The temper tempering completely decomposes the retained austenite,
A uniform tempered martensite structure can be obtained. By manufacturing with the above manufacturing method, 9 kgf / mm 2 or more
A creep rupture strength of 625 ° C for 10 5 hours and room temperature impact absorption energy of 1 kgf-m or more are obtained, and a steam turbine casing usable in steam of 621 ° C or more can be obtained.

【0028】図1は本発明にかかわる蒸気タービンの断
面図である。蒸気は主蒸気管1より入り、内部ケーシン
グ2に取り付けられた静翼3によって所定の方向に噴射さ
れ、その噴射によってロータシャフト4に取り付けられ
た動翼5を回転させる。仕事をした蒸気は外部ケーシン
グ6と内部ケーシング2との間を通り、冷却蒸気出口7よ
り排出される。更にこの排出された蒸気は、より低圧の
蒸気で作動する蒸気タービンへ送られるか、またはボイ
ラに送られ再加熱され再び蒸気タービンへ送られる。な
お、タービンの起動/停止及び出力調整は、ボイラから
送られて来る蒸気を、図2に示す主蒸気止め弁9および
加減弁10で流量調節することにより行われる。これら主
蒸気止め弁9と加減弁10の各ケーシングは互いに溶接11
によって接合されている。
FIG. 1 is a sectional view of a steam turbine according to the present invention. Steam enters from the main steam pipe 1, is injected in a predetermined direction by the stationary blades 3 attached to the inner casing 2, and the injection causes the moving blades 5 attached to the rotor shaft 4 to rotate. The steam that has worked passes between the outer casing 6 and the inner casing 2 and is discharged from the cooling steam outlet 7. Further, the discharged steam is sent to a steam turbine operating with a lower pressure steam, or sent to a boiler to be reheated and sent to the steam turbine again. The start / stop of the turbine and the output adjustment are performed by adjusting the flow rate of the steam sent from the boiler with the main steam stop valve 9 and the regulator valve 10 shown in FIG. The casings of the main steam stop valve 9 and the regulator valve 10 are welded to each other 11
Are joined by.

【0029】以下、内部ケーシングには本発明に係る9
Crフェライト系鋳鋼が、ロータシャフトには本発明に
係る鋼と同じくフェライト系の12Cr鍛鋼が、外部ケ
ーシングにはCr-Mo-V鋳鋼がそれぞれ用いられる。
Hereinafter, the inner casing according to the present invention will be 9
Cr ferritic cast steel, ferritic 12Cr forged steel similar to the steel according to the present invention is used for the rotor shaft, and Cr-Mo-V cast steel is used for the outer casing.

【0030】特に、本発明においては、621℃、250kgf/
cm2以上の超々臨界圧タービン高圧及び中圧内部ケーシ
ング並びに主蒸気止め弁ケーシング及び加減弁ケーシン
グに好適である。
Particularly, in the present invention, 621 ° C., 250 kgf /
It is suitable for ultra-supercritical turbine high-pressure and intermediate-pressure inner casings of cm 2 or more, main steam stop valve casings, and control valve casings.

【0031】[0031]

【実施例】以下、本発明の実施例について述べる。 〔実施例1〕本発明にかかるフェライト系の耐熱鋳鋼及
び比較材について、溶接性試験、室温における衝撃試
験、高温クリープ試験(625℃)等を実施した。
EXAMPLES Examples of the present invention will be described below. [Example 1] With respect to the ferritic heat-resistant cast steel according to the present invention and a comparative material, a weldability test, an impact test at room temperature, a high temperature creep test (625 ° C) and the like were performed.

【0032】表1および表2は上記各種試験に供した試
料の化学組成を示す。試料は、大形ケーシングの厚肉部
を想定して、高周波誘導溶解炉を用い200kg溶解し、最
大厚さ200mm、幅380mm、高さ440mmの砂型に鋳込み、鋳
塊を作製した。表1に示す試料No.1〜10は比較材であ
り、表2に示す試料No.11〜14は本発明材である。その
うち試料No.1およびNo.2は現流タ−ビンに使用されて
いるCr-Mo-V鋳鋼および11Cr-1Mo-V-Nb-N 鋳鋼である。
Tables 1 and 2 show the chemical compositions of the samples used in the above various tests. Assuming a thick portion of a large casing, a sample was melted by 200 kg in a high frequency induction melting furnace and cast into a sand mold having a maximum thickness of 200 mm, a width of 380 mm and a height of 440 mm to produce an ingot. Samples No. 1 to 10 shown in Table 1 are comparative materials, and samples No. 11 to 14 shown in Table 2 are materials of the present invention. Among them, samples No. 1 and No. 2 are Cr-Mo-V cast steel and 11Cr-1Mo-V-Nb-N cast steel used in the current turbine.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】各試料は、1050℃×8h炉冷の焼鈍処理後、
大形蒸気タ-ビンケーシングの厚肉部を想定して次の条
件で熱処理(焼準・焼もどし)した。
Each sample was subjected to furnace cooling annealing at 1050 ° C. for 8 hours,
Heat treatment (normalization / tempering) was performed under the following conditions assuming the thick part of the large steam turbine casing.

【0036】試料No.1:1050℃×8h 空冷 710℃×7h 空冷 710℃×7h 炉冷 試料No.2〜No.14: 1050℃×8h 空却 720℃×7h 空冷 720℃×7h 炉冷 溶接性評価は、JIS Z3158に準ずる斜めY形溶接われ試験
により行った。図3はその試験片形状および寸法を示
す。予熱、パス間および後熱開始温度は150℃に、後熱
処理は400℃×30分にした。
Sample No. 1: 1050 ° C. × 8 h Air cooling 710 ° C. × 7 h Air cooling 710 ° C. × 7 h Furnace cooling Sample No. 2 to No. 14: 1050 ° C. × 8 h Air cooling 720 ° C. × 7 h Air cooling 720 ° C. × 7 h Furnace cooling The weldability was evaluated by a diagonal Y-shaped weld crack test according to JIS Z3158. FIG. 3 shows the shape and size of the test piece. The preheating, inter-pass and post-heating start temperatures were 150 ° C, and the post-heat treatment was 400 ° C x 30 minutes.

【0037】表3は比較材について、表4は本発明材に
ついて、それぞれ室温の引張特性、20℃におけるVノッ
チシャルピ−衝撃吸収エネルギ−、625℃における105
クリ−プ破断強度及び溶接割れ試験結果を示す。
Table 3 is for the comparative material, and Table 4 is for the material of the present invention. Tensile properties at room temperature, V-notch Charpy impact absorption energy at 20 ° C. and 10 5 h at 625 ° C., respectively.
The results of creep rupture strength and weld cracking are shown.

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【表4】 [Table 4]

【0040】適量のB、Mo及びWを添加した本発明材
No.11〜14 のクリープ破断強度及び衝撃吸収エネルギー
は、超々臨界圧タービンロータに要求される特性(625
℃、105h強度≧9kgf/mm2、20℃衝撃吸収エネルギー≧1k
g-m)を十分満足する。また、Ta、及びZrを添加した試
料 No.13及び14 の20℃における靭性は、かなり優れて
いる。また、本発明材には溶接割れが認められず、溶接
性が良好である。図4はB量と溶接割れの関係を示す。
B量の多い比較材 No.3及び No.4には、溶接割れが発生
した。表3、表4で、機械的性質に及ぼすMoの影響を見
ると、Mo 1.18%を含む比較材 No.6は、クリープ破断強
度は高いものの、衝撃値が低く、要求される靭性を満足
できない。一方、Mo 0.11%を含む比較材 No.5は、靭性
は高いものの、クリープ破断強度が低く、要求される強
度を満足できない(図5)。
Material of the present invention to which appropriate amounts of B, Mo and W are added
The creep rupture strength and impact absorption energy of Nos. 11 to 14 are the characteristics required for the ultra-supercritical turbine rotor (625
℃, 10 5 h Strength ≧ 9kgf / mm 2 , 20 ℃ Impact absorption energy ≧ 1k
gm) is fully satisfied. Further, the toughness at 20 ° C. of Sample Nos. 13 and 14 to which Ta and Zr are added is considerably excellent. Further, the material of the present invention has no weld cracks and has good weldability. FIG. 4 shows the relationship between the amount of B and weld cracking.
Weld cracks occurred in Comparative Materials No. 3 and No. 4, which contained a large amount of B. Looking at the effects of Mo on the mechanical properties in Tables 3 and 4, Comparative Material No. 6 containing 1.18% Mo has a high creep rupture strength but a low impact value and cannot satisfy the required toughness. . On the other hand, the comparative material No. 5 containing 0.11% of Mo has high toughness but low creep rupture strength, and cannot satisfy the required strength (Fig. 5).

【0041】図6は機械的性質に及ぼすNi/W比の影
響を示す。Ni/W比をあまり高めるとクリープ破断強
度が低くなる。逆にNi/W比をあまり低くすると室温
衝撃吸収エネルギーが低くなる。Ni/W比を0.25〜0.7
5に調整することにより、温度621℃、圧力250kgf/cm2
上の超々臨界圧タービン高圧及び中圧内部ケーシング並
びに主蒸気止め弁及び加減弁ケーシングに要求される、
625℃、105hクリープ破断強度 9kgf/mm2以上、室温衝撃
吸収エネルギー 1kgf-m以上の耐熱鋳鋼ケーシング材が
得られる。特に、Ni/W比を 0.25〜0.75に調整するこ
とにより、625℃、105hクリープ破断強度 10kgf/mm2
上、室温衝撃吸収エネルギー 2kgf-m以上の優れた耐熱
鋳鋼ケーシング材が得られる。
FIG. 6 shows the effect of Ni / W ratio on mechanical properties. If the Ni / W ratio is increased too much, the creep rupture strength will decrease. On the contrary, if the Ni / W ratio is too low, the room-temperature impact absorption energy becomes low. Ni / W ratio of 0.25 to 0.7
By adjusting to 5, the temperature is 621 ℃, the pressure of 250kgf / cm 2 or more ultra-supercritical turbine high pressure and medium pressure inner casing, as well as the main steam stop valve and control valve casing, required.
A heat-resistant cast steel casing material having a creep rupture strength of 9 kgf / mm 2 or more and a room temperature impact absorption energy of 1 kgf-m or more can be obtained at 625 ° C for 10 5 h. Particularly, by adjusting the Ni / W ratio to 0.25 to 0.75, an excellent heat-resistant cast steel casing material having a creep rupture strength of 10 kgf / mm 2 or more at 625 ° C. for 10 5 h and a room temperature impact absorption energy of 2 kgf-m or more can be obtained.

【0042】〔実施例2〕本発明にかかる耐熱鋳鋼を目
標組成とする合金原料を電気炉で1トン溶解し、とりべ
精錬後、砂型鋳型に鋳込み成形した。この成形した鋳鋼
を1050℃×8hで保持し炉冷の焼鈍熱処理後、1050℃×8h
で保持し衝風冷の焼準熱処理、730℃×8h保持し炉冷の
2回焼もどしを行った。この試作ケーシングを切断し調
査した結果、超々臨界圧タービンケーシングに要求され
る特性(625℃、105hクリープ強度≧9kgf/mm2、20℃衝撃
吸収エネルギー≧1kg-m)を十分満足することと、溶接性
が良好であることが確認された。これにより、621℃以
上の蒸気中で使用可能な蒸気タ−ビンケーシングが製造
できることが実証された。
Example 2 One ton of an alloy raw material having a target composition of the heat-resistant cast steel according to the present invention was melted in an electric furnace, and after ladle refining, cast into a sand mold. This formed cast steel is held at 1050 ℃ × 8h, and after furnace annealing annealing heat treatment, 1050 ℃ × 8h
Held at 730 ° C. for 8 hours and 730 ° C. for 8 hours. As a result of cutting and investigating this prototype casing, it is necessary to sufficiently satisfy the characteristics required for an ultra-supercritical turbine casing (625 ° C, 10 5 h creep strength ≧ 9 kgf / mm 2 , 20 ° C shock absorption energy ≧ 1 kg-m). It was confirmed that the weldability was good. This proves that a steam turbine casing that can be used in steam at 621 ° C or higher can be manufactured.

【0043】[0043]

【発明の効果】本発明によれば、625℃クリ-プ破断強度
及び室温靭性の高いフェライト系耐熱鋳鋼が得られるの
で、温度650℃までの超々臨界圧タ-ビン用ケーシングお
よびその類の高温部材を従来のオーステナイト系耐熱鋳
鋼に代わり、フェライト系耐熱鋳鋼(本発明材)で作製す
ることができる。
EFFECTS OF THE INVENTION According to the present invention, a ferritic heat-resistant cast steel having a high 625 ° C. creep rupture strength and a high room temperature toughness can be obtained. The member can be made of ferritic heat-resistant cast steel (material of the present invention) instead of the conventional austenitic heat-resistant cast steel.

【0044】これまでのオーステナイト系耐熱鋳鋼に代
わり、本発明にかかる耐熱鋳鋼をタービンケーシングに
使用することにより、材料コストを著しく低減すること
ができる。また、本発明にかかるフェライト系耐熱鋳鋼
はオーステナイト系耐熱鋳鋼に比べ熱膨張係数が小さい
ので、タービンの急起動が容易になると共に、熱疲労損
傷を受け難いなどの利点がある。
By using the heat-resistant cast steel according to the present invention in the turbine casing instead of the conventional heat-resistant austenitic cast steel, the material cost can be remarkably reduced. Further, since the ferritic heat-resistant cast steel according to the present invention has a smaller coefficient of thermal expansion than the austenitic heat-resistant cast steel, it has advantages that the turbine can be rapidly started easily and that it is less susceptible to thermal fatigue damage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の耐熱鋳鋼タービンケーシングを構成要
素とする蒸気タービンの断面図である。
FIG. 1 is a sectional view of a steam turbine including a heat-resistant cast steel turbine casing of the present invention as a constituent element.

【図2】主蒸気止め弁および加減弁それぞれのケーシン
グを示す図である。
FIG. 2 is a view showing casings of a main steam stop valve and a control valve.

【図3】本発明にかかる耐熱鋳鋼の溶接割れ試験片形状
を示す図である。
FIG. 3 is a diagram showing the shape of a weld crack test piece of heat resistant cast steel according to the present invention.

【図4】本発明材におけるB量と溶接割れの関係を示す
図である。
FIG. 4 is a diagram showing the relationship between the amount of B and welding cracks in the material of the present invention.

【図5】本発明材における機械的性質に及ぼすMoの影
響を示す図である。
FIG. 5 is a diagram showing the effect of Mo on the mechanical properties of the material of the present invention.

【図6】本発明材における機械的性質におよぼすNi/
W比の影響を示す図である。
FIG. 6 shows Ni / affecting mechanical properties of the material of the present invention.
It is a figure which shows the influence of W ratio.

【符号の説明】[Explanation of symbols]

1 主蒸気管 2 内部ケーシング 3 静翼 4 ロータシャフト 5 動翼 6 外部ケーシング 7 冷却蒸気出口 9 主蒸気止め弁 10 加減弁 1 Main Steam Pipe 2 Inner Casing 3 Stator Blade 4 Rotor Shaft 5 Moving Blade 6 Outer Casing 7 Cooling Steam Outlet 9 Main Steam Stop Valve 10 Control Valve

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F03B 11/02 7504−3H (72)発明者 中村 重義 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 福井 寛 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 藤田 利夫 東京都千代田区神田駿河台四丁目6番地 株式会社日立製作所内Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location F03B 11/02 7504-3H (72) Inventor Shigeyoshi Nakamura 7-1 Omika-cho, Hitachi-shi, Ibaraki Stock ceremony Hitachi, Ltd., Hitachi Research Laboratory (72) Inventor, Hiroshi Fukui, 7-1, 1-1 Omika-cho, Hitachi, Hitachi Within Hitachi, Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 重量比でC 0.06〜0.16%、Si 0.4%未
満、Mn 1%未満、Cr 8〜12%、Ni 0.2〜0.9%、V
0.05〜0.3%、Nb 0.01〜0.15%、N 0.01〜0.08%、M
o 1%未満、W 1%を超え3%未満、B 0.0027%未満を
含み、残部がFe及び不可避不純物かるなる耐熱鋳鋼で
構成されていることを特徴とする耐熱鋳鋼タービンケー
シング。
1. A weight ratio of C 0.06 to 0.16%, Si less than 0.4%, Mn less than 1%, Cr 8 to 12%, Ni 0.2 to 0.9%, V
0.05 to 0.3%, Nb 0.01 to 0.15%, N 0.01 to 0.08%, M
o Heat-resistant cast steel turbine casing, characterized in that it contains less than 1%, more than W 1% and less than 3%, and B less than 0.0027%, and the balance is composed of heat-resistant cast steel consisting of Fe and inevitable impurities.
【請求項2】 前記耐熱鋳鋼におけるNiとWの含有量
の比Ni/Wが0.25〜0.75であることを特徴とする請求
項1記載の耐熱鋳鋼タービンケーシング。
2. The heat-resistant cast steel turbine casing according to claim 1, wherein the ratio Ni / W of the contents of Ni and W in the heat-resistant cast steel is 0.25 to 0.75.
【請求項3】 重量比でC 0.09〜0.14%、Si 0.3%未
満、Mn 0.40〜0.70%、Cr 8〜10%、Ni 0.4〜0.7
%、V 0.15〜0.25%、Nb 0.04〜0.08%、N0.02〜0.0
6%、Mo 0.40〜0.80%、W 1.4〜1.9%、B 0.001〜0.
0025%を含み、残部がFe及び不可避不純物からなる耐
熱鋳鋼で構成されていることを特徴とする耐熱鋳鋼ター
ビンケーシング。
3. A weight ratio of C 0.09 to 0.14%, Si less than 0.3%, Mn 0.40 to 0.70%, Cr 8 to 10%, Ni 0.4 to 0.7.
%, V 0.15 to 0.25%, Nb 0.04 to 0.08%, N 0.02 to 0.0
6%, Mo 0.40 to 0.80%, W 1.4 to 1.9%, B 0.001 to 0.
A heat-resistant cast steel turbine casing, characterized in that the heat-resistant cast steel is composed of heat-resistant cast steel containing Fe and unavoidable impurities in the balance.
【請求項4】 請求項1ないし3いずれかに記載の耐熱
鋳鋼タービンケーシングの組成にさらにTa 0.15%以下
及びZr 0.1%以下のうち少なくとも一種を含有する耐
熱鋳鋼で構成されていることを特徴とする耐熱鋳鋼ター
ビンケーシング。
4. A heat-resistant cast steel turbine casing according to claim 1, further comprising at least one of Ta 0.15% or less and Zr 0.1% or less. Heat resistant cast steel turbine casing.
【請求項5】 前記耐熱鋳鋼は次式により計算されるC
r当量が4〜10であることを特徴とする請求項1ないし4
のいずれかに記載の耐熱鋳鋼タービンケーシング。 Cr当量=Cr+6Si+4Mo+1.5W+11V+5Nb-40C-30N-30B-2Mn-4N
i-2Co
5. The heat resistant cast steel has a C calculated by the following equation.
5. The r equivalent is 4 to 10, wherein the r equivalent is 4 to 10.
A heat-resistant cast steel turbine casing according to any one of 1. Cr equivalent = Cr + 6Si + 4Mo + 1.5W + 11V + 5Nb-40C-30N-30B-2Mn-4N
i-2Co
【請求項6】 前記耐熱鋳鋼は625℃、105hクリープ破
断強度を9 kgf/mm2以上、室温衝撃吸収エネルギーを1 k
gf-m以上を有し、溶接性が良好であることを特徴とする
請求項1ないし5のいずれかに記載の耐熱鋳鋼タービン
ケーシング。
6. The heat resistant cast steel has a creep rupture strength of 9 kgf / mm 2 or more at 625 ° C. for 10 5 h, and a room temperature impact absorption energy of 1 k.
The heat-resistant cast steel turbine casing according to any one of claims 1 to 5, which has gf-m or more and has good weldability.
【請求項7】 請求項1ないし6のいずれかに記載の耐
熱鋳鋼ケーシング材を目標組成とする合金原料を電気炉
で溶解し、とりべ精錬後、砂型鋳型に鋳込み成形するこ
とを特徴とする耐熱鋳鋼タービンケーシングの製造法。
7. The heat-resistant cast steel casing material according to claim 1 is used to melt an alloy raw material having a target composition in an electric furnace, and after ladle refining, it is cast into a sand mold. Heat resistant cast steel turbine casing manufacturing method.
【請求項8】 前記鋳込み成形後に、1000〜1150℃で焼
鈍し、1000〜1100℃に加熱し急冷する焼準熱処理を行
い、550〜750℃及び670〜770℃で2回焼もどしを行うこ
とを特徴とする請求項7記載の耐熱鋳鋼タービンケーシ
ングの製造法。
8. After the cast molding, a normalizing heat treatment of annealing at 1000 to 1150 ° C., heating to 1000 to 1100 ° C. and quenching is performed, and tempering is performed twice at 550 to 750 ° C. and 670 to 770 ° C. A method for manufacturing a heat-resistant cast steel turbine casing according to claim 7.
JP5267032A 1993-10-26 1993-10-26 Heat-resistant cast steel turbine casting and its production Pending JPH07118812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5267032A JPH07118812A (en) 1993-10-26 1993-10-26 Heat-resistant cast steel turbine casting and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5267032A JPH07118812A (en) 1993-10-26 1993-10-26 Heat-resistant cast steel turbine casting and its production

Publications (1)

Publication Number Publication Date
JPH07118812A true JPH07118812A (en) 1995-05-09

Family

ID=17439108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5267032A Pending JPH07118812A (en) 1993-10-26 1993-10-26 Heat-resistant cast steel turbine casting and its production

Country Status (1)

Country Link
JP (1) JPH07118812A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959747A (en) * 1995-08-25 1997-03-04 Hitachi Ltd High strength heat resistant cast steel, steam turbine casing, steam turbine electric power plant, and steam turbine
EP1544312A1 (en) * 2003-12-19 2005-06-22 Korea Atomic Energy Research Institute Method of producing heat-resistant high chromium ferritic/martensitic steel
JP2014014849A (en) * 2012-07-10 2014-01-30 Shinko Yosetsu Service Kk Y-type welding crack testing plate, and method of manufacturing y-type welding crack testing plate
CN111344427A (en) * 2017-11-15 2020-06-26 日本制铁株式会社 Austenitic heat-resistant steel weld metal, weld joint, weld material for austenitic heat-resistant steel, and method for producing weld joint
CN114480978A (en) * 2022-01-11 2022-05-13 中国船舶重工集团公司第七二五研究所 Non-quenched and tempered microalloy cast steel and heat treatment method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970752A (en) * 1982-10-15 1984-04-21 Hitachi Ltd Austenitic heat-resisting steel having excellent high temperature strength
JPS60128250A (en) * 1983-12-15 1985-07-09 Toshiba Corp Heat-resistant high-chromium cast steel
JPS60200912A (en) * 1984-03-26 1985-10-11 Toshiba Corp Heat treatment of casting made of high chromium steel
JPS61133365A (en) * 1984-12-03 1986-06-20 Toshiba Corp Rotor for steam turbine
JPH02149649A (en) * 1988-11-30 1990-06-08 Toshiba Corp Cr alloy steel
JPH02310340A (en) * 1989-05-23 1990-12-26 Nippon Steel Corp Ferritic heat-resistant steel having excellent toughness and creep strength

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970752A (en) * 1982-10-15 1984-04-21 Hitachi Ltd Austenitic heat-resisting steel having excellent high temperature strength
JPS60128250A (en) * 1983-12-15 1985-07-09 Toshiba Corp Heat-resistant high-chromium cast steel
JPS60200912A (en) * 1984-03-26 1985-10-11 Toshiba Corp Heat treatment of casting made of high chromium steel
JPS61133365A (en) * 1984-12-03 1986-06-20 Toshiba Corp Rotor for steam turbine
JPH02149649A (en) * 1988-11-30 1990-06-08 Toshiba Corp Cr alloy steel
JPH02310340A (en) * 1989-05-23 1990-12-26 Nippon Steel Corp Ferritic heat-resistant steel having excellent toughness and creep strength

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0959747A (en) * 1995-08-25 1997-03-04 Hitachi Ltd High strength heat resistant cast steel, steam turbine casing, steam turbine electric power plant, and steam turbine
EP0767250A2 (en) * 1995-08-25 1997-04-09 Hitachi, Ltd. High strenght heat resisting cast steel, steam turbine casing, steam turbine power plant and steam turbine
EP0767250A3 (en) * 1995-08-25 1997-12-29 Hitachi, Ltd. High strenght heat resisting cast steel, steam turbine casing, steam turbine power plant and steam turbine
US5961284A (en) * 1995-08-25 1999-10-05 Hitachi, Ltd. High strength heat resisting cast steel, steam turbine casing, steam turbine power plant and steam turbine
KR100414474B1 (en) * 1995-08-25 2004-05-31 가부시끼가이샤 히다치 세이사꾸쇼 High strength heat-resisting cast steel, steam turbine casing, steam turbine power plant and steam turbine
EP1544312A1 (en) * 2003-12-19 2005-06-22 Korea Atomic Energy Research Institute Method of producing heat-resistant high chromium ferritic/martensitic steel
JP2014014849A (en) * 2012-07-10 2014-01-30 Shinko Yosetsu Service Kk Y-type welding crack testing plate, and method of manufacturing y-type welding crack testing plate
CN111344427A (en) * 2017-11-15 2020-06-26 日本制铁株式会社 Austenitic heat-resistant steel weld metal, weld joint, weld material for austenitic heat-resistant steel, and method for producing weld joint
CN111344427B (en) * 2017-11-15 2021-08-31 日本制铁株式会社 Austenitic heat-resistant steel weld metal, weld joint, weld material for austenitic heat-resistant steel, and method for producing weld joint
CN114480978A (en) * 2022-01-11 2022-05-13 中国船舶重工集团公司第七二五研究所 Non-quenched and tempered microalloy cast steel and heat treatment method thereof

Similar Documents

Publication Publication Date Title
EP0237170B1 (en) Heat resistant steel and gas turbine composed of the same
EP0298127B1 (en) Heat-resistant steel and gas turbine made of the same
US6123504A (en) Steam-turbine power plant and steam turbine
US6224334B1 (en) Steam turbine, rotor shaft thereof, and heat resisting steel
JP4542491B2 (en) High-strength heat-resistant cast steel, method for producing the same, and uses using the same
KR102037086B1 (en) Low alloy steel for geothermal power generation turbine rotor, and low alloy material for geothermal power generation turbine rotor and method for manufacturing the same
EP0384433B1 (en) Ferritic heat resisting steel having superior high-temperature strength
US4090813A (en) High-efficiency turbo-machine impellers
JPH0959747A (en) High strength heat resistant cast steel, steam turbine casing, steam turbine electric power plant, and steam turbine
JP4844188B2 (en) casing
JPH062927B2 (en) High strength low alloy steel with excellent corrosion resistance and oxidation resistance
JPS6054385B2 (en) heat resistant steel
JP3492969B2 (en) Rotor shaft for steam turbine
JPH07118812A (en) Heat-resistant cast steel turbine casting and its production
EP0759499A1 (en) Steam-turbine power plant and steam turbine
JPH0432145B2 (en)
JPH11209851A (en) Gas turbine disk material
JP3345988B2 (en) Steam turbine rotor
JPH0885850A (en) High chromium ferritic heat resistant steel
JP2001049398A (en) High toughness heat resistant steel, and manufacture of turbine rotor
JPH07238349A (en) Heat resistant steel
JP3662151B2 (en) Heat-resistant cast steel and heat treatment method thereof
JPH08120414A (en) Heat resistant steel
JPH05263657A (en) High efficiency gas turbine and disc used in it
JPH0639659B2 (en) High strength high chromium steel with excellent oxidation resistance and weldability